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Abstract

Partial generalizations of virtual polyhedra theory (sometimes un-
der different names) appeared recently in the theory of torus manifolds.
These generalizations look very different from the original virtual poly-
hedra theory. They are based on simple arguments from homotopy
theory while the original theory is based on integration over Euler
characteristic. In the paper we explain how these generalizations are
related to the classical theory of convex bodies and to the original
virtual polyhedra theory. The paper basically contains no proofs: all
proofs and all details can be found in the cited literature. The paper
is based on my talk dedicated to V. I. Arnold’s 85-th anniversary at
the International Conference on Differential Equations and Dynamical
Systems 2022 (Suzdal).

1 Introduction. Virtual convex polyhedra and their
polynomial measures

Convex polyhedra in the linear space Rn form a convex cone in the following
way. One can multiply a convex polyhedron ∆ by any nonnegative real
number λ (i.e. take its dilatation λ∆ centred at the origin with the factor
λ) and add two convex polyhedra ∆1,∆2 in Minkowski sense. Recall that
the Minkowski sum of ∆1,∆2 ⊂ Rn is the set ∆ of the points z representable
in the form z = x+ y, where x ∈ ∆1, y ∈ ∆2.

A convex chain is a function on Rn representable as a finite linear com-
bination with real coefficients of characteristic functions of closed convex
polyhedra (of different dimensions).

Convex chains form a real vector space in a natural way. One can further
define a product f∗g of two chains f, g as follows. If f and g are characteristic
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functions of closed convex polyhedra ∆1,∆2 ⊂ Rn then, by definition, the
chain f ∗g is the characteristic function of ∆ = ∆1 +∆2 (where the addition
is understood in the Minkowski sense). This product can be extended by
linearity to the space of convex chains.

Note that it is not obvious at all that the above product is well defined.
Indeed, convex chain can be represented as a linear combination of charac-
teristic functions in many different ways, and independents of product f ∗ g
of such representations of f and g is not obvious. One can prove [1] that the
product is well defined using as the tool integration over Euler characteristic
[2].

Convex chains in Rn with the multiplication ∗ form a real algebra with
the identity element 1, which is the characteristic function of the origin in
Rn. The characteristic function χ∆ of a closed convex polyhedron ∆ ⊂ Rn
are invertible in the algebra of convex chains. More precisely, the following
theorem holds.

Theorem 1.1. Let ∆ ⊂ Rn be a convex polyhedron and let −∆0 be the
set of interior points (in the intrinsic topology of ∆) of the polyhedron −∆
symmetric to ∆ with respect to the origin. Then

(−1)dim ∆χ−∆0 ∗ χ∆ = 1.

In other words, the convex chain (−1)dim ∆χ−∆0 is inverse to ∆ with respect
to the addition in Minkowski sense (extended to the space of convex chains).

Algebra of convex chains contains the multiplicative subgroup generated
by characteristic functions of closed convex polyhedra. Elements of that
group are called virtual polyhedra in Rn.

Let us fix closed convex polyhedra ∆1, . . . ,∆k ⊂ Rn. For any k-tuple of
nonnegative integral numbers n = (n1, . . . , nk) one can defined the polyhe-
dron ∆(n) =

∑
ni∆i.

The following sentence can be considered as a slogan of virtual polyhedra
theory: “A natural continuation of the function ∆(n) (whose values are
convex polyhedra) to k-tuples n = (n1, . . . , nk) of integral numbers (some
of which could be negative) is a convex chain ∆̃(n) defined by the following
formula

∆̃(n) = χn1
∆1
∗ · · · ∗ χnk

∆k
.

This slogan has a following justification: value of a polynomial measures
(see an example of such measure below) on a chain ∆̃(n) is a polynomial
of n. Generalizations of virtual polyhedra theory suggest other families of
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cycles depending on parameters, such that integrals against such cycles of a
differential form with polynomial coefficients are polynomial in parameters.

