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Juha Lehrbäck, Nageswari Shanmugalingam∗

October 4, 2022

Dedicated to Professor Vladimir Maz’ya
for his ground-breaking contributions to potential theory.

Abstract

We study Besov capacities in a compact Ahlfors regular metric measure space by
means of hyperbolic fillings of the space. This approach is applicable even if the
space does not support any Poincaré inequalities. As an application of the Besov
capacity estimates we show that if a homeomorphism between two Ahlfors regular
metric measure spaces preserves, under some additional assumptions, certain Besov
classes, then the homeomorphism is necessarily a quasisymmetric map.

1 Introduction

The study of potential theory is usually directed towards Sobolev spaces of functions on
Riemannian manifolds, and more recently, Newton-Sobolev spaces of functions on complete
doubling metric measure spaces supporting a Poincaré inequality. These Sobolev-type
spaces of functions are associated with a gradient structure, with weak (distributional)
derivatives in the Riemannian case and minimal weak upper gradients in the metric measure
space case. Such gradients have the property that if f is a function in the Sobolev-type
class and f is constant on an open subset of the metric space, then the norm of the weak
derivative (in the Riemannian setting) and the minimal weak upper gradient (in the metric
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setting) are zero almost everywhere in that open set. In the language of Dirichlet forms and
Markov processes, this property is called strongly local property of the energy associated
with the Sobolev classes. Tools used to study potential theory related to Sobolev spaces
include locality together with the doubling property of the measure and the Poincaré
inequality. The books [1, 41], and especially [41, Sections 10.4.1, 13.1.2], have an excellent
sampling of results in potential theory in the Euclidean setting.

However, there are many compact doubling metric measure spaces that do not have suf-
ficient number of non-constant rectifiable curves in order to support a Poincaré inequality.
Examples of such spaces include the standard (thin) Sierpiński carpet and the Sierpiński
gasket, Rickman rug, as well as the von Koch snowflake curve [14, Proposition 4.5]. In
such metric spaces a more suitable replacement for Sobolev spaces might be Besov spaces.
Unfortunately (or fortunately, depending on the perspective) the energy associated with
the Besov spaces are not local. In this paper we use the tools of hyperbolic filling and lifting
of measures to that hyperbolic filling as developed in [9] to study potential theory associ-
ated with Besov function spaces on compact metric measure spaces. We establish Besov
capacitary estimates for various configurations of pairs of subsets of under the assumption
that the measure is Ahlfors Q-regular; see Subsection 2.2 for the definition. A discussion
regarding recent developments connecting Besov spaces of functions in Euclidean spaces
and Sobolev spaces can also be found in [41, Sections 10.3, 10.5].

The results in this note are motivated by the study in [36, 37]. The results of [36] use a
characterization of Besov spaces via scaled Haj lasz-type gradients from [28]. Our motiva-
tion is two-fold; first, to provide an alternate proof of the potential theoretic results in [36,
Lemma 3.3 and Lemma 3.4] using the new perspective of hyperbolic filling that enable us
to avoid the scaled Haj lasz-type method and directly handle the Besov norm as in (2.2),
and second, to extend these capacitary estimates to spaces where the measure is Ahlfors
regular but may not support any Poincaré inequality. As an application of the capacitary
estimates, we extend at the end of this note the discussion relating Besov space preserva-
tion property and qusiconformal maps, given in [36] for Ahlfors regular spaces supporting
a Poincaré inequality, to a more general class of Ahlfors regular compact metric measure
spaces that may not support a Poincaré inequality but are linearly locally path connected.
However, since we do not assume that the metric spaces support a Poincaré inequality, we
assume a stronger condition on the homeomorphism, namely that it is quasisymmetric. We
show that homeomorphisms between two Ahlfors regular (but not necessarily of the same
dimension) compact metric measure spaces that are linearly locally connected, have the
property that if they preserve certain Besov classes under composition, with control over
the Besov norms, then the mapping is necessarily quasisymmetric. This is the content of
Theorem 4.3.

