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Small order limit of fractional Dirichlet sublinear-type problems

Felipe Angeles∗ & Alberto Saldaña†

Abstract

We study the asymptotic behavior of solutions to various Dirichlet sublinear-type problems
involving the fractional Laplacian when the fractional parameter s tends to zero. Depending
on the type on nonlinearity, positive solutions may converge to a characteristic function or to
a positive solution of a limit nonlinear problem in terms of the logarithmic Laplacian, that
is, the pseudodifferential operator with Fourier symbol ln(|ξ|2). In the case of a logistic-type
nonlinearity, our results have the following biological interpretation: in the presence of a toxic
boundary, species with reduced mobility have a lower saturation threshold, higher survival rate,
and are more homogeneously distributed. As a result of independent interest, we show that
sublinear logarithmic problems have a unique least-energy solution, which is bounded and Dini
continuous with a log-Hölder modulus of continuity.
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1 Introduction

Consider a positive solution of a sublinear-type problem such as

(−∆)sus = f(us) in Ω, us = 0 on R
N\Ω,

where s ∈ (0, 1), N ≥ 1, Ω ⊂ R
N is an open bounded Lipschitz set, and f(u) is a sublinear-type

nonlinearity such as f(u) = |u|p−2u with p ∈ (1, 2) or a bistable nonlinearity such as f(u) =
ku− |u|q−1u with k > 0 and q > 1. Here, (−∆)s is the fractional Laplacian of order 2s given by

(−∆)su(x) := cN,sp.v.

∫

RN

u(x)− u(y)

|x− y|N+2s
dy, cN,s := s(1− s)

Γ(N2 + s)4s

Γ(2− s)π
N
2

,

and p.v stands for the integral in the principal value sense.
In this paper, we study the asymptotic profile of positive solutions us as s → 0+. This asymp-

totic analysis has only been done for superlinear problems in [25] for least energy solutions and for
linear problems in [14, 22]. The motivation behind the understanding of these profiles is twofold.
On one hand, the parameter s plays an important role in some models coming from population dy-
namics [10,31], optimal control [34], approximation of fractional harmonic maps [3], and fractional
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image denoising [2]. In these models, a small value for the fractional parameter s can yield an opti-
mal choice; for instance, for the population models in [10,31], it can happen that a species survives
only for dispersal strategies associated to a small value of s (for more information and references
we refer to [25]). Another motivation comes from the understanding of the interesting underlying
mathematical structures behind the asymptotic profiles of weak solutions as s→ 0. Indeed, in this
paper we show that sublinear and superlinear problems have very different behaviors as s → 0+

and the challenges to characterize the limits are also distinct.
We begin by discussing the paradigmatic case of the power nonlinearity. Let (sn)n∈N ⊂ (0, 1)

and (pn)n∈N ⊂ (1, 2) be such that lim
n→∞

sn = 0 and lim
n→∞

pn = p ∈ [1, 2] and consider the equation

(−∆)snun = |un|pn−2un in Ω, un = 0 on R
N\Ω. (1.1)

Since pn ∈ (1, 2), the problem (1.1) has a unique positive solution for every n ∈ N (see, for in-
stance, [7, Section 6]), which can be found by global minimization of an associated energy functional
(see Section 2). Furthermore, these solutions are uniformly bounded independently of n, see Propo-
sition 3.6 below. This is one of the advantages of the sublinear regime, since similar uniform bounds
for superlinear powers in the small order limit are not known.

Heuristically, it is easy to see that the asymptotic behavior of the sequence of positive solutions
(un)n∈N is closely related to the limit p of the sequence (pn)n∈N. Indeed, if p ∈ [1, 2), we are led
(at least formally) to the limit equation

u = up−1 in Ω, (1.2)

where we have used that (−∆)s goes in some suitable sense to the identity operator as s→ 0+ (see,
e.g., [16, Proposition 4.4]). This suggests that the limiting profile of the sequence (un)n∈N must be
(piecewisely) constant. On the other hand, if p = 2, then the limit equation becomes the trivial
identity u = u, which does not provide information on the asymptotic profile. In this case, similarly
as in [25], we need to consider a first order expansion in s of the fractional Laplacian (−∆)s.

As a consequence of the discussion above, we split our analysis of (1.1) in two cases depending
on the limit p of the sequence pn. The following result focuses on the case p = 2.

Theorem 1.1. Let (sn)n∈N ⊂ (0, 1) and (pn)n∈N ⊂ (1, 2) be such that

lim
n→∞

sn = 0, lim
n→∞

pn = 2, and µ := lim
n→∞

2− pn
sn

∈ (0,∞). (1.3)

Let un be a positive solution of (1.1), then un → u0 in Lq(RN ) as n→ ∞ for all 1 ≤ q <∞, where
u0 ∈ H(Ω) ∩ L∞(Ω)\{0} is the unique nonnegative least energy solution of

L∆u0 = −µ ln(|u0|)u0 in Ω, u0 = 0 on R
N \Ω. (1.4)

Here L∆ stands for the logarithmic Laplacian, whose weak solutions belong to a suitable Hilbert
space H(Ω) (see (2.3) below). The logarithmic Laplacian appears naturally as the first order
expansion of the fractional Laplacian; in particular,

lim
s→0+

∣∣∣∣
(−∆)sϕ− ϕ

s
− L∆ϕ

∣∣∣∣
p

= 0 for all 1 < p ≤ ∞ and ϕ ∈ C∞
c (RN ), (1.5)
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where |·|p denotes the usual Lp-norm, see [14, Theorem 1.1]. These type of operators are also related
to geometric stable Lévy processes, we refer to [5, 6, 13, 20, 21, 23, 26, 28, 29, 33] and the references
therein for an overview of the different applications that they have (in engineering, finances, physics,
mathematics, etc). For precise definitions and further properties of the logarithmic Laplacian and
of the Hilbert space H(Ω), we refer to Section 2 below. We also refer to Remark 4.4 for a version
of Theorem 1.1 without sequences (see also Remark 4.9).

As a byproduct of Theorem 1.1, we obtain the following qualitative information on the unique
(up to a sign) least energy solution of the limit logarithmic problem.

Theorem 1.2. For every µ > 0 there is a unique (up to a sign) least energy solution of

L∆v = −µ ln(|v|)v in Ω, v = 0 on R
N\Ω, (1.6)

which is a global minimizer of the energy functional

J0 : H(Ω) → R, J0(u) :=
1

2
EL(u, u) + I(u), I(u) :=

µ

4

∫

Ω
u2
(
ln(u2)− 1

)
dx. (1.7)

Moreover, v does not change sign and

0 < sup
x∈Ω

|v(x)| ≤ (R2e
1
2
−ρN )

1
µ , where R := 2diam(Ω) (1.8)

and ρN is an explicit constant given in (2.2). Furthermore, if Ω satisfies a uniform exterior sphere
condition, then |v| > 0 in Ω, v ∈ C(RN ), and there are α ∈ (0, 1) and C > 0 such that

sup
x,y∈RN

x 6=y

|v(x)− v(y)|
ℓα(|x− y|) < C, ℓ(r) :=

1

| ln(min{r, 1
10})|

. (1.9)

Theorems 1.1 and 1.2 are the sublinear counterparts of [25, Theorem 1.1] and [25, Theorem
1.2]. A crucial difference between these results is the sign of pn−2

sn
, which is positive for superlinear

problems and negative in the sublinear regime. This means that, for logarithmic problems, a notion
of sublinearity is encoded in the negative sign in front of the coefficient µ in (1.6). This sign has
several consequences on the asymptotic analysis and on the qualitative properties of the limiting
profile. One key feature in the sublinear case is that the sequence of positive solutions of (1.1) is
uniformly bounded (see Proposition 3.6). This boundedness is then inherited to the limiting profile,
which is the first step to characterize further regularity properties (observe that (1.9) is a lower-
order log-Hölder estimate, see Remark 4.6). Here the asymptotic analysis done in Theorem 1.1 is
essential, since it is not clear how to obtain a bound as in (1.8) directly from the equation (1.6).
Another important difference is the uniqueness of positive solutions, which does not hold in general
for superlinear fractional problems (see, for example, [15, Theorem 1.2] or [17, Remark 2,11] for a
multiplicity result). An L∞-bound and the uniqueness properties of solutions are not known for
logarithmic problems in the “superlinear regime” (µ < 0), see [25].

Furthermore, methodologically, the treatment of sublinear problems requires a different ap-
proach with respect to its superlinear counterpart; for example, [25, Theorems 1.1 and 1.2] are
strongly based on Sobolev logarithmic inequalities; but these do not play any role in our asymp-
totic analysis. Instead, we use Fourier transforms, sharp regularity bounds, and direct integral
estimates to find a uniform bound of the solutions of (1.1) in the norm of H(Ω) (see Theorem 4.3).
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This bound together with the compact embedding H(Ω) →֒ L2(Ω) gives the main compactness
argument to characterize the limiting profile. We also mention that the uniqueness property stated
in Theorem 1.2 relies strongly on the fact that µ > 0 (see the proof of Theorem 4.2). If µ < 0, then
uniqueness or multiplicity results for (1.6) are not known.

These arguments, however, cannot be used if the limit of the sequence of powers pn is strictly
less than 2, because in that case the logarithmic Laplacian does not relate in any way to the limit
equation (1.2). Our next result summarizes our asymptotic analysis for (1.1) when p ∈ [1, 2).

Theorem 1.3. Let (sn)n∈N ⊂ (0, 1) and (pn)n∈N ⊂ (1, 2) be such that lim
n→∞

sn = 0 and lim
n→∞

pn =

p ∈ [1, 2), and let un be the unique positive solution of (1.1). Then,

un → 1 in Lq(Ω) as n→ ∞ for any 1 ≤ q <∞.

The main difficulty in showing Theorem 1.3 comes from the absolute lack of compactness tools.
Indeed, as n→ ∞, the Sobolev norm ‖ · ‖sn converges to the L2−norm | · |2 (see, e.g., [9, Corollary
3]), and therefore it is not possible to use any type of Sobolev embedding. Similarly, all Hölder
regularity estimates for un degenerate in the limit s → 0+. Furthermore, since the logarithmic
Laplacian does not relate to the limit equation (1.2), the compactness properties of the space H(Ω)
cannot be used. However, since, heuristically, the limit equation is given by (1.2), it is easy to guess
that the limiting profile must be the characteristic function of the set Ω. As a consequence, this
asymptotic analysis is the opposite of that of Theorem 1.1, since we “know” a priori the limiting
profile, but we do not have any compact embedding at our disposal. This requires a new approach.

To show Theorem 1.3, we use an auxiliary nonlinear eigenvalue problem. To be more precise,
consider

Λn := inf{‖v‖2sn : v ∈ Hs
0(Ω), |v|pn = 1},

where Hs
0(Ω) is the homogeneous fractional Sobolev space given by

Hs
0(Ω) :=

{
u ∈ Hs(RN ) : u = 0 on R

N \ Ω
}

and

‖u‖sn :=

(
cN,sn

∫

RN

∫

RN

|u(x)− u(y)|2
|x− y|N+2sn

dx dy

) 1
2

, |u|pn :=

(∫

RN

|u|pn dx
) 1

pn

. (1.10)

A minimizer of Λn is (after a suitable rescaling) a solution of (1.1), but the Lpn-normalization
will turn out to be a useful tool in the asymptotic analysis. Indeed, we show that (Λn)n∈N converges
to Λ0 > 0 given by

Λ0 := inf

{∫

Ω
|v|2 dx : v ∈ L2(Ω),

∫

Ω
|v|p dx = 1

}
> 0.

