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Small order limit of fractional Dirichlet sublinear-type problems

Felipe Angeles* & Alberto Saldafial

Abstract

We study the asymptotic behavior of solutions to various Dirichlet sublinear-type problems
involving the fractional Laplacian when the fractional parameter s tends to zero. Depending
on the type on nonlinearity, positive solutions may converge to a characteristic function or to
a positive solution of a limit nonlinear problem in terms of the logarithmic Laplacian, that
is, the pseudodifferential operator with Fourier symbol In(|£|?). In the case of a logistic-type
nonlinearity, our results have the following biological interpretation: in the presence of a toxic
boundary, species with reduced mobility have a lower saturation threshold, higher survival rate,
and are more homogeneously distributed. As a result of independent interest, we show that
sublinear logarithmic problems have a unique least-energy solution, which is bounded and Dini
continuous with a log-Holder modulus of continuity.

Keywords: Logarithmic Laplacian, nonlocal operators, nonlinear eigenvalues, Allen-Cahn.
2020 MSC: 35515 - 35B40 - 35P30.

1 Introduction
Consider a positive solution of a sublinear-type problem such as
(—A)’us = f(us) in Q, us =0 on RM\Q,

where s € (0,1), N > 1, Q C RY is an open bounded Lipschitz set, and f (u) is a sublinear-type
nonlinearity such as f(u) = |u[P~2u with p € (1,2) or a bistable nonlinearity such as f(u) =
ku — |u|?tu with k > 0 and ¢ > 1. Here, (—A)? is the fractional Laplacian of order 2s given by

u(@) — u(y) (X + s)4°
—A)’u(x ::c,sp.v./ ———-dy, cngs =51l —8)——,
( ) ( ) N RN ‘x_y’N_;’_QS N ( )F(2_S)7r%

and p.v stands for the integral in the principal value sense.

In this paper, we study the asymptotic profile of positive solutions us as s — 0%. This asymp-
totic analysis has only been done for superlinear problems in [25] for least energy solutions and for
linear problems in [14,22]. The motivation behind the understanding of these profiles is twofold.
On one hand, the parameter s plays an important role in some models coming from population dy-
namics [10,31], optimal control [34], approximation of fractional harmonic maps [3], and fractional
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image denoising [2]. In these models, a small value for the fractional parameter s can yield an opti-
mal choice; for instance, for the population models in [10,31], it can happen that a species survives
only for dispersal strategies associated to a small value of s (for more information and references
we refer to [25]). Another motivation comes from the understanding of the interesting underlying
mathematical structures behind the asymptotic profiles of weak solutions as s — 0. Indeed, in this
paper we show that sublinear and superlinear problems have very different behaviors as s — 0T
and the challenges to characterize the limits are also distinct.

We begin by discussing the paradigmatic case of the power nonlinearity. Let (s,)nen C (0,1)
and (pn)nen C (1,2) be such that nh_)n;o sp =0 and nli_)ngopn = p € [1,2] and consider the equation

(—A) "y = |up " Pu 0 Q, upy,=0 onRM\Q. (1.1)

Since p, € (1,2), the problem (1.1) has a unique positive solution for every n € N (see, for in-
stance, [7, Section 6]), which can be found by global minimization of an associated energy functional
(see Section 2). Furthermore, these solutions are uniformly bounded independently of n, see Propo-
sition 3.6 below. This is one of the advantages of the sublinear regime, since similar uniform bounds
for superlinear powers in the small order limit are not known.

Heuristically, it is easy to see that the asymptotic behavior of the sequence of positive solutions
(un)nen is closely related to the limit p of the sequence (py)nen. Indeed, if p € [1,2), we are led
(at least formally) to the limit equation

u=ul"t inQ, (1.2)

where we have used that (—A)® goes in some suitable sense to the identity operator as s — 07 (see,
e.g., [16, Proposition 4.4]). This suggests that the limiting profile of the sequence (u;, )neny must be
(piecewisely) constant. On the other hand, if p = 2, then the limit equation becomes the trivial
identity u = u, which does not provide information on the asymptotic profile. In this case, similarly
as in [25], we need to consider a first order expansion in s of the fractional Laplacian (—A)*.

As a consequence of the discussion above, we split our analysis of (1.1) in two cases depending
on the limit p of the sequence p,. The following result focuses on the case p = 2.

Theorem 1.1. Let ($p)nen C (0,1) and (pn)nen C (1,2) be such that

lim s, =0, li_)m pn=2, and p:= lim —Pn ¢ (0,00). (1.3)

n—o0 n—oo 8§,

Let uy, be a positive solution of (1.1), then u, — ug in LIRYN) as n — oo for all 1 < q < oo, where
ug € H(Q) N L>*(Q)\{0} is the unique nonnegative least energy solution of

Laug = —pIn(lugl)ug — in Q, u =0 onRY\Q. (1.4)

Here LA stands for the logarithmic Laplacian, whose weak solutions belong to a suitable Hilbert
space H(Q) (see (2.3) below). The logarithmic Laplacian appears naturally as the first order
expansion of the fractional Laplacian; in particular,

(=4)

S —
lim [~ P"% Lapl =0 for all 1 < p < oo and ¢ € C°(RY), (1.5)
s—07t S P



where |-|, denotes the usual LP-norm, see [14, Theorem 1.1]. These type of operators are also related
to geometric stable Lévy processes, we refer to [5,6,13,20,21,23,26,28,29,33] and the references
therein for an overview of the different applications that they have (in engineering, finances, physics,
mathematics, etc). For precise definitions and further properties of the logarithmic Laplacian and
of the Hilbert space H(2), we refer to Section 2 below. We also refer to Remark 4.4 for a version
of Theorem 1.1 without sequences (see also Remark 4.9).

As a byproduct of Theorem 1.1, we obtain the following qualitative information on the unique
(up to a sign) least energy solution of the limit logarithmic problem.

Theorem 1.2. For every p > 0 there is a unique (up to a sign) least energy solution of
Lav=—pln(jv))v in Q, v=0 onRM\Q, (1.6)

which is a global minimizer of the energy functional

1
Jo :H(2) = R, Jo(u) := §8L(u,u) +I(u), I(u):= %/ u? (In(u?) — 1) da. (1.7)
Q
Moreover, v does not change sign and
0 < sup |v(z)| < (Rze%_pN)%, where R := 2diam((2) (1.8)

e

and py is an explicit constant given in (2.2). Furthermore, if Q0 satisfies a uniform exterior sphere
condition, then |v| >0 in Q, v € C(RY), and there are o € (0,1) and C > 0 such that

sup 12— vl e 1
e Ee=l) ¢ )= Gt 1 (1.9

Theorems 1.1 and 1.2 are the sublinear counterparts of [25, Theorem 1.1] and [25, Theorem
1.2]. A crucial difference between these results is the sign of 7”;—;2, which is positive for superlinear
problems and negative in the sublinear regime. This means that, for logarithmic problems, a notion
of sublinearity is encoded in the negative sign in front of the coefficient p in (1.6). This sign has
several consequences on the asymptotic analysis and on the qualitative properties of the limiting
profile. One key feature in the sublinear case is that the sequence of positive solutions of (1.1) is
uniformly bounded (see Proposition 3.6). This boundedness is then inherited to the limiting profile,
which is the first step to characterize further regularity properties (observe that (1.9) is a lower-
order log-Holder estimate, see Remark 4.6). Here the asymptotic analysis done in Theorem 1.1 is
essential, since it is not clear how to obtain a bound as in (1.8) directly from the equation (1.6).
Another important difference is the uniqueness of positive solutions, which does not hold in general
for superlinear fractional problems (see, for example, [15, Theorem 1.2] or [17, Remark 2,11] for a
multiplicity result). An L*°-bound and the uniqueness properties of solutions are not known for
logarithmic problems in the “superlinear regime” (u < 0), see [25].

Furthermore, methodologically, the treatment of sublinear problems requires a different ap-
proach with respect to its superlinear counterpart; for example, [25, Theorems 1.1 and 1.2] are
strongly based on Sobolev logarithmic inequalities; but these do not play any role in our asymp-
totic analysis. Instead, we use Fourier transforms, sharp regularity bounds, and direct integral
estimates to find a uniform bound of the solutions of (1.1) in the norm of H(f2) (see Theorem 4.3).



This bound together with the compact embedding H(Q2) < L?*(Q) gives the main compactness
argument to characterize the limiting profile. We also mention that the uniqueness property stated
in Theorem 1.2 relies strongly on the fact that p > 0 (see the proof of Theorem 4.2). If x < 0, then
uniqueness or multiplicity results for (1.6) are not known.

These arguments, however, cannot be used if the limit of the sequence of powers p,, is strictly
less than 2, because in that case the logarithmic Laplacian does not relate in any way to the limit
equation (1.2). Our next result summarizes our asymptotic analysis for (1.1) when p € [1,2).

Theorem 1.3. Let (sp)nen C (0,1) and (pn)nen C (1,2) be such that li_}rn sp =0 and li_)m Pn =
n o n o0
p € [1,2), and let u, be the unique positive solution of (1.1). Then,

Up — 1 in LY(Q) as n — oo for any 1 < g < 0.