We do not know whether every quasisymmetric map between two compact Ahlfors
regular linearly locally path connected metric measure spaces with the same regularity
dimension preserves certain Besov spaces, as lacking knowledge of a suitable Poincaré
inequality, we do not know that such maps preserve measure densities. We point out that
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a lack of absolute continuity of the pull-back measure does not on its own indicate that
the quasisymmetric map is not a Besov space morphism, as from [9, Proposition 13.3] we
know that every Besov function can be modified on a null set to be made quasicontinuous.
This is supported by some preliminary results, because for certain compact spaces such as
Cantor sets, some partial results are known, see [7, Section 8].

2 Preliminaries

This section is devoted to describing the background notions used in this note, with the
setting considered here delineated in Subsection 2.5.

2.1 Newton-Sobolev spaces

Let 1 ≤ p < ∞. When Ω is an n-dimensional Euclidean (or a Riemannian) domain and
f ∈ Lp(Ω), we say that f is in the Sobolev class W 1,p(Ω) if f has a weak derivative
∇f ∈ Lp(Ω : Rn). Note that if f is of class C1(Ω), then for each compact rectifiable curve
γ in Ω we have

|f(y) − f(x)| ≤

∫

γ
g ds, (2.1)

with g = |∇f |, where x and y denote the two end points of γ. However, if f is not of class
C1(Ω), a weaker analog of this holds, see [48], namely, there is a family Γf of compact
rectifiable curves in Ω such that whenever γ is a compact rectifiable curve in Ω that does
not belong to Γf , then (2.1) holds. Moreover, the family Γf is of p-modulus zero, that is,
there is a non-negative Borel measurable function ρ ∈ Lp(Ω) such that

∫
γ ρ ds = ∞ for

each γ ∈ Γf .
This is the starting point for the theory of Newton-Sobolev functions on metric measure

spaces where weak derivatives do not make sense. Let Y be a metric space equipped with
a Radon measure µ, and let f be a function on Y . We say that a non-negative Borel
measurable function g is a p-weak upper gradient of f if there is a family Γ of non-constant
compact rectifiable curves in X (possibly empty) such that there is a non-negative Borel
measurable function ρ ∈ Lp(Y ) satisfying

∫
γ ρ ds = ∞ for each γ ∈ Γf , and for each non-

constant compact rectifiable curve γ in Y with γ 6∈ Γ, the pair f and g satisfies (2.1).
We set Ñ1,p(Y ) to be the collection of all functions f such that

∫
Y |f |p dµ < ∞ and f

has a p-weak upper gradient g ∈ Lp(Y ). Note that we do not ask that f ∈ Lp(Y ) as
elements of Lp(Y ) are equivalence classes of functions that agree outside measure-null sets,
but the existence of a weak upper gradient from Lp(Y ) may fail if we modify f on a set of
measure zero. The Newton-Sobolev space N1,p(Y ) is set to be the collection Ñ1,p(Y )/ ∼
of equivalence classes, where two functions f1, f2 ∈ Ñ1,p(Y ) are equivalent, f1 ∼ f2, if
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‖f1 − f2‖N1,p(Y ) = 0. Here

‖f‖p
N1,p(Y )

:=

∫

X
|f |p dµ + inf

g

∫

X
gp dµ,

with the infimum taken over all p-weak upper gradients g of f . For 1 ≤ p < ∞, for each
f ∈ N1,p(Y ) there is a minimal p-weak upper gradient gf ∈ Lp(Y ), that has the smallest
Lp-norm of all p-weak upper gradients of f . We refer the interested reader to [32] and [5]
for more on Newton-Sobolev spaces.