Note that this variational problem does not have any kind of differential operator and a minimizer
is achieved at a characteristic function of Ω (see Lemma 4.7). From this fact, we derive that the
minimizers vn of Λn converge to 1 in L2(Ω). Finally, we use that the solutions un of (1.1) are
related to vn by a direct rescaling to obtain the convergence of un.

Theorems 1.1 and 1.3 show that sublinear problems behave very differently than their super-
linear counterparts. Moreover, a link between the cases p < 2 and p = 2 resides in the assumption
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µ ∈ (0,∞) required in Theorem 1.1. If µ = 0, then the limit problem cannot be characterized by
the logarithmic Laplacian. To analyze this case, it would be necessary to consider a second (or
higher) order expansion of the fractional Laplacian in the parameter s.

In the last result we present here, we show that, with some adjustments, a similar strategy can
also be used to characterize the limiting profile of other sublinear-type fractional problems. For
instance, consider the nonlinearity f(u) = ku − up for k > 1, p > 1, and u ≥ 0. This nonlinearity
is widely studied in the literature; in particular, p = 2 (the logistic nonlinearity) is used in ecology
in the study of population dynamics, where k is a birth rate and −u2 is called a concentration
or saturation term (see, e.g., [10, 31] and the references therein); and p = 3 (the Allen-Cahn
nonlinearity) is used in the study of phase transitions in material sciences (see, e.g., [30] and the
references therein). In this regard, we have the following.

Theorem 1.4. Let k > 1 and p > 1. There is s0 = s0(Ω, k) ∈ (0, 1) so that, for s ∈ (0, s0), there
is a unique positive solution us ∈ Hs

0(Ω) ∩ Lp+1(Ω) of

(−∆)sus = kus − ups in Ω, us = 0 in R
N\Ω. (1.11)

Moreover, us → (k − 1)
1

p−1 in Lq(Ω) as s→ 0+ for every 1 ≤ q <∞.

This result has an interesting biological interpretation in terms of population dynamics (at
equilibrium): in the presence of a toxic boundary, species with limited mobility have a lower satu-
ration threshold, higher survival rate, and are more homogeneously distributed. Indeed, to fix ideas
consider p = 2, k = 2, let un represent the population density of a species, Ω = BR(0) be a ball
of radius R > 0, and let s be a parameter describing a diffusion strategy. Because the nonlinearity
2u−u2 has a concentration term, the population density us is bounded by 2 (see Proposition 5.4).
This bound is optimal, in the sense that us has values arbitrarily close to 2 as R → ∞ (a heuris-
tic way to see this, is to consider the rescaled equation R−2s(−∆)svs = 2vs − v2s in B1(0), with
vs(x) = us(Rx), then, letting R → ∞ yields the limit equation 0 = 2v − v2 which implies v = 2).
However, Theorem 1.4 yields that us → 1 as s → 0+, independently of R > 0. This shows that us
grows only half as much as more dynamical species in large domains for s sufficiently small. On the
other hand, the Dirichlet boundary conditions represent a toxic boundary, which in small domains
can be deadly for the species; in fact, for every s ∈ (0, 1) fixed, there is R > 0 small such that
the only solution of (1.11) is u ≡ 0. But again, Theorem 1.4 shows that almost static populations
thrive even in small domains. This is consistent with the results and interpretations from [10,31].

Theorem 1.4 is a particular case of a slightly more general result, Theorem 5.9 in Section 5.
The proof of Theorem 1.4 follows a similar strategy as in Theorem 1.3, we begin by considering a
nonlinear eigenvalue problem given by

Θs := inf

{
‖u‖2s
2

+
|u|p+1

p+1

p+ 1
: u ∈ Hs

0(Ω) ∩ Lp+1(Ω) and
ε|u|22
|Ω| = 1

}
, (1.12)

where ε > 0 is a parameter. We show that Θs → Θ0 as s→ 0+, where

Θ0 := inf

{
|u|22
2

+
|u|p+1

p+1

p+ 1
: u ∈ L2(Ω) ∩ Lp+1(Ω), u = 0 in R

N\Ω, and
ε|u|22
|Ω| = 1

}
,

which is shown to be achieved at u0 = ε−
1
2χΩ. Note that, in these cases, the functionals have terms

with different homogeneities and therefore the link between a minimizer of (1.12) and a solution of
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(1.11) cannot be established by a direct rescaling. Here is where the parameter ε > 0 is used. A
suitable choice of this parameter allows us to link, via a stability-type argument (see (5.22)), the
problems (1.12) and (1.11), and to conclude the desired convergence.

To close this introduction, we mention that an interesting problem would be to consider also
sign-changing solutions of (1.11) and to characterize its limit as s → 0+. In this case, there is no
clear candidate for the limiting profile, and a deeper understanding of the asymptotic behavior of
the nodal set is needed (one can compare this analysis with the results from [30]). It could also be
interesting to consider other nonlinearities, for instance f1(u) = u(u−α)(β− u), where β > α > 0,
or f2(u) = λuq + u2

∗

s−1, where q ∈ (0, 1) and 2∗s is the fractional Sobolev critical exponent. The
nonlinearity f1 is related to the Allee effect and it is used in ecology and genetics to establish a
correlation between population size and the mean individual fitness [11], whereas f2 is a concave-
convex nonlinearity for which multiplicity of positive solutions is known in fractional problems [4].
In these cases, formally, the limit equation (u = fi(u)) would have two positive constant solutions.
We expect that ground states converge to the least-energy constant with respect to a limit energy
functional.

The paper is organized as follows. In Section 2 we fix some notation that is used throughout the
paper. Section 3 contains some auxiliary estimates. Section 4 is devoted to the power nonlinearity
case and it contains the proofs of Theorems 1.1, 1.2, and 1.3. Finally, in Section 5 we show
Theorem 5.9, which directly implies Theorem 1.4.

2 Notation

We fix some notation that is used throughout the paper. The space Hs
0(Ω) is the homogeneous

fractional Sobolev space given by

Hs
0(Ω) :=

{
u ∈ Hs(RN ) : u = 0 on R

N \ Ω
}
.

The energy functional associated to (1.1) is Jsn : Hsn
0 (Ω) → R given by

Jsn(u) :=
1

2
‖u‖2sn − 1

pn
|u|pnpn , (2.1)

where ‖u‖sn and |u|pn are norms defined in (1.10). We also let |u|∞ denote the usual supremum
norm. Following [14], the logarithmic Laplacian L∆ can be evaluated as

L∆u(x) := cN p.v.

∫

B1(x)

u(x)− u(y)

|x− y|N dy − cN

∫

RN\B1(x)

u(y)

|x− y|N dy + ρNu(x),

where

cN := π−
N
2 Γ(N2 ), ρN := 2 ln 2 + ψ(N2 )− γ, and γ := −Γ′(1). (2.2)

Here γ is also known as the Euler-Mascheroni constant and ψ := Γ′

Γ is the digamma function.
Moreover, H(Ω) is the Hilbert space given by

H(Ω) :=



u ∈ L2(RN ) :

∫ ∫
x,y∈RN

|x−y|≤1

|u(x)− u(y)|2
|x− y|N dx dy <∞ and u = 0 in R

N \Ω



 (2.3)
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with inner product

E(u, v) := cN
2

∫ ∫
x,y∈RN

|x−y|≤1

(u(x)− u(y))(v(x) − v(y))

|x− y|N dx dy,

and the norm ‖u‖ := (E(u, u))
1
2 . The space of compactly supported smooth functions C∞

c (Ω) is
dense in H(Ω), see [14, Theorem 3.1]. The operator L∆ has the following associated quadratic form

EL(u, v) := E(u, v) − cN

∫ ∫
x,y∈RN

|x−y|≥1

u(x)v(y)

|x− y|N dx dy + ρN

∫

RN

uv dx. (2.4)

Furthermore, for u ∈ H(Ω),

EL(u, u) =
cN
2

∫

Ω

∫

Ω

(u(x)− u(y))2

|x− y|N dx dy +

∫

Ω
(hΩ(x) + ρN )u(x)2 dx, (2.5)

where hΩ(x) = cN (
∫
B1(x)\Ω

|x− y|−N dy −
∫
Ω\B1(x)

|x− y|−N dy), see [14, Proposition 3.2].

By [14, Theorem 1.1], it holds that

EL(u, u) =
∫

RN

ln(|ξ|2)|û(ξ)|2 dξ for all u ∈ C∞
c (Ω), (2.6)

where û is the Fourier transform of u. Moreover, for ϕ ∈ C∞
c (Ω) we have that L∆ϕ ∈ Lp(RN ) and

EL(u, ϕ) =
∫

Ω
uL∆ϕdx for u ∈ H(Ω), (2.7)

see [14, Theorem 1.1]. We say that u ∈ H(Ω) is a weak solution of (1.4) if

EL(u, v) = −µ
∫

Ω
uv ln |u| dx for all v ∈ H(Ω). (2.8)

Note that limt→0 ln(t
2)t = 0.

3 Auxiliary lemmas

3.1 Asymptotic estimates

Lemma 3.1. Let (ϕn)n∈N be a uniformly bounded sequence in L∞(Ω), p ∈ [1, 2], and let (pn)n∈N ⊂
(1, 2) be such that limn→∞ pn = p. Then,

∫

Ω
||ϕn|pn − |ϕn|p| dx→ 0 as n→ ∞. (3.1)

Proof. Consider the function g(t) := |ϕn|t. Then,

|ϕn|pn − |ϕn|p =
∫ 1

0
g′(p+ τ(pn − p))(pn − p) dτ =

∫ 1

0
ln (|ϕn|) |ϕn|p+τ(pn−p)(pn − p) dτ.

7



Integrating in Ω and using Fubini’s Theorem,

∫

Ω
||ϕn|pn − |ϕn|p| dx ≤

∫ 1

0

∫

Ω
|ln (|ϕn|)| |ϕn|p+τ(pn−p)|pn − p| dx dτ. (3.2)

By assumption, there is M > 2 such that |ϕn|∞ ≤M for all n ∈ N. Therefore, by (3.2),
∫

Ω
||ϕn|pn − |ϕn|p| dx ≤ |pn − p|| lnM |Mp+1|Ω|

for all n sufficiently large, and the claim follows.

Lemma 3.2. Let (sk)k∈N ⊂ (0, 14) and (pk)k∈N ⊂ (1, 2) be such that lim
k→∞

sk = 0 and lim
k→∞

pk = 2.

Let (uk)k∈N ⊂ L2(Ω) and u0 ∈ L2(Ω) be such that uk → u0 in L2(Ω) as k → ∞. Then, passing to
a subsequence,

lim
k→∞

∫

Ω
ln(|uk|2)|uk|pk−2ukϕdx =

∫

Ω
ln(|u0|2)u0ϕdx for all ϕ ∈ C∞

c (Ω).

Proof. Notice that
∫

Ω
ln(|uk|2)|uk|pk−2ukϕdx =

∫

{|uk|≤1}
ln(|uk|2)|uk|pk−2ukϕdx+

∫

{|uk|>1}
ln(|uk|2)|uk|pk−2ukϕdx.

(3.3)

Passing to a subsequence, we have that supt∈(0,1) t
pk−1| ln t2| ≤ supt∈(0,1) t

1
2 | ln t2| < ∞ (note that

ln(t2)t
1
2 = 0) and uk → u0 a.e. in Ω as n→ ∞. In particular, since ln(1) = 0,

χ{|uk|≤1} ln(|uk|2)uk → χ{|u0|≤1} ln(|u0|2)u0 a.e. in Ω as n→ ∞.