The main difficulty in showing Theorem 1.3 comes from the absolute lack of compactness tools.
Indeed, as n — oo, the Sobolev norm || - ||s, converges to the L2—norm |- |3 (see, e.g., [9, Corollary
3]), and therefore it is not possible to use any type of Sobolev embedding. Similarly, all Holder
regularity estimates for u,, degenerate in the limit s — 07. Furthermore, since the logarithmic
Laplacian does not relate to the limit equation (1.2), the compactness properties of the space H({2)
cannot be used. However, since, heuristically, the limit equation is given by (1.2), it is easy to guess
that the limiting profile must be the characteristic function of the set 2. As a consequence, this
asymptotic analysis is the opposite of that of Theorem 1.1, since we “know” a priori the limiting
profile, but we do not have any compact embedding at our disposal. This requires a new approach.

To show Theorem 1.3, we use an auxiliary nonlinear eigenvalue problem. To be more precise,
consider

A =i {[Jol2, : v € HE(Q), [v]p, =1},
where H§(€2) is the homogeneous fractional Sobolev space given by

HE(Q) := {ue HS(RY) :u=0o0n RV \ Q}

fu(a) —u()? | \* z
— — Pn
Jull, ._< e /RN o |N+28n da;dy) ol = (/RN ul dx) (L)

A minimizer of A, is (after a suitable rescaling) a solution of (1.1), but the LPr-normalization
will turn out to be a useful tool in the asymptotic analysis. Indeed, we show that (A,),cn converges

to Ag > 0 given by
Ag = inf {/ > dz = ve L3(Q), / [P dx = 1} > 0.
Q Q

Note that this variational problem does not have any kind of differential operator and a minimizer
is achieved at a characteristic function of Q (see Lemma 4.7). From this fact, we derive that the
minimizers v, of A, converge to 1 in L?(Q). Finally, we use that the solutions u, of (1.1) are
related to v, by a direct rescaling to obtain the convergence of u,,.

Theorems 1.1 and 1.3 show that sublinear problems behave very differently than their super-
linear counterparts. Moreover, a link between the cases p < 2 and p = 2 resides in the assumption

and



u € (0,00) required in Theorem 1.1. If g = 0, then the limit problem cannot be characterized by
the logarithmic Laplacian. To analyze this case, it would be necessary to consider a second (or
higher) order expansion of the fractional Laplacian in the parameter s.

In the last result we present here, we show that, with some adjustments, a similar strategy can
also be used to characterize the limiting profile of other sublinear-type fractional problems. For
instance, consider the nonlinearity f(u) = ku — w? for k > 1, p > 1, and w > 0. This nonlinearity
is widely studied in the literature; in particular, p = 2 (the logistic nonlinearity) is used in ecology
in the study of population dynamics, where k is a birth rate and —u? is called a concentration
or saturation term (see, e.g., [10,31] and the references therein); and p = 3 (the Allen-Cahn
nonlinearity) is used in the study of phase transitions in material sciences (see, e.g., [30] and the
references therein). In this regard, we have the following.

Theorem 1.4. Let k > 1 and p > 1. There is so = so(, k) € (0,1) so that, for s € (0,sq), there
is a unique positive solution us € HY(Q) N LPT(Q) of

(—A)’ug = kus — ul in Q, us =0 in RM\Q. (1.11)

Moreover, us — (k — 1)P+1 in LY() as s — 0T for every 1 < q < oo.

This result has an interesting biological interpretation in terms of population dynamics (at
equilibrium): in the presence of a toxic boundary, species with limited mobility have a lower satu-
ration threshold, higher survival rate, and are more homogeneously distributed. Indeed, to fix ideas
consider p = 2, k = 2, let u, represent the population density of a species, Q = Bgr(0) be a ball
of radius R > 0, and let s be a parameter describing a diffusion strategy. Because the nonlinearity
2u — u? has a concentration term, the population density u, is bounded by 2 (see Proposition 5.4).
This bound is optimal, in the sense that us has values arbitrarily close to 2 as R — oo (a heuris-
tic way to see this, is to consider the rescaled equation R™2(—A)%vs = 205 — v2 in By(0), with
vs(x) = us(Rx), then, letting R — oo yields the limit equation 0 = 2v — v? which implies v = 2).
However, Theorem 1.4 yields that us; — 1 as s — 0", independently of R > 0. This shows that u,
grows only half as much as more dynamical species in large domains for s sufficiently small. On the
other hand, the Dirichlet boundary conditions represent a toxic boundary, which in small domains
can be deadly for the species; in fact, for every s € (0,1) fixed, there is R > 0 small such that
the only solution of (1.11) is u = 0. But again, Theorem 1.4 shows that almost static populations
thrive even in small domains. This is consistent with the results and interpretations from [10,31].

Theorem 1.4 is a particular case of a slightly more general result, Theorem 5.9 in Section 5.
The proof of Theorem 1.4 follows a similar strategy as in Theorem 1.3, we begin by considering a
nonlinear eigenvalue problem given by

[l el PR elul3
O := inf 5 + P cu € Hg(Q)NLPT(Q)  and Q =1, (1.12)
where € > 0 is a parameter. We show that O, — ©¢ as s — 0, where
AR : ! — elul3
O := inf T—I—m:uGL(Q)OUH‘(Q), u=01in R\Q, and Q) =1,

which is shown to be achieved at ug = £73 xq. Note that, in these cases, the functionals have terms
with different homogeneities and therefore the link between a minimizer of (1.12) and a solution of



(1.11) cannot be established by a direct rescaling. Here is where the parameter ¢ > 0 is used. A
suitable choice of this parameter allows us to link, via a stability-type argument (see (5.22)), the
problems (1.12) and (1.11), and to conclude the desired convergence.

To close this introduction, we mention that an interesting problem would be to consider also
sign-changing solutions of (1.11) and to characterize its limit as s — 0T. In this case, there is no
clear candidate for the limiting profile, and a deeper understanding of the asymptotic behavior of
the nodal set is needed (one can compare this analysis with the results from [30]). It could also be
interesting to consider other nonlinearities, for instance fi(u) = u(u — «)(8 — u), where § > a > 0,
or fo(u) = Aud 4+ u*~1, where ¢ € (0,1) and 2¢ is the fractional Sobolev critical exponent. The
nonlinearity fi is related to the Allee effect and it is used in ecology and genetics to establish a
correlation between population size and the mean individual fitness [11], whereas f; is a concave-
convez nonlinearity for which multiplicity of positive solutions is known in fractional problems [4].
In these cases, formally, the limit equation (v = f;(u)) would have two positive constant solutions.
We expect that ground states converge to the least-energy constant with respect to a limit energy
functional.

The paper is organized as follows. In Section 2 we fix some notation that is used throughout the
paper. Section 3 contains some auxiliary estimates. Section 4 is devoted to the power nonlinearity
case and it contains the proofs of Theorems 1.1, 1.2, and 1.3. Finally, in Section 5 we show
Theorem 5.9, which directly implies Theorem 1.4.

2 Notation

We fix some notation that is used throughout the paper. The space H{(2) is the homogeneous
fractional Sobolev space given by

Hy(2) == {uGHS(RN):uzoonRN\Q}.

Sn

The energy functional associated to (1.1) is J,, : Hy"(£2) — R given by
1 1
Tos(w) i= gl = s, (21)

where [|u||s, and |u|p, are norms defined in (1.10). We also let |u|s denote the usual supremum
norm. Following [14], the logarithmic Laplacian La can be evaluated as

u(z) — u(y) u(y)
Lau(x ::ch.v./ 7dy—cN/ —=dy + pnu(x),
(=) B T —ylN RM\B, () [T — Y|V (@)

where
. N N /
ey =7 21(5), pn =22+ 9Y(5) -y, and y:=-T"(1). (2.2)
Here v is also known as the Euler-Mascheroni constant and ¢ := 1% is the digamma function.

Moreover, H(S2) is the Hilbert space given by

_ 2
H(Q) = {we LX(RY) : //EyGRN %d:ﬂd@/ <ooandu=0inRY\Q (2.3)
2=yl <1



with inner product

)= [ [ )OO o)

_ N
lz—y|<1 ==yl

1
and the norm ||u|| := (€(u,u))2. The space of compactly supported smooth functions C2°(2) is
dense in H(2), see [14, Theorem 3.1]. The operator L has the following associated quadratic form

Er(u,v) = E(u,v) — CN/[c,yeRN Mv(%)dxdy—l—p]v/

oy >1 |z —yl R

uv dz. (2.4)
N

Furthermore, for u € H(f2),

ew [ [ (ule) —u)? o)+ paYu(e)? do
euwn) =3 [ [ deay+ [ (hae) + pwjuta) de (2.

where hq(z) = CN(fBl(x)\Q lz —y|™N dy — fQ\Bl(x) |z — y|~N dy), see [14, Proposition 3.2].
By [14, Theorem 1.1}, it holds that

Eufu) = [ WP ds  forall u e (@), (2.6
where 7 is the Fourier transform of u. Moreover, for ¢ € C2°(Q2) we have that Lay € LP(RY) and
Er(u,p) = /QuLAcp dx for u € H(2), (2.7)
see [14, Theorem 1.1]. We say that v € H() is a weak solution of (1.4) if
Er(u,v) = —,u/ﬂuv In|u|dz for all v € H(). (2.8)
Note that lim; o In(¢?)t = 0.