2.2 Poincaré inequalities and doubling measures

For 1 ≤ p < ∞, we say that the metric measure space (Y, d, µ) supports a p-Poincaré
inequality if there is a constant C > 0 such that

∫

B
|f − fB| dµ ≤ C rad(B)

(∫

B
gp dµ

)1/p

whenever g is a p-weak upper gradient of f in Y and B is a ball in Y . Here we use the
notation

uB =

∫

B
u dµ = µ(B)−1

∫

B
u dµ

for the mean-value integral over B. The validity of a p-Poincaré inequality immediately
implies that Y is connected. If µ is in addition doubling, and Y is locally compact, then Y
is quasiconvex, that is, for each x, z ∈ Y there is a curve γ in Y with end points x, y and
length ℓ(γ) ≤ C d(x, z) with C independent of x, z. This quasiconvexity property was first
proved in [21] in the context of complete metric measure spaces, but see [23, Theorem 3.1]
for the corresponding proof for locally compact metric measure spaces.

Recall that a Radon measure µ is doubling if there is a constant Cd ≥ 1 such that
whenever y ∈ Y and r > 0, we have

0 < µ(B(x, 2r)) ≤ Cd µ(B(x, r)) < ∞.

We say that µ is Ahlfors Q-regular for some Q > 0 if there is a constant C > 0 such that
whenever x ∈ Y and 0 < r < 2 diam(Y ),

rQ

C
≤ µ(B(x, r)) ≤ C rQ.

Note that Ahlfors Q-regular measures are comparable to the Q-dimensional Hausdorff
measure HQ (see Subsection 2.6).

See [32] and [5] for more details on analysis on doubling metric measure spaces sup-
porting Poincaré inequalities.
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2.3 Besov spaces

The primary focus of our note is on the Besov spaces. These were initially formulated by
O. V. Besov in order to study Sobolev extension and restriction theorems for somewhat
smooth Euclidean domains, see for instance [3, 41, 43]. Let 1 ≤ p < ∞ and 0 < θ < 1. A
function u ∈ Lp(Y ) is said to be in the Besov space Bθ

p,p(Y ) if its Besov energy

‖u‖p
Bθ

p,p(Y )
:=

∫

X

∫

X

|u(x) − u(z)|p

d(x, z)θpµ(B(x, d(x, z)))
dµ(z) dµ(x) (2.2)

is finite. Unlike the Newton-Sobolev functions, an arbitrary perturbation of a Besov func-
tion on a set of measure zero gives an equivalent Besov function.

If (Y, µ) is a doubling metric measure space supporting a p-Poincaré inequality, then
Bθ

p,p(Y ) is obtained via a real interpolation of N1,p(X) with Lp(X), see [2] for the Euclidean
setting and [27] for more on this in the metric setting. However, in this note we are
not interested in the interpolation properties connecting Newton-Sobolev spaces to Besov
spaces, but in the trace properties. Jonsson and Wallin studied the trace relationship
between Sobolev classes on Euclidean spaces and Ahlfors regular compact subsets of the
Euclidean spaces, see [33, 34].

If Y is a non-complete, locally compact metric measure space, we set ∂Y := Y \Y . Here
Y is the metric completion of Y , obtained by considering equivalence classes of Cauchy
sequences in Y ; hence ∂Y consists of equivalence classes of Cauchy sequences in Y that
do not converge in Y . Observe that if Y is locally compact, then necessarily Y is an open
subset of Y . Suppose that ν is a Borel measure on ∂Y and that ∂Y is proper. We say that
Bθ

p,p(∂Y ) is the trace space of N1,p(Y ) if there is a bounded operator

T : N1,p(Y ) → Bθ
p,p(∂Y )

and a bounded linear extension operator

E : Bθ
p,p(∂Y ) → N1,p(Y )

such that

1. Tu = u|∂Y whenever u is a Lipschitz function on Y ; here u is the unique continuous
extension of u to ∂Y ,

2. T ◦ E is the identity map on Bθ
p,p(∂Y ).

The subject of traces of Sobolev functions in Euclidean domains dates back to the work
of Besov, Gagliardo, Jonsson, and Wallin [3, 4, 25, 45, 33, 34]. The canonical textbook of
Maz’ya [41] contains a nice discussion on traces in Chapter 11, while [42, 43] contain results
linking traces of Sobolev spaces to Besov-type spaces in certain Euclidean domains. See
also the text [44] for a general treatment of boundary values of Sobolev functions on “bad”

5



Euclidean domains; these are merely a few papers on the topic from a vast literature on
traces, as we cannot hope to list all papers on the topic of traces here. We refer interested
readers to [27, 39, 40, 8] for more on Besov spaces as traces of Newton-Sobolev spaces in
the metric setting, and to [47] for connections to other expressions of Besov spaces.

