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MULTIFRACTAL ANALYSIS AND ERDÖS-RÉNYI LAWS OF LARGE

NUMBERS FOR BRANCHING RANDOM WALKS IN Rd

NAJMEDDINE ATTIA AND JULIEN BARRAL

Abstract. We revisit the multifractal analysis of Rd-valued branching random walks
averages by considering subsets of full Hausdorff dimension of the standard level sets, over
each infinite branch of which a quantified version of the Erdös-Rényi law of large numbers
holds. Assuming that the exponential moments of the increments of the walks are finite,
we can indeed control simultaneously such sets when the levels belong to the interior of
the compact convex domain I of possible levels, i.e. when they are associated to so-called
Gibbs measures, as well as when they belong to the subset (∂I)crit of ∂I made of levels
associated to “critical” versions of these Gibbs measures. It turns out that given such a
level of one of these two types, the associated Erdös-Rényi LLN depends on the metric
with which is endowed the boundary of the underlying Galton-Watson tree. To extend
our control to all the boundary points in cases where ∂I 6= (∂I)crit, we slightly strengthen
our assumption on the distribution of the increments to exhibit a natural decomposition
of ∂I \ (∂I)crit into at most countably many convex sets J of affine dimension ≤ d − 1
over each of which we can essentially reduce the study to that of interior and critical
points associated to some Rdim J -valued branching random walk.

1. Introduction and main results

Let T be a supercritical Galton-Watson tree jointly constructed with a branching
random walk taking values in the Euclidean space Rd, d ≥ 1: on a probability space
(Ω,A,P), there exists a random vector

(
N,X = (Xi)i∈N

)
∈ N × (Rd)N, as well as

{(Nu, (Xui)i∈N)}u∈
⋃
n≥0 N

n , a family of independent copies of (N,X) indexed by the fi-

nite words over the alphabet N (with the convention that N0 contains only the empty
word denoted ǫ) such that: (i) E(N) > 1, T =

⋃∞
n=0 Tn, where T0 = {ǫ}, and Tn =

{ui : u ∈ Tn−1, 1 ≤ i ≤ Nu} for all n ≥ 1. The boundary of T is then the set ∂T
of infinite words t1 · · · tn · · · over N such that t1 · · · tk ∈ Tk for all k ≥ 1. (ii) For each
t = t1t2 · · · ∈ NN and n ≥ 0, setting

SnX(ω, t) =

n∑

i=1

Xt1···tn(ω),

the restriction of (SnX)n≥0 to ∂T is the branching random walk on ∂T to be considered
in this paper.

When N is a constant interger ≥ 2 and the components of X are identically dis-
tributed and non constant, the family {(SnX(t))n∈N}t∈∂T provides uncountably many
random walks with the same law, and it turns out that the large deviations properties
shared by these random walks have a counterpart in ∂T in the sense that if we consider
EX =

{
t ∈ ∂T : AX(t) := limn→∞ n−1SnX(t) exists

}
, the set AX(EX) is almost surely
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equal to a deterministic non trivial closed convex set. The same property holds if we
consider a general branching random walk as defined above. Quantifying geometrically
this phenomenon, that is measuring the sizes of the level sets A−1

X (α), α ∈ AX(EX), as
well as that of subsets over which the law of large numbers like property AX(t) = α is
refined by Erdös-Rényi law of large numbers, is the purpose of the present paper.

Conditionally on non extinction of T, that is ∂T 6= ∅, if the set ∂T is endowed with some
metric d, the multifractal analysis of the averages of (SnX)n∈N consists in computing the
Hausdorff dimensions of the level sets

E(X,α) =
{
t ∈ ∂T : lim

n→∞

SnX(t)

n
= α

}
, α ∈ Rd

and thus provides a geometric hierarchy between the level sets E(X,α). A general result
(Theorem A below) was obtained in [3] for these dimensions in the case that d is the
restriction to ∂T of the standard ultrametric distance on NN defined by

d1(s, t) = e−|s∧t|,

where s ∧ t is the maximal common prefix of s and t and the length of any word w in
(
⋃
n≥0 N

n) ∪ NN is denoted by |w|.

Define the Legendre transform of a function f : Rd → R ∪ {∞} such that f 6≡ ∞ as

f∗ : α ∈ Rd 7→ inf{f(q)− 〈q|α〉 : q ∈ Rd}.

Also, define the function

(1.1) ‹PX : q ∈ Rd 7→ logE

N∑

i=1

exp(〈q|Xi〉)

as well as

(1.2) IX = {α ∈ Rd : ‹P ∗
X(α) ≥ 0}.

From now on we work conditionally on non extinction of T, so without loss of generality
we assume that P(N ≥ 1) = 1. The authors proved the following result :

Theorem A ([3, Theorem 1.1]) With probability 1,

(1.3) ∀α ∈ Rd, dimE(X,α) =

®‹P ∗
X(α) if α ∈ IX

−∞ otherwise.

In this paper, dim stands for the Hausdorff dimension, and we adopt the convention that
for any set E ⊂ NN, dimE = −∞ if and only if E = ∅. This result is a geometric counter-
part of the following large deviations properties associated with SnX ([3, Theorem 1.3]):
For u ∈ Tn define SnX(u) as the constant value taken by SnX restricted to the set of
elements of ∂T with common prefix of generation n equal to u. With probability 1, for all
α ∈ Rd,

lim
ε→0+

lim inf
n→∞

log #{u ∈ Tn, n
−1SnX(u) ∈ B(α, ε)}

n

= lim
ε→0+

lim sup
n→∞

log #{u ∈ Tn, n
−1SnX(u) ∈ B(α, ε)}

n
=

®‹P ∗
X(α) if α ∈ IX

−∞ otherwise
,

where B(α, ε) stands for the closed Euclidean ball of radius ε centered at α.
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We aim at strengthening these information in two directions: at first quantify how,
for t ∈ E(X,α), the local averages n−1(Sj+nX(t) − SjX(t)) (j ≥ 0) can deviate from α.
This will be done by using quantified Erdös-Rényi laws of large numbers (see the next

paragraphs for the definition). Specifically, we will seek for subsets ‹E(X,α) of E(X,α)
of full Hausdorff dimension and for all points of which the local averages of (SnX(t))n∈N
obey the same quantified Erdös-Rényi law. Also, we will measure the effect of changing the
standard metric to a metric associated to some branching random walk, both by providing
the new values for the Hausdorff dimensions of the sets E(X,α), and observing how the

quantified Erdös-Rényi law invoked in ‹E(X,α) may vary with the metric.

To begin, let us precise what we mean by quantified Erdös-Rényi law of large numbers.
To concretely observe such laws in our context, we naturally select points in ∂T according
to some Mandelbrot measures. To define a Mandelbrot measure on ∂T, jointly with
(∂T, (SnX)n≥0), consider a family {(Nu, (Xui, ψui)i≥1)}u∈

⋃
n≥0 N

n of independent copies of

a random vector
(
N, (X,ψ) = (Xi, ψi)i≥1

)
taking values in N×(Rd×R)N, still on (Ω,A,P).

Assume that

E

N∑

i=1

exp(ψi) = 1, E

N∑

i=1

ψi exp(ψi) < 1 and E
( N∑

i=1

exp(ψi)
)
log+

( N∑

i=1

exp(ψi)
)
<∞.

Then (see [25, 8, 27]), for each u ∈
⋃
n≥0N

n, defining T(u) =
⋃∞
n=0 Tn(u), where T0(u) =

{u}, and Tn(u) = {vi : v ∈ Tn−1(u), 1 ≤ i ≤ Nv} for all n ≥ 1, the sequence

(1.4) Yn(u) =
∑

v=v1···vn∈T(u)

exp(ψuv1 + · · ·+ ψuv1···vn)

is a positive uniformly integrable martingale of expectation 1 with respect to its natural
filtration. We denote by Y (u) its almost sure limit. By construction, the random variables
so obtained are identically distributed and almost surely positive.

Now, for each u ∈
⋃
n≥0 N

n, let [u] denote the cylinder u · NN and denote by B the

σ-algebra generated by these cylinders in NN (which is nothing but the Borel σ-algebra
associated with d1). Then, define

ν([u]) = 1{u∈T} exp(ψu1 + · · ·+ ψu1···un)Y (u).

Due to the branching property Y (u) =
∑Nu

i=1 exp(ψui)Y (ui), this yields a non-negative
additive function of the cylinders, which can be extended into a random measure νω = νψ,ω
on (NN,B), whose topological support is ∂T. Consider the so-called Peyrière probability
measure Q on (Ω ×NN,A⊗ B), defined by

Q(C) =

∫

Ω

∫

NN

1C(ω, t) dνω(t) dP(ω).

The random vectors ‹Xn : (ω, t) ∈ Ω × NN 7→ Xt1···tn(ω), n ≥ 1, are independent and

identically distributed with respect to Q, and by definition, given ω ∈ Ω, Sn‹X(ω, ·) =∑n
k=1
‹Xk(ω, ·) coincides with SnX(ω, ·) on ∂T.

Let

Λψ : λ ∈ Rd 7→ logEQ

(
exp(〈λ|‹X1〉)

)
= logE

( N∑

i=1

exp(〈λ|Xi〉+ ψi)
)
.
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Suppose that Λψ is finite on an open convex subset DΛψ of Rd. Suppose also that DΛψ

contains 0, so that ∇Λψ(0) is well defined, and one has

(1.5) ∇Λψ(0) = EQ(‹X1) = E
( N∑

i=1

Xi exp(ψi)
)
; set βΛψ = ∇Λψ(0).

By the strong law of large numbers Sn‹X(ω, t)/n tends to βΛψ as n→ ∞, Q-almost surely.
In other words, for P-almost every ω, the measure νω is supported on the set E(X,βΛψ ).
Note that max(Λ∗

ψ) = Λ∗
ψ(βΛψ) = 0 since Λψ(0) = 0.

The classical Erdös-Rényi law of large numbers [14] applied to (Sn‹X)n∈N claims that if
‹X is real valued (i.e. d = 1) and is not Q-almost surely equal to the constant βΛψ = Λ′

ψ(0),
then for all α > βΛψ in DΛψ , one has

lim
N→∞

max
0≤j≤N−⌊cα log(N)⌋

(Sj+⌊cα log(N)⌋
‹X − Sj‹X)/⌊cα log(N)⌋ = α, where c−1

α = −Λ∗
ψ(α).

This can be reformulated as follows: Let k̃ = (k(n))n∈N be an increasing sequence of
integers. If lim

n→∞
n−1 log(k(n)) = −Λ∗

ψ(α), then one has

lim
n→∞

max
0≤j≤nk(n)−1

(Sj+n‹X − Sj‹X)/n = α.

The quantified version of the Erdös-Rényi law of large numbers established in [6] for

(Sn‹X)n∈N (see specifically [6, section 3.4]) as a consequence of a more general statement
valid for some class of weakly correlated processes, corresponds to the following large

deviations properties : If k̃ = (k(n))n∈N is an increasing sequence of integers, for t ∈ ∂T,
B a Borel subset of Rd, λ ∈ Rd, n ≥ 1 and 0 ≤ j ≤ nk(n) − 1, consider the following
two objects: the empirical measure associated with the nk(n) first normalised increments
n−1(Sj+nX(t) − Sj(t)) along the branch t,

(1.6) µt
k̃,n

=
1

nk(n)

nk(n)−1∑

j=0

δSj+nX(t)−SjX(t)

n

,

as well as the logarithmic moment generating function

Λt
k̃,n

(λ) = log

∫

Rd
exp(n〈λ|x〉) dµt

k̃,n
(x).(1.7)

Theorem B ([6, section 3.4]). Let k̃ = (k(n))n∈N ∈ NN be increasing. With probability 1,

for ν-almost every t ∈ ∂T, the following large deviations properties LD(Λψ, k̃) hold :

LD(Λψ, k̃):

(1) for all λ ∈ DΛψ such that lim inf
n→∞

log(k(n))

n
> −Λ∗

ψ(∇Λψ(λ)), one has

lim
n→∞

1

n
Λt
k̃,n

(λ) = Λψ(λ);
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Hence, for all λ ∈ DΛψ such that lim inf
n→∞

log(k(n))

n
> −Λ∗

ψ(∇Λψ(λ)), due to the Gartner-

Ellis theorem [13, 12], one has

lim
ǫ→0

lim
n→∞

1

n
log µt

k̃,n
(B(∇Λ(λ), ǫ)) = Λ∗

ψ(∇Λψ(λ)).

In other words

lim
ǫ→0

lim
n→∞

1

n
log

#
{
0 ≤ j ≤ nk(n)− 1 :

Sj+nX(t)−SjX(t)
n ∈ B(∇Λψ(λ), ǫ)

}

k(n)
= Λ∗

ψ(∇Λψ(λ)).

(2) For all λ ∈ DΛψ such that lim supn→∞
log(k(n))

n < −Λ∗
ψ(∇Λψ(λ)), there exists ǫ > 0

such that for n large enough,
{
0 ≤ j ≤ nk(n)− 1 :

Sj+nX(t)−SjX(t)
n ∈ B(∇Λψ(λ), ǫ)

}
= ∅.

(3) If λ ∈ DΛψ and lim
n→∞

log k(n)

n
= −Λ∗

ψ(∇Λψ(λ)), and if θ ≥ 0 7→ Λψ(θλ) is strictly

convex at 1, then for all θ ≥ 1 one has

lim
n→∞

1

n
Λt
k̃,n

(θλ) = Λψ(λ) + (θ − 1)〈λ|∇Λψ(λ)〉.

Remark 1.1. Notice that by convention the concave Legendre transform defined in this
paper, which is convenient to express Hausdorff dimensions of level sets, is the opposite of
the more standard convex convention used in [6]).

In fact, in [6] such a large deviation principle is established for the k(n) “disjoint”
increments (S(j+1)nX(t) − SjnX(t))0≤j≤k(n)−1, but as we will see in this paper, one can
extend this result to a large deviation principle valid for (Sj+nX(t)−SjX(t))0≤j≤nk(n)−1,
which is more faithful to the spirit of the original Erdös-Rényi law of large numbers.

Moreover, the validity of LD(Λψ, k̃) for all sequences k̃ implies the validity of this law.

Thus, with probability 1, ν is in fact supported on the finer set

E(X,βΛψ ,LD(Λψ, k̃)) =

ß
t ∈ ∂T : lim

n→∞

SnX(t)

n
= βΛψ and LD(Λψ, k̃) holds

™
.

It turns out that if we define

K̃ =

ß
k̃ ∈ NN : k̃ is increasing and lim

n→∞

log(k(n))

n
exists

™
,

and say that LD(Λψ) holds if LD(Λψ, k̃) holds for all k ∈ K̃, the previous theorem has
the following rather direct corollary (see Section 7):

Corollary 1.1. With probability 1, for ν-almost every infinite branch t ∈ ∂T, LD(Λψ)
holds. Thus, ν is supported on

E(X,βΛψ ,LD(Λψ)) =
{
t ∈ ∂T : lim

n→∞

SnX(t)

n
= βΛψ and LD(Λψ) holds

}
.

Our goal is to refine Theorem A by finding, for a given α ∈ IX , that is such that
E(X,α) 6= ∅, a differentiable convex function Λα finite over an open neighborhoodDΛα of 0,

such that Λα(0) = 0, α = ∇Λα(0), and the sets E(X,α,LD(Λα, k̃)) and E(X,α,LD(Λα)
5



are of maximal Hausdorff dimension in E(X,α). This requires the finiteness of some ex-
ponential moments of ‖X‖, and for the sake of simplicity of the discussion and exposition
of our results, we assume that

(1.8) ‹PX(q) <∞, ∀ q ∈ Rd.

This is equivalent to requiring that E
(∑N

i=1 exp(λ‖Xi‖)
)
< ∞ for all λ ≥ 0. We will

discuss some possible relaxation of this assumption in Section 8.

Without loss of generality, we also assume the following property about X:

(1.9) 6 ∃ (q, c) ∈ (Rd \ {0}) × R, 〈q|Xi〉 = c ∀ 1 ≤ i ≤ N almost surely (a.s.).

If (1.9) does not hold, either d = 1 and the Xi, 1 ≤ i ≤ N , are equal to the same constant
almost surely, which is a trivial case, or d ≥ 2, and the Xi belong to the same affine
hyperplane so that we can reduce our study to the case of Rd−1 valued random variables.

Define

JX =
{
q ∈ Rd : ‹P ∗

X(∇‹PX(q)) > 0
}
.

It turns out that under (1.8) and (1.9), IX (recall (1.2)) is a compact set with non-empty
interior, such that (see Proposition 2.1)

I̊X = ∇‹P (JX).
When α ∈ I̊X , i.e. α = ∇‹PX(q) for some q ∈ JX , setting ψα = (exp(〈q|Xi〉 − ‹PX(q)))i≥1

and assuming that E
(∑N

i=1 exp(ψα,i)
)
log+

(∑N
i=1 exp(ψα,i)

)
< ∞, one obtains a non

degenerate Mandelbrot measure να = νψα associated with the “potential” ψα, also called
Gibbs measure associated with X at q, and the previous discussion shows that given an

increasing sequence of integers k̃, with probability 1, the measure να is supported on

E(X,α,LD(Λψα , k̃)); moreover, due to (1.8), we can take DΛψα
= Rd. Moreover, Λψα

is strictly convex due to (1.9). Also, the Hausdorff dimension of να equals dimE(X,α),

which yields dimE(X,α,LD(Λψα , k̃)) = dimE(X,α) almost surely.

Then, several questions arise. Let us state and comment them:

(Q1) Is it possible to get the previous property a.s. simultaneously for all α ∈ I̊X?

It is of course closely related to the possibility to estimate almost surely simultaneously
the Hausdorff dimensions of the sets E(X,α), α ∈ IX . For α ∈ I̊X , this can be done
under slightly stronger assumptions by constructing simultanously the Gibbs measures
να (thanks to a uniform convergence result due to Biggins [9]), and simultaneously for

all α ∈ I̊X controlling the Haudorff dimension of να and showing that this measure is
carried by E(X,α) (see [4, 1]). So one may think that an adaptation of this “uniform”
approach should give a positive answer to (Q1), since using the Gibbs measure να for

each individual α ∈ I̊X does give dimE(X,α,LD(Λψα , k̃)) = dimE(X,α) almost surely.
However, this strategy meets an essential difficulty (see Remark 5.1). To overcome it,
inspired by techniques used in ergodic theory for the multifractal analysis of Birkhoff
averages on hyperbolic attractors [17, 19], we will use a concatenation/approximation
method to get inohomogeneous Mandelbrot measures adapted to our problem.

(Q2) When α ∈ ∂IX , is there some (Λ,DΛ) (depending on α) such that the equality

dimE(X,α,LD(Λ, k̃)) = dimE(X,α) holds ?
6



It will be first answered positively for those α belonging to the subset (∂IX)crit of
∂IX made of levels that can be associated to “critical” versions of the Gibbs measures
mentioned above; for such a level α there is indeed a natural candidate Λψα as well.
Extending our control to all the boundary points of IX demands to be able to associate to
each α of ∂IX\(∂IX)crit some quantified Erdös-Rényi LLN, possibly explicit in terms of the
parameter (N,X). However, we even do not have any good description of ∂IX \ (∂IX)crit
at our disposal yet. We will strengthen a little (1.8) and show that there is a natural
decomposition of ∂I\(∂I)crit into at most countably many convex sets J of affine dimension
≤ d−1 over each of which we can essentially reduce the study to that of interior and critical
points associated to some RdimJ -valued branching random walk. This decomposition
yields the desired family of explicit Erdös-Rényi LLN.

(Q3) For α ∈ IX , would it be possible that there were several couples (Λ,DΛ) (with

distinct Λ) such that dimE(X,α,LD(Λ, k̃)) = dimE(X,α) holds?

It remains open when dimE(X,α) > 0, and there is no uniqueness in general when
dimE(X,α) = 0 (see Remark 1.4(4)).

(Q4) If dimE(X,α,LD(Λ, k̃)) = dimE(X,α) with respect to some metric, how does Λ
depend on the choice of the metric?

As it was said previously, we are going to consider natural metrics obtained from branch-
ing random walks. We will compute dimE(X,α), α ∈ IX , with respect to such a met-

ric and show that for the same levels α as under d1, one has dimE(X,α,LD(Λ, k̃)) =

dimE(X,α) for some large deviations properties LD(Λ, k̃)) which depends both on α and
the metric.

The more general metrics we consider on ∂T are constructed jointly with (∂T, (SnX)n≥0)
as follows: consider a family {(Nu, (Xui, φui)i≥1)}u∈

⋃
n≥0 N

n of independent copies of a ran-

dom vector
(
N, (X,φ) = (Xi, φi)i≥1

)
taking values in N × (Rd × R∗

+)
N. Again, (Ω,A,P)

stands for the probability space over which these random variables are defined. De-
note by Snφ the (positive) branching random walk on ∂T associated with the family
{(Nu, (φui)i≥1)}u∈

⋃
n≥0 N

n . Symmetrically to (1.8), assume that

(1.10) Pφ(t) = E
( N∑

i=1

exp(λφi)
)
<∞, ∀ λ ∈ R.

Then (see Lemma 2.1), with probability 1, Snφ(u) tends uniformly in u ∈ Tn to ∞ as
n→ ∞, so that one gets the random ultrametric distance

(1.11) dφ : (s, t) 7→ exp(−S|s∧t|φ(t))

on ∂T, and (∂T,dφ) is compact. Such metrics are used to study geometric realization of
Mandelbrot measures on random statistically self-similar sets ([22, 15, 31, 29, 4, 28, 10]).

We now define a family of convex functions which will be essential to describe the
Hausdorff dimensions of the sets E(X,α) under dφ. For all (q, α, t) ∈ Rd × Rd × R, let

(1.12) Σα(q, t) =

N∑

i=1

exp(〈q|Xi − α〉 − tφi).

7



Under (1.8) and (1.10), E(Σα(q, t)) is finite for all (q, α, t) ∈ Rd×Rd×R, and since the φi
are positive, for each q ∈ Rd and α ∈ Rd there exists a unique t = ‹PX,φ,α(q) ∈ R such that

(1.13) E
(
Σα(q, t)

)
= 1

(we indicate the dependence on (X,φ) in ‹PX,φ,α in order to avoid confusion with ‹PX or
‹Pφ). Moreover, it is direct to see that (α, q) 7→ ‹PX,φ,α(q) is real analytic by using the

implicit function theorem and the real analyticity of (α, q, t) 7→ E
(
Σα(q, t)

)
.

Notice that ‹PX,φ,α(0) does not depend on α; it turns out that it is the Hausdorff
dimention of ∂T under dφ. Notice also that when φi = 1 for all i ≥ 1, one has dφ = d1,

and ‹PX,φ,α(q) = ‹PX(q)− 〈q|α〉, hence ‹P ∗
X,φ,α(0) =

‹P ∗
X(α).

Set

(1.14) JX,φ = {(q, α) ∈ Rd × IX : ‹P ∗
X,φ,α(∇‹PX,φ,α(q)) > 0}.

We assume also that

(1.15) ∀ (q, α) ∈ JX,φ, ∃ γ > 1, E
(
(Σα(q, ‹PX,φ,α(q))γ

)
<∞,

which is automatically satisfied as soon as E(Np) < ∞ for some p > 1 and both (1.8)
and (1.10) hold. This assumption is quite natural in the sense that it is equivalent to
requiring that the total mass of the Mandelbrot measure associated with ψα,q =

(
〈q|Xi −

α〉 − ‹PX,φ,α(q)φi
)
i≥1

does not vanish and belongs to Lγ(Ω,P) for some γ > 1; conditions

like (1.15) are required in [9] to construct simultaneously the limits of the martingales
(1.4) when ψ varies in the family {ψα}α∈I̊X .

Under the assumptions adopted in this paper, Theorem A has the following extension.

Theorem 1.1. Assume (1.8), (1.9), (1.10) and (1.15), and suppose that ∂T is endowed
with the distance dφ.

With probability 1, for all α ∈ IX one has dimE(X,α) = ‹P ∗
X,φ,α(0). More generally,

for any compact subset K of Rd, let

E(X,K) =
{
t ∈ ∂T :

⋂

n∈N

{SnX(t)

n
: n ≥ N

}
= K

}
,

the set of those t ∈ ∂T such that the set of limit points of (SnX(t)/n)n∈N is equal to K.
Denote by K the set of compact connected subsets of Rd. With probability 1, for all

K ∈ K , one has dimE(X,K) = infα∈K ‹P ∗
X,φ,α(0).