3 Auxiliary lemmas

3.1 Asymptotic estimates

Lemma 3.1. Let (¢n)nen be a uniformly bounded sequence in L>°(Q), p € [1,2], and let (pp)nen C
(1,2) be such that lim,_,o p, = p. Then,

/||90n|p"—|<,0n|p|dx—>0 as m— o0o. (3.1)
Q

Proof. Consider the function g(t) := |¢,|*. Then,

1 1
lon [P — |onlP = /0 g+ 7Pn—p)(pn —p)dr = /0 In (|@n]) [@nlP 7P (p,, — p) dr.



Integrating in €2 and using Fubini’s Theorem,

1
/Q P — oul?| dz < /0 /Q I (ln )| [n [P+ 7® ), — p| da do. (3.2)

By assumption, there is M > 2 such that |¢,|ec < M for all n € N. Therefore, by (3.2),

/Q o™ — [ul?| dz < |pn — pl|In MIMP Q)

for all n sufficiently large, and the claim follows. O

Lemma 3.2. Let (sg)ken C (0,1) and (pr)ren C (1,2) be such that lim s, =0 and lim pj, = 2.
k—o0 k—oo

Let (ug)ren C L?(2) and ug € L*(Q) be such that ux — ug in L*(Q) as k — oco. Then, passing to
a subsequence,

klim / In(|ug)?)|uk|P* 2 upe do = / In(|uo|?)uoy dx for all ¢ € C°(Q).
—0 JO (¢}

Proof. Notice that

[ (Pl uede = [ ol ueds s [ ) e d,
Q {lurl<1} {luw>1} (33)
3.3
Passing to a subsequence, we have that supc(g 1) tPe=H1nt?| < SUDye(0,1) t%|ln t?| < oo (note that
ln(t2)t% =0) and ux — up a.e. in £ as n — oco. In particular, since In(1) = 0,
X{Jur| <1} In(|ug)®)up — X{Juo|<1} In(|uo|?)uo a.e. in Q as n — oo.

Then, by the dominated convergence theorem,

lim ln(|uk|2)|uk|pk_2uk<pdx:/ In(|uo|?)uoy d. (3.4)
k=00 J{juy <1} {luol<1}

If |ug| > 1, it follows easily (see, for example, [25, Lemma 3.3] with @ = py — 2 and § = 1) that,
passing to a subsequence,

_ 2
I (Juag [*)Jun P fup] < 5——Junl*l¢] < 2]l¢llo|UI* € L), (3.5)

— Pk

for some U € L?(€) (see [36, Lemma A.1]). The claim now follows by applying the dominated
convergence theorem to the second integral in (3.3) together with (3.4). O

Lemma 3.3. Let (Sg)ren, (Pr)ken, and p as in (1.3) and let ¢ € C°(Q2). Then,

1 1

s 1,0 = 8168+ 3 (06,040 [ 6P molds ). (36)
—00 Sk 4 2 RN

In particular, if v € H(Q) is a weak solution of (1.4) and (¢n)nen C C°(Q) is such that ¢p, — v in

H(2) as n — oo, then nh_)n(f)lo kh—>Holo i‘]sk(‘ﬁn) = —Lu3.



Proof. Let ¢ € C2°(2), then,

1 (el |elb: 1/1 113, — Ilb
li _J lim — [ 2228 PR ) iy — [ 2 — = m sk PR
k1—>H<;lo Sk (qb) k;nc;lo Sk ( 2 Pk kggo Sk \ 2 H¢H —00 PikSk

Thus, since ||¢[|Z, — |¢[3 (see, e.g., [9, Corollary 3]),

1 oo 1 olZ — o
lim —J, - _" Z lim %k TR 3.7
dm =T (@) = =719k + 5 fim === (3.7)
Note that
2 142
M—I + Tk, where 7y ::M and Jj = Iots — 1olst (3.8)
Sk Sk Sk

Let QAS denote the Fourier transform of ¢. If || < 1, then passing to a subsequence,

€[ In(l&) o (€)[* < 2le()!* (39)
On the other hand, if |¢| > 1, since 0 < sj, < 1, we have that

€[ In(€[) B[ < €1 In(|g ) (8> < §|s|2|<$<s>|2. (3.10)

Then, by (3.9), (3.10), and dominated convergence,

lim 7 = lim / / €247 In(€]2)|B(€)[2 dr de = / (SR de = EL(0, ). (3.11)

k—o0

For 7} it holds that

hm —Jr = hm pk—2/ / |2t =27T In || da dr

= lim [>T Pe=27 1 |§| daz dr.

k—o00

|¢|2+5”k 2)7 ln|¢|d:17d7'—|—

{lol<1} {lo|>1}

If || < 1, |¢|2+(pk—2 "In(|¢|) is bounded independently of k. On the other hand, if |¢| > 1,
|p|2t =27 In(|@|) < 2|¢|> € LY(RN) (see (3.5)). By dominated convergence,

lim J; = ,u/ |92 In |¢| daz. (3.12)
k—o0 RN

By using (3.8), (3.11) and (3.12) into (3.7) we obtain (3.6).

Now, let (¢n)neny C C°(2) and v € H(Q) such that ¢, — v in H(Q) as n — co. Assume that
v € H(Q) is a weak solution of (1.4); in particular, £.(v,v) + p [px [v]*In|v]dz = 0. Since Jy is
of class C! over H(Q) (see [25, Lemma 3.9]), EL(¢n, dn) + 1 Jpn |On|? In|dn| dz = o(1) as n — oo.
Then, by the continuous embedding of H(f2) into L*(Q2), &|#,[3 — &|v[3 as n — oo. This concludes
the proof. O

We quote the following result from [25, Lemma 3.5].

Lemma 3.4. Let u € H{(Y) for some s € (0,1). Then u € H(Q) and there is C; = C1(IN) > 0
and Cy = C2(Q2) > 0 such that |Er(u,uw)| < Clul} + L|ul? and |u® < Colul3 + L|ul?.



3.2 Uniform bounds

To prove Theorem 1.3 we need some uniform regularity a priori estimates and a fine analysis of the
constants involved.

Lemma 3.5. Let s € (0,1), g € LN/SQ(Q), and let u be a weak solution of (—A)*u = g in Q and
u=0in RV \ Q. Then,

Jullzeoy < (1+ (B +§ = px )5+ 0(s) gl ey ass— 0%, (3.13)

where R := 2diam(QY) and py is given in (2.2).
Proof. For the first part of the proof, we argue as in [19, Proposition 1.2]. We consider the problem
(—=A)*v = |g| in RY, (3.14)

where g has been extended by zero outside 2. Using the fundamental solution (see, e.g., [35,

Theorem 5] or [1, Definition 5.6]), we have the function v : RN — R given by

l9(y)] L(5 =)

'U(ZE) = CN,—S /S; W dy, CN,—S = W’ (315)
is one solution for (3.14) (note that there can be other solutions for (3.14)). Observe that v > 0
and, by the comparison principle, —v < u < v, since —|g| < ¢g < [g|]. From (3.15) and Holder’s
inequality, we have, for x € €2, that

_ ()| sy )
0 < u(o)] < v(o) = s [ ARy < v lgl ey ([ o=@ Vay) L @16)

where ¢ = +~—. Without loss of generality, assume that 0 € Q and let R := 2diam(Q2) > 0. Then

N—s2"
Q) C Bg2(0) and, for x € Q,

R
/!w—y!(zs‘quyé/ \y!(zs‘N)qdyzlSN_l\/ pBMapN=tdp
Q Br 0

27.‘.% RN(l—q)+2qs 271.% Rt(s)

TTE)NT - +2gs 1) t(s)

N
where #(s) := N(1—q) +2¢s = NJS/2__582)8 and |SV1] = 1%7&[) Thus, we have proved that ||u|| () <
2
Cl||9HLN/s2 @) where
o2 w r(Y —s) (R =
Cy=Ci1(Q,N,8,p) = | ==~ 2 ) . h(s)
I'(3) 45T (s)m2 t(s)

Then, C; = h(0)+sh/(0)+o(s) as s — 0F. A direct calculation shows that h(0) = lim,_,q+ h(s) =1
and

1 1

. 2 2

R (0) = Jim, R'(s) = In(R?) + v + 3~ 2In(2) — ¢ (§) = In(R*) + 3 PN

where py is given in (2.2). This ends the proof. O
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Proposition 3.6. Let Q C RN be a bounded domain, let (sp)nen C (0,1), (pp)nen C (1,2) be such

that limy, 00 55, = 0, k 1= limy, 00 522~ € [0,00), and let u, be a weak solution of

—DPn
(=A)mu, = |up[Pr2u, in Q, u, =0 in RV \ Q. (3.17)
Then |up|o0o < (R2e%_pN)k +0(1) as n — oo, where R := 2diam(f2).

Proof. By [32, Proposition 8.1], u, € L®(RY). Let C; = In(R?) + % — pN, where py is given by
(2.2) and R := 2diam(§2) > 0. By Lemma 3.5, for n sufficiently large,

SgL
pn—1 _ Sﬂz(pn_l) N
[tn|oo < (1 + 8,C1 + 0(sn))||un] |_1\% = (14 5,C1 + 0(sn)) |t | 57 dx
Z Q
SgL
< (14 8,01 + 0(sn)) [un [Pr Q7.
Then, |up|co < <(1 + s,C1 + o(sn))imrﬁ) 7P Let k= lim 5o2— > 0, then
n—soo 47 Pn
lim ((1 + 5,01 + o(sn))émﬁw") T kOL = (R2e3PN )k
n—oo
(see [25, Lemma 3.1]), as claimed. O

3.3 Upper and lower energy bounds

Now we show lower and upper energy bounds for the unique positive solution w, of (1.1). The lower
bound is used in the proof of Theorem 1.1, the upper bound is presented as a result of independent
interest and for comparison with the bound given in Proposition 3.6.