Then, by the dominated convergence theorem,

lim
k→∞

∫

{|uk|≤1}
ln(|uk|2)|uk|pk−2ukϕdx =

∫

{|u0|≤1}
ln(|u0|2)u0ϕdx. (3.4)

If |uk| > 1, it follows easily (see, for example, [25, Lemma 3.3] with α = pk − 2 and β = 1) that,
passing to a subsequence,

ln(|uk|2)|uk|pk−2|ukϕ| ≤
2

3− pk
|uk|2|ϕ| ≤ 2‖ϕ‖∞|U |2 ∈ L1(Ω), (3.5)

for some U ∈ L2(Ω) (see [36, Lemma A.1]). The claim now follows by applying the dominated
convergence theorem to the second integral in (3.3) together with (3.4).

Lemma 3.3. Let (sk)k∈N, (pk)k∈N, and µ as in (1.3) and let φ ∈ C∞
c (Ω). Then,

lim
k→∞

1

sk
Jsk(φ) = −µ

4
|φ|22 +

1

2

(
EL(φ, φ) + µ

∫

RN

|φ|2 ln |φ| dx
)
. (3.6)

In particular, if v ∈ H(Ω) is a weak solution of (1.4) and (φn)n∈N ⊂ C∞
c (Ω) is such that φn → v in

H(Ω) as n→ ∞, then lim
n→∞

lim
k→∞

1
sk
Jsk(φn) = −µ

4 |v|22.
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Proof. Let φ ∈ C∞
c (Ω), then,

lim
k→∞

1

sk
Jsk(φ) = lim

k→∞

1

sk

(
‖φ‖2sk
2

− |φ|pkpk
pk

)
= lim

k→∞

1

sk

(
1

2
− 1

pk

)
‖φ‖2sk + lim

k→∞

‖φ‖2sk − |φ|pkpk
pksk

.

Thus, since ‖φ‖2sk → |φ|22 (see, e.g., [9, Corollary 3]),

lim
k→∞

1

sk
Jsk(φ) = −µ

4
|φ|22 +

1

2
lim
k→∞

‖φ‖2sk − |φ|pkpk
sk

. (3.7)

Note that

‖φ‖2sk − |φ|pkpk
sk

= Ik + Jk, where Ik :=
‖φ‖2sk − |φ|22

sk
and Jk :=

|φ|22 − |φ|pkpk
sk

. (3.8)

Let φ̂ denote the Fourier transform of φ. If |ξ| < 1, then passing to a subsequence,

|ξ|2skτ | ln(|ξ|2)||φ̂(ξ)|2 ≤ 2|φ̂(ξ)|2. (3.9)

On the other hand, if |ξ| ≥ 1, since 0 < sk <
1
4 , we have that

|ξ|2skτ ln(|ξ|2)|φ̂(ξ)|2 ≤ |ξ|1/2 ln(|ξ|2)|φ̂(ξ)|2 ≤ 4

3
|ξ|2|φ̂(ξ)|2. (3.10)

Then, by (3.9), (3.10), and dominated convergence,

lim
k→∞

Ik = lim
k→∞

∫

RN

∫ 1

0
|ξ|2skτ ln(|ξ|2)|φ̂(ξ)|2 dτ dξ =

∫

RN

ln(|ξ|2)|φ̂|2 dξ = EL(φ, φ). (3.11)

For Jk it holds that

lim
k→∞

−Jk = lim
k→∞

pk − 2

sk

∫ 1

0

∫

RN

|φ|2+(pk−2)τ ln |φ| dx dτ

= lim
k→∞

pk − 2

sk

∫ 1

0

∫

{|φ|<1}
|φ|2+(pk−2)τ ln |φ| dx dτ + lim

k→∞

pk − 2

sk

∫ 1

0

∫

{|φ|≥1}
|φ|2+(pk−2)τ ln |φ| dx dτ.

If |φ| < 1, |φ|2+(pk−2)τ ln(|φ|) is bounded independently of k. On the other hand, if |φ| ≥ 1,
|φ|2+(pk−2)τ ln(|φ|) < 2|φ|3 ∈ L1(RN ) (see (3.5)). By dominated convergence,

lim
k→∞

Jk = µ

∫

RN

|φ|2 ln |φ| dx. (3.12)

By using (3.8), (3.11) and (3.12) into (3.7) we obtain (3.6).
Now, let (φn)n∈N ⊂ C∞

c (Ω) and v ∈ H(Ω) such that φn → v in H(Ω) as n → ∞. Assume that
v ∈ H(Ω) is a weak solution of (1.4); in particular, EL(v, v) + µ

∫
RN |v|2 ln |v| dx = 0. Since J0 is

of class C1 over H(Ω) (see [25, Lemma 3.9]), EL(φn, φn) + µ
∫
RN |φn|2 ln |φn| dx = o(1) as n → ∞.

Then, by the continuous embedding of H(Ω) into L2(Ω), µ
4 |φn|22 →

µ
4 |v|22 as n→ ∞. This concludes

the proof.

We quote the following result from [25, Lemma 3.5].

Lemma 3.4. Let u ∈ Hs
0(Ω) for some s ∈ (0, 1). Then u ∈ H(Ω) and there is C1 = C1(N) > 0

and C2 = C2(Ω) > 0 such that |EL(u, u)| ≤ C1|u|21 + 1
s‖u‖2s and ‖u‖2 ≤ C2|u|22 + 1

s‖u‖2s .
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3.2 Uniform bounds

To prove Theorem 1.3 we need some uniform regularity a priori estimates and a fine analysis of the
constants involved.

Lemma 3.5. Let s ∈ (0, 14 ), g ∈ LN/s2(Ω), and let u be a weak solution of (−∆)su = g in Ω and
u = 0 in R

N \Ω. Then,

‖u‖L∞(Ω) ≤
(
1 +

(
ln(R2) + 1

2 − ρN

)
s+ o(s)

)
‖g‖

LN/s2 (Ω)
as s→ 0+, (3.13)

where R := 2diam(Ω) and ρN is given in (2.2).

Proof. For the first part of the proof, we argue as in [19, Proposition 1.2]. We consider the problem

(−∆)sv = |g| in R
N , (3.14)

where g has been extended by zero outside Ω. Using the fundamental solution (see, e.g., [35,
Theorem 5] or [1, Definition 5.6]), we have the function v : RN → R given by

v(x) = cN,−s

∫

Ω

|g(y)|
|x− y|N−2s

dy, cN,−s =
Γ(N2 − s)

4sΓ(s)πN/2
, (3.15)

is one solution for (3.14) (note that there can be other solutions for (3.14)). Observe that v ≥ 0
and, by the comparison principle, −v ≤ u ≤ v, since −|g| ≤ g ≤ |g|. From (3.15) and Hölder’s
inequality, we have, for x ∈ Ω, that

0 ≤ |u(x)| < v(x) = cN,−s

∫

Ω

|g(y)|
|x− y|N−2s

dy ≤ cN,−s‖g‖LN/s2 (Ω)

(∫

Ω
|x− y|(2s−N)qdy

)1/q

, (3.16)

where q = N
N−s2 . Without loss of generality, assume that 0 ∈ Ω and let R := 2diam(Ω) > 0. Then

Ω ⊂ BR/2(0) and, for x ∈ Ω,

∫

Ω
|x− y|(2s−N)q dy ≤

∫

BR

|y|(2s−N)q dy = |SN−1|
∫ R

0
ρ(2s−N)qρN−1 dρ

=
2π

N
2

Γ(N2 )

RN(1−q)+2qs

N(1− q) + 2qs
=

2π
N
2

Γ(N2 )

Rt(s)

t(s)
,

where t(s) := N(1− q)+2qs = N(2−s)s
N−s2

and |SN−1| = 2π
N
2

Γ(N
2
)
. Thus, we have proved that ‖u‖L∞(Ω) ≤

C1‖g‖LN/s2 (Ω)
, where

C1 = C1(Ω, N, s, p) =

(
2π

N
2

Γ(N2 )

)N−s2

N Γ(N2 − s)

4sΓ(s)π
N
2

(
Rt(s)

t(s)

)N−s2

N

=: h(s).

Then, C1 = h(0)+sh′(0)+o(s) as s→ 0+. A direct calculation shows that h(0) = lims→0+ h(s) = 1
and

h′(0) = lim
s→0+

h′(s) = ln(R2) + γ +
1

2
− 2 ln(2)− ψ

(
N
2

)
= ln(R2) +

1

2
− ρN ,

where ρN is given in (2.2). This ends the proof.
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Proposition 3.6. Let Ω ⊂ R
N be a bounded domain, let (sn)n∈N ⊂ (0, 1), (pn)n∈N ⊂ (1, 2) be such

that limn→∞ sn = 0, k := limn→∞
sn

2−pn
∈ [0,∞), and let un be a weak solution of

(−∆)snun = |un|pn−2un in Ω, un = 0 in R
N \ Ω. (3.17)

Then |un|∞ ≤ (R2e
1
2
−ρN )k + o(1) as n→ ∞, where R := 2diam(Ω).

Proof. By [32, Proposition 8.1], un ∈ L∞(RN ). Let C1 = ln(R2) + 1
2 − ρN , where ρN is given by

(2.2) and R := 2diam(Ω) > 0. By Lemma 3.5, for n sufficiently large,

|un|∞ ≤ (1 + snC1 + o(sn))||un|pn−1| N

s2n

= (1 + snC1 + o(sn))

(∫

Ω
|un|

N

s2n
(pn−1)

dx

) s2n
N

≤ (1 + snC1 + o(sn))|un|pn−1
∞ |Ω|

s2n
N .

Then, |un|∞ ≤
(
(1 + snC1 + o(sn))

1
sn |Ω| snN

) sn
2−pn . Let k = lim

n→∞

sn
2−pn

≥ 0, then

lim
n→∞

(
(1 + snC1 + o(sn))

1
sn |Ω| snN

) sn
2−pn = ekC1 = (R2e

1
2
−ρN )k

(see [25, Lemma 3.1]), as claimed.

3.3 Upper and lower energy bounds

Now we show lower and upper energy bounds for the unique positive solution un of (1.1). The lower
bound is used in the proof of Theorem 1.1, the upper bound is presented as a result of independent
interest and for comparison with the bound given in Proposition 3.6.

In the following, for each s ∈ (0, 14), ϕs denotes the first Dirichlet eigenfunction of the fractional
Laplacian (normalized in L2-sense) and λ1,s its first eigenvalue, that is,

(−∆)sϕs = λ1,sϕs in Ω, ϕs = 0 on R
N \Ω, |ϕs|22 = 1. (3.18)

Due to the variational formulation of the first eigenvalue,

|u|22 ≤
1

λ1,s
‖u‖2s for every u ∈ Hs

0(Ω) and for each s ∈ (0, 14). (3.19)

Lemma 3.7. Let (sn)n∈N ⊂ (0, 1) be such that lim
n→∞

sn = 0, (pn)n∈N ⊂ (1, 2), and let un be a

positive solution of (3.17) then,

(λ1,sn)
pn

pn−2 |Ω| ≥ ‖un‖2sn ≥ λ1,sn |ϕsn |22
(

2

pn

|ϕsn |pnpn
λ1,sn |ϕsn |22

) 2
2−pn 2pn−2 − 1

pn − 2

pn
2pn

. (3.20)

Proof. Let an := λ1,sn |ϕsn |22, bn := |ϕsn |pnpn , t > 0, and note that

Jsn(tϕsn) =
t2

2
‖ϕsn‖2sn − tpn

pn
|ϕsn |snsn = t2

λ1,sn
2

|ϕsn |22 −
tpn

pn
|ϕsn |snsn = t2

(
an
2

− tpn−2 bn
pn

)
.