Notice that contrarily to what happens when ∂T is endowed with d1, in general the

mapping α ∈ IX 7→ dimE(X,α) = ‹P ∗
X,φ,α(0) is not concave when ∂T is endowed with dφ.

For instance, when Xi = φi (note that in this case d = 1), the distortion induced by dφ
can be observed by noting that in this case ‹PX,φ,α(q) = q − ‹P−1

X (αq), which implies
‹P ∗
X,φ,α(0) = ‹P ∗

X(α)/α for α ∈ IX . Also, Theorem 1.1 should be compared to those

obtained in [7, 19, 32] in the context of Birkhoff averages on conformal repellers.
8



Next we state our results on quantified Erdös-Rényi laws. They require to assume the
following property:

(1.16) sup
q∈Rd

E
( N∑

i=1

φi exp(〈q|Xi〉 − ‹PX(q))
)
<∞,

which holds as soon as
∥∥ sup1≤i≤N E

(
φi|σ(N,X)

)∥∥
∞
< ∞. We also need the following

proposition. Let

(1.17) ĨX = I̊X ∪ (∂IX)crit, where (∂IX)crit =
{
α ∈ ∇‹PX(Rd) : ‹P ∗

X(α) = 0
}
.

Proposition 1.1. Assume (1.8), (1.9), (1.10), (1.15) and (1.16). For all α ∈ ĨX , there

exists a unique q = qα such that ∇‹PX,φ,α(q) = 0, hence ‹PX,φ,α(qα) = ‹P ∗
X,φ,α(0). Moreover,

the mapping α 7→ qα is real analytic over I̊X and continuous over ĨX .

Then, observe that if α ∈ I̊X , with probability 1, E(X,α) carries a Mandelbrot measure

of maximal Hausdorff dimension ‹P ∗
X,φ,α(0) with respect to dφ, namely the non degenerate

Mandelbrot measure να associated with ψα = ψX,φ,α =
(
〈qα|Xi − α〉 − ‹PX,φ,α(qα)φi

)
i≥1

.

The domain of the associated strictly convex function

Λψα : λ ∈ Rd 7→ logE
( N∑

i=1

exp(〈λ|Xi〉+ ψα,i)
)

is Rd, and the quantified Erdös-Rényi law of large numbers of Theorem B holds with ψ =
ψα. If α ∈ (∂IX)crit, ψα and Λψα can be defined as above as well. There is no associated
Mandelbrot measure, but what is called a critical Mandelbrot measure νcα associated to α
(see [21, 26, 4, 5, 11] for the definition and geometric properties of these objects). However,
though νcα can be used to show that E(X,α) 6= ∅, there is no associated Peyrière measure,

so using νcα to get dimE
(
X,α,LD(Λψα , k̃)

)
= dimE(X,α)(= 0) is not possible.

Theorem 1.2. Assume (1.8), (1.9), (1.10), (1.15) and (1.16). Let k̃ be an increasing

sequence of integers. With probability 1, for all α ∈ ĨX , dimE
(
X,α,LD(Λψα , k̃)

)
=

dimE(X,α).

Corollary 1.2. Assume (1.8), (1.9), (1.10), (1.15) and (1.16). With probability 1, for all

α ∈ ĨX , dimE
(
X,α,LD(Λψα)

)
= dimE(X,α).

As an example, take N deterministic, φ = (1)i≥1, and X1, . . . ,XN , N Gaussian vectors

with at least one of them non degenerate. Then ‹PX is strictly convex and quadratic,

ĨX = IX , and ∂IX = (∂IX)crit is an hyperellipsoid. However, in general IX \ ĨX =
∂IX \ (∂IX)crit may be non empty, and even equal to ∂IX . This is for instance the case
when (N,X1, . . . ,XN ) is deterministic and satisfies (1.9); indeed, it is easily checked that
in this case one has JX = Rd so that (∂IX)crit = ∅.

To complete Theorem 1.2, we need to slightly strengthen the assumptions. First, we
replace (1.8) and (1.10) by

(1.18) E
( N∑

i=1

exp
(
ψ(‖Xi‖)

)
+ exp

(
ψ(φi)

))
<∞

9



for some convex non decreasing function ψ : R+ → R+ such that limx→∞ ψ(x)/x = ∞.
Also, we assume that E(Np) <∞ for some p > 1. Note that when the φi are constant, this
condition is implied by (1.15) (consider q = 0); also, we already observed that together
with (1.8) and (1.10) it implies (1.15)). Moreover, since we will have to guaranty that
(1.16) holds for various branching random walks deduced from (SnX,Snφ) by restriction
to some subtrees, we will assume from the outset that

(1.19) ‖ sup
1≤i≤N

E(φi|σ(N,X))‖∞ <∞.

Theorem 1.3. (First formulation) Assume that E(Np) < ∞ for some p > 1, as well

as (1.9), (1.18) and (1.19). If IX \ ĨX 6= ∅, there exists an explicit family of differentiable
convex functions (Λα)α∈IX\ĨX

with Rd as domain, such that: for every increasing sequence

of integers k̃, with probability 1, for all α ∈ IX \ ĨX , one has dimE
(
X,α,LD(Λα, k̃)

)
=

dimE(X,α).

Corollary 1.3. Assume that E(Np) < ∞ for some p > 1, as well as (1.9), (1.18) and

(1.19). Suppose that IX \ ĨX 6= ∅, and let (Λα)α∈IX\ĨX
be as in Theorem 1.3. With

probability 1, for all α ∈ IX \ ĨX , one has dimE
(
X,α,LD(Λα)

)
= dimE(X,α).

Making explicit the family (Λα)α∈IX\ĨX
requires additional definitions. As mentioned

above, our approach will exhibit and use a natural decomposition of IX \ ĨX , essentially

as a union of at most countably many convex subsets of the form ĨY , where Y = (Yi)i∈N
defines the increments of some branching random walk, and the components of Y take
values in some strict affine subspace of Rd.

Decomposition of IX\ĨX and explicitation of (Λα)α∈IX\ĨX
. Denote by CX the closure

of the convex subset of Rd defined as the set of vectors α of the form E(
∑N

i=1WiXi), where

(Wi)i≥1 is a non negative random element of RN
+ jointly defined with (N, (Xi)i≥1), such that

E(
∑N

i=1Wi) = 1. It is easily seen that CX is bounded if and only if the Xi, 1 ≤ i ≤ ‖N‖∞,
are uniformly bounded (‖N‖∞ may be infinite).

If F ⊂ B(Rd), set NF = #{1 ≤ i ≤ N : Xi ∈ F}, and if E(NF ) > 0, set

αF = E
( N∑

i=1

1F (Xi)Xi

)
/E(NF ).

We refer to [35, Ch. 18] for an introduction to the geometric properties of convex sets.

Let HX be the set of supporting affine hyperplanes of the close convex set CX , and ‹HX

be the set of those elements H of HX such that E(NH) ≥ 1. Also, let FX be the set of
affine subspaces F of Rd such that F ⊂ H for some H ∈ HX and

“FX = {F ∈ FX : E(NF ) ≥ 1 and ∀G ∈ FX , G ( F, E(NG) < E(NF )}.

If F ∈ “FX and E(NF ) > 1, to the integers NF
u = #{1 ≤ i ≤ Nu : Xui ∈ F},

u ∈
⋃
n≥0 N

n, are naturally associated two trees : the supercritical Galton-Watson tree

T̃
F defined as T but with the branching numbers NF

u instead of the Nu, and the sub-
tree T

F of T defined as
⋃
n≥0 T

F
n , where T

F
0 = {ǫ} and for n ≥ 1, T

F
n = {ui : u ∈

T
F
n−1, 1 ≤ i ≤ Nu, Xui ∈ F}. Denote by ~F the vector subspace F − αF , and denote by

10



XF − αF the random vector (Xi1 − αF , . . . ,Xi
NF

− αF , 0, . . . , 0, . . .), where i1, . . . , iNF
are the indices i ∈ [1, N ] such that Xi ∈ F , ranked in increasing order; also define
φF = (φi1 , . . . , φiNF , 0, . . . , 0, . . .). Similarly, define XF,u − αF = (Xui1 − αF , . . . ,Xui

NFu
−

αF , 0, . . . , 0, . . .) and φF,u = (φui1 , . . . , φuiNFu
, 0, . . . , 0, . . .) for all u ∈

⋃
n≥0 N

N. The trees

T̃
F and T

F are in bijection via the mapping bF defined by bF (ǫ) = ǫ and once bF is defined

as a bijection between T̃
F
n and T

F
n for some n ≥ 0, if u ∈ T̃

F
n , one sets bF (uj) = bF (u)ij for

1 ≤ j ≤ NF
bF (u)

. Conditionally on non-extinction of T̃F (and so T̃
F ), bF extends naturally

into a bijection between ∂T̃F and ∂TF . Also, the branching random walk (SnX−nαF )n∈N
on ∂TF is related to the ~F -valued branching random walk (Sn(XF − αF ))n∈N associated

with the random vectors (NF
u , (XF,u − αF )), u ∈

⋃
n≥0N

N, on ∂T̃F via the equality

SnX(t) − nαF = Sn(XF − αF )(b
−1
F (t)), and b

−1
F is an isometry between ∂TF and ∂T̃F

endowed with the restriction of dφ and the metric dφF respectively.

By construction, the function ‹PXF−αF associated to (NF ,XF −αF ) as ‹PX is to (N,X)
in (1.1) satisfies

‹PXF−αF (q) = logE
( N∑

i=1

1F (Xi) exp(〈q|Xi − αF 〉)
)

for all q ∈ ~F .

If, moreover, dimF ≥ 1, it easily seen that under the assumptions of Theorem 1.3, XF−αF
satisfies the same assumptions as X since F ∈ “FX and E(NF ) > 1. One associates to
‹PXF−αF the sets IXF−αF and ĨXF−αF in the same way as IX and ĨX are associated to
‹PX , that is IXF−αF =

{
β ∈ ~F : (‹PFX )∗(β) ≥ 0

}
, and ĨXF−αF = {∇‹PXF−αF (q) : q ∈

~F , (‹PXF−αF )
∗(∇‹PXF−αF (q)) ≥ 0}. Then set IFX = αF + IXF−αF and ĨFX = αF + ĨXF−αF .

The set IFX has non-empty relative interior in F , that we denote by I̊FX , and αF ∈ I̊FX .

One also defines CX,F , the closure of the convex subset of F defined as the set of

vectors α of the form E(
∑N

i=1WiXi), where (Wi)i∈N is a non negative random element

of RN
+ jointly defined with (N, (Xi)i∈N), such that E(

∑N
i=1Wi) = 1 and E(

∑N
i=1Wi) =

E(
∑N

i=1 1F (Xi)Wi). Note that CX = CX,Rd . To CX,F are associated the sets HX,F , ‹HX,F

and “FX,F as HX = HX,Rd , ‹HX = ‹HX,Rd and “FX = “FX,Rd are to CX . Note that if dimF =

0, then, conditionally on ∂TF 6= ∅, the branching random walk (SnX)n∈N restricted to
∂TF 6= ∅ equals (nαF )n∈N.

If F ∈ “FX , for β and q in ~F , define ‹PXF−αF ,φF ,β(q) in the same way as ‹PX,φ,α(q), that
is as the unique solution of the equation

E
( N∑

i=1

1F (Xi) exp(〈q|Xi − αF − β〉 − tφi)
)
= 1.

If, moreover, E(NF ) > 1 and dimF ≥ 1, according to Proposition 1.1 for all β ∈ ĨFX−αF

there exists a unique qFβ ∈ ~F such that ‹PXF−αF ,φF ,β(qFβ ) = (‹PXF−αF ,φF ,β)
∗(0). For all

α ∈ ĨFX , we then set for all λ ∈ Rd

ΛFα (λ) = logE
( N∑

i=1

1F (Xi) exp
(
〈λ|Xi〉+ 〈qFα−αF |Xi − α〉 − ‹PXF−αF ,φF ,α−αF (qFα−αF )φi

))
.
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Theorems 1.1 and 1.2 yield that given an increasing sequence of integers k̃, with probabil-
ity 1, conditionally on ∂TF 6= ∅, for all α ∈ IFX , one has:

dim(E(X,α)∩∂TF ) = (‹PXF−αF ,φF ,α−αF )
∗(0), and for all α ∈ ĨFX , one has dim(E(X,α)∩

∂TF ) = dim(E(X,α,LD(ΛFα , k̃)) ∩ ∂TF ).

Remark 1.2. One checks that choosing another reference point α̃F ∈ F and considering

the branching random walk associated with XF − α̃F in ~F on ∂TF yields the same func-

tions ΛFα . This is due to the fact that if α = αF + β = α̃F + β̃, then for all q ∈ ~F one has
‹PXF−αF ,φF ,β(q) =

‹P
XF−α̃F ,φF ,β̃

(q).

If F ∈ “FX is the singleton {αF }, set I
F
X = ĨFX = {αF } and

ΛFαF : λ ∈ Rd 7→ 〈λ|αF 〉.

Note that in this case (ΛFαF )
∗ = −∞ · 1Rd\{αF }, so that for any increasing sequence of

integers k̃, if property LD(ΛFαF , k̃) holds for (SnX)n∈N on some infinite branch, it takes a
trivial form, and does not depend on φ.

If F ∈ “FX and E(NF ) = 1, set IFX = ĨFX = {αF } and

ΛFαF : λ ∈ Rd 7→ logE
( N∑

i=1

1F (Xi) exp
(
〈λ|Xi〉

))
.

Finally, we select a subcollection of “FX,R . First, define for any affine subspace E of R

‹FX,E =
{
F ∈ “FX,E : dimF ≥ 1, and E(NF ) = E(NH) > 1 for all H ∈ HX,E, F ⊂ H

}
,

FX,E =
{
F ∈ “FX,E : E(NF ) = E(NH) for all H ∈ HX,E, F ⊂ H

}
\ ‹FX,E .

Note that for ‹FX,E to be non empty it is necessary that dimE ≥ 2, and if F ∈ FX,E then

either E(NF ) = 1, or E(NF ) > 1 and dimF = 0.

Then, define ‹F1
X = ‹FX,Rd , F1

X = FX,Rd , and for 2 ≤ i ≤ d, ‹F i
X = ‹F i−1

X

⋃⋃
F∈‹F i−1

X

‹FX,F
and F

i
X = F

i−1
X

⋃⋃
F∈‹F i−1

X
FX,F . Note that with the convention ‹F0

X = ∅, the elements of

‹F i
X \ ‹F i−1

X have dimension at most d− i, and ‹Fd−1
X = ‹Fd

X .

Note that ‹Fd
X ∪F

d
X is at most countable. Indeed, the mapping µ : F ∈ B(Rd) 7→ E(NF )

is a finite positive Borel measure, so it cannot assign positive mass to uncountably many
affine subspaces F of Rd such that µ(G) < µ(F ) for all affine subspaces G of F .

Theorem 1.3. Assume that E(Np) < ∞ for some p > 1, as well as (1.9), (1.18) and
(1.19). The following properties hold:

(1) ‹HX = {H ∈ HX : H ∩ IX 6= ∅}.

(2) ĨX ⊂ C̊X and IX \ ĨX =
⋃
H∈‹HX

H ∩ IX . In particular, IX = ĨX if and only if

‹HX = ∅. Also, IX \ ĨX =
⊔
F∈FdX∪F

d
X
ĨFX .

(3) One has IX \ ĨX = ∂IX , i.e. (∂IX)crit = ∅, if and only if ‹HX = HX . Moreover, in
this case CX is a convex polytope and CX = IX , which is equivalent to saying that
for any exposed point P of CX one has E(N{P}) ≥ 1.

(4) With probability 1, for all F ∈ ‹Fd
X ∪ F

d
X :

12



• If E(NF ) = 1, then F ∩ IX = IFX = ĨFX = {αF }, and dimE(X,αF ) = 0.
• If E(NF ) > 1 then F ∩IX = IFX and for all α ∈ F ∩IX one has dimE(X,α) =
‹P ∗
X,φ,α(0) = (‹PXF−αF ,φF ,α−αF )∗(0).

(5) Suppose that IX \ ĨX 6= ∅. Let k̃ be an increasing sequence of integers. With prob-

ability 1, for all F ∈ ‹Fd
X ∪F

d
X , for all α ∈ ĨFX , one has dimE

(
X,α,LD(ΛFα , k̃)

)
=

dimE(X,α).

Remark 1.3. Except the claim about the partition of IX \ĨX , the properties stated in items
(1) to (3) of the previous statement hold under (1.8) and (1.9) only. See Proposition 6.1.

Some examples. To illustrate the previous result, we focus on examples where CX is
compact. Let K be a compact convex subset of Rd, with non-empty interior. Fix µ a Borel
probability measure either fully supported on ∂K or on the set of extremal points of K.
Suppose that (N, (Xi)i∈N) is chosen so that the Xi are identically distributed with law µ,
and independent of N . It is clear that CX ⊂ K, since for any half-space V = {β ∈ Rd :

〈q|β〉 ≤ c} ((q, c) ∈ Sd−1 × R) which contains K and any α = E
(∑N

i=1WiXi

)
∈ CX , the

fact that almost surely for all 1 ≤ i ≤ N one has 〈q|Xi〉 ≤ c hence 〈q|WiXi〉 ≤Wic, implies

〈q|α〉 ≤ E
(∑N

i=1Wi

)
c = c, that is α ∈ V . To see the reverse inclusion, fix α ∈ K and a

Borel probability measure on να supported on ∂K such that α =
∫
∂K β dνα(β). Fix ε > 0

and a finite partition Aε = {Aj}
pε
j=1 of ∂K into Borel subsets of positive µ-measure and

diameter less than ε. Define the sequence of identically distributed nonnegative random

variables WAε,i = (E(N))−1
∑

j 1Aj (Xi)
να(Ai)
µ(Ai)

, i ≥ 1. Note that E(
∑N

i=1WAε,i) = 1. As ε

tends to 0, by construction E(
∑N

i=1WAε,iXi) tends to α. Hence α ∈ CX .

In the following examples we pick special examples corresponding to the situation just
described.

(1) Supppose thatK is a convex polytope with n vertices P1, . . . , Pn. Take µ =
∑n

j=1 pjδPj ,

where (p1, . . . , pn) is a positive probability vector. Point (3) of Theorem 1.3 shows that it
is necessary and sufficient that E(N) ≥ maxj p

−1
j so that IX = K.

(2) We now give an example to illustrate the fact that the elements of ‹F1
X ∪F

1
X can have

any integer dimension between 0 and d−1 when d ≥ 2 (the case d = 1 is trivial). Suppose
that K as the following properties: ∂K is C∞ smooth; also, there exist a convex polytope
‹K such that K ⊂ ‹K, for each face Qj of ‹K of dimension ≥ 1, Kj = K ∩Qj = ∂K ∩Qj
is included in the relative interior of Qj and is itself open relative to Qj , and ∂K \

⋃
j Kj

has positive curvature (recall that a convex subset Q of dimension ≥ 1 is a face of P if
Q = P ∩ H where H is a supporting hyperplane of P ). The previous properties imply
that the sets Kj are pairwise disjoint and each Kj is contained in a unique supporting
hyperplane of K (the existence of such configurations is quite intuitive and it turns out

that such a K can be associated to any convex polytope ‹K with non empty interior [20].
Note also that any convex polytope does possess faces of dimension k for all integers k
between 0 and d− 1).

Suppose, moreover, that µ has a topological support equal to ∂K, that its restriction to
each Kj does not vanish and has topological support equal to Kj , and that µ has a unique
atom, at a point α0 ∈ ∂K \

⋃
j Kj . Denote by Fj the smallest affine subset containing

Kj . Taking E(N) ≥ max(µ({α0})
−1,maxj µ(Kj)

−1) implies that Fj ∈ ‹F1
X or Fj ∈ F

1
X

according to whether E(NFj) = E(N)µ(Kj) > 1 or E(NFj ) = E(N)µ(Kj) = 1. Similarly,
13



since K possesses a tangent space at {α0}, one has {α0} ∈ ‹F1
X or {α0} ∈ F

1
X according

to whether E(N{α0}) = E(N)µ({α0}) > 1 or E(N{α0}) = E(N)µ({α0}) = 1. Also, by
construction and due to Theorem 1.3(1)(2), (∂K \ ({α0} ∪

⋃
jKj)) ∩ IX = ∅.

(3) The last example provides a situation where ‹F1
X is infinite (note that d has to be ≥ 3),

as well as ‹F i
X \ ‹F i−1

X for all 2 ≤ i ≤ d− 1.

Let (θn)n∈N be an increasing sequence in [0, 2π) converging to 2π and such that θ1 = 0.
Define K2 as the convex hull of the set {αn = (cos(θn), sin(θn), 0, . . . , 0) : n ≥ 1}. Then,
pick for 3 ≤ i ≤ d, βi ∈ Ri × {0}d−i \ (Ri−1 × {0}d−i+1) and define recursively Ki as
the convex hull of Ki−1 ∪ {αi}. Let (pn)n∈N and (qi)

d
i=3 be positive sequences, such that∑

n∈N pn +
∑d

i=3 qi = 1 and set µ =
∑

n∈N pnδαn +
∑d

i=3 qiδβi .

For n ≥ 1, denote {αn} by F
n
0 , the line containing [αn, αn+1] by F

n
1 , and for 2 ≤ i ≤ d−1,

the i-dimensional affine subspace generated by {αn, αn+1, β3, . . . , βi+1} by Fni . We get an
increasing sequence of convex polytopes, which are faces of Kd. If q3E(N) > 1, then for

every 2 ≤ i ≤ d − 1, the affine subspaces Fni , n ≥ 1, belong to ‹F1
X if i = d − 1, and to

‹Fd−i
X \ ‹Fd−i−1 otherwise, with the convention ‹F0

X = ∅. Moreover, for all n ≥ 1, denoting

by Gn1 the line supporting the segments [αn, β3], one has Gn1 ∈ ‹Fd−1
X \ ‹Fd−2

X . Also, the

line supporting [αn, αn+1] belongs to ‹Fd−1
X \ ‹Fd−2

X or F
d−1
X \ F

d−2
X according to whether

pn + pn+1 > 1 of pn + pn+1 = 1, which can happen for finitely many n only, so that

(∂IX)crit 6= ∅. The point β3 belongs to F
d
X \ F

d−1
X . Note that the previous observations

do not exhaust the description of ‹Fd
X ∪ F

d
X .

Let us finish this section with some comments and remarks.

Remark 1.4. (1) In the case d = 1, a partial result regarding the Hausdorff dimensions
of the sets E(X,α) is presented in [2], where dimE(X,α) is computed under dφ for each

individual α of the interval I̊X , almost surely, by using the Gibbs measure να.

(2) A concatenation/approximation method, somehow more elaborate than that used in
the present paper, was used in [3] to construct some family of inhomogeneous Mandelbrot
measures particularly adapted to get the general Theorem A, and more generally to com-
pute dimE(X,K) under the metric d1 (where K may belong to a larger classe of closed
connected sets when IX is not bounded); 0-∞ laws are also established for the Hausdorff
and packing measures of the sets E(X,α). This method was considered in particular to

deal with those α belonging to IX \ ∇‹PX(JX) whenever this set is non empty, a situa-
tion which occurs in presence of so-called first order phase transitions but that we will
not meet here due to (1.8). Adapting this method when working with a metric dφ more
general than d1 seems quite delicate; this is related to the loss of concavity of the mapping
α 7→ dimE(X,α). Moreover, even when working with d1, quantified Erdös-Rényi laws of

large numbers associated with α ∈ IX \∇‹PX(JX) seem out of reach by using the techniques
currently at our disposal.

(3) With respect to [3], appart from the fact that we modify the metric, in our study of
the Hausdorff dimensions of the sets E(X,α) or E(X,K), a difference will come from
the way we simultaneously estimate from below the Hausdorff dimensions of the inhomo-
geneous Mandelbrot measures coming into play. We use the fact that the elements of this
uncountable family are simultaneously not killed by the actions of some percolations pro-
cesses, adapting an original idea of Kahane for the action of a given multiplicative chaos
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on a fixed Radon measure [23, 24]. In [3], we directly estimated the dimensions of such
measures by using large deviations estimates, with different technicalities as a counterpart.