In the following, for each s € (0, %), s denotes the first Dirichlet eigenfunction of the fractional
Laplacian (normalized in L2-sense) and A1,s its first eigenvalue, that is,

(—AVps=Asps MO @,=0 omRY\Q,  |pl3=1 (3.18)

Due to the variational formulation of the first eigenvalue,

1
3 |2 for every u € H() and for each s € (0, 1). (3.19)
1,s

)

Jul3 <

Lemma 3.7. Let (sp)nen C (0,1) be such that lim s, = 0, (pp)nen C (1,2), and let u, be a

n—oo

positive solution of (3.17) then,

pn 2

2
2 Jpalt T 22 1p
Ars)221Q] > a2, 2 Mool 2 ( Psuly ) Pl

P YN . 3.20
Pn )\178,”’%05”’% Pn — 2 92pn ( )

Proof. Let ay, := A1 5, |¢sn |3, bn = |@s, [or, t > 0, and note that

t? o " 2 ALsn o tP" 2 (@ b

11



Then Js, (tps,) < 0if t < (lb—”)ﬁ. Let w, be a positive solution of (3.17). Since the least

Pn Gn
energy solution is the unique positive solution of (3.17) (see [7, Section 6]), we have that u,, is the

least energy solution. Let ¢, := & <lb—”> 27””, then

2 \Pn an

11 2 by \7em (11
S 2 _ < Ty (tagps,) =2 (22 ) 7 (2o — 21
<2 pn> Hun”sn an (Un) — an( n(psn) 4 pn an 2 2Pn_1 (3 )

and the lower bound in (3.20) follows. On the other hand, by (3.19), for every u € Hj"(12),
1oy 1o 1 o 1

o (u) = 5 — —ulpr > = — —C($n, P> QP |||, 22
o (W) = glluls, = =lulp = g llulls, = 2=Clsn,pr, O [Julls; (3.22)

1 2—pn
where C(sp,pn,?) == (Al’sn)_§|Q|Tz’:L. For t > 0 let f(t) := 1% — z%nC’(sn,pn,Q)p"tp". Then,

1
f'(t) =t — C(5p, pn, Q)P P~ = 0 implies that ¢ty = ( =—L—— )"~ is a critical point of f. By
C(Sn DPn Q)Pn
computing the second derivative and evaluating we obtain that f”(tg) = 1 — C(spn, pn, Q)P (pn, —
1)tg”_2 = 2 — p, > 0, implying that ¢y is the minimizer for f. Using ty in f we obtain a lower

2
bound for the energy functional Js , given by f(tg) = p2nT_n2 (C(spn,pn, 2)Pr)2=pn . Thus, for every

u € H" (), it holds that J,, (u) > ”2’;%712 (C(snsPn,s Q)p”)ﬁ. Therefore,

1 1 Pn — 2 .
<§ B p_n> Huann = JSn(un) > gpn (C(snapn79)pn)27pn )

and the upper bound in (3.20) follows. O

Recall that ¢7, denotes the first Dirichlet eigenfunction of the logarithmic Laplacian (normalized
in the L22—S€HS€) and Al its corresponding eigenvalue, that is, Layr = Mo in Q, ¢, = 0on RV\Q,
and |or|5 = 1.

n L
Lemma 3.8. Let (Sp)neN, (Pn)nen, and p as in (1.3), then li_)m (/\1,5:71)”5*2 = exp (—%) )
n—oo

Proof. The claim follows from the definition of  and the fact that

Mg, =1+ s, M 4+ 0(sy,) as n — 0o (3.23)

o [

(See1 [14, Theorem 1.5] or [22, Theorem 1.1]), because lim,_,o+ (1 + sa + o(s))s = e* = lim,_,o+ (1 +
sa)s for all a # 0 (see, e.g., 25, Lemma 3.1]). O

Lemma 3.9. Let (Sp)neN, (Pn)nen, and p as in (1.3), then

2
9 Pn 2—pn 2)\L
- ( %) — exp (_ 1 /ln(\SOLWPLdeJrl).
n—oo pn )\l,Sn ‘()DSn ‘2 M @

2

P Note that (=)*7 = (1 2 o) d ()= 2A}
roof. Note that o —( —sn§+o(sn)) — e an ()\Lsn) = exp (—75 ) as

n — 00. Moreover,

Pn

2 1

nlPn n p _2 _

ol // In s, |[ps, |2 Pn 2)7d7d$—>—ﬂ/lnlsﬁLllsDLl2dx
Sn Sn QJo Q

12



as n — 00, by dominated convergence, see [22, Corollary 1.3 and Theorem 1.1 (ii)]. Therefore,

2

2
s 5”)“’" < p / ) Tn
N =|\1-s InfeplleL]”dz + o(sn)
<"P8n’% n‘SDL‘%—i-O(l) Q "
2
— €Xp <——2/ln|<,0L||<pL|2daz> as n — oo.
loLls Jo

L

2

5 B 2= 2\ 1 2d .

Thus, Q—M nlpn " exp (=L — 2—2—f9 nlerles|” do +1) as n — oo. The claim follows
Pn >\1,Sn|995n|2 H IHDLIZ

since |pp |3 = 1. O

Theorem 3.10. Let (Sp)nen; (Pn)neNs iy and (un)nen as in Theorem 1.1, then

L

In(2 2Xf 2A
2 exp (- 28— 2 [ (publoul de+ 1) ol + o) < ual?, < [921exp (21 + o1
Q

2

as n — 00.

Proof. The upper bound follows from Lemma 3.8 and (3.20). The lower bound follows from (3.20),

22Pn—2_1 p In2 2 _ In2
Lemma 3.9, and the fact that A\ s, |©s., |5 e Elorls = 52 O

L
_ 27
P

Corollary 3.11. Let (up)nen as in Theorem 3.10, then |u,|3 < Q| exp( > +o(1) as n — 0.

Proof. The result follows from (3.19) and Theorem 3.10, because A1 s = 1+ s, Al +0(s,) as n — oo
(see [22, Theorem 1.1]). O

4 Sublinear power nonlinearity

4.1 Asymptotically linear case

We characterize first the limiting profile of solutions w, of (1.1) when lim,_,o p, = 2, which we
call the asymptotically linear case (because |t|P»~2t — t as n — oo). We begin our analysis with a
study of the least energy solutions of (1.6).

4.1.1 A logarithmic sublinear problem

Recall that

Jo :H(Q) = R,  Jo(u) := %gL(u,u) + I(u), I(u):= %/Qu2 (ln(uz) —1) daz,

where ;1 > 0. This functional is of class C', see [25, Lemma 3.1]. We show first that .Jy is coercive.

Lemma 4.1. | lﬁm Jo(u) = oo.
ul|—o0
ueH(Q)
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Proof. Let u € H(Q). By (2.4), there is C = C(Q) > 0 such that &7,(u,u) > |lu||?> — Clu|3. Moreover,

1 9 1 H 2 M/ 2 2
> —|lu? — = E £ . :
Jo(u) > 2HuH 5 <C+ 2> lul5 + 4 Qu In(u”) dx (4.1)

Let 0 := {:17 € Q:In(u?(z)) > % - 1}. Then, & [5u?In(u?)dz > § (C+ 4) [5u? dz. Therefore,

> = - = + = + = )
Jo(u) 2Hu|| 5 <C’ 2) /\~u dz \~u In(u?) dz

Since u? < e inQ \ Q, there is C; = C1(Q, 1) > 0 such that

1 g 2 H/ 2 2 B
2<C’+2)/§2\§u dm+4 Q\ﬁu In(u®)dx > —C}

and then Jo(u) > $|ul|? — C1, which yields the result. O

Theorem 4.2. For every u > 0 there is a nontrivial unique (up to a sign) least energy solution of
Lavg = —pln(jug))vg  in Q,  wup € H(RQ). (4.2)
Moreover, vy does not change sign.

Proof. By Lemma 4.1, there is a minimizing sequence (vy)xen for Jo, that is, limg_o Jo(vg) =
infep ) Jo(w) =: m. By the compact embedding of H(Q) into L?(Q2), there is vy € H(€) such
that, up to a subsequence,

vy —vg  in H(Q), vp — V9 in L2(Q), v — vg  a.e. in €,

as k — oo. In particular, [jv]|? < lign inf ||vg||2. Moreover, since the function ¢ + t?Int? is bounded
—00

below by a constant which is integrable over the bounded set €2, it follows by Fatou’s Lemma that

k—o00

/ va In(v3) dz < lim inf/ v? In(v?) d. (4.3)
Q Q

Observe that

v (2)ur(y) vo(x)vo(y)
/:vvyeRN a—y W fegery oy W

|[z—y|>1 |[z—y|>1

[vk ()] vk (y) — vo(y)] [vo(y)||vx(x) — vo(z)]
= /llyERN |z — y|N dzr dy + z,yeRN |z — y|N drdy =: 1) + 1o,

|[z—y|>1 |[z—y|>1

where

i< [ @) [ et ) =i+ ldude = [ futa)lde | fonls) = vol)lds o

14



and a similar argument shows that Zo — 0 as k — oo. Hence,

. vg(2) vk (y) / vo(x)vo(y)
1 B TRAT = — 7 7 . 4.4
Jim /:c,yE]R>N T— dx dy cyeRN g — IV dx dy (4.4)

lz—y[>1 lz—y[>1

As a consequence, Jy(vg) < lign inf Jo(vg) = m and vg is a least energy solution of (1.4).
—00

To see that vy is nontrivial, let ¢ € C2°(2)\{0} and observe that

2
Jo(vg) =m < Jy(ty) = % (&(% ®) + g/

©?(In(t?) + In(¢?) — 1) da:) <0 (4.5)
Q

for ¢ > 0 sufficiently small, because lim In(t?) = —oco. Therefore vy % 0.