Let us present an example of a polynomial measure on convex polyhedra
with integral vertices and a justification of the slogan of virtual polyhedra
theory. Let P : Rn → R be a polynomial of degree m. With P one can asso-
ciate the following measure µ on convex polyhedra ∆ with integral vertices:
µ(∆) =

∑
x∈Zn∩∆ P (x). One can prove that the function µ(∆(n) is a degree

≤ (n+m) polynomial on k-tuples n of nonnegative integral numbers.
The following Theorem justifies the slogan of virtual polyhedra theory.

Theorem 1.2. Let P be a polynomial of degree m and let F̃ (n) be the
function on k-tuples n = (n1, . . . , nk) of integral numbers (which could be
negative) defined by the formula

F̃ (n) =
∑
x∈Zn

χn1
∆1

(x) ∗ · · · ∗ χnk
∆k

(x)P (x).

Then F̃ (n) is a degree ≤ (n + m) polynomial on k-tuple n which coincides
with F (n) on k-tuples with nonnegative components.

Virtual polyhedra theory allows to develop a general theory of polyno-
mial finite additive measures on convex polyhedra (see [1]), which contains
wide generalizations of the above theorem.

The virtual polyhedra theory was motivated by cohomology theory of
complete toric varieties, with coefficients in sheafs invariant under the torus
action. In particular it provides a combinatorial version of Riemann–Roch
theorem for such varieties [3], which also could be considered as a multidi-
mensional version of the classical Euler–MacLuren formula (see [3]).

The general theory is applicable to singular polynomial measures on
polyhedra (such as the measure, which associates to a polyhedron the num-
ber of integral points in it) which could take nonzero value on polyhedra
∆ with dim ∆ < n. However, if one is interested in nonsingular polynomial
measures, which vanish on polyhedra whose dimension is smaller than n, one
can totally neglect all polyhedra of dimension < n in convex chains. This
leads to a significant simplification of virtual polyhedra theory, which cap-
tures smooth polynomial measures (an which is not appropriate for studying
singular measures).

Simplified theory is still useful. In particular, it allows to provide a
topological proof of Bernstein–Koushnirenko–Khovanskii (BKK) theorem.
More generally, using a description of algebras with Poincare duality (see
for example [4, Section 6] or [5]) it allows to describe the cohomology ring
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H∗(M,Z) of a smooth complete toric variety M in terms of volume func-
tion on virtual integral convex polyhedra (so-called Khovanskii–Pukhlikov
description of the ring H∗(M,Z)).

In this paper we only deal with simplified versions of the virtual polyhe-
dra theory which deal only with nonsingular measures as well as its gener-
alizations. We also mention some topological applications of these general-
izations. We start with geometric meaning of a virtual convex body and its
volume for the difference of two strictly convex bodies with smooth bound-
aries. We also will present some applications of mixed volume and virtual
polyhedra in algebra.

2 Virtual strictly convex bodies and their volumes

Formal virtual convex body is a formal difference of compact convex bodies
(which in general are not polyhedra).

Similar to polyhedra, compact convex bodies in Rn form a convex cone
with respect to Minkowski addition and dilation with positive factors cen-
tered at the origin. Moreover, the addition of convex bodies satisfies the can-
celation property, i.e. if for a convex body ∆ the identity ∆1 + ∆ = ∆2 + ∆
implies that ∆1 = ∆2. Hence one can generate a group by formal differences
of convex bodies with ∆1 −∆2 = ∆3 −∆4 whenever ∆1 + ∆4 = ∆3 + ∆2.

By Minkovsky’s Theorem, the volume is a homogeneous degree n poly-
nomial on the cone of convex bodies. More concretely, if ∆1,∆2 are convex
bodies, λ, µ ≥ 0 then the volume Vol(λ∆1 + µ∆2) is a homogeneous degree
n polynomial in (λ, µ). Therefore, the volume can be extended to the lin-
ear space of formal differences of convex bodies as a homogeneous degree
n polynomial. In Section 4 we give a geometric interpretation of virtual
convex bodies as well as their volumes.