(4) Let us come back to (Q3). When α ∈ (∂IX)crit, for each choice of φ such that
the assumptions of Theorem 1.2 hold, there is a function ΛX,φ,α, depending on φ, such
that the conclusions of Corollary 1.2 hold for α. Moreover, for each such φ, one has
dimE(X,α,LD(ΛψX,φ,α)) = 0 = dimE(X,α) both under d1 and dφ due to Lemma 2.1. If
φ is not a multiple of (1)i∈N, then ΛψX,φ,α differs in general from ΛψX,1,α, hence the choice
of (Λ,R) is non unique. Also, when (X,φ) is bounded, it is not hard to see that when

α ∈ I̊X there is a unique Mandelbrot measure whose dimension equals dimE(X,α), but
this observation is far from being sufficient to answer the uniqueness question we raise.

The paper is organised as follows. In Section 2 we justify some properties used in
the introduction. In Section 3 we construct inhomogeneous Mandelbrot measures and
compute their Hausdorff dimensions; these measures will be used to get the sharp lower

bound for dimE(X,K) and dimE
(
X,α,LD(Λψα , k̃)

)
in the proofs of our three main

results. Section 4 establishes Theorem 1.1, while Theorems 1.2 and 1.3 are proved in
Sections 5 and 6 respectively, and Corollaries 1.1, 1.2 and 1.3 are proved in Section 7.

2. Justification of some properties claimed in the introduction

The following proposition was invoked in the previous section.

Proposition 2.1. [3, Proposition 2.2 and Remark 2.1] Assume (1.8).

(1) ‹PX is strictly convex and IX is convex, compact with non-empty interior.

(2) IX = {∇‹PX(q) : q ∈ JX}, and I̊X = ∇‹PX(JX).
The fact that dφ is a metric is a direct consequence of the third inequality of the following

elementary lemma, whose proof is left to the reader.

Lemma 2.1. Assume (1.10). There exist 0 < β̃ ≤ β < 1 such that, with probability 1, for
n large enough,

β̃n ≤ min{exp(−Snφ(u)) : u ∈ Tn} ≤ max{exp(−Snφ(u)) : u ∈ Tn} ≤ βn.

Proof of Proposition 1.1. Fix q ∈ Rd and α ∈ ĨX . Then for t ∈ R define

ℓ(t) = logE
( N∑

i=1

exp
(
〈q|Xi − α〉 − tφi

))
.

Note that ℓ(0) = ‹PX(q) − 〈q|α〉 and ℓ′(0) = −E
(∑N

i=1 φi exp
(
〈q|Xi〉 − ‹PX(q)

))
≥ −λ,

where λ = supq∈Rd E
(∑N

i=1 φi exp(〈q|Xi〉 − ‹PX(q))
)

∈ (0,∞) due to (1.16). Moreover

ℓ is convex, so for all t ≥ 0 one has ℓ(t) ≥ ℓ(0) − λt. Since, by definition of ‹PX,φ,α(q),
ℓ(‹PX,φ,α(q)) = 0, it follows that ‹PX,φ,α(q) ≥ λ−1(‹PX(q)− 〈q|α〉).

Now, observe that due to the convexity of ‹PX,φ,α(·), as well as the strict convexity of
‹PX(q)−〈q|α〉 and the fact that ‹PX(q)−〈q|α〉 reaches its infimum (at q′ such that∇‹PX(q′) =
α), the mapping ‹PX,φ,α(·) reaches its infimum at some qα ∈ Rd. If there are two distinct

such qα and q′α, then, setting v = qα − q′α, one has 〈v|∇‹PX,φ,α(q)〉 = 0 over [qα, q
′
α], that
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is E
(∑N

i=1〈v|Xi −α〉 exp(〈q|Xi −α〉 − ‹PX,φ,α(q)φi)
)
= 0, in view of (3.1). Differentiating

again over [qα, q
′
α] yields E

(∑N
i=1〈v|Xi − α〉2 exp(〈q|Xi − α〉 − ‹PX,φ,α(q)φi)

)
= 0 over

[qα, q
′
α], hence 〈v|Xi〉 = 〈v|α〉 almost surely for all 1 ≤ i ≤ N . But this contradicts (1.9).

By construction, ∇‹PX,φ,α(qα) = 0 and qα is the unique q at which ∇‹PX,φ,α vanishes.

To see that α ∈ I̊X 7→ qα is real analytic, one first observes that the differential of

f : q 7→ ∇‹PX,φ,α(q) at qα is invertible. Indeed, a calculation shows that there exists c > 0

such that ∂f
∂qk

(qα) = cE
(∑N

i=1(Xi − α)k(Xi − α) exp(〈qα|Xi − α〉 − ‹PX,φ,α(qα)φi)
)
. This

implies that if the differential of f at qα vanishes at some v ∈ Rd \ {0}, then once again

E
(∑N

i=1〈v|(Xi−α)〉
2 exp(〈qα|Xi−α〉−‹PX,φ,α(qα)φi)

)
= 0, hence the same contradiction as

above. It is now possible to apply the implicit function theorem to (α, q) 7→ (α,∇‹PX,φ,α(q))
at (α, qα). To see that α ∈ ĨX 7→ qα is continuous, note that if α ∈ ĨX \ I̊X , then

α = ∇‹PX(q0) for some q0 such that ‹P ∗
X(∇

‹PX(q0)) = 0. Also, for such an α, there exists a

neighborhood U of q0 and a neighborhood V of α such that V = ∇‹PX(U) and for all β ∈ V

one has ‹P ∗
X(β) =

‹PX(q′)−〈q′|β〉 > −∞ as well (q 7→ ∇‹PX(q) is a local diffeomorphism). By

the same argument as above, one has ‹PX,φ,β(q) ≥ λ−1(‹PX(q)−〈q|β〉), so infq∈Rd ‹PX,φ,β(q)
is attained at a unique qβ, and qβ depends analytically on β over V . �

3. Some inhomogeneous Mandelbrot measures on ∂T and simultaneous

calculation of their Hausdorff dimensions using percolation

We construct our main tool to get the simultaneous calculation of the Hausdorff di-
mensions of the sets we are interested in. It consists of a family of non degenerate inho-
mogeneous Mandelbrot measures on ∂T, of which we provide a lower bound of the lower
Hausdorff dimension. This requires several steps. In Section 3.1, we gather useful pre-
liminary observations to determine a good set of parameters R to be used to define the
measures. In Section 3.2 we introduce families of inhomogeneous Mandelbrot real valued
martingales indexed both by R and the set (0, 1] of parameters involved in fractal per-
colation processes on ∂T. The non degenerate character of some of these martingales is
established and used in Sections 3.3 and 3.4 to define the inhomogeneous Mandelbrot mea-
sures and estimate their Hausdorff dimension from below thanks to a “uniform” version
of the percolation argument developed by Kahane in [23, 24].

3.1. Preliminary observations, and definition of a set of parameters. A calcula-
tion shows that for (q, α) ∈ Rd × Rd one has

(3.1) ∇‹PX,φ,α(q) =
E
(∑N

i=1Xi exp(〈q|Xi − α〉 − ‹PX,φ,α(q)φi)
)
− α

E
(∑N

i=1 φi exp(〈q|Xi − α〉 − ‹PX,φ,α(q)φi)
) .

Also, for each (q, α) ∈ Rd × Rd a Mandelbrot measure µq,α on ∂T is associated with

the vectors (Nu, exp(〈q|Xu1 − α〉 − ‹PX,φ,α(q)φu1), exp(〈q|Xu2 − α〉 − ‹PX,φ,α(q)φu2), . . .),
u ∈

⋃
n≥0N

n, and this measure is non degenerate if and only if, after setting

ψ(q, α) =
(
ψi(q, α) = 〈q|Xi − α〉 − ‹PX,φ,α(q)φi

)
i≥1
,
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the “entropy”

(3.2) h(q, α) = −E
( N∑

i=1

ψi(q, α) exp(ψi(q, α))
)

is positive, and E
((∑N

i=1 exp(ψi(q, α)
)
log+

∑N
i=1 exp(ψi(q, α))

)
<∞.

Define the “Lyapounov exponent”

(3.3) λ(q, α) := E
( N∑

i=1

φi exp(ψi(q, α))
)
∈ (0,∞).

An identification shows that

(3.4) ‹P ∗
X,φ,α(∇‹PX,φ,α(q)) = ‹PX,φ,α(q)− 〈q|∇‹PX,φ,α(q)〉 = h(q, α)

λ(q, α)
.

Consequently, since we assumed (1.15), the measure µq,α is non degenerate if and only if
‹P ∗
X,φ,α(∇

‹PX,φ,α(q)) > 0, that is (q, α) ∈ JX,φ. Also, using the definition of βΛψ introduced

in (1.5) and setting β(q, α) = βΛψ(q,α)
, one gets

(3.5) β(q, α) = E
( N∑

i=1

Xi exp(〈q|Xi − α〉 − ‹PX,φ,α(q)φi)
)
,

and with probability 1,

(3.6) lim
n→∞

SnX(t)

n
= β(q, α) µq,α-a.e.

Note that when the assumptions of Proposition 1.1 hold, if α ∈ I̊X and q = qα, one has

∇‹PX,φ,α(q) = 0, hence (3.1) yields β(q, α) = α and ‹P ∗
X,φ,α(∇

‹PX,φ,α(q)) = ‹P ∗
X,φ,α(0) =

‹PX,φ,α(qα). Moreover, for all (q, α) ∈ JX,φ, with probability 1, λ(q, α) = limn→∞
Snφ(t)
n at

µq,α-almost every point t. Consequently, for all (q, α) ∈ JX,φ one has

(3.7) − log(β) ≤ λ(q, α) ≤ − log(β̃),

where β and β̃ are taken as in Lemma 2.1.

Recall that for (q, α, t) ∈ Rd × Rd × R we set

Σα(q, t) =
N∑

i=1

exp(〈q|Xi − α〉 − tφi).

Define

Lα(q, t) = logE
(
Σα(q, t)

)
.

One checks that

(3.8)
∂Lα
∂q

(q, ‹PX,φ,α(q)) = β(q, α) − α,
∂Lα
∂t

(q, ‹PX,φ,α(q)) = −λ(q, α),

and

dLα((1 + u)q, (1 + u)‹PX,φ,α(q))
du

(0) = −h(q, α).(3.9)

Recall the definitions (1.2) and (1.17) of IX and ĨX respectively.
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Lemma 3.1. Let D be a dense subset of JX,φ. For all α ∈ IX there exists a se-

quence (qn, αn)n∈N of elements of D such that lim
n→∞

β(qn, αn) = α and lim
n→∞

‹PX,φ,αn(qn)−
〈qn|∇‹PX,φ,αn(qn)〉 = ‹P ∗

X,φ,α(0).

Moreover, if (1.16) holds, one can choose D so that it contains a sequence of the form

(qαm , αm)m≥1 such that {αm : m ≥ 1} is dense in ĨX , and for all α ∈ ĨX the previous
sequence can be chosen so that qn = qαn. In particular, limn→∞(qn, αn) = (qα, α).

Proof. Let α ∈ IX . It is not hard to adapt the proof of [3, Proposition 2.2] to show that due

to (1.9), the mapping ‹PX,φ,α is strictly convex, and the set IX,φ,α = {β ∈ Rd : ‹P ∗
X,φ,α(β) ≥

0} is a convex compact set with non-empty interior equal to I̊X,φ,α = {∇‹PX,φ,α(q) : q ∈

Rd, ‹P ∗
X,φ,α(∇

‹PX,φ,α(q)) > 0}. Now, note that due to Propositions 4.2 and 4.3, one has

‹PX,φ,α(0) ≥ 0. Let β ∈ I̊X,φ,α. The sequence β/n belongs to I̊X,φ,α and converges to 0.

Since ‹P ∗
X,φ,α is upper-semi-continuous and concave, one has limn→∞

‹P ∗
X,φ,α(β/n) =

‹P ∗
X,φ,α(0).

Moreover, there exists a sequence (qn)n∈N such that ∇‹PX,φ,α(qn) = β/n and ‹PX,φ,α(qn)−
〈qn|∇‹PX,φ,α(qn)〉 > 0 so that (qn, α) ∈ JX,φ. Also, due to (3.1), (3.7), and the fact that

lim
n→∞

∇‹PX,φ,α(qn) = 0, one has lim
n→∞

β(qn, α) = α (remember (3.5)). Now, the mappings

(q, α) 7→ β(q, α) and (q, α) 7→ ‹PX,φ,α(q) − 〈q|∇‹PX,φ,α(q)〉 being continuous, the property
claimed about D follows. The second one is clear due to Proposition 1.1. �

We can now start the construction of a set of parameters that will be used to define
inhomogeneous Mandelbrot measures. Fix a dense subset D of JX,φ, so that if (1.16)
holds, the property claimed in the second assertion of Lemma 3.1 holds. Let (Dj)j≥1 be a
non decreasing sequence of non-empty subsets of D such that D =

⋃
j≥1Dj . Let (Nj)j≥0

be a sequence of integers such that N0 = 0, and that we will specify at the end of this
section. Then let (Mj)j≥0 be the increasing sequence defined as

(3.10) M0 = 0 and Mj =

j∑

k=1

Nk for all j ≥ 1.

For n ∈ N, let jn denote the unique integer satisfying

Mjn + 1 ≤ n ≤Mjn+1.

We will construct a family of random measures indexed by the set

R = {((qk, αk))k≥1 : ∀j ≥ 0, ∃(q, α) ∈ Dj+1, ∀Mj + 1 ≤ k ≤Mj+1, (qk, αk) = (q, α)}.

Since each Dj is finite, the set R is compact, once endowed with the natural metric

d(̺, ̺′) =
∑

k≥1

2−k
|qk − q′k|+ |α′

k − αk|

1 + |qk − q′k|+ |α′
k − αk|

.

For ̺ = ((qk, αk))k≥1 ∈ R and n ≥ 1 we will denote by ̺|n the sequence ((qk, αk))1≤k≤n.
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Specification of the sequences (Dj)j≥1 and (Nj)j≥1. The following tuning of the
sequences (Dj)j≥1 and (Nj)j≥1 can be skipped at first reading.

At first, assume that

(3.11) ∀ j ≥ 1,




#Dj ≤ j

max
(q,α)∈Dj

E
(
1{N=1} exp(〈q|X1 − α〉 − ‹PX,φ,α(q)φ1)

)
≤ 1−

c0
j

for some constant c0 > 0. This is possible since E(N) > 1 and E
(∑N

i=1 exp(〈q|Xi − α〉 −
‹PX,φ,α(q)φi)

)
= 1 for all (q, α) ∈ JX,φ.

For each α ∈ I the function Lα is analytic. Denote by HLα its Hessian matrix. Also,

simply denote ‹PX,φ,α by ‹Pα in (3.12) and (3.13) below. For each j ≥ 1, both

(3.12) mj = max
t∈[0,1]

max
v∈Sd−1

max
(q,α)∈Dj

t

Å
v
0

ã
HLα(q + tv, ‹Pα(q))

Å
v
0

ã

+ max
t∈[0,1]

max
v∈Sd−1

max
(q,α)∈Dj

∂2

∂t2
Lα(q, ‹Pα(q) + tv)

and

(3.13) ‹mj = max
t∈[0,1]

max
p∈[1,2]

max
(q,α)∈Dj

tVq,αHLα

Ä
q + t(p − 1)q, ‹Pα(q) + t(p− 1)‹Pα(q)

ä
Vq,α

are finite, where Vq,α =

Ç
q
‹Pα(q)

å
. Let

(3.14) “mj = max(mj ,‹mj)

and (γj)j≥1 ∈ (0, 1]N be a positive sequence such that

(3.15) γ2j “mj ≤ 1/j2 (note that lim
j→∞

γj = 0).

Let (p̃j)j≥1 be a sequence taking values in (1, 2) such that

lim
j→∞

(p̃j − 1)‹mj = 0.

Due to (1.15) we can also suppose that p̃j is small enough so that we also have

sup
(q,α)∈Dj

E(Σα(q, ‹PX,φ,α(q))p̃j ) <∞.

For each (q, α) ∈ JX,φ there exists pq,α ∈ (1, 2) such that Lα(pq, p‹PX,φ,α(q)) < 0 for all

p ∈ (1, pq,α). Indeed, ‹P ∗
X,φ,α(∇

‹PX,φ,α(q)) > 0 if and only if d
dp(Lα(pq, p

‹PX,φ,α(q)))(1+) < 0,

and Lα(q, ‹PX,φ,α(q)) = 0 by definition of ‹PX,φ,α(q).
For all j ≥ 1, set

pj = min

Ç
p̃j, inf

(q,α)∈Dj+1

pq,α

å
and Lj = sup

(q,α)∈Dj

Lα(pjq, pj‹PX,φ,α(q)).

By construction, one has aj < 0. Then let

(3.16) sj = max

ß∥∥∥Σα(q, ‹PX,φ,α(q)))
∥∥∥
pj

: (q, α) ∈ Dj

™
and rj = max

Å
Lj
pj
,
1− pj
2jpj

ã
.
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Now set N0 = 0 and for j ≥ 1 choose an integer Nj big enough so that

(3.17)
(j + 1)!sj+1

1− exp(rj+1)
exp(Njrj+1) ≤ j−2,

(3.18)
(j + 1)!sj+1

(1− exp(rj+1))
+

(j + 2)!sj+2

(1− exp(rj+2))
≤ C0 exp(Njγ

2
j+1mj+1),

with C0 =
2s1

1−exp(r1)
+ 2s2

1−exp(r2)
,

(3.19) Nj ≥ max
(
log((j + 1)!)3, (γ2j+1“mj+1)

−2),

and if j ≥ 2,

(3.20)

j−1∑

k=1

Nk ≤
Nj

j

min(1, {‖β(q, α)‖ : (q, α) ∈ Dj})

max(1,max{‖β(q, α)‖ : (q, α) ∈ Dj−1})
.

3.2. Inhomogeneous Mandelbrot martingales indexed by fractal percolation pa-

rameters and by R. For each β ∈ (0, 1], let W̃β be a random variable distributed ac-

cording to βδβ−1 +(1−β)δ0. Consider {W̃β,u}u∈
⋃
n≥0 N

n be a family of independent copies

of W̃β define on a probability space (Ωβ,Aβ,Pβ).

Each random variable W̃β,u and the random vector (Nu, (Xui, φui)i≥1) extends to (Ωβ×
Ω,Aβ ⊗A,Pβ ⊗ P) as

W̃β,u(ωβ, ω) = W̃β,u(ωβ) and (Nu, (Xui, φui)i≥1

)
(ωβ, ω) =

(
Nu(ω), (Xui(ω), φui(ω))i≥1

)
,

and the families {W̃β,u}u∈
⋃
n≥0 N

n and {(Nu, (Xui, φui)i≥1)}u∈
⋃
n≥0 N

n are Pβ⊗P-independent.

We adopt the convention that EPβ⊗P is denoted by E.

For each β ∈ ((E(N))−1, 1], the random integersNβ,u(ωβ, ω) =
∑Nu(ω)

i=1 1{β−1}(W̃β,ui(ωβ))
define a new supercritical Galton-Watson process to which are associated trees Tβ,n ⊂ Tn

and Tβ,n(u) ⊂ Tn(u), u ∈
⋃
n≥0N

n, n ≥ 1, as well as the infinite tree Tβ ⊂ T and the
boundary ∂Tβ ⊂ ∂T conditionally on non extinction of Tβ.

For u ∈
⋃
n≥0N

n, 1 ≤ i ≤ Nu, β > E(N)−1, and ̺ = (qk, αk)k≥1 ∈ R set

{
W̺,ui = exp

(
〈q|u|+1|Xui − α|u|+1〉 − ‹Pα|u|+1

(q|u|+1)φui
)
,

Wβ,̺,ui = W̃β,ui ·W̺,ui.

Also, for ̺ = (qk, αk)k≥1 ∈ R, u ∈
⋃
n≥0N

n, β > E(N)−1, and n ≥ 0 define

Yn(̺, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

W̺,u·v1···vk and Yn(β, ̺, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

Wβ,̺,u·v1···vk .

When u = ǫ, those quantities will be denoted by Yn(̺) and Yn(β, ̺) respectively, and when
n = 0, their values equal 1.
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Recall the definition of h(q, α) given in (3.2). For β ∈ (E(N)−1, 1], ℓ ∈ N and ε > 0, set

(3.21) R(β, ℓ, ε) =
{
̺ ∈ R :

1

n

n∑

k=1

h(qk, αk) ≥ − log β + ε,∀n ≥ ℓ
}
,

which is a compact subset of R.

Notice that h(qk, αk) > 0, and this number is the opposite of the derivative at 1 of the

convex function f : λ ≥ 0 7−→ logE(
∑N

i=1W
λ
i ), with Wi = exp(〈qk|Xi − αk〉 − ‹Pαk(qk)φi),

so that f(1) = 0 and f(0) = logE(N) > 0. Thus h(qk, αk) ∈ (0, log E(N)]. Consequently,

(3.22)
{
̺ ∈ R : lim inf

n→∞

1

n

n∑

k=1

h(qk, αk) > 0
}
=

⋃

β∈(E(N)−1,1],ℓ≥1,ε>0

R(β, ℓ, ε).

For n ≥ 1 and β ∈ (0, 1], set Fn = σ
(
(Nu, (Xu1, φu1, (Xu2, φu2), . . .) : u ∈

⋃n
k=0N

n−1
)

and Fβ,n = σ
(
W̃β,u1, (W̃β,u2, . . .) : u ∈

⋃n
k=0N

n−1
)
. Set F0 = Fβ,0 = {∅,Ω}.

3.3. Construction of inhomogeneous Mandelbrot measures indexed by R. The
following statement about the simultaneous construction of inhomogeneous Mandelbrot
measures is similar to that obtained in [3] for a different family. We include the proof, as
the estimates to follow are important to derive Proposition 3.2, which will be applied in
the study of the action of percolation processes on these measures. Also, these estimates
yield Lemma 3.4 which will be useful in the proof of Proposition 5.1.

Proposition 3.1.

(1) For all u ∈
⋃
n≥0N

n, the sequence of continuous functions (Yn(·, u))n∈N converges

uniformly on R, almost surely and in L1 norm, to a positive limit Y (·, u).
(2) With probability 1, for all ̺ ∈ R, the mapping defined on the cylinders of NN by

µ̺([u]) = Y (̺, u) ·

|u|∏

k=1

W̺,u1···uk , u ∈
⋃

n≥0

Nn

extends to a positive Borel measure on NN supported on ∂T.

Lemma 3.2. [36] Let (Xj)j≥1 be a sequence of centered independent real random variables.

For every finite I ⊂ N and p ∈ (1, 2], one has E
(∣∣∑

i∈I Xi

∣∣p) ≤ 2p−1
∑

i∈I E(|Xi|
p).

Lemma 3.3. Let ̺ ∈ R and β ∈ (0, 1]. Define Zn(β, ̺) = Yn(β, ̺)−Yn−1(β, ̺) for n ≥ 0.

Recall the definition (1.12) of Σα. For every p ∈ (1, 2) one has (writing ‹Pαn for ‹PX,φ,αn)

(3.23) E(|Zn(β, ̺)|
p) ≤ (2β−1)pE

(
Σαn(qn, ‹Pαn(qn))p

) n−1∏

k=1

β1−p exp
(
Lαk(pqk, p

‹Pαk(qk))
)
.

Proof. Fix p ∈ (1, 2). Setting Aβ,̺,u =

Nu∑

i=1

W̃β,uiW̺,ui and using the branching property

we can write Zn(β, ̺) =
∑

u∈Tn−1

( n−1∏

k=1

W̃β,u1···ukW̺,u1···uk

)
(Aβ,̺,u − 1). By construction,

the random variables (Aβ,̺,u − 1), u ∈ Nn−1, are centered and i.i.d., and independent of
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Fβ,n−1 ⊗ Fn−1. Consequently, conditionally on Fβ,n−1 ⊗ Fn−1, we can apply Lemma 3.2

to the {Aβ,̺,u
∏n−1
k=1 W̃β,u1···ukW̺,u1···uk}u∈Tn−1 . Since the Aβ,̺,u, u ∈ Nn−1, have the same

distribution, this yields, with Aβ,̺ = Aβ,̺,ǫ:

E(|Zn(β, ̺)|
p |Fβ,n−1 ⊗Fn−1) ≤ 2p−1E(|Aβ,ρ − 1|p)

∑

u∈Tn−1

n−1∏

k=1

W̃ p
β,u1···uk

W p
̺,u1···uk

.