By [14, Lemma 3.3], £r(|vol, |vo]) < EL(vo,vo). This implies that Er(|vol, |vo]) = EL(vo,vo),
which, by [14, Lemma 3.3], implies that vy does not change sign.

Finally, we show the uniqueness (up to a sign) of the least energy solution using a convexity-
by-paths argument as in [7, Section 6]. Assume, by contradiction, that there are two least-energy
solutions u and v such that u? # v?. Recall that a least-energy solution is a global minimizer of
the energy. Let

v(t,u,v) = (1 —t)u® + tvz)% for t € [0,1].
We claim that
the function ¢ : [0,1] — R given by g(¢t) := Jo(v(t,u,v)) is strictly convex in [0, 1]. (4.6)

This would yield a contradiction, since the function g cannot have two global minimizers (at ¢t =0
and at ¢t = 1) and be strictly convex in [0,1]. To see (4.6), we argue as in [7, Theorem 6.1].
Note that g(t) = g1(t) + go(t), where

g1 (t) = EL(’Y(L u, U)7 ’Y(u u, U)),

t) =5 [ bt @P byt (o). ofe))?) = 1) do

First, we show the convexity of g; in [0,1]. Let ¢1,t2,6 € [0,1]. We claim that
g1((1 = 0)t1 + 0ta) < (1 —6)g1(t1) + 0g1(ta). (4.7)
Indeed, set Uy := y(t1,u,v) and Us := y(t2,u,v). A direct calculation shows that
v((1 = 0)ty + Ota,u,v) = v(6,Uy,Us).
Now, for z,y € , let

a=vV1-0U(z), b=+v1—0Ui(y), c=VoUy(x), d=V0Us(y).

Then, by the Minkowski inequality, |(a? + 62)% — (¥ + d2)%| < ((@ —b)? + (c — d)2)%, which is
equivalent to

(1(0, U, Uz) () = (0, U1, U2)())* < (1 = 0)(Us(w) — Ur(y))* + 0(U2(x) — Ua(y))*. (4.8)
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But then, using (2.5),

g1((1 - 9)t1 + 0t2)

= EL(Y((1 = O)t1 + Ota,u, ), 7((1 — O)ty + Ota, u,v)) = EL(v(0, U1, Uz), 7 (6, U1, Ua))
=% // ALl !a;)—yy(zve O, U g)) da;der/Q(hQ(x) + pn)Y(0, U, Un) (@)* da.
(4.9)
By (4.8),
v(0,U1,Uz)(z) — 4(0,U1,Us) (y))?
/ / Iw —y¥ oy
B U1 U1 U2 U2 )) z
a-o [ [ Epogwao [ [ ey aw)
and
/(hQ + pn)y(0, U1, Us)? dx = (1 — 9)/(hﬂ + pn)UT da +9/(h9 + pn)U3 da. (4.11)
Q Q @

By (4.9), (4.10), and (4.11),
g1((1 = 0)t1 + 0t2) < (1 —0)EL(Ur,Up) + 0EL(Uz,Uz) = (1 — 0)g1(t1) + 0g1(t2),

which yields (4.7).
On the other hand, for z € Q, let
F() = [r(tu,0) (@) ([t w,v) (@)]*) = 1)
= [(1 — t)u(z)? + to(z)?](In[(1 — t)u(z)? + tv(z)?] — 1).
" _ (“(m)Q—U(m)2)2 . .
Then f"(t) = T uZrioez > 0 n (0,1), whenever u(z) or v(x) are different from zero. Since
u Z 0 (see (4.5)), we have that

t— ga(t) = g/Qy(t,u,v)z(ln(v(t,u(:n),v(x))2) — 1) dx is strictly convex in [0, 1]. (4.12)

By (4.7) and (4.12), we conclude that (4.6) must hold, which yields the desired contradiction. [

4.1.2 Convergence of solutions

Theorem 4.3. Let (sk)ken, (Pk)ken, t, and (ug)ken as in Theorem 1.1. There is a constant
C = C(Q,u) >0 such that ||ug||® = &(ug, ug) < C+o(1) as k — oc.

Proof. By Lemma 3.4 we have that ||ug| is finite for all £ € N. Fix k € N and let (¢p)nen C C°(Q2)
be such that ¢, — uy in H*(Q) as n — oo. We begin with the identity

2 2 1
7, = s Il 1L e e P dear (113)
0 RN

Sk

16



From the definition of Jy, (see (2.1)) we have that

1 2 N leal3 1 2 — pk \ | lenlbr = lenl3
In:§<2‘]5k(90n)+p_k’(pngz>_—: 2Js,, (¢n) + Tor |on D +T

Sk Sk

and since uy, is a solution of (1.1) and ¢, — uy in H(Q2) as n — oo,

2— 2 _
2Jsk (‘Pn) + < pkpk> "Pn‘gz = 2Jsk(uk) + <p—kp> ‘U ‘pk + 0(1) 0(1) as n — oo,

thus,
T, = M +o(1) asn — oc. (4.14)
Sk
Observe that,
nip n - 2 !
|(10 |(10 |2 — Pk / / ’(pn’2+(pk—2)7— ln(‘tpn‘)dxdT
Sk Sk 0 JQ
Dh — 2 1 1
- L] e e mmiag e+ [0 e g, | dr e
Sk 0 J{lenl<1} {lon|>1}
-2 [t 2 —
<P P g dedr < 2P0 sup | In ] < <P
{lenl<1} te(0,1)

Therefore, by (4.14), we have that

2 _
7, < Dk

. |2 +0(1) asn — oo. (4.15)
k

On the other hand,

1
21,7 2\~ 2 ~ 9
T, > /0 /{wm In((€)|Ba ()2 dé dr + /{ml}lnua )[Gu(O)]? de

1

- / / €257 In([€ )] B (O] de dr — / I(1€[2)[3n (6)? dé + / In(|¢[2)[@n (6) 2 de
0 J{l¢l<1} {l¢1<1}
1

=[] e - e @R dedr+ [ el e
0 J{l&I<1}

> /RN In([€[2)|Gn(€) 2 dE = E1(om, on)ecq : In (4.16)

By (2.4), there is C3 = C3(Q2) > 0 such that £(pn, n) > ll¢nll?> — C3lenl3. Therefore, (4.15),
(4.14), and Proposition 3.6 yield the existence of Cy = C4(£2) > 0 such that

lenll® < T + Cslpnl3 <

(1)  asn— oo (4.17)

Using Lemma 3.4 and the fact that ¢, — uy in H*(Q) as n — oo, taking the limit in (4.17) when
n — oo we obtain that [|uz||? < 2= 2O+ Cy = (p+0(1))[Q] + C as k — oo. O
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We are ready to show Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.3, passing to a subsequence, there is C' = C'(2, u) > 0 such
that, ||u,| < C for all n € N. Then, passing to a further subsequence,

u, = ug  in H(Q), U, —up  in L3(Q), Up, = up  a.e. in Q (4.18)

for some ug € H(2). Let us first show that ug is a non-trivial solution of (2.7). Let ¢ € C°(Q2), by
(1.5) the identity

[t suLap o)) de = |

Q

n 2 !
= / <un + snp . / In([n )| un| P27 uy, d7'> pdr  (4.19)
Q 0

n

un(—A)s”gpd:E:/ |t [P 20y 0 d
Q

holds in L*°(Q) for every n. Then, by (2.7) and (4.19),

Er(un, @) + o(1) :/unLAgodx—l—o ln (Jtn ) tin | P =Dy, drpda,  (4.20)
Q

as n — oo for all p € C°(Q2). Then, letting n — oo and using Lemma 3.2,
Er(ug, ) = —,u/ In(|up|)uop dz  for all p € C°(R). (4.21)
Q

By density, ug is a weak solution of (1.4). Now, let us show that ug is non-trivial. By Theorem 3.10,
we know the existence of a positive constant C' = C(€2, ) > 0 such that

cgmmiz/mmn
Q

an
5”</hmP@> ,
Q

2 n—2
and so, C'rn ]Q\pt)n < Jq lun|? dz. Letting n — oo we conclude that 0 < C' < [, |ug|? dz. Therefore,
ug # 0. Since ug is a weak solution of (1.4), we have that

&
Jo(ug) = M + % /Qu% (ln(ug) —1) dz = —%/ng dx.