Since the volume is a homogeneous polynomial of degree n on the cone
of convex bodies in Rn, it admits a polarization Vol(∆1, . . . ,∆n). That is
Vol(∆1, . . . ,∆n) is a unique function of n-tuple of convex bodies ∆1, . . . ,∆n

with the following properties:

1. Vol(∆1, . . . ,∆n) is linear in each argument, with respect to Minkowski
addition;

2. Vol(∆1, . . . ,∆n) is symmetric;

3. on a diagonal it is equal to the volume, i.e. Vol(∆, . . . ,∆) = Vol(∆).
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The polarization of the volume polynomial is called the mixed volume. By
multi-linearity mixed volume can be extended to n-tuples of virtual convex
bodies.

3 Volume and mixed volume in algebra

In this section we briefly recall the relation of mixed volumes of virtual
polytopes with algebraic geometry. Let ∆1, . . . ,∆n be a collection of convex
polyhedra with integral vertices.

The following question was originated by Vladimir Igorevich Arnold in
the middle 1970-th: “Let P1, . . . , Pn be a generic n-tuple of Laurent poly-
nomials with given Newton polyhedra ∆(Pi) = ∆i. How many roots does a
system of equations P1 = · · · = Pn = 0 have in (C∗)n?”

The answer is given by the Bernstein-Koushnirenko-Khovanskii (BKK)
theorem which was originaly proved by A.G. Koushnirenko and D.N. Bern-
stein. In later work, I found many generalizations and different proofs of
that result.

Theorem 3.1 (BKK theorem). The number of solutions is equal to n!Vol(∆1, . . . ,∆n).

One generalization of BKK theorem comes if we consider rational func-
tions on (C∗)n instead of Laurent polynomials. Let P1

Q1
, . . . , Pn

Qn
be a generic

n-tuple of rational functions with given Newton polyhedra ∆(Pi) = ∆i and
∆(Qi) = ∆′i. Then the intersection number in (C∗)n of the principal divisors
of these rational functions is equal to multiplied by n! mixed volume of the
virtual polyhedra ∆̃i = ∆i −∆′i, i.e. is equal to n!Vol(∆̃1, . . . , ∆̃n) (see for
details [6]).

4 Geometric meaning of Virtual strictly convex
bodies

First recall that the support function H∆ of a compact convex body ∆ ⊂ Rn
is a function on the dual space (Rn)∗ defined by the following formula:

H∆(ξ) = max
x∈∆
〈ξ, x〉.

One can further associate a support function to a virtual convex body. In-
deed, the support function depend linearly on the convex body, thus it can
be naturally extended to differences of convex bodies: H∆1−∆2 = H∆1−H∆2 .

5



The support function H∆ of a (vitual) convex body ∆ is a degree one ho-
mogeneous function. More precisely, for λ ≥ 0 the following relation holds:
H∆(λξ) = λH∆(ξ).

In what follows, we assume that in Rn an Euclidian metric is fixed,
which allows to identify (Rn)∗ with Rn. Assume further that ∆ has smooth
boundary and it is strictly convex. Then for ξ not equal to zero the inner
product 〈ξ, x〉 attaints maxima at one point a of ∂∆ only and this point
a(ξ) is equal to grad H∆(ξ).

Lemma 4.1. The vector-function grad H∆(ξ) restricted to the unite sphere
Sn−1 defines a map from Sn−1 to the boundary ∂∆ of the strictly convex
body ∆. Moreover, this map is inverse to the Gauss map g : ∂∆→ Sn−1.

To a virtual convex body ∆ with a smooth on Rn \ {0} support function
H∆ One can associate the image grad H∆(Sn−1) of the unite sphere under
the map grad H∆ : Sn−1 → Rn This image has a natural parametrization by
the sphere Sn−1. The correspondence ∆ → grad H∆ provides a map from
the space of virtual convex bodies with smooth support function H∆ to the
linear space of gradient mappings from Sn−1 to Rn.