Also, E(|Aβ,ρ − 1|p) ≤ 2E(Apβ,ρ), since E(Aβ,ρ) = 1 and p ≥ 1, and as 0 ≤ W̃β,i ≤ β−1,

Aβ,ρ ≤ β−1Σαn
(
qn, ‹PX,φ,αn(qn)

)
. Thus, 2p−1E(|Aβ,ρ−1|p) ≤ (2β−1)pE

(
Σαn(qn, ‹PX,φ,αn(qn))p

)
.

Moreover, a recursive using of the branching property and the independence of the ran-

dom vectors (Nu,Xu1, φu1, . . .) and random variables W̃β,u used in the constructions yields,

setting Wqk,i = exp(〈qk|Xi − αk〉 − ‹PX,φ,αk(qk)φi):

E
( ∑

u∈Tn−1

n−1∏

k=1

W̃ p
β,u1···uk

W p
̺,u1···uk

)
=

n−1∏

k=1

E(W̃ p
β )E

( N∑

i=1

W p
qk,i

)

=
n−1∏

k=1

β1−p exp
(
Lαk(pqk, p

‹PX,φ,αk(qk))
)
.

Collecting the previous estimates one gets the desired conclusion. �

Proof of Proposition 3.1. (1) It is similar to the proof of [3, Proposition 2.8(1)]. We detail
it for reader’s convenience.

First, consider the case u = ǫ. Observe that for all n ≥ 1, by construction the function
Yn(·) = Yn(·, ∅) is continuous and constant over the set of those sequences ̺ having the
same first terms. Given n ≥ 1 and ̺ ∈ R, sinceMjn+1 ≤ n ≤Mjn+1, applying Lemma 3.3
with p = pjn+1 and β = 1, one obtains

‖Yn(̺)− Yn−1(̺)‖
pjn+1
pjn+1

≤ 2pjn+1E
(
Σαn(qn, ‹PX,φ,αn(qn))pjn+1

) n−1∏

k=1

exp
(
Lαk(pjn+1qk, p‹PX,φ,αk(qk))

)

≤ 2pjn+1s
pjn+1

jn+1

n−1∏

k=1

exp
(

sup
(q,α)∈Djn+1

Lα(pjn+1q, p‹PX,φ,αk(q))
)

(since {(qk, αk) : 1 ≤ k ≤ n} ⊂ Djn+1)

≤ 2pjn+1s
pjn+1

jn+1 exp((n − 1)pjn+1rjn+1) (due (3.16));

this bound is independent of ̺. Note that by definition of R, #{̺|n : ̺ ∈ R} =∏jn+1
j=1 #Dj ≤ (jn+1)!; also Yn(̺)−Yn−1(̺) only depends on ̺|n = ((q1, α1), · · · , (qn, αn)).

Consequently,

∥∥‖Yn(·)− Yn−1(·)‖∞
∥∥
1
≤

∑

̺|n

‖Yn(̺)− Yn−1(̺)‖pjn+1 ≤ 2(jn + 1)!sjn+1 exp((n − 1)rjn+1).
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This yields
∑

n∈N

∥∥‖Yn(·)− Yn−1(·)‖∞
∥∥
1

≤
∑

j≥0

∑

Mj+1≤n≤Mj+1

2(j + 1)!sj+1 exp((n − 1)rj+1)

≤
∑

j≥0

2(j + 1)!sj+1
exp(Mjrj+1)

1− exp(rj+1)
<∞,

where we used (3.17). If follows that (Yn)n∈N converges uniformly, almost surely and in
L1 norm, to a function Y , as n→ ∞.

Let us show that Y does not vanish on R almost surely. For each n ≥ 1, let RX,φ|n =
{̺|n : ̺ ∈ R}, and for γ ∈ RX,φ|n define the event Nγ = {ω ∈ Ω : ∃̺ ∈ R, Y (̺) =
0, ̺|n = γ}. Let N = {ω ∈ Ω : ∃̺ ∈ R, Y (̺) = 0}. Since the functions Yn are
almost surely positive, this event is a tail event, and it has probability 0 or 1. The same
property holds for the events Nγ , γ ∈

⋃
n∈NRX,φ|n. Suppose that N has probability 1.

Since N =
⋃
̺1∈R1

N(γ1), necessarily, there exists γ1 ∈ R1 such that P(N(γ1)) > 0, and

so P(N(γ1)) = 1. Iterating this remark we can build an infinite deterministic sequence
γ = (γk)k≥1 ∈ R such that P(N(γ1,...,γn)) = 1 for all n ≥ 1. This means that almost surely,

for all n ≥ 1, there exists ̺(n) ∈ R such that ̺
(n)
|n = (γ1, . . . , γn) and Y (̺(n)) = 0. But

̺
(n)
|n = (γ1, . . . , γn) implies that ̺(n) converges to γ as n→ ∞. Hence, by continuity of Y

at γ, we get Y (γ) = 0 almost surely. However, a consequence of our convergence result
for Yn is that the martingale Yn(γ) converges in L

1 to Y (γ), so that E(Y (γ)) = 1. This is
a contradiction. Thus P(N ) = 0.

Now fix any u ∈
⋃
n∈N Nn. Mimicking what was done for u = ǫ, for all n ≥ 1 one gets

∥∥‖Yn(·, u) − Yn−1(·, u)‖∞
∥∥
1
≤ 2(j|u|+n + 1)!sj|u|+n+1 exp

(
(n− 1)rj|u|+n+1

)
.

Consequently, setting aj,n(u) = 2(j|u|+n + 1)!sj|u|+n+1 exp
(
(n − 1)rj|u|+n+1

)
, we can get

∑

n∈N

∥∥‖Yn(·, u) − Yn−1(·, u)‖∞
∥∥
1

≤

Mj|u|+1−|u|∑

n=1

aj|u|,n(u) +
∑

j≥j|u|+1

∑

Mj+1≤|u|+n≤Mj+1

aj,n(u)

≤
∑

j|u|≤j≤j|u|+1

2(j + 1)!sj+1

1− exp(rj+1)
+

∑

j≥j|u|+2

2(j + 1)!sj+1
exp((Mj − |u|)rj+1)

1− exp(rj+1)
.

Note that due to the inequalities Mj|u| + 1 ≤ |u| ≤ Mj|u|+1, for j ≥ j|u| + 2 one has

Mj − |u| ≥ Nj, so
∑

n∈N

∥∥‖Yn(·, u)− Yn−1(·, u)‖∞
∥∥
1

≤
∑

j|u|≤j≤j|u|+1

2(j + 1)!sj+1

1− exp(rj+1)
+

∑

j≥j|u|+2

2(j + 1)!sj+1
exp(Njrj+1)

1− exp(rj+1)
(3.24)

≤ 2C0 exp(Nj|u|γ
2
j|u|+1mj|u|+1) + 2

∑

j≥j|u|+2

j−2,
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where (3.17) and (3.18) have been used. This implies the desired convergence to a limit
Y (·, u). The set

⋃
k≥0N

k being countable, the convergence holds also almost surely, simul-

taneously for all u, and the almost sure positivity of Y (·, u) is proven by using the same
argument as for u = ǫ.

Finally, recall the definition (3.14) of (“mj)j≥1 and set εk = γ2jk+1“mjk+1 for all k ≥ 0.

The previous calculations, together with the fact that Y0(·, u) = 1 for all u ∈
⋃
k≥0N

k and

the inequality |u| ≥ Nj|u| imply the existence of a constant CX,φ such that:

(3.25) ‖ sup
̺∈R

Y (̺, u)‖1 ≤ CX,φ exp(ε|u|Nj|u|) ≤ CX,φ exp(ε|u||u|) (∀ u ∈
⋃

k≥0

Nk).

(2) This follows from the branching property. �

Estimates similar to the previous ones yield the following lemma, which will be used in
the proof of Proposition 5.1.

Lemma 3.4. Let K be a compact subset of JX,φ containing the unique element of D1.

There exists pK ∈ (1, 2) such that supj≥1 sup(q,α)∈Dj∩K Lα(pKq, pK
‹PX,φ,α(q)) < 0 and

supj≥1 sup(q,α)∈Dj∩K E
(
Σα(q, ‹PX,φ,α(q))pK

)
<∞. Set R(K) = {̺ ∈ R : ∀ k ≥ 1, (qk, αk) ∈

K}. One has ‖ sup̺∈R(K) Y (̺, u)‖pK = O((j|u| + 2)!).

3.4. Lower bounds for the Hausdorff dimensions of the measures µ̺ via perco-
lation. Let us recall the definition of the lower Hausdorff dimension of a measure and its
characterisation in terme of lower local dimension (see [16] for instance).

Definition 3.1. Let (Z, d) be a compact metric space and µ a finite Borel measure on Z.
Then, the lower Hausdorff dimension of µ is defined as

dim(µ) = inf{dimE : E ∈ B(Z), µ(E) > 0}.

Lemma 3.5. Let (Z, d) be a compact metric space. Then

dim(µ) = ess infµ lim inf
r→0+

log(µ(B(z, r)))

log(r)
.

The goal of this section is to prove the following result.

Theorem 3.1. With probability 1, for all ̺ ∈ R,

dim(µ̺) ≥ lim inf
n→∞

∑n
k=1 h(qk, αk)∑n
k=1 λ(qk, αk)

.

We need the following two propositions. Recall the definition (3.21) of the set of pa-
rameters R(β, ℓ, ε).

Proposition 3.2. Let β ∈ ((E(N))−1, 1]. Conditionally on non extinction of (Tβ,n(u))n∈N,
for all ℓ ≥ 1 and ε ∈ Q∗

+,

(1) the sequence of continuous functions (Yn(·, β))n∈N converges uniformly, almost
surely and in L1 norm, to a positive limit Y (β, ·) on R(β, ℓ, ε);

(2) the sequence of continuous functions

(
̺ 7→ ‹Yn(β, ̺) =

∑

u∈Tn

(
n∏

k=1

W̃β,u1···uk)µ̺([u])
)
n∈N
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converges uniformly, almost surely and in L1 norm, to Y (β, ·) on R(β, ℓ, ε).

Proposition 3.3.

(1) With probability 1, for all ̺ = (qk, αk)k≥1 ∈ R, for µ̺-almost all t ∈ ∂T, for n
large enough, one has

lim
n→∞

n−1
∣∣∣ log

( n∏

k=1

W̺,t1···tn

)
−

n∑

k=1

h(qk, αk)
∣∣∣ = 0 = lim

n→∞
n−1

∣∣∣Snφ(t)−
n∑

k=1

λ(qk, αk)
∣∣∣.

(2) With probability 1, for all ̺ ∈ R, for µ̺-almost every t ∈ ∂T, one has

lim
n→∞

log(diam([t|n]))

−Snφ(t)
= 1,

where the diameter is measured with respect to the metric dφ.

Proof of Theorem 3.1. Let β ∈ (0, 1] such that βE(N) > 1. Let ℓ ≥ 1 and ε ∈ Q∗
+.

For every t ∈ ∂T and ωβ ∈ Ωβ set

Qβ,n(t, ωβ) =
n∏

k=1

W̃β,t|k ,

so that for ̺ ∈ R(β, ℓ, ε), ‹Yn(β, ̺) is the total mass of the measure Qβ,n(t, ωβ) · dµ
ω
̺ (t).

There exists a measurable subset Ω(β, ℓ, ε) of Ω, such that P(Ω(β, ℓ, ε)) = 1 and for all
ω ∈ Ω(β, ℓ, ε), there exists Ωωβ ⊂ Ωβ of positive probability such that for all ω ∈ Ω(β, ℓ, ε),

for all ̺ ∈ R(β, ℓ, ε), for all ωβ ∈ Ωωβ ,
‹Yn(β, ̺) does not converge to 0. In terms of the

multiplicative chaos theory developed in [23], this means that for all ω ∈ Ω(β, ℓ, ε) and
̺ ∈ R(β, ℓ, ε), the set of those ωβ such that the multiplicative chaos (Qβ,n(·, ω))n∈N has
not killed the measure µ̺ on the compact set ∂T has a positive Pβ-probability. Moreover,
under the metric d1, for any ball B in ∂T, there exists n ≥ 0 and u ∈ Tn such that
B = [u] ∩ ∂T, Qβ,n(t) is constant over B, and denoting by |B|d1 the diameter of B under
d1, for any h ∈ (0, 1) we have

Eβ
(
sup
t∈B

(Qβ,n(t))
h
)
= en(1−h) log(β) = (|B|d1)

−(1−h) log(β),

where Eβ stands for the expectation with respect to Pβ. Thus, one can apply [23, Theorem
3] and obtain that for all ω ∈ Ω(β, ℓ, ε) and all ̺ ∈ R(β, ℓ, ε), the measure µ̺ is not carried
by a Borel set of Hausdorff dimension less than − log(β).

Let Ω′ =
⋂
β∈(E(N)−1,1]∩Q∗

+,ℓ≥1,ε∈Q∗ Ω(β, ℓ, ε). This set is of P-probability 1.

Let ̺ ∈ R and setD̺ = lim infn→∞ n−1
∑n

k=1 h(qk, αk). IfD̺ > 0, by (3.22) there exists
a sequence of points (βn, ℓn, εn) ∈ (E(N)−1, 1]×N×Q∗

+ such that D̺ ≥ − log(βn) + εn/2
for all n ≥ 1, limn→∞− log(βn) = D̺, limn→∞ εn = 0, and ̺ ∈

⋂
n∈NR(βn, ℓn, εn).

Consequently, the previous paragraph implies that, with respect to the metric d1, for all
ω ∈ Ω′, dim(µω̺ ) ≥ lim supn→∞− log(βn) = D̺. In particular, due to Proposition 3.3(2)
applied to φ = (1)n∈N (it is valid in this case as well, due to the proof of this part of the

proposition) and Lemma 3.5 one has lim inf
n→∞

log µ̺([t|n])

−n
≥ D̺, µ̺-almost everywhere.

Note now that since µ̺([t|n]) = Y (ρ, t1 · · · tn)
∏n
k=1W̺,t1···tn , we can deduce from the

first limit in Proposition 3.3(1) that lim supn→∞ n−1 log(Y (ρ, t1 · · · tn)) ≤ 0, µ̺-almost
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everywhere. Due to the second limit in Proposition 3.3(1), this implies that under dφ one

has lim inf
n→∞

log µ̺([t|n])

log(diam([t|n]))
≥ lim inf

n→∞

∑n
k=1 h(qk, αk)∑n
k=1 λ(qk, αk)

(an inequality which holds as well

trivially if D̺ = 0). �

Proof of Proposition 3.2. (1) Let ℓ ≥ 1 and ε > 0. For ̺ ∈ R(β, ℓ, ε) and n ≥ 1, Lemma 3.3

applied with p = pjn+1 provides us with the inequality (where ‹Pαk stands for ‹PX,φ,αk)
‖Yn(β, ̺)− Yn−1(β, ̺)‖

pjn+1
pjn+1

≤ (2β−1)pjn+1E
(
Σαn(qn, ‹Pαn(qn))pjn+1

) n−1∏

k=1

β1−pjn+1 exp
(
Lαk(pjn+1qk, pjn+1

‹Pαk(qk))
)
.

Let (q, α) ∈ Djn+1 and set gq,α : λ ∈ R 7→ Lα(pq, p‹PX,φ,α(q)). By construction we have
gq,α(1) = 0 so for p ∈ [1, 2]

gq,α(p) = (p− 1)g′q,α(1) + (p− 1)2
∫ 1

0
(1− t)g′′q,α(1 + t(p− 1)) dt,

with g′q,α(1) = −h(q, α) (see (3.2) for the definition of h(q, α)) and

g′′q,α(1 + t(p− 1)) = t

Ç
q
‹Pα(q)

å
HLα

(
q + t(p− 1)q, ‹Pα(q) + t(p− 1)‹Pα(q)

)
Ç

q
‹Pα(q)

å

≤ ‹mjn+1,

where (‹mj)j≥1 is defined in (3.13). Let ηj = (pj − 1)‹mj for j ≥ 1. By construction of
(pj)j≥1, one has limj→∞ ηj = 0 and specifying p = pjn+1 one obtains

Lα(pjn+1q, pjn+1
‹PX,φ,α(q)) ≤ (1− pjn+1)h(q, α) + ηjn+1(pjn+1 − 1).

We can insert this upper bound in our estimation of Yn(β, ̺)−Yn−1(β, ̺) and get, remem-
bering that ̺ ∈ R(β, ℓ, ε), for n ≥ ℓ+ 1

‖Yn(β, ̺) − Yn−1(β, ̺)‖
pjn+1
pjn+1

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
(
(1− pjn+1)

n−1∑

k=1

log(β) + h(qk, αk)− ηjn+1

)

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
(
(n− 1)(1− pjn+1)(ε − ηjn+1)

)
.

Let j(ε) = min{j ≥ ⌊ε−1⌋ + 1 : ηj ≤ ε/2} and nε = min{n ≥ ℓ + 1 : jn+1 ≥ j(ε)}. For
n ≥ nε on has, remembering (3.16),

‖Yn(β, ̺) − Yn−1(β, ̺)‖
pjn+1
pjn+1 ≤ (2β−1)pjn+1s

pjn+1

jn+1 exp
(
(n− 1)pjn+1rjn+1)

)
.

Consequently, using the estimates as in the proof of Proposition 3.1 one gets
∑

n≥nε

∥∥∥ sup
̺∈R(β,ℓ,ε)

|Yn(β, ̺) − Yn−1(β, ̺)|
∥∥∥
1
<∞.

This yields the conclusion about the uniform convergence. The fact that the limit Y (β, ·)
does not vanish almost surely, conditionally on non extinction of (Tβ,n)n≥1, follows the
same lines as in the study of Y (·), combined with the fact that for a fixed ̺ ∈ R(β, ℓ, ε),
the probability that the limit of Yn(β, ̺) be 0 equals that of the extinction of (Tβ,n)n∈N.
This comes from the fact that conditionally on non extinction, the event {Y (β, ̺) = 0}
is asymptotic so has probability 0 or 1, and it has probability 0 since the convergence of
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Yn(β, ̺) to Y (β, ̺) holds in L1. Thus, we have the desired result for a given couple (ℓ, ε);
but it holds simultaneously for all ℓ ≥ 1 and ε ∈ Q∗

+ since N×Q∗
+ is countable.

(2) The approach to follow can be interpreted as a uniform version of the “decomposition”
principle of multiplicative cascades on homogeneous trees due Kahane (see [24], as well as
[37] for a proof and [18] for general multiplicative chaos).

Fix ℓ ≥ 1 and ε > 0. Denote by E the separable Banach space of real valued continuous
functions over the compact set R(β, ℓ, ε) endowed with the supremum norm ‖ ‖∞.

For n ≥ m ≥ 1 and ̺ ∈ R(β, ℓ, ε) let

‹Ym,n(β, ̺) =
∑

u∈Tm

Yn−m(̺, u)

m∏

k=1

W̃β,u|kW̺,u|k .

Notice that ‹Yn,n(β, ̺) = Yn(β, ̺). Moreover, since Yn(β, ·) converges uniformly, almost
surely and in L1 norm to Y (β, ·) as n → ∞, Yn(β, ·) belongs to L1

E = L1
E(Ωβ × Ω,Aβ ×

A,Pβ×P) (where we use the notations of [30, Section V-2]), so that the continuous random

function E(‹Yn,n(β, ̺)|Fβ,m ⊗ Fn) is well defined by [30, Proposition V-2-5]. Also, given
̺ ∈ R(β, ℓ, ε), we can deduce from the definitions and the independence assumptions that

‹Ym,n(β, ̺) = E(‹Yn,n(β, ̺)|Fβ,m ⊗Fn)

almost surely. Consequently, by [30, Proposition V-2-5] again, since e ∈ E 7→ e(̺) is a

continuous linear form over E, we obtain ‹Ym,n(β, ̺) = E(‹Yn,n(β, ·)|Fβ,m ⊗ Fn)(̺) almost
surely. Since given any dense countable subset D of R(β, ℓ, ε) this holds simultaneously

for all ̺ ∈ D, we can conclude that the random continuous functions ‹Ym,n(β, ·) and

E(‹Yn,n(β, ·)|Fβ,m ⊗Fn) are equal almost surely.

Similarly, since for each ̺ ∈ R(β, ℓ, ε) the martingale (Yn(β, ̺),Fβ,n⊗Fn)n∈N converges
to Y (β, ̺) almost surely and in L1, and Y (β, ·) ∈ L1

E , by using [30, Proposition V-2-5]
once more we can get

(3.26) ‹Yn,n(β, ·) = E(Y (β, ·)|Fβ,n ⊗Fn), hence ‹Ym,n(β, ·) = E(Y (β, ·)|Fβ,m ⊗Fn),

almost surely. Moreover, it follows from Proposition 3.1(1) and the definition of µ̺([u])

that ‹Ym,n(β, ·) converges uniformly, almost surely and in L1 norm, as n→ ∞, to ‹Ym(β, ·).
This and (3.26) yield, using [30, Proposition V-2-6],

‹Ym(β, ·) = lim
n→∞

‹Ym,n(·) = E
(
Y (β, ·)|Fβ,m ⊗ σ(

⋃

n∈N

Fn)
)
,

and finally

lim
m→∞

‹Ym(β, ·) = E
(
Y (β, ·)|σ(

⋃

m≥1

Fβ,m)⊗ σ(
⋃

n∈N

Fn)
)
= Y (β, ·)

almost surely (since by construction Y (β, ·) is σ(
⋃
m≥1 Fβ,m)⊗ σ(

⋃
n∈NFn)-measurable),

where the convergences hold in the uniform norm. �

Proof of Proposition 3.3. (1) This will be established simultaneously with Proposition 4.4
below, which deals with Rd-valued branching random walks. (2) Recall (3.7). Observe
that by construction, for all t ∈ ∂T one has diam([t|n])) = exp(−Sn+kn(t)φ(t)), where
kn(t) = inf{k ≥ 0 : Nt|n+k > 1}. Consequently, if follows from the previous observation
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and part (1) of the proposition that the property we have to establish will follow if we
show that with probability 1, for all ̺ ∈ R one has kn(t) = o(n) for µ̺-almost every t.

Fix η ∈ (0, 1). Denoting by 1k the word 1 · · · 1︸ ︷︷ ︸
k

, for all ̺ ∈ R one has

µ̺({t ∈ ∂T : kn(t) > ⌊nη⌋}) ≤
∑

|u|=n

µ̺([u · 1⌊nη⌋])1{Nu=Nu1=...=Nu·1⌊nη⌋−1=1}

=
∑

|u|=n

µ̺|n([u])
( ⌊nη⌋−1∏

k=0

1{N
u·1k

=1}W̺,u·1k+1

)
Y (̺, u · 1⌊nη⌋).

Thus

sup
̺∈R

µ̺({t ∈ ∂T : kn(t) > ⌊nη⌋})

≤
∑

̺|n+⌊nη⌋:̺∈R

∑

|u|=n

µ̺|n([u])
( ⌊nη⌋−1∏

k=0

1{N
u·1k

=1}W̺,u·1k+1

)
sup
̺∈R

Y (̺, u · 1⌊nη⌋).

Consequently, using (3.11) and (3.25), we get

E(sup
̺∈R

µ̺({t ∈ ∂T : kn(t) ≥ ⌊nη⌋})

≤ (#{̺|n+⌊nη⌋ : ̺ ∈ R})
(
1−

c0
jn+⌊nη⌋

)⌊nη⌋
CX,φe

(n+⌊nη⌋)εn+⌊nη⌋

≤ CX,φ(jn+⌊nη⌋)! exp

Ç
−c0

⌊nη⌋

jn+⌊nη⌋
+ (n+ ⌊nη⌋)εn+⌊nη⌋

å
.(3.27)

Note that due to (3.15) and the fact that εk = γ2jk+1“mjk+1, for n large enough we have

−c0
⌊nη⌋

jn+⌊nη⌋
+ (n + ⌊nη⌋)εn+⌊nη⌋ ≤ −c0

nη
2jn

. Moreover, n ≥ Njn ≥ (jn)! so n ≥ n+⌊nη⌋
1+η ≥

(jn+⌊nη⌋)!

1+η , and jn = o(log(n)) as n→ ∞. Consequently, (3.27) implies that
∑

n∈N

E(sup
̺∈R

µ̺({t ∈ ∂T : kn(t) ≥ ⌊nη⌋}) <∞,

This holds for all η ∈ (0, 1) from which it follows that, with probability 1, for all positive
rational number η > 0, one has

∑
n∈N E(sup̺∈R µ̺({t ∈ ∂T : kn(t) ≥ ⌊nη⌋}) < ∞. By

the Borel-Cantelli lemma, this implies that with probability 1, for all ̺ ∈ R one has
kn(t) = o(n) for µ̺-almost every t, which is what had to be established. �

4. Proof of Theorem 1.1

Sections 4.1 and 4.2 are respectively dedicated to establish the sharp upper bound and
lower bound for dimE(X,K), almost surely for all K ∈ K.