To see that ug is of least energy it remains to show that —& \uolz = infyy ) Jo. By Holder’s inequality,
2—pn
0 < limsup |up — uglp, < limsup |Q] 2n |u, — uplz =0,
n—o0 n—oo

thus, using Proposition 3.6 and Lemma 3.1, lim |Ju,|? = lim |u,|p" = |ug|3. Then,
n—00 " n—00

_Ey 2 _ My o — _Hyoi2 =
o [funlly, = =7 m jun[pr = =7 uoly = Jo(uo)- (4.22)

On the other hand, by Theorem 4.2, there is vg € H(2) such that Jo(vo) = infgq) Jo and by [14,
Theorem 3.1] there is a sequence (vg)reny C C°(2) such that vy — vg in H(Q) as k — oo. Since
v € C°(Q) for all k € N and u,, is of least energy (by uniqueness [7, Theorem 6.1]), we have that

1 1
_Z hm HunHS = 11_>m _an(un) th_)ngo ;an(’l)k)
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By (3.6), we obtain the following inequality

. 1
i, < S+ 5 (Enton )+ [ o o

i .
= _Z|U0|% +0o(1) = Jo(vo) +0(1) = 11411?5) Jo +o(1) (4.23)

as k — oo, according with Lemma 3.3. Therefore, by (4.22) and (4.23),

. I 2 Rt 2 :
ot Jo < Jo(uo) 4|u0|2 1 m [unlls, < o, Jo

as claimed. Since uy € H(Q) is a least energy solution of (1.4), Theorem 4.2 implies that uy does
not change sign in (2.
To conclude the proof, we show that ug € L>(Q2) and

gl oo < ((2diam(€2))2e3~PN) i = C. (4.24)

By Proposition 3.6, |un|e < Co + o(1) as n — oo. Assume, by contradiction, that there is € > 0
and set w € Q of positive measure such that |ug| > (1 +¢)Cp in w. This implies that

[un () — up(x)| > |ug(z)| — |un(x)] > (1 +e)Co — Cy =eCy  for ae. x € w.

Thus, [, [un—uol* dz > [ |un—uo|* dz > eCp|w| > 0, which contradicts the L2-convergence of u,, to
ug. Therefore, (4.24) holds. In consequence, up to a subsequence, the convergence w,, — ug in L(2)
for any 1 < ¢ < oo now follows by the dominated convergence theorem. Finally, since (1.4) has a
unique least energy solution, we have that the limit ug is independent of the chosen subsequence
of (un)nen, therefore the whole sequence (uy,)nen must also converge to ug in L?(€2). O

Remark 4.4. One could also phrase the statement of Theorem 1.1 as follows: Let Q@ C RY be an
open bounded Lipschitz set. Let h: (0,1) — (0,1) be a function such that h(s)/s — p € (0,00) as
s — 0%. For s € (0,1), let us be the unique positive solution of

(=A)uy = ul =) in Q, us =0 on RM\Q.

Then us — ug in LYRYN) as s — 0% for all 1 < q < oo, where ug € H(Q) N L>®(Q)\{0} is the
unique nonnegative least energy solution of (1.4).

Since the nonlinearity —p In|u|u can change sign even if u > 0, one cannot use standard max-
imum principles to characterize the sign properties of the solution; however, in the next result
we show a strong maximum principle for continuous weak solutions of (4.2) by working on small
neighborhoods and using the negative sign of —pu.

Lemma 4.5. Let v € C(RY) be a nontrivial nonnegative weak solution of (4.2), then v > 0 in Q.
Proof. By contradiction, assume that there is z¢ € € such that

v(xp) = 0. (4.25)
By continuity and because v # 0, there are § > 0, an open set V C {x € Q : v(z) >}, and r > 0

such that —plIn [v|v > 0 in By (z9) and dist(B,(zo), V) > 0.
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By [14, Corollary 1.9], we can consider, if necessary, r smaller so that L satisfies the weak
maximum principle in B,(xg) and Al > 0, where A is the first eigenvalue of La. Now, a standard
application of the Riesz representation theorem yields the existence of a unique solution 7 € H(2)
of

LaTm =1 in By(xo), =0 in RN\ B,(z).

Moreover, by [12, Theorem 1.1], we know that 7 is a classical solution, namely, that La7(z) = 1
holds pointwisely for z € Q. This implies that 7 > 0 in B,.(z¢), since if 7(yg) = 0 for some y, € €,
then

7(y)
1:LAT(y0):—CN/ ——dy <0,
By (z0) [Y0 — YV
which would yield a contradiction. Now we argue as in [18]. Let yxy denote the characteristic
function of V' and note that, for x € B,(z¢), xv(x) = 0 and therefore
XV( . _N
L =— dy = — ~ dy < 1% f - .
avvla) = —ey [ 2cay - / oy < —enlV]_inf (1= =y )

Let K = cn|V|inf,ep, (z0) (|2 — y| ™) and ¢ := BT+ xv. Then, Lap < K/2 — K < 0 in B, ().
Moreover, since v > ¢ in V', we have that

La(v—6p) > 0in By (xo), v—dp >0 in RV \ B, (z0) (4.26)

in the weak sense. Then, by the weak maximum principle (see [14, Corollary 1.8]) we obtain that
v>0p > 7 > 0in B,.(zg), a contradiction to (4.25). Therefore v > 0 in (2. O

Proof of Theorem 1.2. Existence and uniqueness of least energy solutions follow from Theorem 4.2,
and the estimate (1.8) follows from (4.24), by uniqueness. Assume now that ) satisfies a uniform
exterior sphere condition, then, since v € L*>(Q), it follows that In|vjv € L*(Q), and, by [14,
Theorem 1.11], we have that v € C(Q2). The estimate (1.9) follows from [12, Corollary 5.8] and a
standard density argument. The fact that |[v| > 0 in Q follows from Lemma 4.5. O

Remark 4.6. Note that the regularity in (1.9) is not enough to guarantee that u is a classical
solution, namely, that Lau can be evaluated pointwisely. This would require a refinement of [12,
Theorem 1.1], see [12, Section 6, open problem (1)].

4.2 Asymptotically sublinear case

Now we focus our attention on the analysis of solutions u, of (1.1) when lim,,_,o p,, € [1,2), which
we call the asymptotically sublinear case. We begin by considering an auxiliary nonlinear eigenvalue
problem in a rescaled domain. Let (s,) C (0,1) be such that lim, . s, =0,

pn C (1,2)  besuch that  lim p, =p € [1,2).
n—oo

Let A := [©] and 2, := 1Q (note that [Q] = 1). Set

Ag := inf {/ w|?dx = ve L*,) and / [v|P dx = 1}, (4.27)
Qx

Ay =1inf {|v]2 1v e H (W), [vfpr =1}, (4.28)

Sn Pn

and let xn, denote the characteristic function of €2,.
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Lemma 4.7. The infimum Ag is achieved at xq, ; in particular, Ag =1 = ‘XQA‘%.

Proof. Clearly, Ag < 1, because [Q\] = 1 = |xa,|3 = [xa,/b. On the other hand, for each v €
{veL*()) : v=0in RM\Q, and |v[) = 1} it holds that 1 = [v[} < |v[5, thus 1 < A,. O

Proposition 4.8. For every n € N there is v, € Hy"(Q)) such that A, = |Jv,|?,. Moreover,
vp — 1in L2(Qy), Ay — 1 as n — 0o, and (v, )nen 5 a minimizing sequence for Ag.

Proof. Using the compact embedding of " (£2y) into LP"(€2)) and standard arguments, we have
that the infimum A,, is achieved at some nontrivial v, € H"(£2)). We can assume w.l.o.g. that vy,
is nonnegative. By the Lagrange multiplier theorem, each v, is a solution of

(=A)*mw, = ApoPr™t in Qy, v € Hy (). (4.29)
Let ¢ € C2°(Q2)\{0} and recall that lim,,_,oc pp = p € [1,2), then
2 2
Ao = a2, < 120 19l oy s o,
ol 1ol

because ||, — |¢|p and [|¢]|2 — |¢]3 as n — co. Thus, passing to a subsequence, A, = |[v, |2 —
A§ as n — oo for some Ajj > 0. Observe that

2
Af < % for all ¢ € C°(02)\{0}. (4.30)
P

Let Ag be as in (4.27). By Lemma 4.7, (4.30), and the density of C°(€2y) in L?(9),

2 v A
AE < Ao < ol Al,sn” ””;" = (1+o0(1)—1,
|Un |2 [vn|2 |vn |2

as n — 0o, where we have used that 1+ o(1) = A, = inf{[Jv[|2 : v € H" () and |v]s = 1} as
n — 0o, see [22, Theorem 1.1]. Notice that, by Proposition 3.6, the sequence (v, )nen is uniformly
bounded in L>(€2,). Thus, Lemma 3.1 yields that |[q [vn|P — [, [va[P"| = o(1) as n — oo and,
since |vp|p, =1, nh_)n;o |onlp = 1. Then Ay < Aj and therefore Ag = Aj, namely,

[onll2. = Ay — Ap as n — oo (4.31)

oald  lenl, 41
‘Un‘;%_ |vn|;2; 1,sn7

(1+0(1) Ao = [valpho < a3 < (Ms,) T An = (14 0(1)) (Ao + (1))

Now, since Ag <

as n — co. As a consequence, v, is a minimizing sequence for Ag, namely,
[onl3 — A
vnl3 = Ao as n — 0. (4.32)

Finally, we show that v, — 1 in L?(2)) as n — oco. By Lemma 4.7 we have that Ag = 1. By
contradiction, assume that there is 6 > 0 and ng € N such that fQA lvp, — 1|2dz > § > 0 for all
n > ng. Then, using (4.32),

)
/ Updr <1—=4o(1) as n — 0o. (4.33)
o 2
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Let ay := 2(pn — 1), Bn := 2 — pp, Tn = a—zn, qn = BLn Notice that r,,q, > 1 for all n € N,
% + qin =1 and «ay, + B, = p,. Then, by Young’s inequality,

1= |Un|£z - /Q n" Bn dz < (pn — 1)|Un|2 + (2 = pn)|vnlr- (4.34)
A

Then by (4.32), (4.33), (4.34),

L= (= D1+ o(1) + (2= ) (140(1) - 5

=(p—1+01)(1+0(1))+(2—p+o0(1)) <1 +o(1) — 5) =1- %5—1—0(1)
as n — oo and the contradiction follows. O
We are ready to show Theorem 1.3.