Consider (n − 1)-form ω = x1dx2 ∧ · · · ∧ dxn on Rn. Notice that the
differential dω is the standard volume form on Rn. The following statement
is a direct corollary of Lemma 4.1 and Stock’s formula.

Corollary 4.1. The volume of a convex body ∆ with smooth strictly convex
boundary ∂∆ is equal to

∫
Sn−1 f

∗ω where f = grad H∆ restricted to the
sphere Sn−1.

Corollary 4.1 provides a proof of Minkowski Theorem for convex bodies
with smooth strictly convex boundaries. Indeed,

(grad Hλ∆1+µ∆2)∗ω = (λ · grad H∆1 + µ · grad H∆2)∗ω

is an (n− 1)-form whose coefficients are degree n homogeneous polynomials
in (λ, µ). Moreover, since the above formula for the volume is written in
terms of support functions, it is applicable to virtual convex bodies. More
concretely, for a virtual convex body ∆ = ∆1 − ∆2 with ∆1,∆2 strictly
convex bodies with smooth boundaries, let f be grad H∆ = grad (H∆1−H∆2)
restricted to the unite sphere. Then one has Vol(∆) =

∫
Sn−1 f

∗ω.
Now we will give a different presentation for the volume of virtual convex

bodies which is applicable to the case of generalized virtual polyhedra. Let
f : Sn−1 → Rn be a smooth mapping of the unite sphere to Rn. The
image f(Sn−1) of the unit sphere Sn−1 cuts the space Rn into a collection
of connected open bodies.
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Definition 4.1. A winding number Wf (U) where U is an open connected
component of Rn\f(Sn−1) is a mapping degree of the map τa : Sn−1 → Sn−1

where τ(ξ) = f(ξ)−a
|f(ξ)−a| for ξ) ∈ Sn−1 and a is any point in U .

Informally, the number Wf (U) shows how many times the image f(Sn−1)
of the sphere Sn−1 is rotating around U .

Definition 4.2. Let H(ξ) be a smooth function on Rn \ {0} which is ho-
mogeneous of degree one. Then the virtual convex body with the support
function H is defined as a chain∑

U

Wf (U)U,

where f = grad H and the sum is taken over all bounded connected compo-
nents of the complement Rn \ f(Sn−1).

Theorem 4.1. The volume of the virtual convex body with a smooth support
function H on Rn\{0} is equal to the integral of the volume form against the
chain

∑
Wf (U)U associated with the virtual convex body. In other words,

the volume of virtual bogy is equal to∑
U

Wf (U)Vol(U)

where Vol(U) is the volume of U .

The proof follows from the formula for the volume of virtual convex
body and from Stock’s formula. Theorem 4.1 has the following automatic
generalization:

Theorem 4.2. An integral of degree m polynomial P over virtual convex
body with a smooth on Rn \{0} support function H is equal to the integral of
the polynomial P against the chain, associated with this virtual convex body,
i.e. is equal to ∑

U

Wf (U)

∫
U
Pdx1 ∧ · · · ∧ dxn.

Proof. Theorem can be proven in the same way as Theorem 4.1. It is enough
to replace the form ω = x1dx2 ∧ · · · ∧ dxn with a form Qdx2 ∧ · · · ∧ dxn such
that Q is degree m+ 1 polynomial satisfying ∂Q/∂x1 = P .

One can generalize above theorems in the following directions:
1) Instead of the unite sphere Sn−1 and its gradient mappings to Rn one

can take any piecewise smooth (n − 1)-cycle Γ and consider the space of
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piecewise smooth mappings f : Γ→ Rn. An integrals against Γ of the form
f∗ω where ω is a fixed (n − 1) form with polynomial coefficients on Rn is
a polynomial on the space of maps f from Γ to Rn. The same polynomial
on the space of mapping f one can obtain by integrating n-form dω against
the chain

∑
Wf (U)U , where U are connected components of Rn \ f(Γ) and

Wf (U) is the mapping degree of map τ : Γ→ Sn−1 where τ(x) = f(x)−a
|f(x)−a| ∈

Sn−1 where x ∈ Γ and a is any point in U . The chain Wf (U)U is an analog
of the chain associated with a virtual convex body.