4.1. Upper bounds for the Hausdorff dimensions of the sets E(X,K). For each

(q, α) ∈ Rd × Rd, recall the definition (1.13) of ‹PX,φ,α(q) and define

PX,φ,α(q) = inf
{
t ∈ R : lim sup

n→∞

1

n
log

( ∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u))
)
≤ 0

}
.

28



The following proposition is a direct consequence of the log-convexity, of the mappings

(q, t) 7→
∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u)) and (α, t) 7→
∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 −

tSnφ(u)) given α ∈ Rd and q ∈ Rd respectively.

Proposition 4.1. The mappings q 7→ PX,φ,α(q) and α 7→ PX,φ,α(q) are convex.

Proposition 4.2. With probability 1, PX,φ,α(q) ≤ ‹PX,φ,α(q) for all (q, α) ∈ Rd × Rd.

Proof. Due to Proposition 4.1, we only need to prove the inequality for each (q, α) ∈

Rd × Rd, almost surely. Fix (q, α) ∈ Rd × Rd. For t > ‹Pα(q) we have

E(
∑

n≥1

∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u)) =
∑

n≥1

E(

N∑

i=1

exp(〈q|Xi − α〉 − tφi))
n <∞.

Consequently,
∑

u∈Tn
exp

(
〈q|Sn(X − α)(u)〉 − tSnφ(u)

)
is bounded almost surely, so t ≥

PX,φ,α(q) almost surely. Since t > ‹PX,φ,α(q) is arbitrary, we get the desired conclusion. �

For α ∈ Rd, set

“E(X,α) =
{
t ∈ ∂T : α ∈

⋂

n∈N

{SnX(t)

n
: n ≥ N

}}
.

The following proposition and its corollary extend [3, Proposition 2.5 and Corollary
2.3], valid for d1, to the case of the more general metric dφ.

Proposition 4.3. With probability 1, for all α ∈ Rd, dim “E(X,α) ≤ P ∗
X,φ,α(0), a negative

dimension meaning that “E(X,α) is empty. In particular P ∗
X,φ,α(0) ≥ 0 for all α ∈ IX .

Proof. The argument is largely inspired by the approach developed for the multifractal
analysis of Rd-values Birkhoff averages on conformal repellers (see [7]; for a general mul-
tifractal formalism for vector-valued functions, see [33]). Recall that for any E ⊂ ∂T ,
dimE = −∞ if E = ∅ and dimE = inf{s ∈ R+ : limδ→0+ Hs

δ(E) = 0} otherwise, where

Hs
δ(E) = inf

{∑

i∈N

diam(Ei)
s : E ⊂

⋃

i∈N

Ei, diam(Ei) ≤ δ
}
.

For every n ≥ 1 let us denote r̃n = max{diam([u]) : u ∈ Tn}. To begin, note that

“E(X,α) =
⋂

ε>0

⋂

n∈N

⋃

n≥N

{t ∈ ∂T : ‖SnX(t)− nα‖ ≤ nε}

⊂
⋂

q∈Rd

⋂

ε>0

⋂

n∈N

⋃

n≥N

{t ∈ ∂T : |〈q|SnX(t)− nα〉| ≤ n‖q‖ε}.

Fix q ∈ Rd and ε > 0. For N ≥ 1, the set E(q,N, ε, α) =
⋃
n≥N{t ∈ ∂T : |〈q|SnX(t) −

nα〉| ≤ n‖q‖ε} is covered by the union of those [u] such that u ∈ Tn and 〈q|SnX(u) −
nα〉 + n‖q‖ε ≥ 0. Consequently, noting that by construction of the metric dφ, for all
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u ∈ Tn we have diam([u]) ≤ exp(−Snφ(u)), for any s ≥ 0 we can write

Hs
r̃N

(E(q,N, ε, α)) ≤
∑

n≥N

∑

u∈Tn

diam([u])s exp(〈q|SnX(u) − nα〉+ n‖q‖ε)

≤
∑

n≥N

∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − sSnφ(u) + n‖q‖ε).

Hence, if η > 0 and s > PX,φ,α(q)+η+‖q‖ε, by definition of PX,φ,α(q), for N large enough

one has Hs
r̃N

(E(q,N, ε, α)) ≤
∑

n≥N e
−nη/2. Since r̃N ≤ rn = max{exp(−Snφ(u)) : u ∈

Tn}, r̃N tends to 0 almost surely asN tends to∞, and we conclude that dimE(q,N, ε, α) ≤
s. As this holds for all η > 0, we get dimE(q,N, ε, α) ≤ PX,φ,α(q) + ‖q‖ε. It fol-

lows that dim “E(X,α) ≤ infq∈R infε>0 PX,φ,α(q) + ‖q‖ε = infq∈R PX,φ,α(q) = P ∗
X,φ,α(0).

If infq∈R PX,φ,α(q) < 0, we necessarily have “E(X,α) = ∅. Since for α ∈ IX one has

∅ 6= E(X,α) ⊂ “E(X,α), we get P ∗
X,φ,α(0) ≥ 0. �

Corollary 4.1. With probability 1, for all compact connected subset K of Rd, one has

E(X,K) = ∅ if K 6⊂ IX , and dimE(X,K) ≤ infα∈K ‹P ∗
X,φ,α(0) otherwise.

Proof. This follows directly from Propositions 4.2 and 4.3. �

4.2. Lower bounds for the Hausdorff dimensions of the set E(X,K). The sharp
lower bound estimates for the Hausdorff dimensions of the set E(X,K) are direct conse-

quences of Theorem 3.1, the fact that lim infn→∞

∑n
k=1 h(qk,αk)∑n
k=1 λ(qk,αk)

≥ lim infn→∞
h(qn,αn)
λ(qn,αn)

for

all ̺ ∈ R, (3.4), and the following two propositions. Recall the definition (3.5) of β(q, α).

Proposition 4.4. With probability 1, for all ̺ = ((qk, αk))k≥1 ∈ R, for µ̺-almost all
t ∈ ∂T, one has

lim
n→∞

n−1
∥∥∥SnX(t)−

n∑

k=1

β(qk, αk)
∥∥∥ = 0.

Proposition 4.5. For all compact connected subset K of IX , there exists ̺ ∈ R such that



⋂

n∈N

{
n−1

n∑

k=1

β(qk, αk) : n ≥ N
}
= K

lim infn→∞
‹P ∗
X,φ,αn

(∇‹PX,φ,αn(qn)) ≥ inf{P ∗
X,φ,α(0) : α ∈ K}

.

Proofs of Proposition 4.4 and Proposition 3.3(1). We will prove slightly stronger results
by controlling uniformly the speed of convergence to 0.

Fix (δn)n∈N converging to 0, and to be specified later. Let v be a vector of the canonical
basis B of Rd. For ̺ ∈ R, v ∈ B, λ ∈ {−1, 1} and n ≥ 1, we set :





Eλ̺,n,δn(v) =
{
t ∈ ∂T : λ

〈
v
∣∣∣SnX(t)−

n∑

k=1

β(qk, αk)
〉
≥ nδn

}

F λ̺,n,δn =
{
t ∈ ∂T : λ

(
Snφ(t)−

n∑

k=1

λ(qk, αk)
)
≥ nδn

}

Gλ̺,n,δn =
{
t ∈ ∂T : λ

(
log

( n∏

k=1

W̺,t1···tk

)
−

n∑

k=1

h(qk, αk)
)
≥ nδn

}

.
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It is enough to specify (δn)n∈N such that for λ ∈ {−1, 1} and v ∈ B one has

(4.1) E
(
sup
̺∈R

∑

n≥1

µ̺(E
λ
̺,n,δn(v)) + µ̺(F

λ
̺,n,δn) + µ̺(G

λ
̺,n,δn)

)
<∞.

Indeed, if (4.1) holds then, with probability 1, for all ̺ ∈ R, λ ∈ {−1, 1} and v ∈ B, one

has
∑

n≥1

µ̺(E
λ
̺,n,δn(v))+µ̺(F

λ
̺,n,δn)+µ̺(G

λ
̺,n,δn) <∞. Consequently, by the Borel-Cantelli

lemma, for µ̺-almost every t, for n large enough, for all v ∈ B,




∣∣∣
〈
v
∣∣∣
(
SnX(t) −

n∑

k=1

β(qk, αk)
)〉∣∣∣ ≤ nδn

max
(∣∣∣Snφ(t)−

n∑

k=1

λ(qk, αk)
∣∣∣,
∣∣∣ log

( n∏

k=1

W̺,t1···tk

)
−

n∑

k=1

h(qk, αk)
∣∣∣
)
≤ nδn,

which yields the desired result.

Now we prove (4.1) when λ = 1 (the case λ = −1 is similar). Let ̺ ∈ R. For n ≥ 1 and
u ∈ NN, and γ > 0, set

Πen,γ(̺, u) =
n∏

k=1

exp
(
〈qk + γv|Xu|k − αk〉 − ‹Pαk(qk)φu|k − 〈γv|β(qk, αk)− αk〉 − γδn

)
,

where ‹Pαk stands for ‹PX,φ,αk . For every γ > 0, using Chernov’s inequality one can get

µ̺(E
1
̺,n,δn(v)) ≤ en,γ(̺),

where

en,γ(̺) =
∑

u∈Tn

µ̺([u])

n∏

k=1

exp
(
γ〈v|Xu|k − β(qk, αk)〉 − γδn

)
=

∑

u∈Tn

Πen,γ(̺, u)Y (̺, u).

Note that Πen,γ(·, u) only depends on ̺|n, so

sup
̺∈R

en,γ(̺) ≤
∑

u∈Tn

sup
̺|n:̺∈R

Πen,γ(̺, u) · sup
̺∈R

Y (̺, u).

Consequently, since E(sup̺∈R Y (̺, u)) ≤ CX,φ exp(ε|u||u|) by (3.25), one obtains (taking
into account the independences)

E(sup
̺∈R

en,γ(̺))

≤ CX,φ e
nεnE

( ∑

u∈Tn

sup
̺|n:̺∈R

Πen,γ(̺, u)
)

≤ CX,φ e
nεnE

( ∑

u∈Tn

∑

̺|n:̺∈R

Πen,γ(̺, u)
)

= CX,φ e
nεn

∑

̺|n:̺∈R

exp
( n∑

k=1

Lαk(qk + γv, ‹Pαk (qk))− 〈γv|β(qk, αk)− αk〉 − γδn

)
.

Similarly, setting

Πfn,γ(̺, u) =

n∏

k=1

exp
(
〈qk|Xu|k − αk〉 − (‹Pαk(qk) + γ)φu|k − γλ(qk, αk)− γδn

)
,
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a new application of Chernov’s inequality yields

µ̺(F
1
̺,n,δn(v)) ≤ fn,γ(̺),

where

fn,γ(̺) =
∑

u∈Tn

µ̺([u])

n∏

k=1

exp
(
γ(φu|k − λ(qk, αk))− γδn

)
=

∑

u∈Tn

Πfn,γ(̺, u)Y (̺, u).

It follows that

E(sup
̺∈R

fn,γ(̺)) ≤ CX,φ e
nεn

∑

̺|n:̺∈R

exp
( n∑

k=1

Lαk(qk,
‹Pαk(qk) + γ)− γλ(qk, αk)− γδn

)
.

Also, setting p = 1 + γ and

Πgn,γ(̺, u) =

n∏

k=1

exp
(
p〈qk|Xu|k − αk〉 − p‹Pαk(qk)φu|k − γh(qk, αk)− γδn

)
,

it holds that

µ̺(G
1
̺,n,δn(v)) ≤ gn,γ(̺),

where

gn,γ(̺) =
∑

u∈Tn

µ̺([u])
n∏

k=1

exp
(
γ(log(W̺,u1···uk)− h(qk, αk))− γδn

)

=
∑

u∈Tn

Πgn,γ(̺, u)Y (̺, u).

This time, one has the upper bound

E(sup
̺∈R

gn,γ(̺)) ≤ CX,φ e
nεn

∑

̺|n:̺∈R

exp
( n∑

k=1

Lαk
(
pqk, p‹Pαk(qk)

)
− γh(qk, αk)− γδn

)
.

For each ̺ ∈ R, one has qk ∈ Djn+1 for all 1 ≤ k ≤ n. Thus, reasoning as in the proof
of Proposition 3.2(1) and writing for each 1 ≤ k ≤ n the Taylor expansion with integral

rest of order 2 of γ 7→ Lαk(qk + γv, ‹Pαk (qk))− 〈γv|β(qk, αk)− αk〉 at 0, taking γ = γjn+1,
and using (3.8) and (3.12) one gets

n∑

k=1

Lαk(qk + γjn+1v, ‹Pαk(qk))− 〈γjn+1v|β(qk, αk)− αk〉 − γjn+1δn

≤ nγ2jn+1mjn+1 − nγjn+1δn

uniformly in ̺ ∈ R. Similarly, using (3.8) and (3.12) again one gets

n∑

k=1

Lαk(qk,
‹Pαk(qk) + γ)− γλ(qk, αk)− γδn ≤ nγ2jn+1mjn+1 − nγjn+1δn,

while using (3.9) and (3.13) (as in the proof of Proposition 3.2) yields

n∑

k=1

Lαk
(
pqk, p‹PX,φ,αk(qk)

)
− γh(qk, αk)− γδn ≤ nγ2jn+1‹mjn+1 − nγjn+1δn.

32



Consequently, since εn = 2γ2jn+1“mjn+1, max(mjn+1,‹mjn+1) ≤ “mjn+1, and card({̺|n : ̺ ∈
R}) ≤ (jn + 1)!, one obtains the following upper bound:

E
(
sup
̺∈R

en,γjn+1(̺) + sup
̺∈R

fn,γjn+1(̺) + sup
̺∈R

gn,γjn+1(̺)
)

≤ 3CX,φ (jn + 1)! exp
(
(−nγjn+1(δn − 3γ2jn+1“mjn+1)

)
.

Let δn = 4γ2jn+1“mjn+1. Note that limn→∞ δn = 0. Now we use (3.19): (jn + 1)! ≤

exp(N
1/3
jn

) ≤ exp(n1/3) and γ2jn+1
“mjn+1 ≥ N

−1/2
jn

≥ n−1/2. Thus

E
(
sup
̺∈R

en,γjn+1(̺) + sup
̺∈R

fn,γjn+1(̺) + sup
̺∈R

gn,γjn+1(̺)
)
≤ 3CX,φ exp(n1/3) exp(−n1/2).

This yields (4.1). �

Proof of Proposition 4.5. For every integer m ≥ 1, let B(α̃m,ℓ, 1/m)1≤ℓ≤Lm be a finite
covering of K by balls centered on K, with Lm ≥ 2. Since K is connected, without loss of
generality we can assume that B(α̃m,ℓ, 1/m)∩B(α̃m,ℓ+1, 1/m) 6= ∅ for all 1 ≤ ℓ ≤ Lm− 1,
and B(α̃m+1,1, 1/(m+ 1)) ∩B(α̃m,Lm , 1/m) 6= ∅.

Now, applying Lemma 3.1, for each α̃m,ℓ let (qm,ℓ, αm,ℓ) ∈ D such that ‖β(qm,ℓ, αm,ℓ)−

α̃m,ℓ‖ ≤ 1/m and |‹P ∗
X,φ,αm,ℓ

(∇‹PX,φ,αm,ℓ(qm,ℓ))− ‹P ∗
X,φ,α̃m,ℓ

(0)| ≤ 1/m.

Let j1,1 = min{j ≥ 1 : (q1,1, α1,1) ∈ Dj}. Then, define recursively for each m ≥ 1 and
1 ≤ ℓ ≤ Lm − 1, jm,ℓ+1 = min{j > jm,ℓ : (qm,ℓ+1, αm,ℓ+1) ∈ Dj}, and jm+1,1 = min{j >
jm,Lm : (qm+1,1, αm+1,1) ∈ Dj}.

The sequence ̺ is constructed as follows. For 1 ≤ k ≤ Mj1,1−1, let (qk, αk) be equal to
the unique element ofD1. Then, for allm ≥ 1, let (qk, αk) = (qm,ℓ, αm,ℓ) for k ∈ [Mjm,ℓ−1+
1,Mjm,ℓ+1−1] if 1 ≤ ℓ ≤ Lm − 1 and (qk, αk) = (qm,Lm , αm,Lm) for k ∈ [Mjm,Lm−1 +
1,Mjm+1,1−1].

Now let n ≥ Mj2,1 + 1. There is an integer mn ≥ 2 such that either n ∈ [Mjmn,ℓn−1 +
1,Mjmn,ℓn+1−1] for some 1 ≤ ℓn ≤ Lmn − 1 or n ∈ [Mjmn,Lmn−1

+ 1,Mjmn+1,1−1].

In the first case, let us write
∑n

k=1 β(qk, αk) = S1 + S2 + S3, where

S1 =

Mjmn,ℓn
−2∑

k=1

β(qk, αk), S2 =

Mjmn,ℓn
−1∑

k=Mjmn,ℓn
−2+1

β(qk, αk), S3 =

n∑

k=Mjmn,ℓn
−1+1

β(qk, αk).

Setting (q, α) = (qmn,ℓn−1, αmn,ℓn−1) if ℓn ≥ 2 and (q, α) = (qmn−1,Lmn−1 , αmn−1,Lmn−1)
otherwise, one has S2 = (Mjmn,ℓn−1−Mjmn,ℓn−2)β(q, α). Thus, by construction of (qm,ℓ, αm,ℓ),
setting α̃ = α̃mn,ℓn−1 if ℓn ≥ 2 and α̃ = α̃mn−1,Lmn−1 otherwise, one has

‖S2 − (Mjmn,ℓn−1 −Mjmn,ℓn−2)α̃‖ ≤ (Mjmn,ℓn−1 −Mjmn,ℓn−2)/(mn − 1).

Also, setting q = qmn,ℓn , α
′ = αmn,ℓn and α̃

′ = α̃mn,ℓn , one has S3 = (n−Mjmn,ℓn−1)β(q, α),
so

‖S3 − (n−Mjmn,ℓn−1)α̃
′‖ ≤ (n−Mjmn,ℓn−1)/mn.

Moreover, due to (3.20), one has ‖S1‖ ≤ (jmn,ℓn − 1)−1Njmn,ℓn−1‖β(q, α
′)‖ ≤ (jmn,ℓn −

1)−1n‖β(q, α′)‖, so

‖S1‖ ≤ (jmn,ℓn − 1)−1n(‖α̃′‖+ 1/mn);
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also, due to (3.20) again, ‖Mjmn,ℓn−2 α̃‖ ≤ (jmn,ℓn − 1)−1n‖α̃′‖. Moreover, the choice of
the balls B(α̃m,ℓ, 1/m) implies that ‖α̃ − α̃′‖ ≤ 1/(mn − 1). Consequently, putting the
previous estimates together one gets

∥∥∥
n∑

k=1

β(qk, αk)− nαmn,ℓn

∥∥∥ ≤ n
( 3

mn − 1
+

2‖αmn,ℓn‖+ 1/mn

jmn,ℓn − 1

)
.

The same estimate holds if n ∈ [Mjmn,Lmn−1
+ 1,Mjmn+1,1−1]. Consequently, since as

n tends to ∞ the sequence αmn,ℓn describes all the αm,ℓ, the set of limit points of
n−1

∑n
k=1 β(qk, αk) is the same as that of the sequence ((αm,ℓ)1≤ℓ≤Lm)m≥1, that is K.

The fact that lim infn→∞ n−1‹P ∗
X,φ,αn

(∇‹PX,φ,αn(qn)) ≥ inf{‹P ∗
X,φ,α(0) : α ∈ K} is a

direct consequence of the choice of the vectors qm,ℓ and αm,ℓ, since ‹P ∗
αm,ℓ

(∇‹Pαm,ℓ(qm,ℓ)) ≥
inf{‹P ∗

X,φ,α(0) : α ∈ K} − 1/m. �

5. Proof of Theorem 1.2

We need to slightly modify the set R by requiring, in addition to the initial conditions
on (Nj)j≥0, that for all j ≥ 1

(5.1) Nj+1 > Mj(k(Mj) + 1) and ((j + 3)!)2 exp(−Nj/j) ≤ j−2.

Since the sequence (k(n))n∈N is increasing andMjn+1 ≤ n ≤Mjn+1, one has n(k(n)+1) ≤
Mjn+1(k(Mjn+1) + 1) < Njn+2 < Mjn+2, so jn(k(n)+1) ≤ jn + 1.

For each integer m ≥ 1, define the compact set

Km = {(q, α) ∈ JX,φ ∩B(0,m) : d((q, α), ∂JX,φ) ≥ 1/m} ∪ {(q1, α1)},

where B(0,m) is the Euclidean ball of radius m centered at 0 in R2d and (q1, α1) is the
unique element of D1. Then, recalling that D was chosen so that the second claim of
Lemma 3.1 holds, for ℓ,m ≥ 1, let

(5.2) R(m) =

ß
̺ = (qk, αk)k≥1 ∈ R ∩KN

m : ∃ α ∈ ĨX , lim
k→∞

(qk, αk) = (qα, α)

™

and

ĨX(m) =

ß
α ∈ ĨX : (qα, α) ∈ { lim

k→∞
̺k = (qk, αk) : ̺ ∈ R(m)}

™
.

Note that if ̺ ∈ R(m), then there is a unique α ∈ ĨX such that limk→∞(qk, αk) = (qα, α).

By construction, ĨX =
⋃
m≥1 ĨX(m). Note also that in the statement of Theorem 1.2 the

vector ψ(qα, α) is simply denoted by ψα, a notation that we adopt in this section as well.

Let κ = lim infn→∞ log(k(n))/n and κ′ = lim supn→∞ log(k(n))/n. For all integers
ℓ,m ≥ 1 and closed dyadic cube Q in Rd, define the sets

{
R(m, ℓ,Q) =

¶
̺ ∈ R(m) : ∀ λ ∈ ‹Q, −Λ∗

ψα(∇Λψα(λ)) < min(ℓ, κ− 1/ℓ)
©
,

R′(m, ℓ,Q) =
{
̺ ∈ R(m) : ∀ λ ∈ Q, −Λ∗

ψα(∇Λψα(λ)) > κ′ + 1/ℓ
}
,

where ‹Q stands for the union of Q and the closed dyadic cubes of the same generation as Q

and neighboring Q. The usefulness of considering the cubes ‹Q will appear in the proof of
the following proposition. Recall the definitions (1.6) and (1.7) of µtn and Λtn respectively.

Proposition 5.1. With probability 1, for all integers ℓ,m ≥ 1 and all dyadic cubes Q,
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(1) for all ̺ ∈ R(m, ℓ,Q), for µ̺-almost every t, one has limn→∞
1
nΛ

t
k̃,n

(λ) = Λψα(λ)

for all λ ∈ Q.

(2) For all ̺ ∈ R′(m, ℓ,Q), for µ̺-almost every t, for all λ ∈ Q, there exists ε > 0
such that for n large enough, one has µt

k̃,n
(B(∇Λψα(λ), ε)) = 0.

We assume this proposition for the time being and prove Theorem 1.2.

Proof of Theorem 1.2. Let C stand for the set of closed dyadic cubes in Rd. One has

{(α, λ) ∈ ĨX × Rd : −Λ∗
ψα(∇Λψα(λ)) < κ}

=
⋃

m≥1

⋃

ℓ≥1

{(α, λ) ∈ ĨX × Rd : α ∈ ĨX(m), −Λ∗
ψα(∇Λψα(λ)) < min(ℓ, κ− 1/ℓ)}

=
⋃

m≥1

⋃

ℓ≥1

⋃

Q∈C

{α ∈ ĨX(m) : ∀λ ∈ ‹Q, −Λ∗
ψα(∇Λψα(λ)) < min(ℓ, κ− 1/ℓ)} × ‹Q,

where one used the continuity in (α, λ) of −Λ∗
ψα

(∇Λψα(λ)). Consequently, due to Propo-

sition (5.1)(1), with probability 1, for all α ∈ ĨX , if m is large enough so that α ∈

ĨX(m), for all ̺ ∈ R(m) such that limk→∞ ̺k = (qα, α), since each λ ∈ Rd such that
−Λ∗

ψα
(∇Λψα(λ)) < κ belongs, for ℓ large enough, to a dyadic cube Q such that one has

−Λ∗
ψα

(∇Λψα) < min(ℓ, κ−1/ℓ) overQ, one has µ̺-almost everywhere, limn→∞ n−1Λt
k̃,n

(λ) =

Λψα for all λ ∈ Rd such that −Λ∗
ψα

(∇Λψα(λ)) < κ, i.e. the part (1) of the large deviations

properties LD(Λψα , k̃). One uses a similar argument to derive part (2) of LD(Λψα , k̃) from

part (2) of Proposition (5.1). Part (3) of LD(Λψα , k̃) is established as [6, Theorem 2.3(3)]).