11



Then Jsn(tϕsn) < 0 if t < ( 2
pn

bn
an
)

1
2−pn . Let un be a positive solution of (3.17). Since the least

energy solution is the unique positive solution of (3.17) (see [7, Section 6]), we have that un is the

least energy solution. Let tn := 1
2

(
2
pn

bn
an

) 1
2−pn , then

(
1

2
− 1

pn

)
‖un‖2sn = Jsn(un) ≤ Jsn(tnϕsn) =

an
4

(
2

pn

bn
an

) 2
2−pn

(
1

2
− 1

2pn−1

)
(3.21)

and the lower bound in (3.20) follows. On the other hand, by (3.19), for every u ∈ Hsn
0 (Ω),

Jsn(u) =
1

2
‖u‖2sn − 1

pn
|u|pnpn ≥ 1

2
‖u‖2sn − 1

pn
C(sn, pn,Ω)

pn‖u‖pnsn , (3.22)

where C(sn, pn,Ω) := (λ1,sn)
−
1
2 |Ω|

2−pn
2pn . For t ≥ 0 let f(t) := 1

2 t
2 − 1

pn
C(sn, pn,Ω)

pntpn . Then,

f ′(t) = t−C(sn, pn,Ω)
pntpn−1 = 0 implies that t0 =

(
1

C(sn,pn,Ω)pn

) 1
pn−2

is a critical point of f . By

computing the second derivative and evaluating we obtain that f ′′(t0) = 1 − C(sn, pn,Ω)
pn(pn −

1)tpn−2
0 = 2 − pn > 0, implying that t0 is the minimizer for f . Using t0 in f we obtain a lower

bound for the energy functional Jsn , given by f(t0) =
pn−2
2pn

(C(sn, pn,Ω)
pn)

2
2−pn . Thus, for every

u ∈ Hsn
0 (Ω), it holds that Jsn(u) ≥ pn−2

2pn
(C(sn, pn,Ω)

pn)
2

2−pn . Therefore,

(
1

2
− 1

pn

)
‖un‖2sn = Jsn(un) ≥

pn − 2

2pn
(C(sn, pn,Ω)

pn)
2

2−pn ,

and the upper bound in (3.20) follows.

Recall that ϕL denotes the first Dirichlet eigenfunction of the logarithmic Laplacian (normalized
in the L2-sense) and λL1 its corresponding eigenvalue, that is, L∆ϕL = λL1ϕL in Ω, ϕL = 0 on R

N \Ω,
and |ϕL|22 = 1.

Lemma 3.8. Let (sn)n∈N, (pn)n∈N, and µ as in (1.3), then lim
n→∞

(λ1,sn)
pn

pn−2 = exp
(
−2λL

1
µ

)
.

Proof. The claim follows from the definition of µ and the fact that

λ1,sn = 1 + snλ
L
1 + o(sn) as n→ ∞ (3.23)

(see [14, Theorem 1.5] or [22, Theorem 1.1]), because lims→0+(1 + sa+ o(s))
1
s = ea = lims→0+(1 +

sa)
1
s for all a 6= 0 (see, e.g., [25, Lemma 3.1]).

Lemma 3.9. Let (sn)n∈N, (pn)n∈N, and µ as in (1.3), then

lim
n→∞

(
2

pn

|ϕsn |pnpn
λ1,sn |ϕsn |22

) 2
2−pn

= exp

(
−2λL1

µ
− 2

∫

Ω
ln(|ϕL|)|ϕL|2 dx+ 1

)
.

Proof. Note that
(

2
pn

) 2
2−pn =

(
1− sn

µ
2 + o(sn)

) 2
sn(−µ+o(1)) → e and ( 1

λ1,sn
)

2
2−pn → exp

(
−2λL

1
µ

)
as

n→ ∞. Moreover,

|ϕsn |pnpn − |ϕsn |22
sn

=
pn − 2

sn

∫

Ω

∫ 1

0
ln |ϕsn ||ϕsn |2+(pn−2)τ dτ dx→ −µ

∫

Ω
ln |ϕL||ϕL|2 dx

12



as n→ ∞, by dominated convergence, see [22, Corollary 1.3 and Theorem 1.1 (ii)]. Therefore,

( |ϕsn |pnpn
|ϕsn |22

) 2
2−pn

=

(
1− sn

µ

|ϕL|22 + o(1)

∫

Ω
ln |ϕL||ϕL|2 dx+ o(sn)

) 2
2−pn

→ exp

(
− 2

|ϕL|22

∫

Ω
ln |ϕL||ϕL|2 dx

)
as n→ ∞.

Thus,
(

2
pn

|ϕsn |
pn
pn

λ1,sn |ϕsn |
2
2

) 2
2−pn → exp

(
−2λL

1
µ − 2

∫
Ω ln(|ϕL|)|ϕL|

2 dx

|ϕL|
2
2

+ 1
)

as n → ∞. The claim follows

since |ϕL|22 = 1.

Theorem 3.10. Let (sn)n∈N, (pn)n∈N, µ, and (un)n∈N as in Theorem 1.1, then

ln(2)

2
exp

(
−2λL1

µ
− 2

∫

Ω
ln(|ϕL|)|ϕL|2 dx+ 1

)
|ϕL|22 + o(1) ≤ ‖un‖2sn ≤ |Ω| exp

(
−2λL1

µ

)
+ o(1)

as n→ ∞.

Proof. The upper bound follows from Lemma 3.8 and (3.20). The lower bound follows from (3.20),

Lemma 3.9, and the fact that λ1,sn |ϕsn |22 2pn−2−1
pn−2

pn
2pn → ln 2

2 |ϕL|22 = ln 2
2 .

Corollary 3.11. Let (un)n∈N as in Theorem 3.10, then |un|22 ≤ |Ω| exp
(
−2λL

1
µ

)
+ o(1) as n→ ∞.

Proof. The result follows from (3.19) and Theorem 3.10, because λ1,s = 1+snλ
L
1 +o(sn) as n→ ∞

(see [22, Theorem 1.1]).

4 Sublinear power nonlinearity

4.1 Asymptotically linear case

We characterize first the limiting profile of solutions un of (1.1) when limn→∞ pn = 2, which we
call the asymptotically linear case (because |t|pn−2t → t as n→ ∞). We begin our analysis with a
study of the least energy solutions of (1.6).

4.1.1 A logarithmic sublinear problem

Recall that

J0 : H(Ω) → R, J0(u) :=
1

2
EL(u, u) + I(u), I(u) :=

µ

4

∫

Ω
u2
(
ln(u2)− 1

)
dx,

where µ > 0. This functional is of class C1, see [25, Lemma 3.1]. We show first that J0 is coercive.

Lemma 4.1. lim
‖u‖→∞
u∈H(Ω)

J0(u) = ∞.
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Proof. Let u ∈ H(Ω). By (2.4), there is C = C(Ω) > 0 such that EL(u, u) ≥ ‖u‖2−C|u|22.Moreover,

J0(u) ≥
1

2
‖u‖2 − 1

2

(
C +

µ

2

)
|u|22 +

µ

4

∫

Ω
u2 ln(u2) dx. (4.1)

Let Ω̃ :=
{
x ∈ Ω : ln(u2(x)) > 2C

µ + 1
}
. Then, µ

4

∫
Ω̃ u

2 ln(u2) dx ≥ 1
2

(
C + µ

2

) ∫
Ω̃ u

2 dx. Therefore,

J0(u) ≥
1

2
‖u‖2 − 1

2

(
C +

µ

2

) ∫

Ω\Ω̃
u2 dx+

µ

4

∫

Ω\Ω̃
u2 ln(u2) dx.

Since u2 ≤ e
2C
µ

+1 in Ω \ Ω̃, there is C1 = C1(Ω, µ) > 0 such that

−1

2

(
C +

µ

2

)∫

Ω\Ω̃
u2 dx+

µ

4

∫

Ω\Ω̃
u2 ln(u2) dx > −C1

and then J0(u) ≥ 1
2‖u‖2 − C1, which yields the result.

Theorem 4.2. For every µ > 0 there is a nontrivial unique (up to a sign) least energy solution of

L∆v0 = −µ ln(|v0|)v0 in Ω, u0 ∈ H(Ω). (4.2)

Moreover, v0 does not change sign.

Proof. By Lemma 4.1, there is a minimizing sequence (vk)k∈N for J0, that is, limk→∞ J0(vk) =
infw∈H(Ω) J0(w) =: m. By the compact embedding of H(Ω) into L2(Ω), there is v0 ∈ H(Ω) such
that, up to a subsequence,

vk ⇀ v0 in H(Ω), vk → v0 in L2(Ω), vk → v0 a.e. in Ω,

as k → ∞. In particular, ‖v0‖2 ≤ lim inf
k→∞

‖vk‖2. Moreover, since the function t 7→ t2 ln t2 is bounded

below by a constant which is integrable over the bounded set Ω, it follows by Fatou’s Lemma that

∫

Ω
v20 ln(v

2
0) dx ≤ lim inf

k→∞

∫

Ω
v2k ln(v

2
k) dx. (4.3)

Observe that
∣∣∣∣∣∣

∫
x,y∈RN

|x−y|≥1

vk(x)vk(y)

|x− y|N dx dy −
∫
x,y∈RN

|x−y|≥1

v0(x)v0(y)

|x− y|N dx dy

∣∣∣∣∣∣

≤
∫
x,y∈RN

|x−y|≥1

|vk(x)||vk(y)− v0(y)|
|x− y|N dx dy +

∫
x,y∈RN

|x−y|≥1

|v0(y)||vk(x)− v0(x)|
|x− y|N dx dy =: I1 + I2,

where

I1 ≤
∫

RN

|vk(x)|
∫

RN

|vk(x+ y)− v0(x+ y)|dydx =

∫

Ω
|vk(x)| dx

∫

Ω
|vk(y)− v0(y)|dy → 0,
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and a similar argument shows that I2 → 0 as k → ∞. Hence,

lim
k→∞

∫
x,y∈RN

|x−y|≥1

vk(x)vk(y)

|x− y|N dx dy =

∫
x,y∈RN

|x−y|≥1

v0(x)v0(y)

|x− y|N dx dy. (4.4)

As a consequence, J0(v0) ≤ lim inf
k→∞

J0(vk) = m and v0 is a least energy solution of (1.4).

To see that v0 is nontrivial, let ϕ ∈ C∞
c (Ω)\{0} and observe that

J0(v0) = m ≤ J0(tϕ) =
t2

2

(
EL(ϕ,ϕ) +

µ

2

∫

Ω
ϕ2(ln(t2) + ln(ϕ2)− 1) dx

)
< 0 (4.5)

for t > 0 sufficiently small, because lim
t→0

ln(t2) = −∞. Therefore v0 6≡ 0.

By [14, Lemma 3.3], EL(|v0|, |v0|) ≤ EL(v0, v0). This implies that EL(|v0|, |v0|) = EL(v0, v0),
which, by [14, Lemma 3.3], implies that v0 does not change sign.