2) Let Γ be (n − 1)-cycle as above, and let M(Γ, L) be the space of
piecewise linear mapping of Γ to a real linear space L. With a fixed (n− 1)
form ω with polynomial coefficients on the space L one can associate the
polynomial function on M(Γ, L) whose value on f ∈ M(Γ, L) is equal to∫

Γ f
∗ω. In such generalization one has integrals which depend in polynomial

way on parameters (but in such generalization there are no chains analogous
to chains associated with virtual convex polyhedra).

5 Analogues virtual polyhedra and their volume

Let us return to the original definition of virtual polyhedra. With any
given convex polyhedron ∆0 one associates a subgroup of virtual polyhedra
analogues to ∆0. In this section we first recall this construction and then
describe a simplified theory of virtual polyhedra.

First recall that each convex polyhedron ∆ defines a dual fan ∆⊥ in the
following way. Two covectors are said to be ∆-equivalent if they attaint
maxima at the same face of ∆. A set of all ∆-equivalent covectors form a
cone (which is open in intrinsic topology). Closures of such cones form the
dual fan ∆⊥ for ∆.

Definition 5.1. Two polyhedra ∆1,∆2 are called analogous if their dual
fans coincide. In particular, for each face of ∆1 there is exactly one face of
∆2 parallel to it.

The following lemma is straightforward to show.

Lemma 5.1. Let ∆1,∆2 be convex polyhedra analogues to ∆0. Then ∆1+∆2

is also analogues ∆0.

If a virtual polyhedron ∆ is representable as a difference ∆1 − ∆2 of
polyhedra analogues to ∆0 then we will say that the virtual polyhedron ∆ is
analogues to ∆0. In other words, a virtual polyhedron analogues to ∆0 if the
corresponding convex chain is representable in the form χ∆1 ∗χ−1

∆2
where χ∆i
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is the characteristic function of ∆i. Note that a virtual polyhedra ∆1 −∆2

depends on its support function (and is independent of the representation
this function in the form H∆1 −H∆2).

5.1 Simplified version of analogous convex polyhedra theory

If one is only interested with nonsingular measures of a virtual polyhedron,
one can neglect polyhedra of dimension < n in the convex chain associated
with a virtual polyhedron analogues to ∆0. This leads to a simplified theory
of virtual polyhedra which can be described using support functions in a way,
similar to the description of virtual convex bodies with smooth boundary
presented above.

Convex polyhedra are not strictly convex and the Gauss map from the
unite sphere to the boundary of convex polyhedra is not defined. But one
can defined (up to a homotopy) an analog of Gauss map from one polyhedron
to an analogues polyhedron.

Figure 1: Dual fan to a convex 5-gon

+ +
-

Figure 2: Trapezoid, its dual fan and a virtual 4-gon analogous to it

Let us fix a convex polyhedron ∆0. In what follows, it will play a role of
the unite sphere in our construction.
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To each polyhedron ∆ analogous to ∆0 we associate the union L∆ of
affine hyperplanes LΓi which are affine spans of the facets Γi of ∆ (i.e. faces
of ∆ having dimension (n− 1)).

Definition 5.2. A continuous map f∆ : ∂∆0 → L∆ is a Gauss type map if
the following condition holds: if x ∈ ∂∆0 belongs to the closure of a (n−1)-
dimensional face Γ0

i of ∆0 then f(x) has to belong to LΓi where Γi and Γ0
i

are parallel faces of ∆ and ∆0.

Lemma 5.2. 1. For any ∆ analogous to ∆0 there exists a piecewise
smooth Gauss type map f∆.