2.4 Hyperbolic fillings and uniformization

Throughout this note, (Z, dZ , ν) is a compact doubling metric measure space, and without
loss of generality we may assume that 0 < diam(Z) < 1. For α > 1 and τ > 1, we construct
a Gromov hyperbolic space X from Z as a graph. For each non-negative integer n we set
An to be a maximal α−n -separated subset of Z such that An ⊂ An+1 for each n ∈ N0.
The vertex set of the graph X is the set

⋃
n∈N{n} × An. Two vertices v = (n, xn) and

w = (m,xm) are neighbors if v 6= w, |n − m| ≤ 1, and B(xn, τα
−n) ∩ B(xm, τα−m) is

non-empty if n 6= m and B(xn, α
−n) ∩ B(xm, α−m) is non-empty if n = m. We consider

each pair of neighbors to be connected with an edge that is an interval of unit length.
There is only one vertex p0 corresponding to the level n = 0, that is, {0} ×A0 = {p0}.

Variants of hyperbolic fillings have been constructed in [19, 15, 13, 11, 9, 12], but the
one described above is from [9] where it was also shown that X is a Gromov hyperbolic
space and that with ε = log(α), the uniformization Xε of X as in [10] yields a uniform space
such that Z is biLipschtiz equivalent to ∂Xε. Here, the uniformization is accomplished via
the modified metric dε given by

dε(x, y) = inf
γ

∫

γ
e−εd(γ(t),p0) ds(t)

with the infimum over all rectifiable curves γ in X with end points x and y. Recall that Xε

is a uniform space if there is a constant A ≥ 1 such that for each pair of points x, y ∈ Xε

there is a curve γ in Xε with end points x and y such that ℓε(γ) ≤ Adε(x, y) and for each
z ∈ γ,

min{ℓ(γx,z), ℓ(γz,y)} ≤ Aδε(z).

Here, γx,z and γz,y denote subcurves of γ with end points x, z and z, y respectively, and

δε(z) := distdε(z, ∂Xε) := inf
w∈∂Xε

dε(z, w).

When Z is equipped with a measure ν, we can lift up this measure to a measure µ+ on
X by setting balls of radius 1 centered at vertices v = (n, x) to have measure equal to
ν(B(x, α−n)). For each β > 0 we can uniformize this measure to obtain a measure µβ on
Xε by setting dµβ(v) = e−βd(v,p0) dµ+(v). This gives us a one-parameter family of lifted
measures on Xε, first constructed in [9].

Recently Clark Butler extended the construction of hyperbolic fillings from compact
doubling metric spaces to complete doubling metric spaces that are unbounded, see [16, 17,
18]. It was shown in [16] that trace and extension theorems similar to the ones in [9] hold
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even for the unbounded setting. In this note we focus on compact spaces Z, but point out
that with minimal effort the results here can be extended to unbounded complete doubling
metric measure spaces as well by using the tools of [16, 17].

2.5 Uniformized measure µβ and connection to ν

For β > 0 let µβ be the uniformized lift of ν to Xε as constructed in [9] and described in
Subsection 2.4. From the results in [9] we know that the metric measure space (Xε, dε, µβ)
is a doubling metric measure space supporting the best possible Poincaré inequality, namely
the 1-Poincaré inequality.

There is a relationship between ν and µβ; whenever z ∈ Z and 0 < r ≤ diam(Z), we
have, by [9, Theorem 10.3] and the doubling property of µβ, that

µβ(B(z, r)) ≃ rβ/εν(B(z, r)). (2.3)

We treat ν as a measure on X, obtained by extending ν from Z = ∂Xε to X by zero.