To get the desired lower bound for dimE
(
X,α,LD(Λψα , k̃)

)
, it is enough to pick ̺ such

that limk→∞ ̺k = (qα, α) and limk→∞
‹PX,φ,αk(qk) − 〈qk|∇‹PX,φ,αk(qk)〉 = ‹P ∗

X,φ,α(0), as in

Lemma 3.1 (then Proposition (3.1) yields the result). �

Proof of Proposition 5.1. Fix m, ℓ,Q. We cut the sets R(m, ℓ,Q) and R′(m, ℓ,Q) into
countably many pieces as follows: for every integer L ≥ 1, setting Λk = Λψ(qk ,αk), let

R(m, ℓ, L,Q) =

®
̺ ∈ R(m, ℓ,Q) :

®
∀ k ≥ L, ∀ λ ∈ ‹Q,
−Λ∗

k(∇Λk(λ)) < min(2ℓ, κ− 1/2ℓ)

´
,

and

R′(m, ℓ, L,Q) =

®
̺ ∈ R(m, ℓ,Q) :

®
∀ k ≥ L, ∀ λ ∈ Q,

|Λ∗
k(∇Λk(λ))− Λ∗

ψα
(∇Λψα(λ))| < 1/2ℓ

´
.

The mappings Λψ(q,α) and ∇Λψ(q,α) are continuous as functions of (q, α) taking values

in C(Rd × Rd,R) and C(Rd × Rd,Rd) respectively (these spaces being endowed with the

topology of the uniform convergence over compact sets). Thus, since ‹Q is compact, we
have R(m, ℓ,Q) =

⋃
L≥1R(m, ℓ, L,Q) and R′(m, ℓ,Q) =

⋃
L≥1 R

′(m, ℓ, L,Q).
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Let us prove part (1) of the proposition. Fix L ≥ 1. For ̺ ∈ R(m, ℓ, L,Q), λ ∈ ‹Q, n ≥ 1,
1 ≤ j ≤ k(n), 0 ≤ i ≤ n− 1 and t ∈ ∂T, set

s
(i)
n,j(̺, λ) =

i+jn∑

k=i+(j−1)n+1

Λψ(qk ,αk)(λ)

and

(5.3) Z
(i)
n,j(̺, λ, t) = exp(〈λ|(Si+jnX(t)− Si+(j−1)nX(t)〉 − s

(i)
n,j(̺, λ)).

It is enough to prove that for every λ ∈ ‹Q and ε > 0, one has

(5.4) E
(∑

n∈N

sup
̺∈R(m,ℓ,L,Q)

µ̺(E(n, ̺, λ))
)
<∞,

where

E(n, ̺, λ) =
{
t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1,

∣∣∣k(n)−1

k(n)∑

j=1

(Z
(i)
n,j(̺, λ, t)− 1)

∣∣∣ > ε
}
.

Indeed, suppose that (5.4) holds true. Then, for every λ ∈ ‹Q and ε ∈ (0, 1), with prob-
ability 1, for all ̺ ∈ R(m, ℓ, L,Q), applying the Borel-Cantelli lemma to µ̺ yields, for
µ̺-almost every t, an integer n̺ ≥ 1 such that for all n ≥ n̺, for all 0 ≤ i ≤ n− 1,

1− ε ≤ k(n)−1

k(n)∑

j=1

Z
(i)
n,j(̺, λ, t) ≤ 1 + ε.

Moreover, given ̺ ∈ R(m, ℓ, L,Q), there exists k̺ > 1 such that for all k ≥ k̺, one has
|Λψ(qk ,αk)(λ)− Λψα(λ)| ≤ ε, hence for n ≥ k̺ and 0 ≤ i ≤ n− 1 one has

|s
(i)
n,j(̺, λ)− nΛψα(λ)| ≤ nε+ C̺(λ),

where C̺(λ) =
∑k̺

k=1 |Λψ(qk ,αk)(λ)− Λψα(λ)|. Consequently, setting

In(t, λ) =
n−1∑

i=0

k(n)∑

j=1

exp(〈λ|(Si+jnX(t)− Si+(j−1)nX(t)〉),

for n ≥ max(k̺, n̺), one obtains

(1− ε) exp(nΛψα(λ)− nε− C̺(λ)) ≤
In(t, λ)

nk(n)
≤ (1 + ε) exp(nΛψα(λ) + nε+ C̺(λ)).

By definition (1.7) of Λt
k̃,n

(λ), one also has exp
(
Λt
k̃,n

(λ)
)
= (nk(n))−1In(t, λ). Letting ε

go to 0 along a discrete family, this gives that almost surely, for all ̺ ∈ R(m, ℓ, L,Q), for
µ̺-almost every t, limn→∞ n−1Λt

k̃,n
(λ) = Λψα(λ). Then, this convergence holds almost

surely for a countable and dense subset of elements λ of ‹Q, and finally the convexity of
the functions Λt

k̃,n
gives the convergence for all λ ∈ Q, since Q is included in the interior

of ‹Q.

To prove (5.4), we need the following lemma, in which Q̺ stands for the Peyrière
measure associated with µ̺, that is the measure on (Ω× NN,A⊗ B), defined by

Q̺(C) =

∫

Ω

∫

NN

1C(ω, t) dµ̺,ω(t) dP(ω).
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Lemma 5.1. (1) Let ̺ ∈ R(m, ℓ, L,Q), λ ∈ ‹Q and n ∈ N. For each 0 ≤ i ≤ n − 1,

the random variables (ω, t) 7→ Z
(i)
n,j(̺, λ, t) − 1, 1 ≤ j ≤ k(n), defined on Ω × NN

are centered and independent with respect to Q̺.
(2) There exists p(m, ℓ, L,Q) ∈ (1, 2] and C(m, ℓ, L,Q) > 0 such that for all p ∈

(1, p(m, ℓ, L, c)], for all ε > 0, for all n ∈ N and 0 ≤ i ≤ n− 1, one has

Q̺

(∣∣∣k(n)−1

k(n)∑

j=1

(
Z

(i)
n,j(̺, λ, t)− 1

)∣∣∣ > ε
)

≤ C(m, ℓ, L,Q) exp(−n(p− 1)ℓ/4)

independently of ̺ ∈ R(m, ℓ, L,Q) and λ ∈ ‹Q.

We postpone the proof of this lemma to the end of the section.

Now, for ̺ ∈ R(m, ℓ, L,Q), λ ∈ ‹Q, n ∈ N, 0 ≤ i ≤ n− 1 and t ∈ ∂T let

V (i)
n (̺, λ, t) =

∣∣∣k(n)−1

k(n)∑

j=1

(Z
(i)
n,j(̺, λ, t)− 1

)∣∣∣,

and notice that by construction V
(i)
n (̺, λ, t) is constant over each cylinder [u] of generation

nk(n) + i, so that we also denote it by V
(i)
n (̺, λ, u). One has

µ̺({t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1, V (i)
n (̺, λ, t) > ε}) ≤

n−1∑

i=0

∑

u∈Tnk(n)+i

1
{V

(i)
n (̺,λ,u)>ε}

µ̺([u]).

Recall that by definition µ̺([u]) = (
∏n
k=1W̺,u1···uk)Y (̺, u), with E(Y (̺, u)) = 1, and

due to Lemma 3.4, since R(m, ℓ, L,Q) ⊂ R(Km), one has ‖ sup̺∈R(m,ℓ,L,Q) Y (̺, u)‖1 =

O((j|u| +2)!). Fix un,i ∈ Nnk(n)+i and denote ‖ sup̺∈R(m,ℓ,L,Q) Y (̺, un,i)‖1 by Bn,i. Using

the independence between (
∏nk(n)+i
k=1 W̺,u1···uk)̺∈R(m,ℓ,L,Q) and Y (·, u) for all u ∈ Nnk(n)+i,

one gets

E
(
sup

{
µ̺({t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1, V (i)

n (̺, λ, t) > ε}) : ̺ ∈ R(m, ℓ, L,Q)
})

≤
n−1∑

i=0

E
( ∑

u∈Tnk(n)+i

sup
̺∈R(m,ℓ,L,Q)

1
{V

(i)
n (̺,λ,u)>ε}

nk(n)+i∏

k=1

W̺,u1···uk

)
Bn,i.

From this inequality one can obtain

E
(
sup

{
µ̺({t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1, Vn(̺, λ, t) > ε}) : ̺ ∈ R(m, ℓ, L,Q)

})

≤
n−1∑

i=0

∑

̺|nk(n)+i:

̺∈R(m,ℓ,L,Q)

E
( ∑

u∈Tnk(n)+i

1
{V

(i)
n (̺,λ,u)>ε}

nk(n)+i∏

k=1

W̺,u1···uk

)
Bn,i.

Then, noting that

E
( ∑

u∈Tnk(n)+i

1
{V

(i)
n (̺,λ,u)>ε}

( nk(n)+i∏

k=1

W̺,u1···uk

))
= Q̺(V

(i)
n (̺, λ, t) > ε)
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yields

E
(
sup

{
µ̺({t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1, V (i)

n (̺, λ, t) > ε}) : ̺ ∈ R(m, ℓ, L,Q)
})

≤
n−1∑

i=0

∑

̺|nk(n)+i:̺∈R(m,ℓ,L,Q)

Q̺(V
(i)
n (̺, λ, t) > ε) Bn,i

≤
n−1∑

i=0

(#{̺|nk(n)+i : ̺ ∈ R})
(

sup
̺∈R(m,ℓ,L,Q)

Q̺(V
(i)
n (̺, λ, t) > ε)

)
Bn,i

≤ n(jn(k(n)+1) + 1!)C(m, ℓ, L,Q) exp(−n(p− 1)ℓ/4)O((jn(k(n)+1) + 2)!),

where Lemma 5.1(2) was used. Now recall that due to (5.1) one has jn(k(n)+1) ≤ jn + 1,
hence

E
(
sup

{
µ̺({t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1, V (i)

n (̺, λ, t) > ε}) : ̺ ∈ R(m, ℓ, L,Q)
})

= O(1)C(m, ℓ, L,Q)n(jn + 3)!2 exp(−n(p− 1)ℓ/4).

It follows that
∑

n∈N

E
(
sup

{
µ̺({t ∈ ∂T : ∃ 0 ≤ i ≤ n− 1, V (i)

n (̺, λ, t) > ε}) : ̺ ∈ R(m, ℓ, L,Q)
})

= O
(∑

j≥0

∑

Mj+1≤n≤Mj+1

((j + 3)!)2n exp(−n(p− 1)ℓ/4)
)

= O
(∑

j≥0

((j + 3)!)2

1− exp(−(p− 1)ℓ/8)
exp(−Mj(p− 1)ℓ/8)

)

= O
(∑

j≥0

((j + 3)!)2 exp(−Nj(p − 1)ℓ/8)
)
.

Due to (5.1) the above series converges.

Remark 5.1. The reason why we did not succeed in proving that with probability 1, the

Gibbs measure να is carried by E(X,α,LD(Λψα , k̃)) simultaneously for all α ∈ I̊X , is the
following. As said in the introduction, it is tempting to adapt to the present problem what
was done in [4, 1] to get that with probability 1, the measure να is carried by E(X,α)

simultaneously for all α ∈ I̊X . To do so, notice first that for α ∈ I̊X , the measure να is the
homogeneous Mandelbrot measure µ̺, where ̺ = ̺(α) is the constant sequence ((qα, α))n∈N.
Then, what we would need is to have at our disposal a suitable almost sure upper bound gn
for the mapping α 7→ µ̺(α)({t ∈ ∂T : V

(i)
n (̺(α), λ, t) > ε}), with the following properties:

gn possesses almost surely an holomorphic extension on a deterministic complex neibor-
hood Vα of any α ∈ I̊X ;

∑
n≥0 E(|gn(z)|) converges uniformly on any compact subset of⋃

α∈I̊X
Vα, so that an application of the Cauchy-formula yields the almost surely simulta-

neous convergence of
∑

n≥0 gn(α) for all α ∈ I̊X ; but we could not find any way to apply
such a strategy.

Now we prove part (2) of the proposition. This situation is not empty only if κ′ =
lim supn→∞ log(k(n))/n <∞.
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Fix L > 0. Given ̺ ∈ R′(m, ℓ, L,Q), λ ∈ Q, ε > 0, n ≥ 1, 1 ≤ j ≤ k(n) and
0 ≤ i ≤ n− 1, set

‹V (i)
j (̺, λ, t) = 1B(0,nε)(Si+jnX(t)− Si+(j−1)nX(t)− n∇Λψα(λ)).

Mimicking what was done above, one can get

E
(

sup
̺∈R′(m,ℓ,L,Q)

µ̺

({
t ∈ T : ∃ 0 ≤ i ≤ n− 1,

k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

}))

≤
n−1∑

i=0

(#̺|nk(n)+i : ̺ ∈ R)
(

sup
̺∈R′(m,ℓ,L,Q)

Q̺

({ k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

}))
Bn,i

= O((jn + 3)!2)
n−1∑

i=0

sup
̺∈R′(m,ℓ,L,Q)

Q̺

({ k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

})
.

For ̺ ∈ R′(m, ℓ, L,Q), the fact that the inclusion Si+jnX(t)−Si+(j−1)n(t)−n∇Λψα(λ) ∈
B(0, nε) implies 〈λ|Si+jnX(t)− Si+(j−1)n(t)− n∇Λψα(λ)〉 ≥ −nε‖λ‖, yields

Q̺

({ k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

})

≤

k(n)∑

j=1

Q̺

(
〈λ|Si+jnX(t) − Si+(j−1)n(t)− n∇Λψα(λ)〉 ≥ −nε‖λ‖

)
.

Then, applying Markov inequality gives

Q̺

({ k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

})

≤

k(n)∑

j=1

exp
(
nε‖λ‖ − n〈λ|∇Λψα(λ)〉

)
EQ̺

(
exp(〈λ|Si+jnX(t)− Si+(j−1)n(t)〉)

)

=

k(n)∑

j=1

exp
(
nε‖λ‖ − n〈λ|∇Λψα(λ)〉

)
exp

( i+jn∑

k=i+(j−1)n+1

Λψ(qk ,αk)(λ)
)
.

Now, using the definition of R′(m, ℓ, L,Q) and setting

A = sup
̺∈R′(m,ℓ,L,Q)

sup
λ∈Q

L∑

k=1

|Λψα(λ)− Λψ(qk ,αk)(λ)|,

one obtains

Q̺

({ k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

})
≤ eA

k(n)∑

j=1

exp
(
nε‖λ‖ − n〈λ|∇Λψα(λ)〉

)
exp

(
n/2ℓ+ nΛψα(λ)

)

= eA
k(n)∑

j=1

exp
(
nε‖λ‖+ n/2ℓ+ nΛ∗

ψα(∇Λψα(λ))
)

≤ eA k(n) exp
(
nε‖λ‖ − n/2ℓ− nκ′

)
.
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Thus, taking 0 < ε = εQ small enough so that ε‖λ‖ ≤ ℓ/8, since log(k(n)) < n(κ′+ ℓ/8)
for n large enough, one gets

sup
̺∈R′(m,ℓ,L,Q)

Q̺

({ k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

})
= O(exp(−n/4ℓ)).

Mimicking the end of the proof of part (1) of this proposition, we can get that given λ ∈ Q,
with ε = εQ

E
(∑

n∈N

sup
̺∈R′(m,ℓ,L,Q)

µ̺

({
t : ∃ 0 ≤ i ≤ n− 1,

k(n)∑

j=1

‹V (i)
j (̺, λ, t) ≥ 1

}))
<∞,

hence, with probability 1, by the Borel-Cantelli Lemma applied to each µ̺, one has that
for all ̺ ∈ R′(m, ℓ, L,Q), for µ̺-almost every t, for n large enough, for all 0 ≤ i ≤ n− 1,
En,i(t) := {1 ≤ j ≤ k(n) : n−1(Si+jnX(t) − Si+(j−1)nX(t)) ∈ B(∇Λψα(λ), εQ)} = ∅.

Now, for each λ ∈ Q, there exists ηλ > 0 such that for all λ′ ∈ B(λ, ηλ), for all
̺ ∈ R′(m, ℓ, L,Q) one has B(∇Λψα(λ

′), εQ/2) ⊂ B(∇Λψα(λ), εQ). One can extract from
(B(λ, ηλ))λ∈Q a finite subfamily (B(λs, ηλs))1≤s≤r which covers Q. Since this family is
finite, with probability 1, for all ̺ ∈ R′(m, ℓ, L,Q), for µ̺-almost every t, for n large
enough, for all 1 ≤ s ≤ r and 0 ≤ i ≤ n − 1, one has En,i(t) = ∅; consequently, by
construction of (B(λs, ηλs))1≤i≤r, for all λ′ ∈ Q and 0 ≤ i ≤ n − 1, En,i(t) = ∅. This
finishes the proof of the proposition. �

Proof of Lemma 5.1. (1) This is elementary, but we detail it for reader’s convenience. Let
n ≥ 1 and (f1, . . . , fk(n)) be k(n) positive Borel functions defined on R+. Fix 0 ≤ i ≤ n−1.
One has

EQ̺

( k(n)∏

j=1

fj
(
Z

(i)
n,j(̺, λ, t)

))
= E

(∫ k(n)∏

j=1

fj(Z
(i)
n,j(̺, λ, t)) dµ̺(t)

)
.

For each word u of generation nk(n), we denote by Z
(i)
n,j(̺, λ, u) the constant value of

Z
(i)
n,j(̺, λ, t) over the cylinder [u]. Using the fact that Z

(i)
n,j(̺, λ, t) is σ(Nu,Xus : u ∈⋃i+jn−1

k=i+(j−1)nN
k, s ∈ N) ⊗ C-measurable, as well as the definition of µ̺, the independence

between generations, and the branching property yields

EQ̺

( k(n)∏

j=1

fj
(
Z

(i)
n,j(̺, λ, t)

))

= E
( ∑

u∈Tnk(n)

Y (̺, u)
[ jn∏

k=(j−1)n+1

W̺,u1···uk

]
·
[ k(n)∏

j=1

fj
(
Z

(i)
n,j(̺, λ, u)

)])

= E
( ∑

u∈Tnk(n)

k(n)∏

j=1

[
fj
(
Z

(i)
n,j(̺, λ, u)

) i+jn∏

k=i+(j−1)n+1

W̺,u1···uk

])
.

Recall that W̺,u1···uk = exp
(
〈qk|Xu1···uk − αk〉 − ‹PX,φ,αk(qk)φu1···uk

)
, and set

Un,j(u) = fj(Z
(i)
n,j(̺, λ, u))

i+jn∏

k=i+(j−1)n+1

exp(〈qk|Xu1···uk − αk〉 − ‹PX,φ,αk(qk)φu1···uk).
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Note that this random variable is measurable with respect to the σ-algebra Gn,j defined

as Gn,j = σ
(
(Nw, (Xw1, φw1), . . .) : w ∈

⋃i+jn−1
k=i+j(n−1)N

k
)
. Now, the above equality rewrites

EQ̺

( k(n)∏

j=1

fj(Z
(i)
n,j(̺, λ, t))

)
= E

( ∑

u∈Tn(k(n)−1)

∑

v∈Tn(u)

k(n)∏

j=1

Un,j(uv)
)
.

Conditioning on σ(Gn,j : 1 ≤ j ≤ k(n) − 1) and using the independences and identity in
distribution between the random variables of the construction one gets

EQ̺

( k(n)∏

j=1

fj(Z
(i)
n,j(̺, λ, t))

)
= E

( ∑

u∈Tn(k(n)−1)

k(n)−1∏

j=1

Un,j(uv)
)‹Un,k(n),

where for 1 ≤ j ≤ k(n) one set

‹Un,j = E
( ∑

u∈Tn

fj
(
exp(〈λ|SnX(u)〉 − s

(i)
n,j(̺, λ)

)

·
i+n∏

k=i+1

exp(〈q(j−1)n+k|Xu1···uk − α(j−1)n+k〉 − ‹PX,φ,α(j−1)n+k
(q(j−1)n+k)φu1···uk)

)
.

Iterating the previous calculation yields

EQ̺

( k(n)∏

j=1

fj(Z
(i)
n,j(̺, λ, t))

)
=

k(n)∏

j=1

‹Un,j,

and applying this with fj′ = 1 for j′ 6= j one naturally obtains ‹Un,j = EQ̺

(
fj(Z

(i)
n,j(̺, λ, t))

)
,

hence

EQ̺

( k(n)∏

j=1

fj(Z
(i)
n,j(̺, λ, t))

)
=

k(n)∏

j=1

EQ̺

(
fj(Z

(i)
n,j(̺, λ, t))

)
,

which is the desired independence. Then, taking fj(z) = z and fj′(z) = 1 for j′ 6= j yields,

writing k′ for i+ (j − 1)n + k and dropping X,φ in ‹PX,φ,α:

EQ̺

(
Zn,j(̺, λ, t)

)

= E
( ∑

u∈Tn

n∏

k=1

exp
(
〈λ|Xu1···uk〉 − Λψ(qk′ ,αk′ )(λ) + 〈qk′ |Xu1···uk − αk′〉 − ‹Pαk′ (qk′)φu1···uk

))

=
n∏

k=1

E
( N∑

i=1

exp(
(
〈λ|Xi〉+ 〈qk′ |Xi − αk′〉 − ‹Pαk′ (qk′)φi − Λψ(qk′ ,αk′)(λ)

))
= 1

by definition of Λψ(qk′ ,αk′). Finally, the random variables Z
(i)
n,j(̺, λ, t)−1 areQ̺-independent

and centered.
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(2) Thanks to (1), we can apply Lemma 3.2 and get

Q̺

(∣∣∣k(n)−1

k(n)∑

j=1

(Z
(i)
n,j(̺, λ, t) − 1)

∣∣∣ > ε
)
≤ (εk(n))−pEQ̺

(∣∣∣
k(n)∑

j=1

(Z
(i)
n,j(̺, λ, t)− 1)

∣∣∣
p)

≤ 2p−1(εk(n))−p
k(n)∑

j=1

EQ̺(|Z
(i)
n,j(̺, λ, t)− 1|p) ≤ 22p−1(εk(n))−p

k(n)∑

j=1

EQ̺(Z
(i)
n,j(̺, λ, t)

p)

since EQ̺(Zn,j(̺, λ, t)) = 1. Moreover, calculations similar to those used to establish part
(1) of this lemma yield

EQ̺(Z
(i)
n,j(̺, λ, t)

p) = exp
( i+jn∑

k=i+(j−1)n+1

Λψ(qk ,αk)(pλ)− pΛψ(qk,αk)(λ)
)
.

Since R(m, ℓ, L,Q) ⊂ R(Km), and Km is a compact subset of JX,φ, using Taylor’s expan-
sion one gets Λψ(qk ,αk)(pλ) − pΛψ(qk,αk)(λ) = (1 − p)Λ∗

ψ(qk ,αk)
(∇Λψ(qk ,αk)λ) + O((p − 1)2)

uniformly in ̺ ∈ R(m, ℓ, L,Q), λ ∈ ‹Q and p−1 small enough. Consequently, by definition
of R(m, ℓ, L,Q), for k ≥ L one obtains

Λψ(qk ,αk)(pλ)− pΛψ(qk ,αk)(λ) ≤ (p − 1)min(2ℓ, κ − 1/2ℓ) +O((p − 1)2),

hence for all 1 ≤ j ≤ k(n)

i+jn∑

k=i+(j−1)n+1

Λψ(qk ,αk)(pλ)− pΛψ(qk,αk)(λ) ≤ A+n
(
(p− 1)min(2ℓ, κ− 1/2ℓ)+O((p− 1)2)

)

uniformly in ̺ ∈ R(m, ℓ, L,Q), λ ∈ ‹Q and p− 1 small enough, where

A = sup
p∈[1,2]

sup
̺∈R(m,ℓ,L,Q)

sup
λ∈‹Q

L∑

k=1

|Λψ(qk ,αk)(pλ)− pΛψ(qk ,αk)(λ)|.