2. Moreover, f∆ can be defined in such a way that it depends linearly on
∆, i.e. fλ∆1+µ∆2 = λf∆1 + µf∆2.

3. Any two Gauss type maps from ∂∆0 to L∆ are homotopy equivalent
to each other.

Now we are ready to define the volume of a virtual polyhedron and the
integral of a polynomial form over a virtual polyhedron.

First let us associate a collection of affine hyperplanes to a virtual poly-
hedron ∆ which is analogous to ∆0. Let H be a support function of ∆. Then
H is a piecewise linear function on Rn which is linear at each cone of the
dual fan ∆⊥0 of ∆0. Then H defines a collection L(H) of hyperplanes LΓi(H)

parallel to the facets Γi of ∆0 in the following way.

Definition 5.3. Let ei be a normal vector, orthogonal to Γi normalized in
a certain way (say, has unite length, or is an irreducible integral vector).
Then the hyperplane LΓi(H) ⊂ Rn is given by the equation

〈x, ei〉 = H(ei).

It is easy to check the following lemma.

Lemma 5.3. If
⋂

Γij = F is a non-empty face of ∆0, then
⋂
LΓij

(H) is an

affine space parallel to F .

Definition 5.4. A Gauss type map fH for a virtual polyhedron with the
support function H is a map fH : ∂∆0 → L(H) which maps a face F = ∩Γij
of ∆0 to the affine space LH(F ) = ∩LΓij

(H).

The statement of Lemma 5.2 also holds for virtual polyhedra. More
precisely one gets the following lemma.

Lemma 5.4. 1. For any H which is linear at each cone of ∆⊥0 there
exists a Gauss type map fH.
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2. Moreover, fH can be defined in such a way that it will depends linearly
on H, i.e. fλH1+µH2 = λfH1 + µfH2 .

3. Any two Gauss type maps from ∂∆0 to L(H) are homotopy equivalent
to each other.

Definition 5.5. A winding number WfH(U) where U is an open connected
component of Rn \ L(H), is the mapping degree of a map τ : ∂∆0 → Sn−1

where τ(x) = fH(ξ)−a
||fH(ξ)−a|| for x ∈ ∂∆0 and a is any point in U .

Analogous to the case of virtual convex bodies with smooth boundary,
to the virtual polyhedron with support function H we associate the chain∑

U

WfH(U)

where the sum is taken over open connected components of Rn \L(H). One
can prove the following theorem.

Theorem 5.1. The chain
∑
WfH(U)U can be obtained from the virtual

polyhedra with the support function H by neglecting all polyhedra in the chain
whose dimension is smaller than n.

Thus an integral over the virtual polyhedron of any n-form with poly-
nomial coefficients can be obtain by integrating this form over the chain∑
WfH(U)U . One can deal with integrals of such type using simple argu-

ments which we applied above to similar integrals over virtual convex bodies
with smooth boundaries (and the integration over Euler characteristic tech-
nique is not needed here).

Theorem 5.2. Values of∫
∂∆0

f∗∆(ω) and

∫
∂∆0

f∗∆(Qdx2 ∧ · · · ∧ dxn)

are equal to∑
WfH(U)

∫
U
dx1 ∧ · · · ∧ dxn and

∑
WfH(U)

∫
U
dx1 ∧ · · · ∧ dxn

correspondingly.

For a convex support function H linear on each cone of ∆⊥ one asso-
ciates an oriented polyhedron ∆(H) with the support function H. If one is
interested in integrals against a chain of polynomial differential forms then
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the natural continuation of the functor H → ∆(H) to non-convex support
functions linear on each cone of ∆⊥ is the functor H→

∑
WfH(U)U . Below

we discuss a wide generalization of the above construction.
The following formulation allows even wider generalizations. Let H →

fH(∂∆0) ∈ Hn−1(L(H)) be a functor which associates to H the homotopy
class in Hn−1(L(H)) which is the image of the fundamental class of ∂∆0

under the map fH. That functor has a generalization to the case when
instead of the union of hyperplanes one consider the union of affine spaces.