Proof of Theorem 1.3. Let u, € Hy"(2) be the positive least-energy solution of (1.1) and let

2sn
wp(x) == X" 2-pnu,(Azx). Then wy, is a positive least-energy solution of

(=AY wy = [walP" 2w, wp € HG (), (4.35)
sp— —2pnsn— .
= |Q‘ and [lwy|ls, = A~ 7’"/\2 ||uann = /\ 2 22 n) ||un||sn Passing to a subsequence,

let v, be the minimizers of A, given in Proposition 4.8. By uniqueness of positive solutions of
subhnear problems (see e.g. [7, Theorem 6.1]), the equatlons (4.29) and (4.35) imply that w, =

A”" 22 9,,. Then, by Proposition 4.8 and Lemma 4.7, A~ e un(Ar) = wy, — 1in L3(Q)) as n — oo.
Since lim,, 00 pr, € (1,2), we conclude that u, — 1in L?(2) as n — oo, as claimed. The convergence
in L1(Q2) for 1 < g < oo now follows from Proposition 3.6 and the dominated convergence theorem.
Note that the limit 1 is independent of the chosen subsequence of (u,)nen, therefore the whole
sequence (up)nen must also converge to 1 in L(Q2) for 1 < ¢ < oo. This ends the proof. O

Remark 4.9. One could also phrase the statement of Theorem 1.3 as follows: Let @ C RN be an
open bounded Lipschitz set, h : (0,1) — (0,1) be a function such that h(s) — p as s — 0T for some
p € [0,1) and, for s € (0,1), let us be the unique positive solution of

(=AY ug =ul®  inQ, us =0 on RM\Q.

Then us — 1 in LYRY) as s — 07 for all 1 < q < oo.

5 Other sublinear-type problems

Recall that Q C R¥ is an open bounded Lipschitz set. In this section, (s,)nen is a sequence in
(0,1) such that lim,_,~ s, = 0. Let Q C RY be a bounded open set with Lipschitz boundary, and
let

e >0, A >0, r>2. (5.1)
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Define
Lou) i= 3l + Ajull, o= {o e HAQNL(Q@) 5 [0 euE =1}, (5.2)
and consider the following variational problem
O, :=inf{L,(u) : ue X,}. (5.3)

Using the compact embedding H§(2) < L?(2) and standard arguments, it follows that the infimum
©,, is achieved at a non-trivial function v,, € ¥, which does not change sign (since E;(|vy|, [vn]) <
Es(vn, vy)). Throughout this section we assume that

v, € Xy, is a non-negative function such that ©,, = L, (v,). (5.4)
5.1 Auxiliary nonlinear eigenvalue problems
Let € >0, A >0, r > 2, define G(u) := | e [, |u[* dz and
J(u) = uld+ Al Soi={ve PPRY)NL'RY) : u=0m RY\Q, Gu) =1}, (5.5)

Theorem 5.1. Let Q C RY be an open bounded Lipschitz set. Let ©g := inf {J(u) : u € Xg}.
Then, ©g = |Q\ + A

rer/2°

Proof. Since e /2xq € %y, we have that 6y < ‘XQ|2 + Akalr |2Q€\ + A% On the other hand,

,,.67“/2 7‘67/2
for every u € L"(§2) such that 5‘@'2 =1, Holder’s mequahty yields that —- /2 < |u|f.. Then, by (5.1),

1 . Al Iu\z Alu\
2 + 57/2 - + —

, holds for all u € ¥y. This proves the result. O
Theorem 5.2. Let Q C RY be an open bounded Lipschitz set. Then

O, =0y asn — oo (5.6)
and (Up)nen 18 a minimizing sequence for ©q, that is

‘Un‘% Alvp|;

5 T —©¢ asn — oo. (5.7)
o\ /2 o]
Proof. Let ¢ € C°(2) \ {0} and set ¢ := <?) A | so that |¢[3 = &, Then,
_ all, Alonly oIz, LAl _ |95 Algl; _ 19 Alel;
0, = 5 + ., 9 ., —T+T+O(1)—E+T+O(l)

as n — 00, where (sp)neny C (0,1) is the sequence associated to ©,. Then, up to a subsequence,
2 r
0, = % + M — ©f as n — oo for some ©g > 0. In particular, it holds that

[Q A 12\ ¢l %
or < - + ~ (- o for all ¢ € C°(22) \ {0}.



Using the definition of ©y and a density argument, it follows that
©p < Oy. (5.8)
On the other hand, using that v, € L"(Q) and |v,|3 = [2e~? for all n € N, together with (3.19),

-1 2
oy < 12 Alulr _ (o) Mlenl, | Alvals
2 T 2 r

(5.9)

implying that ©g < ©,, + o(1) = ©§ + o(1) as n — oco. This inequality combined with (5.8) yields

(5.6). Then, by (5.9), Oy < vg|§ M = 0, +0o(l) = O+ o(1) as n — oo, which proves
(5.7). O

The following result characterizes the minimizer of Oy.

Theorem 5.3. Let J, ¥, and G be as in (5.5). If u € X¢ is a minimizer for Oq, then |u| = e1/2
a.e. in §2.

Proof. Clearly, both J and G are differentiable on L"(Q2). Assume that u € ¥ is a minimizer for
©p. Since u # 0, there is a test function ¢, € C°(Q) such that Dy, G(u) = 2| te [, upudz # 0,
where D, G(u) is the Gateaux derivative of G at u in the direction ¢,.

Then, by the Lagrange multiplier Theorem (see, for example, [24, Chap. 2, Sec. 1, Theorem 1]),
there is a real number \js such that the equation Dy J(u) — Ay D,G(u) = 0 holds for all p € C2°(£2),
that is,

/ (u+ Alu|"?u— 22 |Q|'eu) pdz =0 for all ¢ € C(Q).
9)

In consequence, u satisfies that u + Alu|"2u — 2\ 7teu = 0 a.e. in Q. If 21 € Q is such that
u(z1) # 0 then, Alu(z1)["~2 = 2Ay|Q| e — 1. Therefore,

lu| = Koxvy, Voi={ze€Q : u#0} (5.10)

for some constant Ky > 0. Since u must satisfy that G(u) = 1, it follows that

‘Q’ 1/2
Ky = 5.11

Q172
87‘/2|VO‘(T72)/2 .
minimizer, (5.10) combined with (5.1) and Theorem 5.1 imply that

ul3 | Alul; 1 ]9 A Q2
Oy = —= LA v/ I i bl B bl B
0= T =Wl e T e

1 19| A Q] 12 A
R et Sy = 27 Q| =
>%‘<2f:%!+rar/2%r sl =,

and in particular, |u|] = Now, let us assume that [Vj| < |Q]. Given that u is a

a contradiction. Therefore, |Vy| = [©Q|. This implies that |2\ Vp| = 0, which leads us to conclude
that xv, = xq a.e. in Q, and by (5.11) that Kq = ¢~'/2. The result now follows from (5.10). [
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Recall that A s = A; 5(€2) > 0 denotes the first Dirichlet eigenvalue of the fractional Laplacian
(—A)? in a domain Q (see (3.18)).

Proposition 5.4. Let ¢ > 0, A > 0, r > 2, and n > A1 5(2). There is a positive weak solution
u € HE(Q) N L™(Q) of the equation (—A)*u + Au"1 = nu in Q, that is,

Es(u, P) + A/Qu’"_lqﬁdx — n/wada: =0 for all ¢ € C°(92). (5.12)

1
Moreover, u < (A)T’ 2 g.e. in RV,

Proof. The existence of u follows by global minimization and standard arguments (see, for example,

[7, Corollary 6.3]). Let ng := (4 )T12 and ¢ := (o — u)— = —min{0,n9 — u} > 0; then,
W2 — )0 — P - @l
o o no — u m-—u

r—

since ("2 —u"2)/(no — u) > 0. Moreover, u(z) — 1o = —(no — u(x)) = —(no — u(x))+ + (),
thus u(z) — u(y) = (u(z) —no) — (u(y) —mo) = (mo — w(y))+ — (o — w(@))+ + ¢(x) — ¢(y), and

(u(z) — u(y))(d(x) — d(y) = () — ¢(y))* + [(no — w(y))+ — (Mo — u(x))+](d(x) — ¢(y))
= (6(x) — &())* + (no — u(y))+d(x) + (no — u(z)) 4 ¢ (y) > (¢(x) — B(y))*;

but then, by (5.12), 0 = & (u, ¢) + A [o u(z)(u"2(z) —ny~ Hp(x) dr > E,(p, ) > 0, which implies
that ¢ =0 and u < 79 in Q. O

Lemma 5.5. Let v, be as in (5.4). Then, the sequence (vy)nen 18 bounded in L>°(Q).