Proposition 2.1 ([9, Theorem 1.1 and Theorem 10.2]). With the choice of α and ε as
above, the uniformized space Xε, equipped with the metric dε and the measure µβ, is dou-
bling and supports a 1-Poincaré inequality. Moreover, for the choice θ = 1 − β/(εp), the
Besov space Bθ

p,p(Z) is the trace space of N1,p(Xε).

The above proposition is a key tool for us in this note. We will exploit this identifica-
tion of Bθ

p,p(Z) with the trace of N1,p(Xε) frequently. The fine properties of functions in
N1,p(Xε, µβ) follow from the results of [32, 5] thanks to the doubling property of µβ and
the support of the 1-Poincaré inequality. While N1,p(Xε) also depends on the choice of β
in defining the measure on Xε, we will suppress this dependance in our notation as we fix
θ and p, and hence β in this note.

Also the following construction of the extension Eu of u ∈ Bθ
p,p(Z) to Xε will be

important. In [9, Theorem 12.1], the extension is constructed by first defining Eu((n, z)),
z ∈ An, by

Eu((n, z)) =

∫

B(z,α−n)
u dν, (2.4)

and then extending Eu linearly (with respect to the uniformized metric dε) to the edges
that make up the graph Xε. It is shown in [9, Theorem 12.1] that Eu ∈ N1,p(Xε, µβ) when
θ = 1 − β/(pε), with TEu = u ν-a.e. in Z, and moreover

∫

Xǫ

|Eu|pdµβ .

∫

Z
|u|p dν

and ∫

Xǫ

gpEudµβ . ‖u‖p
Bθ

p,p(Z)
. (2.5)
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2.6 Capacities and Hausdorff content

As mentioned in Subsection 2.1, functions in N1,p(Y ) cannot be arbitrarily modified on
general sets of measure zero. Therefore, to study fine properties of such functions, we need
a finer notion than null measure, and this is one purpose of the notion of capacity.

Let (Y, d, µ) be a metric measure space with µ a Radon measure. Given a set E ⊂ Y
and 1 ≤ p < ∞, we set the Newton-Sobolev p-capacity of E to be the number

CapN1,p(Y )(E) := inf
u

‖u‖p
N1,p(Y )

,

where the infimum is over all functions u ∈ Ñ1,p(Y ) satisfying u ≥ 1 on E. It follows from
the results of [46, 32] that Newton-Sobolev functions can be arbitrarily perturbed only on
sets of capacity zero.

On the other hand, Besov functions can be perturbed arbitrarily on sets of measure
zero. For this reason the Besov capacity of E is set to be

CapBθ
p,p(Y )(E) := inf

u

∫

Y
|u|p dµ + ‖u‖p

Bθ
p,p(Y )

with infimum over all u ∈ Bθ
p,p(Y ) such that u ≥ 1 on a neighborhood of E.

Related to the above two capacities there is a notion of relative capacity of a condenser
(E,F ;Y ). If E,F ⊂ Y , then

capN1,p(Y )(E,F ) := inf
u

∫

Y
gpu dµ

where the infimum is over all u ∈ N1,p(Y ) satisfying u ≥ 1 in E and u ≤ 0 in F , and gu the
minimal p-weak upper gradient of u as described at the end of Subsection 2.1. Similarly,

capBθ
p,p(Y )(E,F ) := inf

u
‖u‖p

Bθ
p,p(Y )

,

where the infimum is over all u ∈ Bθ
p,p(Y ) satisfying u ≥ 1 in a neighborhood of E and

u ≤ 0 in a neighborhood of F . Note that if F ⊂ F1 and E ⊂ E1, then

capBθ
p,p(Y )(E,F ) ≤ capBθ

p,p(Y )(E1, F1).

Returning to our setting, it was shown in [9] that N1,p(Xε) = N1,p(Xε) and that when
E ⊂ Z,

CapN1,p(Xε)
(E) ≃ CapBθ

p,p(Z)(E).