6 Generalized virtual polyhedra theory

We will generalized the above construction in the following directions:

1. Instead of the union L(H) of hyperplanes parallel to the faces of a
convex polyhedron ∆ we will consider union X of arbitrary affine sub-
spaces of any dimensions in an affine space;

2. instead of the image of ∂∆0 in L(H) we will consider arbitrary cycles in
X. We will identify homology groups of unions X1 and X2 of different
collections of affine subspaces under some combinatorial assumptions.

3. For the case when affine subspaces are hyperplanes in Rn and a cycle
having dimension (n−1) the above generalization can be modified. In
that modification instead of (n − 1)-dimensional cycles in the union
of hyperplanes in Rn one can deal with n-dimensional chains in Rn
whose boundaries are the above cycles. In a particular case of sim-
plified analogous virtual polyhedra, such chains coincide with chains∑
WfH(U)U which we discussed above.

In this section we deal with ordered sets of affine subspaces Li indexed
by the same set I.

Definition 6.1. The set X =
⋃
i∈I Li has the natural covering by spaces

Li. The nerve KX of the natural covering of X is the following simplicial
complex:

1. the set of vertices of KX is the set I of indexes i;

2. the set J ⊂ I of vertices belongs to one simplex if and only if
⋂
i∈J Li 6=

∅.

Definition 6.2. Let X1 =
⋃
Li and X2 =

⋃
Mi be unions of affine sub-

spaces in the spaces L and M indexed by the same set {i} = I. We will say
that:

12



1. X1 dominate X2 if the nerve KX1 is a subcomplex of the nerve KX2 ;

2. X1 and X2 are equivalent if KX1 = KX2 .

1
2

3

4

Figure 3: An ordered set of four lines on a plane

Let BKX be the barycetric subdivision of the nerve KX . For each i ∈ I
let BiKX be the union of all (closed) simplices in BKX which contain the
vertex Ai (corresponding to the space Li in the covering of X).

Lemma 6.1. The nerve of covering of BKX by the closed sets BiKX coin-
cides with the original nerve KX .

Definition 6.3. A map g : KX1 → X2 is compatible with coverings if for
any i ∈ I and x ∈ BXi the image g(x) belongs to Mi.

Theorem 6.1. 1. A map g : KX1 → X2 compatible with coverings exists
if and only if the inclusion KX1 ⊂ KX2 holds.

2. All maps from KX1 to X2 compatible with coverings are homotopy
equivalent to each other.

3. If KX1 = KX2 then a map g : KX1 → X2 provides a homotopy equiv-
alence between these spaces.

Theorem 6.1 implies that all cycles of H∗(X) could be seen in homology
groups of the nerve KX of the covering of X. Moreover if KX1 is a subcom-
plex of KX2 then each cycle in H∗(KX1) has natural image in H∗(X2).

Consider a collection of affine k-dimensional subspaces {Li} in a vector
space L with i ∈ I. For each i denote by Yi the factor space L/L̃i where L̃i
is the vector subspace parallel to Li.

Definition 6.4. A collection of vectors yi ∈ Yi are compatible with the
nerve of X =

⋃
Li if the following condition holds: if Li1 ∩ · · · ∩ Lim 6= ∅

then (Li1 + yi1) ∩ · · · ∩ (Lim + yim) 6= ∅.
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Let Y be the space of all I-tuples y1, . . . , y|I| compatible with the nerve
of X =

⋃
Li.

Definition 6.5. To each point y ∈ Y one associates a collection {Li(y)}
where Li(y) = Li + yi.