Proof. Since v, is a minimizer of L,, (given in (5.2)) under the restriction G, (u) := | te|ul3 = 1,
the Lagrange’s multiplier theorem implies the existence of a real number A, such that v, is a weak
solution of (—A)*nv, + AvL—t = 2),|Q| teu in Q. Moreover,

2 T
+A —2
A\, = H'Uann 5 |'Un|r —0, + <7‘2T >A|Un|:, (513)

where ©,, is given in (5.3). By Theorem 5.2 it follows that )\, is bounded and, by Proposition 5.4,
1

v < ((2Mn|Q] 1) /A) 7=2, which yields the result. O
Theorem 5.6. Let v, be as in (5.4). Then v, — e~ /2 in LP(Q) as n — oo for every 1 < p < co.
Proof. By Theorems 5.1, 5.2, and the fact that v, € X,,

1€
2¢e

A |Q

A o, A L V|3
“lonlys = loalr = €0 - % +o(1) =6 —

ala +o(1) (5.14)

as n — 0o, which implies that the sequence (wy)nen = (v2)nen is bounded in L™/2(Q). Then, there
is w* € L'/2(Q) such that, up to a subsequence,

wy, = w* in L'?(Q)  as n — . (5.15)
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In consequence, |w*|:g < lirg inf |wn|:g = lirg inf |vy,|. Then, by Theorem 5.2,
n—oo n—oo

@ + 2 | |;§§ @ + lim inf <§|vn|:> = 0. (5.16)

By (5.15), for every open set O C €,

0§/vgdx:/vgxodx%/w*xodaz:/ w* dx. (5.17)
@] Q Q @

Hence, fo w* dx > 0 for every open set O C €2 and thus, Lebesgue’s differentiation theorem yields
that w* > 0 a.e. in Q. Moreover, taking O = Q in (5.17), [Qe™! = [y v2dz — [, w* dz. There-
fore, [, |w*|"/? dz = |[v/w*|. and Jqw*dz = |[Vw*[3 = |Q|e™!. Then, (5.16) yields the inequality
sIVw*(3 + é|\/ﬁ|§ < Oy, which implies that vw* € L"(f) is a minimizer of the functional J(u)
with the restriction G(u) — 1 = 0. Consequently, Theorem 5.3 yields that vw* = e~ 1/2yq. From
(5.14) and (5.15),

1
v2 — R in L"/2(Q) as n — 0o. (5.18)

Since (5.14) means that |v3l|:g = er% +o0(1) as n — oo, this result together with (5.18) implies that

v2 — e Lin L'/2(Q) as n — oo. Finally, since (v,), is bounded in L>°(£2) and, up to a subsequence,
v, — e /2 a.e. in Q, from the dominated convergence theorem it follows that v, — ¢~/2 in LP(Q)
for every 1 < p < o0, as desired. Since the limit is independent of the chosen subsequence, the
convergence holds for the whole sequence, as claimed. O

Finally, as a consequence of this last result, we can show that the bound obtained during the
proof of Lemma 5.5 can be improved.

Corollary 5.7. Let (vy,)nen be as in (5.4), then

1 2—r\ r-2
0§Un§<z+€2> +o(l) asn— occ.

1
2

1
Proof. By Proposition 5.4, we have that v, < A2=7 (2X,[Q|"*¢)"=2. Using (5.13),

1
1 — r—2
vy < AZ-T {2\91‘15 (@n + (T%Q) A!w\?)} :

Since, by Theorem 5.6, |v, |- — e~"/2|Q| , we have, by Theorems 5.1 and 5.2, that

1

1

1 T—2 1 2—1\ 7—2

vy < A2 {2\9[‘16 (’?‘ + AK/ZQ’ + 0(1))} = A2-r (1 +AET> +o(l) asn— oo.
ET’

The following is an easy calculation that will be useful for our next result.
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Lemma 5.8. For M,r > 2, a € [0,M], b > 0, a # b, let F'(a,b) := &—=—. There are
C=C(r,M) >0 and a = a(r) > 0 such that F(a,b) > Cb*.
Proof. If r —2 > 1 and z := 3, then ari(i’gr),g = (Z_f;(jrjﬂ). Since lim,_, #ﬁjﬂ) = %2,

we can find C = C(r) > 0 such that F(a,b) > C(r)(a"3 4+ b"~3) for all n € N.
If 0 < r—2 < 1, then the function f(y) = y"~2 is concave, which implies that F(a,b) > F(M,b)
for all a < M and b € R, where bli% F(M,b) = (r—2)M"=3. Therefore, there is Cy = Co(r, M) >
_>

0
such that F'(a,b) > Cp > 0. O
We are ready to show the main result in this section.

Theorem 5.9. Lete >0, A>0,r>2,n:=1+ Ae%, and let (sp)nen C (0,1) be such that
lim,, 00 S, = 0. For n sufficiently large, the problem

(=AY uy, + Aul "t —nou, =0 in Q, U, =0  on RM\Q, (5.19)
has a unique positive solution wu, € Hy"(2) N L"(?). Moreover,

1/2

Up —> € in LP(Q2) as n — oo for every 1 < p < oo.

Proof. Since lim,_, s, = 0, by (3.23), there is ng € N so that 79 := 1 + AT > Al,s, for all
n > ng. Then, the existence and uniqueness of a positive solution u,, € H"(€2) N L"(2) of (5.19)
follows by arguing as in [7, Corollary 6.3].

Let v, and O, be as (5.4), and A, be as in (5.13). In particular,

(=A)*ru, + Aot — v, =0 in Q, N = 2|9 " Le,. (5.20)
By (5.13) and Theorems 5.2 and 5.6, we have that n, — ng as n — oco. Let w, := u, — vy, then
(=A)*mw, + (Au:;_2 — 770) w, = (770 — Ny — A(u:;_2 - U;_2)) v in €,

ar'72_br72

Define F(a,b) := “—=—, and notice that ' > 0 for a # b, a,b > 0. Then,

lonl2, + /Q (Aul=2 = no) w2 da = (110 — mn) /

VW, AT — A/ F(up, fun)wzvn dx
Q Q

< (mo — nn)/ﬂvnwn dz = o(1), (5.21)

because 7, — 1p as n — oo and because wy,, v, € L>(Q), by Proposition 5.4 and Corollary 5.7.
Now we argue as in [8, Proposition 6.2]. By using standard arguments, the problem

B S () s
.

, 5.22
veHZ ()\{0} |v[3 (5.22)

has a nontrivial non-negative solution z, € H;*(Q2) for each n € N. In particular, z, is a weak
solution of (—A)*"z, + (Aug_2 — 70) Zn = Wnzn in Q. Testing with u, and integrating by parts,

0= / ((—A)Snun + (Au;_2 _ 770) un) Zn dr = ,un/ 2y d, (5.23)
Q Q
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by (5.19). Let us show that p, = 0. By Proposition 5.4, u, < (770/14)%, and then (—A)*ru, =
(770 — Auz_z) u, > 0in Q; by (5.1), we can apply the strong maximum principle (see, for example,
[27]) to conclude that w, > 0 in Q. Since z, > 0 and z, # 0, (5.23) implies that u, = 0. Then, by
(5.21) and the definition of p,,

0= N‘wn’% < Hwann + / (Au:z_2 - 770)71)721 dr = 0(1) - A/ Fn(unavn)wivn dr < 0(1)
Q Q

as n — oo. In particular, li_>m AfQ F(tn,vn)w2v, dv = 0. Since Proposition 5.4 guarantees the
n o0

existence of a constant M > 0 such that u, < M for all n € N, we have, by Lemma 5.8, that there
are C1 = C1(r, M) > 0 and o = a(r) > 0 such that F'(un,v,) > C1v%. As a consequence,

0= lim A [ F(up,v,)w2v,dx > Cy lim [ v@ M w? dz >0, (5.24)

a+1,,2

that is, lim fQ vy w; dr = 0. Furthermore, by Theorem 5.6 and dominated convergence, we have
n—oo

a+1
that limy, e [o |1 — € 2 v2*+Y dr = 0. By Proposition 5.4 and Corollary 5.7, there is C' > 0 such
that |w,|%, < C and then

atl atl
0< / w? dr < / (1—e 2 v*Nw2de+e 2 / 02w de = o(1)
Q Q Q

. . 2 _ .
as n — 0o, i.e., nh_)llolo fQ wz dr = 0. Finally,

2
/ lup — e V22 da < / <|wn| + |vp — 5_1/2|) dx < 4/ w2 + vy — e V22de — 0 as n — oo,
Q Q Q
which proves the result for p = 2. The general case, 1 < p < oo, now follows from the dominated
convergence theorem since, by Proposition 5.4, (uy,), is bounded in L*(£2). O
Proof of Theorem 1.4. The proof follows directly from Theorem 5.9 using »r = p+ 1, A = 1, and
2 2
e=(k—1)7r =(k—1)t-». O
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