The previous estimates yield

Q̺

(∣∣∣k(n)−1

k(n)∑

j=1

(Z
(i)
n,j(̺, λ, t)− 1)

∣∣∣ > ε
)

≤ eAε−p(k(n))1−p exp
(
n
(
(p− 1)min(2ℓ, κ − 1/2ℓ) +O((p− 1)2)

))

in the same uniform manner as above. Take p close enough to 1 so that O((p − 1)2) ≤
(p − 1)/8ℓ.

Now, for n large enough, one has k(n) ≥ exp(n(min(2ℓ, κ − 1/8ℓ))), so that

Q̺

(∣∣∣k(n)−1

k(n)∑

j=1

(Z
(i)
n,j(̺, λ, t)− 1)

∣∣∣ > ε
)
≤ eAε−p exp

(
n
(
1− p)ℓ/4)

uniformly in ̺ ∈ R(m, ℓ, L,Q), λ ∈ ‹Q and 0 ≤ i ≤ n− 1. �
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6. Proof of Theorem 1.3

Let us start by stating the following proposition.

Proposition 6.1. Assume (1.8) and (1.9).

(1) ĨX ⊂ C̊X and IX \ ĨX ⊂ ∂CX .

(2) If H ∈ HX \ ‹HX then H ∩ IX = ∅.

(3) If HX \ ‹HX 6= ∅, then (∂IX)crit = ĨX \ I̊X 6= ∅.
Assume now that E(Np) <∞ for some p > 1.

(4) If H ∈ ‹HX , then H ∩ IX 6= ∅.
Assume, in addition, (1.18) and (1.19).

(5) For all F ∈ ‹F1
X ∪ F

1
X , for all H ∈ ‹HX such that F ⊂ H, one has H ∩ IX =

F ∩ IX = IFX . Moreover, the conclusions of items (4) and (5) of Theorem 1.3 hold

true for α ∈ IFX and α ∈ ĨFX respectively.

(6) If F,F ′ ∈ ‹F1
X ∪ F

1
X with F 6= F ′ then ĨFX ∩ ĨF

′

X = ∅.

Proof of Theorem 1.3. The properties ‹HX = {H ∈ HX : H ∩ IX 6= ∅}, ĨX ⊂ C̊X , and

IX \ ĨX =
⋃
H∈‹HX

H ∩ IX , that is point (1) and the first part of point (2) of the theorem

follow directly from Proposition 6.1(1)-(4). This is also the case of the first part of point

(3), that is the property that (∂IX)crit = ∅ if and only if ‹HX = HX .

To see why the second part of point (3) holds, recall that the set of exposed points is

dense in the set of extremal points of CX (see [35, Theorem 18.6]). If ‹HX = HX , the
previous properties imply that any supporting hyperplane H of CX does intersect ∂IX .
In particular, for each exposed point P of CX , choosing H ∈ HX which intersects CX
only at P , we get P ∈ IX , and the condition E(NH) ≥ 1 is equivalent to E(N{P}) ≥ 1.
This implies that the set of exposed points of CX is finite (since E(N) <∞) and coincides
with its set of extremal points. It follows that the set CX is a polytope and equals IX .
Again due to the properties previously established, this is equivalent to the fact that every
exposed point P of CX satisfies E(N{P}) ≥ 1.

Suppose that IX \ ĨX 6= ∅. It follows from the first part of point (5) of Proposition 6.1

that IX \ ĨX =
⋃
F∈‹F1

X∪F
1
X
IFX . Then, the second part of this fifth point combined with

point (6) of the same proposition and a recursion on the dimension of IX yields both that

IX \ ĨX =
⊔
F∈‹FdX∪F

d
X
ĨFX and points (4) and (5) of Theorem 1.3. �

If H ∈ HX , there is a unique couple (e, c) ∈ Sd−1 × R such that

(6.1) H = L−1
e,c({0}) and CX ⊂ L−1

e,c(R−), where Le,c : β ∈ Rd 7→ 〈e|β〉 − c.

We set

H+ = L−1
e,c (R

∗
+).

The following preliminary observation will be useful.

Lemma 6.1. Let H ∈ HX . One has E
(∑N

i=1 1H+(Xi)
)
= 0.
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Proof. Suppose that θ = E
(∑N

i=1 1H+(Xi)
)
> 0 and set Wi = θ−11H+(Xi)1[1,N ](i) for all

i ≥ 1. By construction of (Wi)i∈N and by definition of CX and HX , β = E
(∑N

i=1WiXi

)
∈

CX ⊂ Rd \ H+, so 〈e|β〉 ≤ c. However, 〈e|β〉 = θ−1E
(∑N

i=1 1H+(Xi)〈e|Xi〉
)
> c. This

contradiction implies that θ = 0. �

We also define, for ε > 0,

(6.2) Uε = L−1
e,c((−∞,−ε)) and Vε = Rd \ Uε.

Proof of Proposition 6.1. (1) The fact that ĨX ⊂ C̊X follows from the inclusion∇‹PX(Rd) ⊂
CX and the fact that the mapping q ∈ Rd 7→ ∇‹PX(q) is open.

Suppose, by contradiction, that there exists α ∈ (IX \ ĨX)∩ C̊X . Given such an α, there

exists a sequence (qn)n∈N of elements of JX such that α = limn→+∞(αn = ∇‹PX(qn)).
Moroever, limn→∞ ‖qn‖ = +∞, for otherwise it is easily seen that α ∈ ĨX .

Without loss of generality, let us assume that en = qn/‖qn‖ converges to e ∈ Sd−1.

Recall that

αn = ∇‹PX(qn) = E
( N∑

i=1

exp(‖qn‖〈en|Xi〉 − ‹PX(qn))Xi

)
.

Since we assumed that α is an interior point of CX , there exists c > 〈e|α〉 such that

L−1
e,c({0}) ∩ C̊X 6= ∅. This implies that for all ε > 0, one has E

(∑N
i=1 1Vε(Xi)

)
> 0;

indeed, otherwise there would exist ε1 > 0 such that P
(
Xi ∈ Uε1 , ∀ 1 ≤ i ≤ N

)
= 1,

hence for each non negative random vector (Wi)i∈N jointly defined with (N, (Xi))i∈N and

such that E(
∑N

i=1Wi) = 1, one would have
〈
e|E(

∑N
i=1WiXi)

〉
≤ c − ε1, contradicting

L−1
e,c({0}) ∩ CX 6= ∅.

Consequently, since (en)n∈N converges to e, for all ε > 0 there exist nε ∈ N and Aε > 0
such that if n ≥ nε, setting Un,ε = L−1

en,c((−∞,−ε)) and Vn,ε = Rd \ Un,ε:

E
( N∑

i=1

1Vn,ε(Xi)
)
≥ E

( N∑

i=1

1Vε/2(Xi)1[0,Aε](‖Xi‖)
)
> 0.

Fix ε > 0 such that α ∈ U4ε. Noting that E
(∑N

i=1 exp(〈qn|Xi〉 − ‹PX(qn))
)
= 1 for all

n ∈ N, if n ≥ nε one has

∥∥∥E
( N∑

i=1

1Un,3ε(Xi)Xie
〈qn|Xi〉−‹PX(qn)

)∥∥∥ ≤
E
(∑N

i=1 1Un,3ε(Xi)‖Xi‖ exp(‖qn‖〈en|Xi〉)
)

E
(∑N

i=1 1Vn,ε(Xi) exp(‖qn‖〈en|Xi〉)
)

≤
E
(∑N

i=1 1Un,3ε(Xi)‖Xi‖ exp(‖qn‖(c− 3ε)
)

E
(∑N

i=1 1Vn,ε(Xi) exp(‖qn‖(c − ε))
)

≤
E
(∑N

i=1 ‖Xi‖
)

E
(∑N

i=1 1Vε/2(Xi)1[0,Aε](‖Xi‖)
)e−2‖qn‖ε.
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It follows that limn→∞

∥∥E
(∑N

i=1 1Un,3ε(Xi)Xie
〈qn|Xi〉−‹PX(qn)

)∥∥ = 0. This yields that

〈e|α〉 = lim
n→∞

〈en|αn〉 = lim
n→∞

E
( N∑

i=1

1Vn,3ε(Xi)〈en|Xi〉e
〈qn|Xi〉−‹PX(qn)

)
≥ c− 3ε,

since the previous estimates imply that limn→∞ E
(∑N

i=1 1Vn,ε′ (Xi)e
〈qn|Xi〉−‹PX(qn)

)
= 1 for

all ε′ > 0. However, 〈e|α〉 ≤ c− 4ε since α ∈ U4ε, so we meet a contradiction.

(2) Fix H ∈ HX \ ‹HX . Recall that E(N
H) < 1. Suppose that H ∩ IX 6= ∅. Let α ∈ H ∩ IX

and (qn)n∈N ∈ JN
X such that limn→∞∇‹PX(qn) = α.

For ε > 0, set
{
GX,ε : (q, β) ∈ JX × [0, 1] 7→ E

(∑N
i=1 1Uε(Xi)e

β(〈q|Xi〉−‹PX(q))
)

‹GX,ε : (q, β) ∈ JX × [0, 1] 7→ E
(∑N

i=1 1Vε(Xi)e
β(〈q|Xi〉−‹PX(q))

)
.

Note that given q ∈ JX , the mapping GX(q, ·) = GX,ε(q, ·) + ‹GX,ε(q, ·), which neither
depends on ε nor on H, is convex, takes values E(N) > 1 and 1 at β = 0 and β = 1

respectively, and has −‹P ∗
X(∇

‹PX(q)) < 0 as left derivative at β = 1. Thus, GX(q, β) > 1
for all β ∈ (0, 1). Below we prove that the existence of α contradicts this fact.

Fix β ∈ (0, 1) and ρ > 0 such that β + (1 − β)E(NH) + ρ < 1. For any η ∈ (0, 1] and

q ∈ JX one has, setting Wq,i = exp(〈q|Xi〉 − ‹PX(q)):

GX,ε(q, β) ≤ ηβE
( N∑

i=1

1Uε(Xi)1{Wq,i≤η}

)
+ E

( N∑

i=1

1Uε(Xi)1{Wq,i>η}W
β−1
q,i Wq,i

)

≤ ηβE(N) + ηβ−1E
( N∑

i=1

1Uε(Xi)1{Wq,i>η}Wq,i

)
≤ ηβE(N) + ηβ−1GX,ε(q, 1).

Fix η > 0 such that ηβE(N) ≤ ρ/4 and then n = n(ρ, ε) ∈ N such that ηβ−1GX,ε(qn, 1) ≤
ρ/4, and consequently GX,ε(qn, β) ≤ ρ/2. This is possible since limn→∞GX,ε(qn, 1) = 0.

Indeed,
〈
e|E

(∑N
i=1 1Uε(Xi)W

β
qn,i

Xi

)〉
≤ (c − ε)GX,ε(qn, 1), so that due to Lemma 6.1,

〈e|∇‹PX (qn)〉 ≤ c ‹GX,ε(qn, 1) + (c − ε)GX,ε(qn, 1) ≤ c − εGX,ε(qn, 1), and consequently
c = 〈e|α〉 ≤ c− ε lim supn→∞GX,ε(qn, 1).

Now, note that ‹GX,ε(qn, 0) tends to E(NH) < 1 as ε → 0 (due to Lemma 6.1 again),

and ‹GX,ε(qn, 1) = GX(qn, 1)−GX,ε(qn, 1) ≤ 1. It follows from the convexity of ‹GX,ε(qn, ·)
that if ε is chosen small enough one has ‹GX,ε(qn, β) ≤ β + (1− β)E(NH) + ρ/2. Finally,

GX(qn, β) = GX,ε(qn, β) + ‹GX,ε(qn, β) ≤ β + (1− β)E(NH) + ρ < 1,

which is the expected contradiction.

(3) Suppose that HX \ ‹HX 6= ∅ and fix H ∈ HX \ ‹HX . Fix also β ∈ H ∩ CX and α ∈ I̊X .
Since β 6∈ IX , there exists α′ ∈ [α, β) such that α′ ∈ ∂IX and α′ 6∈ ∂CX . By point (1) of

this proposition, this implies that α′ ∈ ĨX \ I̊X .

(4) For ε ∈ (0, 1), define γε = E(NH) + εE(NHc
). Then, for 1 ≤ i ≤ N set Wε,i =

1
γε
1H(Xi) +

ε
γε
1Hc(Xi) and set Wε,i = 0 for i > N . Note that since E(NH) ≥ 1, and (1.9)

implies that E(NHc
) > 0, one has supi≥1Wε,i < 1. Consequently −E

(∑N
i=1Wε,i logWε,i

)
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is positive; also, since E(Np) < ∞ for somme p > 1, one has E
((∑N

i=1Wε,i

)p)
< ∞. In

addition, E
(∑N

i=1Wε,iXi

)
converges to αH = E

(∑N
i=1 1H(Xi)Xi

)
/E(NH) as ε tends to 0.

For each u ∈
⋃
n≥0 N

N, set Wε,i(u) = 1
γε
1H(Xui) +

ε
γε
1Hc(Xui) for 1 ≤ i ≤ Nu and

Wε,i(u) = 0 for i > Nu. Mimicking what was done to construct the measures µ̺ (̺ ∈ R)
and determine the behavior of (SnX)n∈N almost everywhere with respect to such a measure
(Proposition 4.4), we can find a non increasing positive sequence (εn)n≥0 converging to 0
such that the inhomogeneous Mandelbrot martingale associated with the random vectors
(Wε|u|,i(u))i∈N, u ∈

⋃
n≥0N

N, yields almost surely a positive measure µH supported on

E(X,αH ).

(5) Let F ∈ ‹F1
X ∪F

1
X . Note that the fact that F ∩ IX 6= ∅ can be obtained directly in the

same way as H ∩ IX 6= ∅ when H ∈ ‹HX .

Fix H ∈ ‹HX such that F ⊂ H.

We distinguish the cases F ∈ ‹F1
X and F ∈ F

1
X .

Case 1: F ∈ ‹F1
X . Remember that in this case E(NF ) > 1.

We first prove that H ∩ IX ⊂ F ∩ IX ⊂ IFX .

Let α ∈ H∩IX . According to Lemma 3.1, we can take a sequence (qn, αn)n∈N of elements

of D such that lim
n→∞

β(qn, αn) = α and lim
n→∞

‹PX,φ,αn(qn)− 〈qn|∇‹PX,φ,αn(qn)〉 = ‹P ∗
X,φ,α(0).

Set Wn,i = 1[1,N ](i)e
〈qn|Xi−αn〉−‹PX,φ,αn(qn) for i ≥ 1. With the notations (3.2), (3.3)

and (3.5), one has h(qn, αn) = −E
(∑N

i=1Wn,i logWn,i

)
, λ(qn, αn) = E

(∑N
i=1Wn,iφi

)
,

‹PX,φ,αn(qn)− 〈qn|∇‹PX,φ,αn(qn)〉 = h(qn,αn)
λ(qn,αn)

, and β(qn, αn) = E
(∑N

i=1Wn,iXi

)
.

For any Borel subset V of Rd and any n ∈ N, set

pV,n = E
( N∑

i=1

1V (Xi)Wn,i

)
.

Then, define the sequence of vectors (W̃n,i)i≥1, n ∈ N, by W̃n,i = 1[1,N ](i)p
−1
F,n1F (Xi)Wn,i.

Lemma 6.2. (1) limn→∞ E
(∑N

i=1 W̃n,iXi

)
= α. In particular α ∈ F .

(2) lim infn→∞

∑n
k=1 −E

(∑N
i=1 W̃k,i log W̃k,i

)
∑n
k=1 E

(∑N
i=1 W̃k,iφi

) ≥ ‹P ∗
X,φ,α(0).

Assume this lemma for a while. Let (WF
i )i≥1 be defined byWF

i = 1[1,N ](i)1F (Xi)/E(N
F ).

For θ ∈ (0, 1], n ≥ 1 and i ≥ 1 set W̃n,i(θ) = θWF
i + (1 − θ)W̃n,i. By convexity of the

function x log(x), noting that E
(∑N

i=1W
F
i logWF

i

)
= − log(E(NF )), one has

E
( N∑

i=1

W̃n,i(θ) log W̃n,i(θ)
)
≤ −θ log(E(NF )) + (1− θ)E

( N∑

i=1

W̃n,i log W̃n,i

)
.(6.3)

Then, Lemma 6.2(2) together with E(NF ) > 1 yields −E
(∑N

i=1 W̃n,i(θ) log W̃n,i(θ)
)
> 0.

Let now (θn)n∈N be a positive sequence converging to 0. One has

lim inf
n→∞

E
(∑N

i=1 W̃n,i(θn) log W̃n,i(θn)
)

E
(∑N

i=1 W̃n,i log W̃n,i

) ≥ 1 and lim
n→∞

E
(∑N

i=1 W̃n,i(θn)φi
)

E
(∑N

i=1 W̃n,iφi
) = 1,
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where the inequality comes from (6.3) and the equality is direct. Then, Lemma 6.2(2)

again implies lim infn→∞

∑n
k=1 −E

(∑N
i=1 W̃k,i(θk) log W̃n,i(θk)

)
∑n
k=1 E

(∑N
i=1 W̃k,i(θk)φi

) ≥ ‹P ∗
X,φ,α(0). Now, note that

the random vectors (W̃n,i(θn))n∈N with positive “entropy” can be used to construct an
inhomogeneous Mandelbrot martingale which, conditionally on ∂TF 6= ∅, converges to
a positive limit, and makes it possible to define a positive measure µα fully supported
on ∂TF . Moreover, the martingale can be adjusted so that the conclusions of Proposi-
tions 3.1 hold, as well as that of Proposition 4.4 applied to µα and (SnX)n∈N restricted

to ∂TF : dim(µα) ≥ lim infn→∞

∑n
k=1 −E

(∑N
i=1 W̃k,i(θk) log W̃n,i(θk)

)
∑n
k=1 E

(∑N
i=1 W̃k,i(θk)φi

) ≥ ‹P ∗
X,φ,α(0), and for µα-

a.e. t ∈ ∂TF , limn→∞ n−1SnX(t) = limn→∞ n−1
∑n

k=1 E
(∑N

i=1 W̃k,i(θk)Xi

)
= α, where

Lemma 6.2(1) was used to get the second equality. In other words, recalling the defini-

tions introduced before the statement of Theorem 1.3, the ~F -valued branching random

walk (Sn(XF − αF ))n∈N on ∂T̃F satisfies that α − αF ∈ IXF−αF , so α ∈ IFX by definition
of IFX .

Thus, we proved that H ∩ IX = F ∩ IX ⊂ IFX . Moreover, for all α ∈ F ∩ IX , conditional

on ∂TF 6= ∅, one has (‹PXF−αF ,φF ,α−αF )
∗(0) ≥ dim(E(X,α) ∩ ∂TF ) ≥ ‹P ∗

X,φ,α(0), where
the second inequality was just proved and for the first inequality one uses the fact that by
definition E(X,α) ∩ ∂TF = bF (E(XF − αF , α − αF )), where bF is an isometry between

(∂T̃F ,dφF ) and (∂TF ,dφ), and the fact that Proposition 4.3 holds for (Sn(XF − αF ))n∈N
on (∂T̃F ,dφF ).

Let us now prove that IFX ⊂ F ∩ IX , as well as Theorem 1.3(4) and (5).

This time, we use what we know about the ~F -valued branching random walk (SnX −
nαF )n∈N on ∂TF , conditionally on ∂TF 6= ∅, thanks to Theorems 1.1 and 1.2 and their

proofs applied to (Sn(XF −αF ))n∈N on ∂T̃F and the isometry bF between (∂T̃F ,dφF ) and

(∂TF ,dφ). We can consider a family (µF̺ )̺∈RF of inhomogeneous Mandelbrot measures

simultaneously constructed and fully supported on ∂TF , and dedicated to the study of
(SnX − nαF ))n∈N on ∂TF . For each sequence ρ ∈ RF , the measure µFρ is constructed by
using, at each generation n ≥ 1 of the associated multiplicative cascade, independent copies

of non negative random vectors (W̺̃n)n∈N ∈ RN
+ simultaneously defined with (N, (φi)i∈N)

such that E
(∑N

i=1W̺n,i

)
= 1 = E

(∑N
i=1 1F (Xi)W̺n,i

)
. Let us denote these copies by

((W̺n,ui)i∈N)u∈Nn−1 . For any positive sequence θ = (θn)n∈N converging to 0 define

W̺n,ui(θ) = (λ̺,θ(n))
−1

(
1[1,Nu](i) · (1F (Xui)W̺n,ui + θn1F c(Xui))

)
i≥1

,

where λ̺,θ(n) = E
(∑N

i=1 1F (Xi)W̺n,i + θn1F c(Xi)
)
. It is easily seen that following the

lines of the proof of Theorem 1.1, one can choose the small perturbation θ so that these
new weights make it possible to define almost surely a family (µ̺)̺∈RF of inhomogeneous
Mandelbrot measures, all fully supported on ∂T, and such that with probability 1: (1) for
all ρ ∈ RF , dim(µρ) equals the value taken by dim(µFρ ) almost surely, conditionally on

∂TF 6= ∅; (2) µρ is supported on E(X,α) if and only if conditionally on ∂TF 6= ∅, µFρ is

supported on E(X − αF , α − αF ) ∩ ∂T
F . This implies that if α ∈ IFX , then α ∈ IX ∩ F ,

and ‹P ∗
X,φ,α(0) = dimE(X,α) ≥ (‹PFXF−αF ,φF ,α−αF

)∗(0) almost surely. This, together with

previous estimates shows that with probability 1, for all α ∈ IFX = F ∩ IX , one has
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dimE(X,α) = ‹P ∗
X,φ,α(0) = (‹PFXF−αF ,φF ,α−αF

)∗(0), hence the conclusion of Theorem 1.3(4)
for F .

To get the conclusion of Theorem 1.3(5) for F , we proceed just as above, but this
time we use a small perturbation of the martingales generating the family of measures
(µF̺ )̺∈

⋃
n∈N

RF (m) that we would use in the proof of Theorem 1.2 to treat the case of the

~F -valued branching random walk (SnX − nαF )n∈N on ∂TF . This is enough to conclude.

Proof of Lemma 6.2. We begin with preliminary observations.

At first, for all n ∈ N, the fact that (qn, αn) ∈ JX,φ implies that the entropy h(qn, αn) =

−E
(∑N

i=1Wn,i logWn,i

)
is positive. Consequently,

E
( N∑

i=1

Wn,i log
+Wn,i

)
≤ E

( N∑

i=1

Wn,i log
−Wn,i

)
≤ e−1E(N).

This uniform bound plays a crucial rôle in the estimates below and justifies the introduction
of the assumption (1.18). Also, let ψ such that (1.18) holds. Without loss of generality
we can assume that ψ(x) = 0. Define the non negative convex function Ψ : x ≥ 0 7→
exp(ψ(x)) − 1. Due to our assumptions on ψ, Ψ satisfies limx→∞Ψ(x)/x = ∞ as well
as Ψ(0) = 0. In the language of Orlicz spaces theory [34, 30], both ψ and Ψ are the
restrictions to R+ of strict Young functions. The convex conjugate of Ψ is the function Φ
defined as Φ : y ∈ R 7→ sup{x|y|−Ψ(x) : x ≥ 0}. It is a strict Young function as well, and
it is not difficult to see that limx→∞ ψ(x)/x = ∞ implies that limx→∞Φ(x)/(x log(x)) = 0.
Let G : x ≥ 0 7→ Φ−1(x log+(x)), where Φ−1 stands for the right-continuous inverse of Φ.
One has limx→∞G(x)/x = ∞. Set g : x ≥ 1 7→ sup{z/G(z) : z ≥ x}. For all a ≥ 1,

E
( N∑

i=1

1(a,∞)(Wn,i)Wn,i‖Xi‖
)
≤ g(a)E

( N∑

i=1

G(Wn,i)‖Xi‖
)
.