Finally, we show the uniqueness (up to a sign) of the least energy solution using a convexity-
by-paths argument as in [7, Section 6]. Assume, by contradiction, that there are two least-energy
solutions u and v such that u2 6= v2. Recall that a least-energy solution is a global minimizer of
the energy. Let

γ(t, u, v) := ((1 − t)u2 + tv2)
1
2 for t ∈ [0, 1].

We claim that

the function g : [0, 1] → R given by g(t) := J0(γ(t, u, v)) is strictly convex in [0, 1]. (4.6)

This would yield a contradiction, since the function g cannot have two global minimizers (at t = 0
and at t = 1) and be strictly convex in [0, 1]. To see (4.6), we argue as in [7, Theorem 6.1].

Note that g(t) = g1(t) + g2(t), where

g1(t) := EL(γ(t, u, v), γ(t, u, v)),

g2(t) :=
µ

2

∫

Ω
[γ(t, u, v)(x)]2(ln[γ(t, u(x), v(x))2]− 1) dx.

First, we show the convexity of g1 in [0, 1]. Let t1, t2, θ ∈ [0, 1]. We claim that

g1((1− θ)t1 + θt2) ≤ (1− θ)g1(t1) + θg1(t2). (4.7)

Indeed, set U1 := γ(t1, u, v) and U2 := γ(t2, u, v). A direct calculation shows that

γ((1− θ)t1 + θt2, u, v) = γ(θ, U1, U2).

Now, for x, y ∈ Ω, let

a =
√
1− θU1(x), b =

√
1− θU1(y), c =

√
θU2(x), d =

√
θU2(y).

Then, by the Minkowski inequality, |(a2 + c2)
1
2 − (b2 + d2)

1
2 | ≤ ((a − b)2 + (c − d)2)

1
2 , which is

equivalent to

(γ(θ, U1, U2)(x)− γ(θ, U1, U2)(y))
2 ≤ (1− θ)(U1(x)− U1(y))

2 + θ(U2(x)− U2(y))
2. (4.8)
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But then, using (2.5),

g1((1− θ)t1 + θt2)

= EL(γ((1 − θ)t1 + θt2, u, v), γ((1 − θ)t1 + θt2, u, v)) = EL(γ(θ, U1, U2), γ(θ, U1, U2))

=
cN
2

∫

Ω

∫

Ω

(γ(θ, U1, U2)(x)− γ(θ, U1, U2)(y))
2

|x− y|N dx dy +

∫

Ω
(hΩ(x) + ρN )γ(θ, U1, U2)(x)

2 dx.

(4.9)

By (4.8),

∫

Ω

∫

Ω

(γ(θ, U1, U2)(x)− γ(θ, U1, U2)(y))
2

|x− y|N dx dy

≤ (1− θ)

∫

Ω

∫

Ω

(U1(x)− U1(y))
2

|x− y|N dx dy + θ

∫

Ω

∫

Ω

(U2(x)− U2(y))
2

|x− y|N dx dy (4.10)

and
∫

Ω
(hΩ + ρN )γ(θ, U1, U2)

2 dx = (1− θ)

∫

Ω
(hΩ + ρN )U2

1 dx+ θ

∫

Ω
(hΩ + ρN )U2

2 dx. (4.11)

By (4.9), (4.10), and (4.11),

g1((1− θ)t1 + θt2) ≤ (1− θ)EL(U1, U1) + θEL(U2, U2) = (1− θ)g1(t1) + θg1(t2),

which yields (4.7).
On the other hand, for x ∈ Ω, let

f(t) := [γ(t, u, v)(x)]2(ln([γ(t, u, v)(x)]2)− 1)

= [(1 − t)u(x)2 + tv(x)2](ln[(1 − t)u(x)2 + tv(x)2]− 1).

Then f ′′(t) =
(u(x)2−v(x)2)

2

(1−t)u(x)2+tv(x)2 > 0 in (0, 1), whenever u(x) or v(x) are different from zero. Since

u 6≡ 0 (see (4.5)), we have that

t 7→ g2(t) =
µ

2

∫

Ω
γ(t, u, v)2(ln(γ(t, u(x), v(x))2)− 1) dx is strictly convex in [0, 1]. (4.12)

By (4.7) and (4.12), we conclude that (4.6) must hold, which yields the desired contradiction.

4.1.2 Convergence of solutions

Theorem 4.3. Let (sk)k∈N, (pk)k∈N, µ, and (uk)k∈N as in Theorem 1.1. There is a constant
C = C(Ω, µ) > 0 such that ‖uk‖2 = E(uk, uk) ≤ C + o(1) as k → ∞.

Proof. By Lemma 3.4 we have that ‖uk‖ is finite for all k ∈ N. Fix k ∈ N and let (ϕn)n∈N ⊂ C∞
c (Ω)

be such that ϕn → uk in Hsk
0 (Ω) as n→ ∞. We begin with the identity

In :=
‖ϕn‖2sk − |ϕn|22

sk
=

∫ 1

0

∫

RN

|ξ|2skτ ln(|ξ|2)|ϕ̂n(ξ)|2 dξ dτ. (4.13)
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From the definition of Jsk (see (2.1)) we have that

In =
1

sk

(
2Jsk(ϕn) +

2

pk
|ϕn|pkpk

)
− |ϕn|22

sk
=

1

sk

(
2Jsk(ϕn) +

(
2− pk
pk

)
|ϕn|pkpk

)
+

|ϕn|pkpk − |ϕn|22
sk

,

and since uk is a solution of (1.1) and ϕn → uk in Hs
0(Ω) as n→ ∞,

2Jsk(ϕn) +

(
2− pk
pk

)
|ϕn|pkpk = 2Jsk(uk) +

(
2− pk
pk

)
|uk|pkpk + o(1) = o(1) as n→ ∞,

thus,

In =
|ϕn|pkpk − |ϕn|22

sk
+ o(1) as n→ ∞. (4.14)

Observe that,

|ϕn|pkpk − |ϕn|22
sk

=
pk − 2

sk

∫ 1

0

∫

Ω
|ϕn|2+(pk−2)τ ln(|ϕn|) dx dτ

=
pk − 2

sk

(∫ 1

0

∫

{|ϕn|<1}
|ϕn|2+(pk−2)τ ln |ϕn| dx dτ +

∫ 1

0

∫

{|ϕn|≥1}
|ϕn|2+(pk−2)τ ln |ϕn| dx dτ

)

≤ pk − 2

sk

∫ 1

0

∫

{|ϕn|<1}
|ϕn|2+(pk−2)τ ln |ϕn| dx dτ ≤ 2− pk

sk
|Ω| sup

t∈(0,1)
|t|| ln |t|| < 2− pk

sk
|Ω|.

Therefore, by (4.14), we have that

In ≤ 2− pk
sk

|Ω|+ o(1) as n→ ∞. (4.15)

On the other hand,

In ≥
∫ 1

0

∫

{|ξ|<1}
|ξ|2skτ ln(|ξ|2)|ϕ̂n(ξ)|2 dξ dτ +

∫

{|ξ|≥1}
ln(|ξ|2)|ϕ̂n(ξ)|2 dξ

=

∫ 1

0

∫

{|ξ|<1}
|ξ|2skτ ln(|ξ|2)|ϕ̂n(ξ)|2 dξ dτ −

∫

{|ξ|<1}
| ln(|ξ|2)|ϕ̂n(ξ)|2 dξ +

∫

RN

ln(|ξ|2)|ϕ̂n(ξ)|2 dξ

=

∫ 1

0

∫

{|ξ|<1}

(
|ξ|2skτ − 1

)
ln(|ξ|2)|ϕ̂n(ξ)|2 dξ dτ +

∫

RN

ln(|ξ|2)|ϕ̂n(ξ)|2 dξ

≥
∫

RN

ln(|ξ|2)|ϕ̂n(ξ)|2 dξ = EL(ϕn, ϕn).eq : In (4.16)

By (2.4), there is C3 = C3(Ω) > 0 such that EL(ϕn, ϕn) ≥ ‖ϕn‖2 − C3|ϕn|22. Therefore, (4.15),
(4.14), and Proposition 3.6 yield the existence of C4 = C4(Ω) > 0 such that

‖ϕn‖2 ≤ In + C3|ϕn|22 ≤
2− pk
sk

|Ω|+ C4 + o(1) as n→ ∞. (4.17)

Using Lemma 3.4 and the fact that ϕn → uk in Hsk
0 (Ω) as n→ ∞, taking the limit in (4.17) when

n→ ∞ we obtain that ‖uk‖2 ≤ 2−pk
sk

|Ω|+ C4 = (µ+ o(1))|Ω| + C as k → ∞.
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We are ready to show Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.3, passing to a subsequence, there is C = C(Ω, µ) > 0 such
that, ‖un‖ ≤ C for all n ∈ N. Then, passing to a further subsequence,

un ⇀ u0 in H(Ω), un → u0 in L2(Ω), un → u0 a.e. in Ω (4.18)

for some u0 ∈ H(Ω). Let us first show that u0 is a non-trivial solution of (2.7). Let ϕ ∈ C∞
c (Ω), by

(1.5) the identity
∫

Ω
un(ϕ+ snL∆ϕ+ o(sn)) dx =

∫

Ω
un(−∆)snϕdx =

∫

Ω
|un|pn−2unϕdx

=

∫

Ω

(
un + sn

pn − 2

sn

∫ 1

0
ln(|un|)|un|(pn−2)τun dτ

)
ϕdx (4.19)

holds in L∞(Ω) for every n. Then, by (2.7) and (4.19),

EL(un, ϕ) + o(1) =

∫

Ω
unL∆ϕdx+ o(1) =

pn − 2

sn

∫

Ω

∫ 1

0
ln(|un|)|un|(pn−2)τun dτϕdx, (4.20)

as n→ ∞ for all ϕ ∈ C∞
c (Ω). Then, letting n→ ∞ and using Lemma 3.2,

EL(u0, ϕ) = −µ
∫

Ω
ln(|u0|)u0ϕdx for all ϕ ∈ C∞

c (Ω). (4.21)

By density, u0 is a weak solution of (1.4). Now, let us show that u0 is non-trivial. By Theorem 3.10,
we know the existence of a positive constant C = C(Ω, µ) > 0 such that

C ≤ ‖un‖2sn =

∫

Ω
|un|pn dx ≤ |Ω| 2−pn

2

(∫

Ω
|un|2 dx

) pn
2

,

and so, C
2
pn |Ω|

pn−2
pn ≤

∫
Ω |un|2 dx. Letting n→ ∞ we conclude that 0 < C ≤

∫
Ω |u0|2 dx. Therefore,

u0 6= 0. Since u0 is a weak solution of (1.4), we have that

J0(u0) =
EL(u0, u0)

2
+
µ

4

∫

Ω
u20
(
ln(u20)− 1

)
dx = −µ

4

∫

Ω
u20 dx.

To see that u0 is of least energy it remains to show that −µ
4 |u0|22 = infH(Ω) J0. By Hölder’s inequality,

0 ≤ lim sup
n→∞

|un − u0|pn ≤ lim sup
n→∞

|Ω|
2−pn
2pn |un − u0|2 = 0,

thus, using Proposition 3.6 and Lemma 3.1, lim
n→∞

‖un‖2sn = lim
n→∞

|un|pnpn = |u0|22. Then,

−µ
4

lim
n→∞

‖un‖2sn = −µ
4

lim
n→∞

|un|pnpn = −µ
4
|u0|22 = J0(u0). (4.22)

On the other hand, by Theorem 4.2, there is v0 ∈ H(Ω) such that J0(v0) = infH(Ω) J0 and by [14,
Theorem 3.1] there is a sequence (vk)k∈N ⊂ C∞

c (Ω) such that vk → v0 in H(Ω) as k → ∞. Since
vk ∈ C∞

c (Ω) for all k ∈ N and un is of least energy (by uniqueness [7, Theorem 6.1]), we have that

−µ
4

lim
n→∞

‖un‖2sn = lim
n→∞

1

sn
Jsn(un) ≤ lim

n→∞

1

sn
Jsn(vk).