It was shown there moreover that if CapN1,p(Xε)
(E) = 0 then necessarily ν(E) = 0. Note

here that the statement holds regardless of the value of β > 0 that generated the measure
µβ on Xε, provided that β is chosen so that θ = 1 − β

εp .
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Sobolev capacity is associated with Hausdorff content, as seen for example in [41,
Section 1.1.18] in the Euclidean setting and [31, Theorem 2.26] in Euclidean domains
equipped with admissible weights. Given a set E ⊂ Y , 0 < α < ∞, and 0 < τ ≤ ∞, the
α-dimensional Hausdorff content of E at scale τ is the number

Hα
τ (E) := inf

(Bi)i∈I⊂N

∑

i∈I

diam(Bi)
α,

where the infimum is over all countable covers (Bi)i∈I⊂N of the set E, by balls Bi, such
that for each i ∈ I we have diam(Bi) < τ . The α-dimensional Hausdorff measure of E is
then given by

Hα(E) := lim
τ→0+

Hα
τ (E).

Hausdorff measures are a natural metric tool to use in an Ahlfors Q-regular space Y to
analyze Sobolev capacities. For instance, if we assume in addition that Y is complete, un-
bounded and supports a p-Poincaré inequality, with 1 < p ≤ Q, then it follows from the re-
sults in [22] that if CapN1,p(Y )(E) = 0, then Hs

∞(E) = 0 for every s > p−Q, and conversely,

if HQ−p
∞ (E) = 0 (or even HQ−p

∞ (E) < ∞, when 1 < p < Q), then CapN1,p(Y )(E) = 0. We
refer the interested reader to [24, Section 4.7.2] for the Euclidean setting. Additional in-
formation can be found in [41, pages 28, 760]. In more general doubling metric measure
spaces co-dimensional Haudorff measures are more useful in controlling Sobolev capacites,
see for instance [26, Proposition 3.11, Section 8], and relative capacities, see e.g. [38, Propo-
sitions 4.1 and 4.3].

3 Besov capacitary estimates

In studying quasisymmetric mappings between metric spaces, there are two types of con-
figurations that play a key role. The first type of configuration is that of an annulus
B(x,R) \B(x, r), and the associated condenser is the triplet (B(x, r),X \B(x,R),X) for
0 < r < R ≤ diam(X)/2. The second type of configuration arises from considering two
compact continua E,F contained in a ball B(x,R) with min{diam(E),diam(F )} ≥ R/C,
and the associated condenser is (E,F,X). We consider these two configurations in the two
subsections of this section.

We assume throughout this section that the measure ν on Z is Ahlfors Q-regular for
some Q > 0. The results of this section are modeled after [36, Lemma 2.4 and Lemma 2.3]
and [30].

3.1 Relative Besov capacitary estimates for annular rings

In this subsection we consider annular rings in Z, namely sets of the form E = B(x0, r) and
F = Z \B(x0, R) for x0 ∈ Z and 0 < r < R. An analog of Case 2 of the following theorem
for relative Newton-Sobolev capacity capN1,Q(Z) can be found in [30, Lemma 3.14].
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Theorem 3.1. Assume that Z is a compact metric space and that ν is an Ahlfors Q-
regular measure on Z, for some Q > 0. Let 1 < p < ∞ and 0 < θ < 1, and suppose that
0 < r < R/2 and x0 ∈ Z. Then

capBθ
p,p(Z)(B(x0, r), Z \B(x0, R)) ≤ ξ(R) Ξ(r) Ψ(R/r),

where

1. if pθ > Q, then ξ(R) ≃ RQ−θp, Ξ(r) = 1 and Ψ(R/r) = 1.

2. if pθ = Q, then ξ(R) ≃ Ξ(r) ≃ 1 and Ψ(R/r) = log(R/r)1−p.

3. if pθ < Q, then ξ(R) = 1, Ξ(r) ≃ rQ−θp, and Ψ(R/r) = 1.

Therefore, when pθ = Q or when pθ < Q and R ≤ 1 the Besov capacity of the condenser
(B(x0, r), Z \B(x0, R)) is at most Ψ(R/r) ≃ log(R/r)−τ for some τ ∈ {p, p − 1}.