The set Y parametrizes translates of the subspaces Li which preserve ex-
isted intersections. More precisely, for a generic point y ∈ Y the collections
{Li(y)} has the same nerve, which we denote by KX . There is a subset Σ
in Y of a smaller dimension than Y , such that the nerve of

⋂
Li(y) contains

KX as a proper subcomplex.
For any point y ∈ Y one can defined a map gy : KX →

⋃
Li(y)

compatible with the nerves of these spaces and depends of y linearly, i.e.
gλy1+µy2 = λgy1 +µgy2 . For any k-form α on L×Y with polynomial coeffi-
cients and for any cycle γ ∈ Hk(KX) one can consider the following function
Fα,γ on Y :

Fα,γ(y) =

∫
γ
g∗yα.

Theorem 6.2. The function Fα,γ is a polynomial function on Y .

7 Homotopy type of the union of affine subspaces

We know that the homotopy type of X =
⋃
Li is the same as the homotopy

type of its nerve KX .
For any finite simplicial complex it is easy to construct a collection of

affine subspaces whose nerve is homeomorphic to the given complex. How-
ever, if affine subspaces have codimension one in L then there union always
has a homotopy type of a wedge of spheres.

Let {Li} be a collection of hyperplanes in L. Denote by l({Li}) the
biggest subspace parallel to all these hyperplanes. One can check that
l({Li}) is equal to the intersection of linear subspaces parallel to the affine
spaces Li. For sufficiently general collection of hyperplanes the space l({Li})
is equal to zero.

Theorem 7.1. The union X =
⋃
Li of the affine hyperplanes under condi-

tions l({Li}) = 0 is homotopy equivalent to the wedge of (n−1)-dimensional
spheres, which are in one to one correspondence with the convex polyhedra
which are boundaries of connected bounded components of L \

⋃
Li.

Corollary 7.1. If l({Li}) has dimension m, then X =
⋃
Li has a homotopy

type of a wedge of spheres of dimension n− 1−m.
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Proof. Indeed, under conditions of Corollary 7.1 X is equal to the product
of X ∩ l⊥ × l({Li}) where l⊥ is a space transversal to l({Li}). For the
intersection X ∩ l⊥ the above theorem is applicable.

In the assumptions of Theorem 7.1 let us choose a cycle Γ ∈ Hn−1(KX ,Z).
For a point y ∈ Y consider the map gy : Γ →

⋃
Li(y) = L(y) compatible

with coverings. To this map one can associate the chain
∑
Wτ (U)U where

U is a connected component of L \ L(y) and Wτ (U) is the winding number
of the map τ : Γ→ U where τ =

gy−a
|gy−a| and a is a point in U . This chain can

be considered as the generalized virtual polyhedron which appeared in the
assumption of Theorems 5.1 and 5.2. In particular, the integral of a form
ω = Pdx1∧ · · · ∧dxn, where P is a polynomial, against such chains depends
polynomially on y.

8 Applications of generalized virtual polyhedra

We finish the paper with a brief description of recent applications of gen-
eralized virtual polyhedra. Exact statements and details can be found in
[7, 8].

Torus manifolds (see [9, 10]) provides a wide topological generalization
of smooth algebraic toric varieties. To each such manifold one can associate
the union L(y) of hyperplanes in Rn depending on parameters y and a
(n − 1)-dimensional cycle Γ in the nerve of the natural covering of L(y)
[11, 12, 7]. Using results which are described in the previous section one
can defined a homogeneous degree n polynomial in y which is the volume
of corresponding virtual polyhedra. One can describe the cohomology ring
of the torus manifold using Khovanskii–Pukhlikov construction, known in
toric varieties theory [5].

On torus manifold there is a special collection of characteristic linear
bundles. Such bundles are in one-to-one correspondence with generalized
virtual polyhedra, responsible for the torus manifold. Intersection number
of n-sections of such bundles is equal to n! multiplied by mixed volume of the
corresponding virtual polyhedra. This theorem generalize BKK-theorem for
torus manifolds. Moreover one can describe the cohomology ring of a bundle
whose fibers are torus manifolds in terms of integrals of some polynomials
over corresponding virtual polyhedra (see [8]). This theorem generalized the
analogous result for bundles with toric fibers [13].
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