18



By (3.6), we obtain the following inequality

−µ
4

lim
n→∞

‖un‖2sn ≤ −µ
4
|vk|22 +

1

2

(
EL(vk, vk) + µ

∫

RN

|vk|2 ln |vk| dx
)

= −µ
4
|v0|22 + o(1) = J0(v0) + o(1) = inf

H(Ω)
J0 + o(1) (4.23)

as k → ∞, according with Lemma 3.3. Therefore, by (4.22) and (4.23),

inf
H(Ω)

J0 ≤ J0(u0) = −µ
4
|u0|22 = −µ

4
lim
n→∞

‖un‖2sn ≤ inf
H(Ω)

J0

as claimed. Since u0 ∈ H(Ω) is a least energy solution of (1.4), Theorem 4.2 implies that u0 does
not change sign in Ω.

To conclude the proof, we show that u0 ∈ L∞(Ω) and

|u0|∞ ≤ ((2 diam(Ω))2e
1
2
−ρN )

1
µ =: C0. (4.24)

By Proposition 3.6, |un|∞ ≤ C0 + o(1) as n → ∞. Assume, by contradiction, that there is ε > 0
and set ω ∈ Ω of positive measure such that |u0| > (1 + ε)C0 in ω. This implies that

|un(x)− u0(x)| ≥ |u0(x)| − |un(x)| > (1 + ε)C0 − C0 = εC0 for a.e. x ∈ ω.

Thus,
∫
Ω |un−u0|2 dx ≥

∫
ω |un−u0|2 dx > εC0|ω| > 0, which contradicts the L2-convergence of un to

u0. Therefore, (4.24) holds. In consequence, up to a subsequence, the convergence un → u0 in L
q(Ω)

for any 1 ≤ q < ∞ now follows by the dominated convergence theorem. Finally, since (1.4) has a
unique least energy solution, we have that the limit u0 is independent of the chosen subsequence
of (un)n∈N, therefore the whole sequence (un)n∈N must also converge to u0 in L2(Ω).

Remark 4.4. One could also phrase the statement of Theorem 1.1 as follows: Let Ω ⊂ R
N be an

open bounded Lipschitz set. Let h : (0, 1) → (0, 1) be a function such that h(s)/s → µ ∈ (0,∞) as
s→ 0+. For s ∈ (0, 1), let us be the unique positive solution of

(−∆)sus = u1−h(s)
s in Ω, us = 0 on R

N\Ω.

Then us → u0 in Lq(RN ) as s → 0+ for all 1 ≤ q < ∞, where u0 ∈ H(Ω) ∩ L∞(Ω)\{0} is the
unique nonnegative least energy solution of (1.4).

Since the nonlinearity −µ ln |u|u can change sign even if u ≥ 0, one cannot use standard max-
imum principles to characterize the sign properties of the solution; however, in the next result
we show a strong maximum principle for continuous weak solutions of (4.2) by working on small
neighborhoods and using the negative sign of −µ.

Lemma 4.5. Let v ∈ C(RN ) be a nontrivial nonnegative weak solution of (4.2), then v > 0 in Ω.

Proof. By contradiction, assume that there is x0 ∈ Ω such that

v(x0) = 0. (4.25)

By continuity and because v 6= 0, there are δ > 0, an open set V ⊂ {x ∈ Ω : v(x) > δ}, and r > 0
such that −µ ln |v|v ≥ 0 in Br(x0) and dist(Br(x0), V ) > 0.
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By [14, Corollary 1.9], we can consider, if necessary, r smaller so that L∆ satisfies the weak
maximum principle in Br(x0) and λ

L
1 > 0, where λL1 is the first eigenvalue of L∆. Now, a standard

application of the Riesz representation theorem yields the existence of a unique solution τ ∈ H(Ω)
of

L∆τ = 1 in Br(x0), τ = 0 in R
N \Br(x0).

Moreover, by [12, Theorem 1.1], we know that τ is a classical solution, namely, that L∆τ(x) = 1
holds pointwisely for x ∈ Ω. This implies that τ > 0 in Br(x0), since if τ(y0) = 0 for some y0 ∈ Ω,
then

1 = L∆τ(y0) = −cN
∫

Br(x0)

τ(y)

|y0 − y|N dy < 0,

which would yield a contradiction. Now we argue as in [18]. Let χV denote the characteristic
function of V and note that, for x ∈ Br(x0), χV (x) = 0 and therefore

L∆χV (x) = −cN
∫

RN

χV (y)

|x− y|N dy = −cN
∫

V

1

|x− y|N dy ≤ −cN |V | inf
z∈Br(x0)

(|z − y|−N ).

Let K := cN |V | infz∈Br(x0)(|z − y|−N ) and ϕ := K
2 τ + χV . Then, L∆ϕ ≤ K/2 −K ≤ 0 in Br(x0).

Moreover, since v > δ in V , we have that

L∆(v − δϕ) ≥ 0 in Br(x0), v − δϕ ≥ 0 in R
N \Br(x0) (4.26)

in the weak sense. Then, by the weak maximum principle (see [14, Corollary 1.8]) we obtain that
v ≥ δϕ ≥ δτ > 0 in Br(x0), a contradiction to (4.25). Therefore v > 0 in Ω.

Proof of Theorem 1.2. Existence and uniqueness of least energy solutions follow from Theorem 4.2,
and the estimate (1.8) follows from (4.24), by uniqueness. Assume now that Ω satisfies a uniform
exterior sphere condition, then, since v ∈ L∞(Ω), it follows that ln |v|v ∈ L∞(Ω), and, by [14,
Theorem 1.11], we have that v ∈ C(Ω). The estimate (1.9) follows from [12, Corollary 5.8] and a
standard density argument. The fact that |v| > 0 in Ω follows from Lemma 4.5.

Remark 4.6. Note that the regularity in (1.9) is not enough to guarantee that u is a classical
solution, namely, that L∆u can be evaluated pointwisely. This would require a refinement of [12,
Theorem 1.1], see [12, Section 6, open problem (1)].

4.2 Asymptotically sublinear case

Now we focus our attention on the analysis of solutions un of (1.1) when limn→∞ pn ∈ [1, 2), which
we call the asymptotically sublinear case. We begin by considering an auxiliary nonlinear eigenvalue
problem in a rescaled domain. Let (sn) ⊂ (0, 1) be such that limn→∞ sn = 0,

pn ⊂ (1, 2) be such that lim
n→∞

pn = p ∈ [1, 2).

Let λ := |Ω| and Ωλ := 1
λΩ (note that |Ωλ| = 1). Set

Λ0 := inf

{∫

Ω
|v|2 dx : v ∈ L2(Ωλ) and

∫

Ωλ

|v|p dx = 1

}
, (4.27)

Λn := inf
{
‖v‖2sn : v ∈ Hsn

0 (Ωλ), |v|pnpn = 1
}
, (4.28)

and let χΩλ
denote the characteristic function of Ωλ.
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Lemma 4.7. The infimum Λ0 is achieved at χΩλ
; in particular, Λ0 = 1 = |χΩλ

|22.

Proof. Clearly, Λ0 ≤ 1, because |Ωλ| = 1 = |χΩλ
|22 = |χΩλ

|pp. On the other hand, for each v ∈{
v ∈ L2(Ωλ) : v = 0 in R

N\Ωλ and |v|pp = 1
}
it holds that 1 = |v|pp ≤ |v|p2, thus 1 ≤ Λ0.

Proposition 4.8. For every n ∈ N there is vn ∈ Hsn
0 (Ωλ) such that Λn = ‖vn‖2sn . Moreover,

vn → 1 in L2(Ωλ), Λn → 1 as n→ ∞, and (vn)n∈N is a minimizing sequence for Λ0.

Proof. Using the compact embedding of Hsn
0 (Ωλ) into L

pn(Ωλ) and standard arguments, we have
that the infimum Λn is achieved at some nontrivial vn ∈ Hsn

0 (Ωλ). We can assume w.l.o.g. that vn
is nonnegative. By the Lagrange multiplier theorem, each vn is a solution of

(−∆)snvn = Λnv
pn−1
n in Ωλ, vn ∈ Hsn

0 (Ωλ). (4.29)

Let ϕ ∈ C∞
c (Ωλ)\{0} and recall that limn→∞ pn = p ∈ [1, 2), then

Λn = ‖vn‖2sn ≤ ‖ϕ‖2sn
|ϕ|2pn

=
|ϕ|22
|ϕ|2p

+ o(1) as n→ ∞,

because |ϕ|pn → |ϕ|p and ‖ϕ‖2sn → |ϕ|22 as n→ ∞. Thus, passing to a subsequence, Λn = ‖vn‖2sn →
Λ∗
0 as n→ ∞ for some Λ∗

0 ≥ 0. Observe that

Λ∗
0 ≤

|ϕ|22
|ϕ|2p

for all ϕ ∈ C∞
c (Ωλ)\{0}. (4.30)

Let Λ0 be as in (4.27). By Lemma 4.7, (4.30), and the density of C∞
c (Ωλ) in L

2(Ω),

Λ∗
0 ≤ Λ0 ≤

|vn|22
|vn|2p

≤ λ1,sn
‖vn‖2sn
|vn|2p

= (1 + o(1))
Λn

|vn|2p
,

as n→ ∞, where we have used that 1 + o(1) = λ1,sn := inf{‖v‖2sn : v ∈ Hsn
0 (Ωλ) and |v|2 = 1} as

n → ∞, see [22, Theorem 1.1]. Notice that, by Proposition 3.6, the sequence (vn)n∈N is uniformly
bounded in L∞(Ωλ). Thus, Lemma 3.1 yields that

∣∣∫
Ω |vn|p −

∫
Ω |vn|pn

∣∣ = o(1) as n → ∞ and,
since |vn|pn = 1, lim

n→∞
|vn|p = 1. Then Λ0 ≤ Λ∗

0 and therefore Λ0 = Λ∗
0, namely,

‖vn‖2sn = Λn → Λ0 as n→ ∞. (4.31)

Now, since Λ0 ≤ |vn|22
|vn|2p

≤ ‖vn‖2sn
|vn|2p

λ−1
1,sn

,

(1 + o(1)) Λ0 = |vn|2pΛ0 ≤ |vn|22 ≤ (λ1,sn)
−1Λn = (1 + o(1)) (Λ0 + o(1))

as n→ ∞. As a consequence, vn is a minimizing sequence for Λ0, namely,

|vn|22 → Λ0 as n→ ∞. (4.32)

Finally, we show that vn → 1 in L2(Ωλ) as n → ∞. By Lemma 4.7 we have that Λ0 = 1. By
contradiction, assume that there is δ > 0 and n0 ∈ N such that

∫
Ωλ

|vn − 1|2 dx ≥ δ > 0 for all
n ≥ n0. Then, using (4.32),

∫

Ωλ

vn dx ≤ 1− δ

2
+ o(1) as n→ ∞. (4.33)
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Let αn := 2(pn − 1), βn := 2 − pn, rn := 2
αn
, qn := 1

βn
. Notice that rn, qn > 1 for all n ∈ N,

1
rn

+ 1
qn

= 1 and αn + βn = pn. Then, by Young’s inequality,

1 = |vn|pnpn =

∫

Ωλ

vαn
n vβn

n dx ≤ (pn − 1)|vn|22 + (2− pn)|vn|1. (4.34)

Then by (4.32), (4.33), (4.34),

1 ≤ (pn − 1) (1 + o(1)) + (2− pn)

(
1 + o(1)− δ

2

)

= (p − 1 + o(1)) (1 + o(1)) + (2− p+ o(1))

(
1 + o(1) − δ

2

)
= 1− 2− p

2
δ + o(1)

as n→ ∞ and the contradiction follows.