Moreover, Hölder’s inequality for Orlicz spaces yields

E
( N∑

i=1

G(Wn,i)‖Xi‖
)
≤ 2 ‖(G(Wn,i))1≤i≤N‖Φ · ‖(Xi)1≤i≤N‖Ψ,

where ‖(Zi)1≤i≤N‖Υ = inf{k > 0 : E
(∑N

i=1Υ(Zi/k)
)
≤ 1}. However, it is clear that

‖(Xi)1≤i≤N‖Ψ <∞ and since Φ(z/k) ≤ Φ(z)/k for all z ≥ 0 and k ≥ 1 (by convexity and

the fact that Φ(0) = 0), one has E
(∑N

i=1Φ(G(Wn,i)/k)
)
≤ k−1E

(∑N
i=1Wn,i log

+Wn,i

)
≤

k−1e−1E(N) for k ≥ 1, so ‖(G(Wn,i))1≤i≤N‖Φ ≤ ⌊e−1E(N)⌋ + 1 for all n ≥ 1. Finally,
there exists CN,X,ψ > 0 depending on (N,X,ψ) only such that

E
( N∑

i=1

1(a,∞)(Wn,i)Wn,i‖Xi‖
)
≤ CN,X,ψg(a) for all a ≥ 1 and n ∈ N,

Now we prove assertion (1). Since β(qn, αn) = E
(∑N

i=1Wn,iXi

)
converges to α as

n→ ∞, it is enough to prove that

(6.4) lim
n→∞

∥∥∥E
( N∑

i=1

Wn,iXi

)
− pF,nE

( N∑

i=1

W̃n,iXi

)∥∥∥ = 0 and lim
n→∞

pF,n = 1.
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Recall the notations (6.1) and (6.2). Due to Lemma 6.1, for all ε > 0 one has limn→∞

(
pVε,n =

E
(∑N

i=1 1Vε(Xi)Wn,i

))
= 1. Also, for any η ∈ (0, 1) there exists ε = εη > 0 such that

E
(∑N

i=1

(
1Vε(Xi)−1F (Xi)

)
‖Xi‖

)
≤ η2. It is so since E(NH) = E(NF ), limε→0 1Vε = 1H

and E
(∑N

i=1 ‖Xi‖
)
<∞. It follows that

∥∥∥E
( N∑

i=1

Wn,iXi

)
− pF,nE

( N∑

i=1

W̃n,iXi

)∥∥∥

≤
∥∥∥E

( N∑

i=1

1UεηWn,iXi

)∥∥∥+ η−1E
( N∑

i=1

(
1Vεη (Xi)− 1F (Xi)

)
1[0,1/η](Wn,i)‖Xi‖

)

+ E
( N∑

i=1

1(1/η,∞)(Wn,i)Wn,i‖Xi‖
)
≤

∥∥∥E
( N∑

i=1

1UεηWn,iXi

)∥∥∥+ η + CN,X,ψg(1/η).

Fix Bη > 0 such that E
(∑N

i=1 1(Bη ,∞)(‖Xi‖)‖Xi‖
)
≤ η2. One also has

∥∥∥E
( N∑

i=1

1UεηWn,iXi

)∥∥∥ ≤ η−1E
( N∑

i=1

1Uεη1[0,1/η](Wn,i)1(Bη ,∞)(‖Xi‖)‖Xi‖
)

+Bη E
( N∑

i=1

1UεηWn,i1[0,Bη ](‖Xi‖)
)
+ E

( N∑

i=1

1(1/η,∞)(Wn,i)Wn,i‖Xi‖
)
,

so
∥∥E

(∑N
i=1 1UεηWn,iXi

)∥∥ ≤ η+Bη(1− pVεη,n) +CN,X,ψg(1/η). Finally, for any ρ > 0, if

we fix η ∈ (0, 1) such that 3η + 2CN,X,ψg(1/η) ≤ ρ and nρ ∈ N such that for all integers

n ≥ nρ one has Bη(1− pVεη,n) ≤ η, we get
∥∥E

(∑N
i=1Wn,iXi

)
− pF,nE

(∑N
i=1 W̃n,iXi

)∥∥ ≤ ρ

for all n ≥ nρ, hence the first assertion of (6.4).

The fact that limn→∞ pF,n = 1 follows from the properties limn→∞ pVε,n = 1 for all ε >

0, limε→0 E
(∑N

i=1 1Vε(Xi)−1F (Xi)
)
= 0, and the inequality E

(∑N
i=1 1(a,∞)(Wn,i)Wn,i

)
≤

(log(a))−1E
(∑N

i=1Wn,i log
+Wn,i

)
≤ (log(a))−1e−1E(N) for all a > 1.

For assertion (2), assume that ‹P ∗
X,φ,α(0) > 0, for otherwise the result is direct. Since

we know that E
(∑N

i=1Wn,iφi
)
≥ − log(β) > 0, where β is as in Lemma 2.1, one has

h := infn∈N−E
(∑N

i=1Wn,i logWn,i

)
> 0. Also, mimicking what was done above yields

limn→∞

∣∣E
(∑N

i=1Wn,iφi
)
− E

(∑N
i=1 W̃n,iφi

)∣∣ = 0, hence limn→∞
E
(∑N

i=1 W̃n,iφi
)

E
(∑N

i=1Wn,iφi
) = 1.

Since limn→∞
−E

(∑N
i=1Wn,i logWn,i

)

E
(∑N

i=1Wn,iφi
) = ‹P ∗

X,φ,α(0), to conclude we only need to prove that

(6.5) lim inf
n→∞

E
(∑N

i=1 W̃n,i log W̃n,i

)

E
(∑N

i=1Wn,i logWn,i

) ≥ 1.

To see this, write

−E
( N∑

i=1

W̃n,i log W̃n,i

)
= log(pF,n)− E

( N∑

i=1

1F (Xi)Wn,i logWn,i

)
,(6.6)
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and setting Zn,i =Wn,i logWn,i, note that

E
( N∑

i=1

1F (Xi)Zn,i

)
≤ E

( N∑

i=1

1F (Xi)1[0,1](Wn,i)Zn,i

)
+ E

( N∑

i=1

1(1,∞)(Wn,i)Zn,i

)
,(6.7)

and that for all ε > 0,

∣∣∣E
( N∑

i=1

1F (Xi)1[0,1](Wn,i)Zn,i

)
− E

( N∑

i=1

1[0,1](Wn,i)Zn,i

)∣∣∣

≤
∣∣∣E

( N∑

i=1

(
1Vε − 1F

)
(Xi)1[0,1](Wn,i)Zn,i

)∣∣∣+
∣∣∣E

( N∑

i=1

1Uε(Xi)1[0,1](Wn,i)Zn,i

)∣∣∣.(6.8)

Since |Wn,i logWn,i| is bounded by 1/e over {Wn,i ∈ [0, 1]}, for every η ∈ (0, h) there exists
εη > 0 such that

(6.9)
∣∣∣E

( N∑

i=1

(
1Vεη (Xi)− 1F (Xi)

)
1[0,1](Wn,i)Zn,i

)∣∣∣ ≤ η/2.

Set aη,n = (1 − pVεη ,n)
−1/2 and rη,n =

∣∣E
(∑N

i=1 1Uεη (Xi)1[0,1](Wn,i)Zn,i
)∣∣. Since by con-

struction limn→∞ aη,n = ∞, for n large enough one has e−aη,n ≤ 1/e, whence |Zn,i| ≤
aη,ne

−aη,n when Wnk,i ∈
[
0, e−aη,n

]
. Consequently, for n large enough

rη,n ≤ aη,ne
−aη,nE(N) + aη,n E

( N∑

i=1

1Uεη (Xi)Wn,i

)
= aη,ne

−aη,nE(N) + a−1
η,n,

which implies that limn→∞ rη,n = 0. Putting this together with (6.6)–(6.9) yields that for

any η > 0, for n large enough, −E
(∑N

i=1 W̃n,i log W̃n,i

)
≥ −E

(∑N
i=1Wn,i logWn,i

)
− η.

This yields (6.5). �

Case 2: F ∈ F
1
X . We start by proving that IX ∩ F ⊂ {αF } (we already proved that

{αF } ⊂ IX ∩ F ), which will establish that IX ∩ F = IFX = ĨFX by definition of IFX and ĨFX .

If E(NF ) > 1 then dimF = 0, and the conclusion is direct. So we assume that

E(NF ) = 1 (and implicitly d ≥ 2 for otherwise the discussion is trivial). Let H ∈ ‹HX

such that F ⊂ H. By definition of F
1
X one has αF = αH , and it remains to prove that

IX∩H ⊂ {αH}. To do so, fix α ∈ IX∩H and a sequence (qn)n∈N ∈ JN
X such that ∇‹PX(qn)

converges to α as n→ ∞. Set Wn,i = e〈qn|Xi〉−
‹PX(qn), i ≥ 1. For ε > 0 and n ∈ N, define

Pn,ε : θ ∈ [0, 1] 7→ E
( N∑

i=1

1Vε(Xi)W
θ
n,i

)
.

Lemma 6.3. For all r ∈ (0, 1), there exist a positive sequence (εk)k∈N converging to 0
and an increasing sequence of integers (nk)k∈N such that limk→∞ ‖Pnk,εk − 1‖∞ = 0, as

well as a sequence (θk)k∈N ∈ [0, 1]N such that for all k ∈ N:

(6.10) E
( N∑

i=1

1Vεk (Xi)1{Wnk,i
∈[1−r,1+r]c}W

θk
nk,i

)
≤ r.
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Assume this lemma for a while. We know that limk→∞ E
(∑N

i=1 1Vεk (Xi)Xi

)
= αH

and limk→∞ E
(∑N

i=1 1Vεk (Xi)Wnk,iXi

)
= α (using the same arguments as in the proof of

Lemma 6.2(1)). Proving that limk→∞ E
(∑N

i=1 1Vεk (Xi)|Wnk,i − 1|‖Xi‖
)
= 0 will give us

the conclusion. To do so, note that for any r ∈ (0, 1), for all k ∈ N, due to (6.10) and the
fact that 1− θk ∈ [0, 1], one has

E
( N∑

i=1

1Vεk (Xi)1[1−r,1+r](Wnk,i)Wnk,i

)
≥ (1− r)1−θkE

( N∑

i=1

1Vεk (Xi)1[1−r,1+r](Wnk,i)W
θk
nk,i

)

≥ (1− r)2.

Consequently, since E
(∑N

i=1 1Vεk (Xi)Wnk,i

)
≤ 1, one obtains

(6.11) E
( N∑

i=1

1Vεk (Xi)1[1−r,1+r]c(Wnk,i)Wnk,i

)
≤ 1− (1− r)2 ≤ 2r.

For η ∈ (0, 1/2), let Bη as in the proof of Lemma 6.2(1). Assume without loss of
generality that Bη > 1 and set r = rη = η/Bη ; one has 1 + rη < η−1. For k ∈ N,

set Ar,k = E
(∑N

i=1 1Vεk (Xi)1[0,1−r](Wnk,i)|Wnk ,i − 1|‖Xi‖
)
. One has Ar,k ≤ BηBr,k +

E
(∑N

i=1 1(Bη ,∞)(‖Xi‖)‖Xi‖
)
, where

Br,k = E
( N∑

i=1

1Vεk (Xi)1[0,1−r](Wnk,i)(1−Wnk,i)
)

≤ |Pnk ,εk(0) − Pnk,εk(1)| + E
( N∑

i=1

1Vεk (Xi)
(
1[1−r,1+r](Wnk,i)r + 1[1−r,1+r]c(Wnk,i)Wnk,i

))
.

Moreover,

E
( N∑

i=1

1Vεk (Xi)|Wnk,i − 1|‖Xi‖
)
≤ Ar,k + E

( N∑

i=1

1[1−r,1+r](Wnk,i)r‖Xi‖
)

+ E
( N∑

i=1

1Vεk (Xi)1[1−r,1+r]c(Wnk ,i)Wnk,i1[0,Bη ](‖Xi‖)Bη
)

+ E
( N∑

i=1

1Vεk (Xi)1[0,1/η](Wnk ,i)η
−11(Bη ,∞)(‖Xi‖)‖Xi‖

)

+ E
( N∑

i=1

1(1/η,∞)(Wnk,i)Wnk,i‖Xi‖
)
.

This, together with the estimates obtained in the proof of Lemma 6.2 as well as (6.11)
yield, after setting δk = 2‖Pnk ,εk − 1‖∞:

E
( N∑

i=1

1Vεk (Xi)|Wnk,i − 1|‖Xi‖
)
≤ Bηδk +

(
3 + E(N) + E

( N∑

i=1

‖Xi‖
))
η + CN,X,ψg(1/η),

which is enough to conclude.
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Proof of Lemma 6.3. Let us now prove the claim. Note first that Pn,ε(0) = E
(
NVε

)
tends

to E
(
NH

)
= 1 as ε → 0. Moreover, arguing like in the proof of (2) shows that for any

fixed ε > 0, one has limn→∞ Pn,ε(1) = 1. Consider a positive sequence (εk)k∈N converging
to 0 and an increasing sequence of integers (nk)k∈N such that limk→∞ Pnk,εk(1) = 1.
Since the functions Pnk,εk are convex, the previous properties imply that to prove that
limk→∞ ‖Pnk ,εk − 1‖∞ = 0, it is sufficient to prove that lim supk→∞ P ′

nk ,εk
(1) = 0.

Suppose, by contradiction, that this is not the case. Without loss of generality, fix

η > 0 such that for all k ∈ N one has P ′
nk,εk

(1) = E
(∑N

i=1 1Vεk (Xi)Wnk,i logWnk,i

)
≥ η.

Define two sequences
(
Rk = E

(∑N
i=1 1Uεk (Xi)1[0,1](Wnk ,i)Wnk,i logWnk,i

))
k∈N

and
(
ak =

(1− Pnk,εk(1))
−1/2 =

(
E
(∑N

i=1 1Uεk (Xi)Wnk ,i

))−1/2)
k∈N

. Using the same argument as in

the proof of Lemma 6.2(2) one can get |Rk| ≤ ake
−akE(N) + a−1

k for k large enough, so

limk→∞Rk = 0, and finally lim infk→∞ E
(∑N

i=1Wnk,i logWnk,i

)
≥ lim infk→∞ P ′

nk,εk
(1) ≥

η. However, for all k ∈ N one has E
(∑N

i=1Wnk,i logWnk,i

)
= −‹P ∗

X(∇
‹PX(qnk)) < 0, since

qnk ∈ JX . This is the desired contradiction.

Next, suppose that there exists r ∈ (0, 1) such that for k large enough, for all θ ∈

[0, 1], one has E
(∑N

i=1 1Vεk (Xi)1{Wnk,i
∈[1−r,1+r]c}W

θ
nk,i

)
> r. This implies that for k large

enough, P ′′
nk,εk

(θ) ≥ r(log(1 + r))2 for all θ ∈ [0, 1], which contradicts the fact that
limk→∞ ‖Pnk ,εk − 1‖∞ = 0. This new contradiction yields the claim. �

Now we come to the validity of the conclusions of Theorem 1.3(4) and (5) for F .

Suppose again that E(NF ) = 1. The previous arguments and calculations show that

limk→∞P ′
nk ,εk

(1) = 0 so lim infk→∞ E
(∑N

i=1Wnk,i logWnk,i

)
≥ lim infk→∞ P ′

nk,εk
(1) = 0.

This implies that ‹P ∗
X(αH) = limk→∞

‹P ∗
X(∇

‹PX(qnk)) = 0. Since under dφ the Hausdorff
dimension of EX(α) is bounded by (| log(β)|)−1 times its Hausdorff dimension under d1
(where β is as in (3.7)), we conclude that dimE(X,αH ) = 0, hence Theorem 1.3(4) for F .

If F = {αF } and E(NF ) > 1, the same argument as when dimF ≥ 1 shows that
‹P ∗
X,φ,αF

(0) ≤ ‹PXF−αF ,φF ,0(0), where ‹PXF−αF ,φF ,0(0) is the Hausdorff dimension of ∂TF

conditionally on non extinction of TF . Now, consider a positive sequence θ = (θn)n∈N con-

verging to 0, as well as W̃ =
(
W̃i = 1[0,N ](i)1F (Xi) exp(−‹PXF−αF ,φF ,0(0)φi)

)
i≥1

. Then,

for n ≥ 1 and (u, i) ∈ Nn−1×N, setWui(θ) =
(
λθ(n))

−1
(
1[1,Nu](i)·(W̃ui+θn1F c(Xui)

))
i≥1
,

where λθ(n) = E
(∑N

i=1 W̃i + θn1F c(Xi)
)
. We leave the reader check that this fam-

ily of random vectors defines almost surely a non degenerate inhomogeneous Mandel-

brot measure µF supported on E(X,αF ) and of Hausdorff dimension ‹PXF−αF ,φF ,0(0), so‹PXF−αF ,φF ,0(0) ≤ dimE(X,αF ) ≤ ‹P ∗
X,φ,αF

(0). This yields Theorem 1.3(4) for F .

Finally, Theorem 1.3(5) for F follows from calculations similar to those done in the
proof of Theorem 1.2, by considering µF instead of µ̺.

(6) Suppose that F ∈ ‹F1
X and let H be an element of HX such that F ′ ⊂ H and F 6⊂ H.

Suppose that ĨFX ∩ ĨF
′

X 6= ∅. Due to point (1) of this proposition applied to the branching

random walk (SnX)n∈N restricted to ∂TF , one has C̊X,F ∩CX,F ′ 6= ∅. This implies that for

any point α ∈ C̊X,F ∩CX,F ′ there are necessarily points α′ and α′′ in a neighbourhood of α
relative to F such that Le,c(α

′) < 0 and Le,c(α
′′) > 0, for otherwise some neighbourhood
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of α relative to F would be included in F ′, hence F ⊂ F ′, which would contradict the

assumption that F ∈ ‹F1
X . However, the inquality Le,c(α

′′) > 0 contradicts the fact that

CX ⊂ L−1
e,c(R−). So Ĩ

F
X ∩ ĨF

′

X = ∅.

By symmetry, we can now suppose that both F and F ′ belong to F
1
X . If E(NF ) > 1

one has F = {αF } = ĨFX . So if ĨFX ∩ ĨF
′

X 6= ∅, then F ⊂ F ′, which contradicts the fact that

F ∈ F
1
X . Still by symmetry, the only case which remains to be studied is E(NF ) = 1 =

E(NF ′
). Then ĨFX ∩ ĨF

′

X 6= ∅ means that αF = αF ′ ∈ H. Since αF = E
(∑N

i=1 1F (Xi)Xi

)

and F ⊂ L−1
e,c(R−), this implies that with probability 1, for all 1 ≤ i ≤ N , 1F (Xi) = 1

implies 1H(Xi) = 1. This holds for any element H of HX containing F ′, from which we

conclude that E(NF∩F ′
) = 1. Consequently, F ∩ F ′ = F because F ∈ “FX , and we get

F ⊂ F ′, new contradiction. Thus ĨFX ∩ ĨF
′

X = ∅. �

7. Proofs of Corollaries 1.1, 1.2 and 1.3

Proof of Corollary 1.1. For each r ∈ Q∩(0,∞), fix k̃r ∈ K̃ such that limn→∞
log(kr(n))

n = r.
It follows from TheoremB that there exists Ω∗ ⊂ Ω of P-probability 1, such that for all
ω ∈ Ω∗, there exists a set Eω of full ν-measure such that for all t ∈ Eω and all r ∈ Q∩(0,∞)

the large deviation principle LD(Λψ, k̃r) holds.

Now fix ω ∈ Ω∗ and t ∈ Eω. Then fix k̃ ∈ K̃. Set ℓ = limn→∞
log(k(n))

n . If ℓ = 0
there is nothing to prove. If ℓ > 0, and λ ∈ DΛψ such that ℓ > −Λ∗

ψ(∇Λψ(λ)), for any

r1 < ℓ < r2 with r1, r2 ∈ Q ∩ (0,∞) and r1 > −Λ∗
ψ(∇Λψ(λ)), for n large enough one has

kr1(n) ≤ k(n) ≤ kr2(n) so that

n−1 log(k(n)/kr1(n))+n
−1Λt

k̃r1 ,n
(λ) ≤ n−1Λt

k̃,n
(λ) ≤ n−1 log(kr2(n)/k(n))+n

−1Λt
k̃r2 ,n

(λ),

hence ℓ−r1+Λψ(λ) ≤ lim infn→∞ n−1Λt
k̃,n

(λ) ≤ lim supn→∞ n−1Λt
k̃,n

(λ) ≤ r2− ℓ+Λψ(λ),

where we used that LD(Λψ , k̃r) holds at (ω, t) for r ∈ {r1, r2}. Since r1 and r2 are arbitrary,

we get that part (1) of LD(Λψ, k̃) holds as well at (ω, t).

To get part (2) of LD(Λψ, k̃), suppose that ℓ < −Λ∗
ψ(∇Λψ(λ)) and take r2 ∈ Q∩ (0,∞)

such that ℓ < r2 < −Λ∗
ψ(∇Λψ(λ)). The fact that LD(Λψ, k̃r2) holds directly implies that

there exists ǫ > 0 such that
{
0 ≤ j ≤ nk(n) − 1 :

Sj+nX(t)−SjX(t)
n ∈ B(∇Λψ(λ), ǫ)

}
= ∅.

for n large enough.

Finally, the fact that part (3) of LD(Λψ , k̃) holds follows from the fact that part (1)
holds and the arguments developed to derive [6, Theorem 2.3(3)]. �

Corollaries 1.2 and 1.3 are proved similarly.

8. Possible relaxation of the assumptions in Theorems 1.1 and 1.2

Set DX = dom(‹PX) and note that DX is closed (as shows a simple application of Fatou’s
lemma).

Assume that DX 6= Rd and DX contains an open neighbourhood of 0, denoted by V .

We can assume that ‹P ∗
X(∇

‹PX(q)) > 0 for all q ∈ V as well.
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Trying to mimick what was done when DX equals Rd, set ÎX = {∇‹PX(q) : q ∈

D̊X , ‹P ∗
X(∇

‹PX(q)) ≥ 0}. In (1.14), replace Rd × IX by D̊X × ÎX in the definition of
JX,φ, and in (1.16) take the supremum over q ∈ DX . The other assumptions remain the

same. Then, as when DX = Rd, for all α ∈ ÎX there exists a unique point qα ∈ DX at

which infq∈DX
‹PX,φ,α(q) is reached. Moreover, if ∂DX is compact, then α ∈ ÎX 7→ qα is

continuous. But it is not clear that in general qα belongs to D̊X .

Denote by ĨX the set of those α ∈ ÎX such that qα ∈ D̊X . The points of ĨX of the

form ∇‹PX(q) such that ‹P ∗
X(∇

‹PX(q)) > 0 are interior points of ĨX . Then, the part of

Theorem 1.1 regarding dimE(X,α) is still valid if one replaces IX by ĨX and that about

dimK is valid if K ⊂ ĨX . Moreover, Theorem 1.2 is valid if for every α ∈ ĨX the domain

DΛψα
of definition of Λψα is taken equal to D̊X − qα. Now, we wish ĨX to be not empty.

The set ĨX is not easy to understand in general. It is obvious that if dφ = d1, then ĨX = ÎX
and qα = q if α = ∇‹PX(q). The same properties hold if more generally the components
of φ = (φi)i≥1 are identically distributed and φ is independent of (N,X = (Xi)i∈N), or if

the components of X are identically distributed and X is independent of (N,φ). Also, ĨX
is not empty if φ is a small perturbation of (1)i∈N.

However, let α0 = E
(∑N

i=1Xi exp(−‹PX,φ,α(0)φi)
)
, where α is arbitrary in Rd (we

already saw that ‹PX,φ,α(0) does not depend on α). By construction one has qα0 = 0 since

∇‹PX,φ,α0(0) = E
(∑N

i=1(Xi − α0) exp(−‹PX,φ,α0(0)φi)
)

= 0. Moreover, it is easily seen

that the differential of α 7→ ∇‹PX,φ,α(0) at α0 is invertible (precisely, it is a nontrivial
multiple of the identity). Consequently, one can apply the implicit function theorem

to f : (q, α) 7→ (q,∇‹PX,φ,α(q)) at (0, α0) where f takes the value (0, 0), and obtain a

neighborhood of α0 over which qα ∈ D̊X , and ‹PX,φ,α(qα) ≥ 0.

It is thus natural to consider the open set ĨX,φ of those α ∈ IX such that qα ∈ D̊X and
f is a local diffeomorphism at (qα, α). Then, the extensions of Theorems 1.1 and 1.2 given

in the penultimate paragraph hold as well if one replaces ĨX by ĨX,φ. Moreover, when

IX = {∇‹PX(q) : q ∈ JX}, one has ĨX,φ ⊂ ĨX .
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Email address: najmeddine.attia@fsm.rnu.tn

LAGA, CNRS UMR 7539, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue
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