We are ready to show Theorem 1.3.

Proof of Theorem 1.3. Let un ∈ Hsn
0 (Ω) be the positive least-energy solution of (1.1) and let

wn(x) := λ−
2sn

2−pn un(λx). Then wn is a positive least-energy solution of

(−∆)snwn = |wn|pn−2wn, wn ∈ Hsn
0 (Ωλ), (4.35)

Ωλ = Ω
|Ω| , and ‖wn‖sn = λ−

2sn
2−pn λ

2sn−N
2 ‖un‖sn = λ

pnN−2pnsn−2N
2(2−pn) ‖un‖sn . Passing to a subsequence,

let vn be the minimizers of Λn given in Proposition 4.8. By uniqueness of positive solutions of
sublinear problems (see e.g. [7, Theorem 6.1]), the equations (4.29) and (4.35) imply that wn =

Λ
1

pn−2
n vn. Then, by Proposition 4.8 and Lemma 4.7, λ−

2sn
2−pn un(λx) = wn → 1 in L2(Ωλ) as n→ ∞.

Since limn→∞ pn ∈ (1, 2), we conclude that un → 1 in L2(Ω) as n→ ∞, as claimed. The convergence
in Lq(Ω) for 1 ≤ q <∞ now follows from Proposition 3.6 and the dominated convergence theorem.
Note that the limit 1 is independent of the chosen subsequence of (un)n∈N, therefore the whole
sequence (un)n∈N must also converge to 1 in Lq(Ω) for 1 ≤ q <∞. This ends the proof.

Remark 4.9. One could also phrase the statement of Theorem 1.3 as follows: Let Ω ⊂ R
N be an

open bounded Lipschitz set, h : (0, 1) → (0, 1) be a function such that h(s) → p as s→ 0+ for some
p ∈ [0, 1) and, for s ∈ (0, 1), let us be the unique positive solution of

(−∆)sus = uh(s)s in Ω, us = 0 on R
N\Ω.

Then us → 1 in Lq(RN ) as s→ 0+ for all 1 ≤ q <∞.

5 Other sublinear-type problems

Recall that Ω ⊂ R
N is an open bounded Lipschitz set. In this section, (sn)n∈N is a sequence in

(0, 1) such that limn→∞ sn = 0. Let Ω ⊂ R
N be a bounded open set with Lipschitz boundary, and

let

ε > 0, A > 0, r > 2. (5.1)
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Define

Ln(u) :=
1
2‖u‖

2
sn + A

r |u|
r
r, Σn :=

{
v ∈ Hs

0(Ω) ∩ Lr(Ω) : |Ω|−1ε|u|22 = 1
}
, (5.2)

and consider the following variational problem

Θn := inf {Ln(u) : u ∈ Σn} . (5.3)

Using the compact embeddingHs
0(Ω) →֒ L2(Ω) and standard arguments, it follows that the infimum

Θn is achieved at a non-trivial function vn ∈ Σn which does not change sign (since Es(|vn|, |vn|) ≤
Es(vn, vn)). Throughout this section we assume that

vn ∈ Σn is a non-negative function such that Θn = Ln(vn). (5.4)

5.1 Auxiliary nonlinear eigenvalue problems

Let ε > 0, A > 0, r > 2, define G(u) := |Ω|−1ε
∫
Ω |u|2 dx and

J(u) := 1
2 |u|

2
2 +

A
r |u|

r
r, Σ0 :=

{
v ∈ L2(RN ) ∩ Lr(RN ) : u = 0 in R

N\Ω, G(u) = 1
}
, (5.5)

Theorem 5.1. Let Ω ⊂ R
N be an open bounded Lipschitz set. Let Θ0 := inf {J(u) : u ∈ Σ0} .

Then, Θ0 =
|Ω|
2ε + A|Ω|

rεr/2
.

Proof. Since ε−1/2χΩ ∈ Σ0, we have that Θ0 ≤ |χΩ|
2
2

2ε + A|χΩ|
r
r

rεr/2
= |Ω|

2ε + A|Ω|

rεr/2
. On the other hand,

for every u ∈ Lr(Ω) such that
ε|u|22
|Ω| = 1, Hölder’s inequality yields that |Ω|

εr/2
≤ |u|rr. Then, by (5.1),

|Ω|
2ε + A|Ω|

rεr/2
≤ |u|22

2 + A|u|rr
r , holds for all u ∈ Σ0. This proves the result.

Theorem 5.2. Let Ω ⊂ R
N be an open bounded Lipschitz set. Then

Θn → Θ0 as n→ ∞ (5.6)

and (vn)n∈N is a minimizing sequence for Θ0, that is

|vn|22
2

+
A|vn|rr
r

→ Θ0 as n→ ∞. (5.7)

Proof. Let ϕ ∈ C∞
c (Ω) \ {0} and set φ :=

(
|Ω|
ε

)1/2
ϕ

|ϕ|2
so that |φ|22 =

|Ω|
ε . Then,

Θn =
‖vn‖2sn

2
+
A|vn|rr
r

≤ ‖φ‖2sn
2

+
A|φ|rr
r

=
|φ|22
2

+
A|φ|rr
r

+ o(1) =
|Ω|
2ε

+
A|φ|rr
r

+ o(1)

as n → ∞, where (sn)n∈N ⊂ (0, 1) is the sequence associated to Θn. Then, up to a subsequence,

Θn =
‖vn‖2sn

2 + A|vn|rr
r → Θ∗

0 as n→ ∞ for some Θ∗
0 ≥ 0. In particular, it holds that

Θ∗
0 ≤

|Ω|
2ε

+
A

r

( |Ω|
ε

)r/2 |ϕ|rr
|ϕ|r2

for all ϕ ∈ C∞
c (Ω) \ {0} .
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Using the definition of Θ0 and a density argument, it follows that

Θ∗
0 ≤ Θ0. (5.8)

On the other hand, using that vn ∈ Lr(Ω) and |vn|22 = |Ω|ε−1 for all n ∈ N, together with (3.19),

Θ0 ≤
|vn|22
2

+
A|vn|rr
r

≤ (λ1,sn)
−1‖vn‖2sn
2

+
A|vn|rr
r

, (5.9)

implying that Θ0 ≤ Θn + o(1) = Θ∗
0 + o(1) as n → ∞. This inequality combined with (5.8) yields

(5.6). Then, by (5.9), Θ0 ≤ |vn|22
2 + A|vn|rr

r = Θn + o(1) = Θ0 + o(1) as n → ∞, which proves
(5.7).

The following result characterizes the minimizer of Θ0.

Theorem 5.3. Let J , Σ0, and G be as in (5.5). If u ∈ Σ0 is a minimizer for Θ0, then |u| = ε−1/2

a.e. in Ω.

Proof. Clearly, both J and G are differentiable on Lr(Ω). Assume that u ∈ Σ0 is a minimizer for
Θ0. Since u 6= 0, there is a test function ϕu ∈ C∞

c (Ω) such that DϕuG(u) = 2|Ω|−1ε
∫
Ω uϕudx 6= 0,

where DϕuG(u) is the Gâteaux derivative of G at u in the direction ϕu.
Then, by the Lagrange multiplier Theorem (see, for example, [24, Chap. 2, Sec. 1, Theorem 1]),

there is a real number λM such that the equation DϕJ(u)−λMDϕG(u) = 0 holds for all ϕ ∈ C∞
c (Ω),

that is,

∫

Ω

(
u+A|u|r−2u− 2λM |Ω|−1εu

)
ϕdx = 0 for all ϕ ∈ C∞

c (Ω).

In consequence, u satisfies that u + A|u|r−2u − 2λM |Ω|−1εu = 0 a.e. in Ω. If x1 ∈ Ω is such that
u(x1) 6= 0 then, A|u(x1)|r−2 = 2λM |Ω|−1ε− 1. Therefore,

|u| = K0χV0 , V0 := {x ∈ Ω : u 6= 0} (5.10)

for some constant K0 > 0. Since u must satisfy that G(u) = 1, it follows that

K0 =

( |Ω|
ε|V0|

)1/2

, (5.11)

and in particular, |u|rr = |Ω|r/2

εr/2|V0|(r−2)/2 . Now, let us assume that |V0| < |Ω|. Given that u is a

minimizer, (5.10) combined with (5.1) and Theorem 5.1 imply that

Θ0 =
|u|22
2

+
A|u|rr
r

= |V0|
(

1

2ε

|Ω|
|V0|

+
A

rεr/2
|Ω|r/2
|V0|r/2

)

> |V0|
(

1

2ε

|Ω|
|V0|

+
A

rεr/2
|Ω|
|V0|

)
=

|Ω|
2ε

+
A

rεr/2
|Ω| = Θ0,

a contradiction. Therefore, |V0| = |Ω|. This implies that |Ω \ V0| = 0, which leads us to conclude
that χV0 = χΩ a.e. in Ω, and by (5.11) that K0 = ε−1/2. The result now follows from (5.10).
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Recall that λ1,s = λ1,s(Ω) > 0 denotes the first Dirichlet eigenvalue of the fractional Laplacian
(−∆)s in a domain Ω (see (3.18)).

Proposition 5.4. Let ε > 0, A > 0, r > 2, and η > λ1,s(Ω). There is a positive weak solution
u ∈ Hs

0(Ω) ∩ Lr(Ω) of the equation (−∆)su+Aur−1 = ηu in Ω, that is,

Es(u, φ) +A

∫

Ω
ur−1φdx− η

∫

Ω
uφdx = 0 for all φ ∈ C∞

c (Ω). (5.12)

Moreover, u ≤
( η
A

) 1
r−2 a.e. in R

N .

Proof. The existence of u follows by global minimization and standard arguments (see, for example,

[7, Corollary 6.3]). Let η0 := ( ηA)
1

r−2 and φ := (η0 − u)− = −min{0, η0 − u} ≥ 0; then,

u(ηr−2
0 − ur−2)φ = u(ηr−2

0 − ur−2)
η0 − u

η0 − u
φ = −uφ2 η

r−2
0 − ur−2

η0 − u
≤ 0,

since (ηr−2
0 − ur−2)/(η0 − u) > 0. Moreover, u(x) − η0 = −(η0 − u(x)) = −(η0 − u(x))+ + φ(x),

thus u(x)− u(y) = (u(x)− η0)− (u(y)− η0) = (η0 − u(y))+ − (η0 − u(x))+ + φ(x)− φ(y), and

(u(x)− u(y))(φ(x)− φ(y)) = (φ(x) − φ(y))2 + [(η0 − u(y))+ − (η0 − u(x))+](φ(x)− φ(y))

= (φ(x)− φ(y))2 + (η0 − u(y))+φ(x) + (η0 − u(x))+φ(y) ≥ (φ(x)− φ(y))2;

but then, by (5.12), 0 = Es(u, φ) +A
∫
Ω u(x)(u

r−2(x)− ηr−2
0 )φ(x) dx ≥ Es(φ, φ) ≥ 0, which implies

that φ ≡ 0 and u ≤ η0 in Ω.

Lemma 5.5. Let vn be as in (5.4). Then, the sequence (vn)n∈N is bounded in L∞(Ω).

Proof. Since vn is a minimizer of Ln (given in (5.2)) under the restriction Gn(u) := |Ω|−1ε|u|22 = 1,
the Lagrange’s multiplier theorem implies the existence of a real number λn such that vn is a weak
solution of (−∆)snvn +Avr−1

n = 2λn|Ω|−1εu in Ω. Moreover,

λn =
‖vn‖2sn +A|vn|rr

2
= Θn +

(
r − 2

2r

)
A|vn|rr, (5.13)

where Θn is given in (5.3). By Theorem 5.2 it follows that λn is bounded and, by Proposition 5.4,

vn ≤
(
(2λn|Ω|−1ε)/A

) 1
r−2 , which yields the result.

Theorem 5.6. Let vn be as in (5.4). Then vn → ε−1/2 in Lp(Ω) as n→ ∞ for every 1 ≤ p <∞.

Proof. By Theorems 5.1, 5.2, and the fact that vn ∈ Σn,

A

r
|v2n|

r/2
r/2 =

A

r
|vn|rr = Θ0 −

|vn|22
2

+ o(1) = Θ0 −
|Ω|
2ε

+ o(1) =
A

r

|Ω|
εr/2

+ o(1) (5.14)

as n→ ∞, which implies that the sequence (wn)n∈N := (v2n)n∈N is bounded in Lr/2(Ω). Then, there
is w∗ ∈ Lr/2(Ω) such that, up to a subsequence,

wn ⇀ w∗ in Lr/2(Ω) as n→ ∞. (5.15)
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In consequence, |w∗|r/2r/2 ≤ lim inf
n→∞

|wn|r/2r/2 = lim inf
n→∞

|vn|rr. Then, by Theorem 5.2,

|Ω|
2ε

+
A

r
|w∗|r/2r/2 ≤

|Ω|
2ε

+ lim inf
n→∞

(
A

r
|vn|rr

)
= Θ0. (5.16)

By (5.15), for every open set O ⊂ Ω,

0 ≤
∫

O
v2n dx =

∫

Ω
v2nχO dx→

∫

Ω
w∗χO dx =

∫

O
w∗ dx. (5.17)

Hence,
∫
O w

∗ dx ≥ 0 for every open set O ⊂ Ω and thus, Lebesgue’s differentiation theorem yields
that w∗ ≥ 0 a.e. in Ω. Moreover, taking O = Ω in (5.17), |Ω|ε−1 =

∫
Ω v

2
n dx →

∫
Ωw

∗ dx. There-

fore,
∫
Ω |w∗|r/2 dx = |

√
w∗|rr and

∫
Ωw

∗ dx = |
√
w∗|22 = |Ω|ε−1. Then, (5.16) yields the inequality

1
2 |
√
w∗|22 + A

r |
√
w∗|rr ≤ Θ0, which implies that

√
w∗ ∈ Lr(Ω) is a minimizer of the functional J(u)

with the restriction G(u) − 1 = 0. Consequently, Theorem 5.3 yields that
√
w∗ = ε−1/2χΩ. From

(5.14) and (5.15),

v2n ⇀
1

ε
in Lr/2(Ω) as n→ ∞. (5.18)

Since (5.14) means that |v2n|
r/2
r/2 =

Ω
εr/2

+o(1) as n→ ∞, this result together with (5.18) implies that

v2n → ε−1 in Lr/2(Ω) as n→ ∞. Finally, since (vn)n is bounded in L∞(Ω) and, up to a subsequence,
vn → ε−1/2 a.e. in Ω, from the dominated convergence theorem it follows that vn → ε−1/2 in Lp(Ω)
for every 1 ≤ p < ∞, as desired. Since the limit is independent of the chosen subsequence, the
convergence holds for the whole sequence, as claimed.

Finally, as a consequence of this last result, we can show that the bound obtained during the
proof of Lemma 5.5 can be improved.

Corollary 5.7. Let (vn)n∈N be as in (5.4), then

0 ≤ vn ≤
(
1

A
+ ε

2−r
2

) 1
r−2

+ o(1) as n→ ∞.

Proof. By Proposition 5.4, we have that vn ≤ A
1

2−r
(
2λn|Ω|−1ε

) 1
r−2 . Using (5.13),

vn ≤ A
1

2−r

{
2|Ω|−1ε

(
Θn +

(
r − 2

2r

)
A|vn|rr

)} 1
r−2

.

Since, by Theorem 5.6, |vn|rr → ε−r/2|Ω| , we have, by Theorems 5.1 and 5.2, that

vn ≤ A
1

2−r

{
2|Ω|−1ε

( |Ω|
2ε

+
A|Ω|
2εr/2

+ o(1)

)} 1
r−2

= A
1

2−r

(
1 +Aε

2−r
2

) 1
r−2

+ o(1) as n→ ∞.

The following is an easy calculation that will be useful for our next result.
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Lemma 5.8. For M, r > 2, a ∈ [0,M ], b ≥ 0, a 6= b, let F (a, b) := ar−2−br−2

a−b . There are
C = C(r,M) > 0 and α = α(r) ≥ 0 such that F (a, b) ≥ Cbα.

Proof. If r − 2 > 1 and z := a
b , then

F (a,b)
ar−3+br−3 = zr−2−1

(z−1)(zr−3+1)
. Since limz→1

zr−2−1
(z−1)(zr−3+1)

= r−2
2 ,

we can find C = C(r) > 0 such that F (a, b) ≥ C(r)(ar−3 + br−3) for all n ∈ N.
If 0 < r−2 < 1, then the function f(y) = yr−2 is concave, which implies that F (a, b) ≥ F (M, b)

for all a < M and b ∈ R, where lim
b→M

F (M, b) = (r−2)M r−3. Therefore, there is C0 = C0(r,M) > 0

such that F (a, b) ≥ C0 > 0.

We are ready to show the main result in this section.

Theorem 5.9. Let ε > 0, A > 0, r > 2, η0 := 1 + Aε
2−r
2 , and let (sn)n∈N ⊂ (0, 1) be such that

limn→∞ sn = 0. For n sufficiently large, the problem

(−∆)snun +Aur−1
n − η0un = 0 in Ω, un = 0 on R

N\Ω, (5.19)

has a unique positive solution un ∈ Hsn
0 (Ω) ∩ Lr(Ω). Moreover,

un → ε−1/2 in Lp(Ω) as n→ ∞ for every 1 ≤ p <∞.

Proof. Since limn→∞ sn = 0, by (3.23), there is n0 ∈ N so that η0 := 1 + Aε
2−r
2 > λ1,sn for all

n ≥ n0. Then, the existence and uniqueness of a positive solution un ∈ Hsn
0 (Ω) ∩ Lr(Ω) of (5.19)

follows by arguing as in [7, Corollary 6.3].
Let vn and Θn be as (5.4), and λn be as in (5.13). In particular,

(−∆)snvn +Avr−1
n − ηnvn = 0 in Ω, ηn := 2|Ω|−1ελn. (5.20)

By (5.13) and Theorems 5.2 and 5.6, we have that ηn → η0 as n→ ∞. Let wn := un − vn, then

(−∆)snwn +
(
Aur−2

n − η0
)
wn =

(
η0 − ηn −A(ur−2

n − vr−2
n )

)
vn in Ω,

Define F (a, b) := ar−2−br−2

a−b , and notice that F > 0 for a 6= b, a, b ≥ 0. Then,

‖wn‖2sn +

∫

Ω

(
Aur−2

n − η0
)
w2
n dx = (η0 − ηn)

∫

Ω
vnwn dx−A

∫

Ω
F (un, vn)w

2
nvn dx

≤ (η0 − ηn)

∫

Ω
vnwn dx = o(1), (5.21)

because ηn → η0 as n→ ∞ and because wn, vn ∈ L∞(Ω), by Proposition 5.4 and Corollary 5.7.
Now we argue as in [8, Proposition 6.2]. By using standard arguments, the problem

µn = inf
v∈Hsn

0 (Ω)\{0}

‖v‖2sn +
∫
Ω

(
Aur−2

n − γ0
)
v2 dx

|v|22
, (5.22)

has a nontrivial non-negative solution zn ∈ Hsn
0 (Ω) for each n ∈ N. In particular, zn is a weak

solution of (−∆)snzn +
(
Aur−2

n − γ0
)
zn = µnzn in Ω. Testing with un and integrating by parts,

0 =

∫

Ω

(
(−∆)snun +

(
Aur−2

n − η0
)
un
)
zn dx = µn

∫

Ω
znun dx, (5.23)
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by (5.19). Let us show that µn = 0. By Proposition 5.4, un ≤ (η0/A)
1

r−2 , and then (−∆)snun =(
η0 −Aur−2

n

)
un ≥ 0 in Ω; by (5.1), we can apply the strong maximum principle (see, for example,

[27]) to conclude that un > 0 in Ω. Since zn ≥ 0 and zn 6= 0, (5.23) implies that µn = 0. Then, by
(5.21) and the definition of µn,

0 = µ|wn|22 ≤ ‖wn‖2sn +

∫

Ω
(Aur−2

n − η0)w
2
n dx = o(1)−A

∫

Ω
Fn(un, vn)w

2
nvn dx ≤ o(1)

as n → ∞. In particular, lim
n→∞

A
∫
Ω F (un, vn)w

2
nvn dx = 0. Since Proposition 5.4 guarantees the

existence of a constant M > 0 such that un ≤M for all n ∈ N, we have, by Lemma 5.8, that there
are C1 = C1(r,M) > 0 and α = α(r) ≥ 0 such that F (un, vn) ≥ C1v

α
n . As a consequence,

0 = lim
n→∞

A

∫

Ω
F (un, vn)w

2
nvn dx ≥ C1 lim

n→∞

∫

Ω
vα+1
n w2

n dx ≥ 0, (5.24)

that is, lim
n→∞

∫
Ω v

α+1
n w2

n dx = 0. Furthermore, by Theorem 5.6 and dominated convergence, we have

that limn→∞

∫
Ω |1− ε

α+1
2 vα+1

n | dx = 0. By Proposition 5.4 and Corollary 5.7, there is C > 0 such
that |wn|2∞ < C and then

0 ≤
∫

Ω
w2
n dx ≤

∫

Ω
(1− ε

α+1
2 vα+1

n )w2
n dx+ ε

α+1
2

∫

Ω
vα+1
n w2

n dx = o(1)

as n→ ∞, i.e., lim
n→∞

∫
Ωw

2
n dx = 0. Finally,

∫

Ω
|un − ε−1/2|2 dx ≤

∫

Ω

(
|wn|+ |vn − ε−1/2|

)2
dx ≤ 4

∫

Ω
w2
n + |vn − ε−1/2|2dx→ 0 as n→ ∞,

which proves the result for p = 2. The general case, 1 ≤ p < ∞, now follows from the dominated
convergence theorem since, by Proposition 5.4, (un)n is bounded in L∞(Ω).

Proof of Theorem 1.4. The proof follows directly from Theorem 5.9 using r = p + 1, A = 1, and

ε = (k − 1)
2

2−r = (k − 1)
2

1−p .
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