Proof. We will utilize the hyperbolic filling here to give an alternate proof than the one
in [36]. We fix θ with 0 < θ < 1 and choose β > 0 such that θ = 1 − β/(εp), and consider
the space (Xε, dε, µβ) as described in Subsection 2.4. Then Bθ

p,p(Z) is the trace space of
N1,p(Xε, µβ), as explained in Proposition 2.1.

In Case 1, that is, when pθ > Q, we consider the test function u given by

u(x) =

(
1 −

2dist(x,B(x0, R/2))

R

)

+

.

Then u = 1 on B(x0, r) ⊂ B(x0, R/2), u = 0 on Xε \ B(x0, R), and u is 2/R-Lipschitz
continuous. Therefore

∫

Xε

gpu dµβ . µβ(B(x0, R) \B(x0, R/2))

(
2

R

)p

.

Note that the balls considered in the above estimate are all centered at points in Z = ∂Xε,
and so we are in the realm of (2.3). Using the facts that µβ(B(x0, R)\B(x0, R/2)) . RQ+β/ε

and θ = 1 − β/(pε), we obtain
∫

Xε

gpu dµβ . RQ−pθ.

In Case 3, that is, when pθ < Q, we instead consider the function u given by

u(x) =

(
1 −

dist(x,B(x0, r))

r

)

+

and note that u = 1 on B(x0, r) and u = 0 on Xε \B(x0, 2r). Thus we see that
∫

Xε

gpu dµβ . rQ−θp.
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In both of these cases, by [9, Theorem 11.1(11.2)], with u also denoting the trace of
u to Z (and as u is Lipschitz continuous, this is a pointwise identification), we have the
desired upper bound for the Besov capacity as well.

Finally, in Case 2 (pθ = Q) we define the function u on Xε by

u(x) := min

{(
log(R/d(x, x0))

log(R/r)

)

+

, 1

}
.

Then by the chain rule for upper gradients (see [32, (6.3.19)] or [5, Theorem 2.16]) and by
the fact that 1 is an upper gradient of the distance function, we see that

gu(x) ≤
1

log(R/r)

1

d(x, x0)
χB(x0,R)\B(x0,r)(x). (3.1)

Again by [9, Theorem 11.1(11.2)], we have

‖u‖p
Bθ

p,p(Z)
.

∫

Xε

gpu dµβ.

Hence it suffices to obtain integral estimates for gu. Note that B(x0, R) \ B(x0, r) ⊂⋃nR
j=0B(x0, 2

j+1r)\B(x0, 2
jr) where nR is the smallest positive integer such that 2nRr ≥ R.

We have nR ≃ log(R/r). Then by the bound on gu in (3.1) and by (2.3),

∫

Xε

gpu dµβ ≤ log(R/r)−p
nR∑

j=0

∫

B(x0,2j+1r)\B(x0,2jr)

1

d(x, x0)p
dµβ(x)

. log(R/r)−p
nR∑

j=0

µβ(B(x0, 2
jr))

(2jr)p

≃ log(R/r)−p
nR∑

j=0

ν(B(x0, 2
jr))

(2jr)p−β/ε

≃ log(R/r)−p
nR∑

j=0

1

(2jr)p−Q−β/ε
= log(R/r)−p nR,

where the last equality followed from the identity θ = 1 − β/(εp) together with pθ = Q,
and the penultimate estimate came from the assumption that ν is Ahlfors Q-regular. Since
nR ≃ log(R/r), we have

∫

Xε

gpu dµβ . log(R/r)−pnR ≃ log(R/r)1−p,

verifying the claim in Case 2.
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Remark 3.2. Note that in Case 2, the capacity of the annulus tends to zero as R/r → ∞.
In Case 3 then the capacity of the annulus tends to zero as r → 0. This perspective plays
a key role in the study of homeomorphisms that induce Besov space morphisms, and their
relationship to local quasisymmetry and metric quasiconformality, see Section 4 below.

We record also the following converse of Theorem 3.1. These bounds are not needed in
the later results, but they in particular show that the estimates in Theorem 3.1 are often
optimal. We refer the interested reader to [32, Lemma 9.3.6] and [6, Sections 6 and 7] for
the analogous estimates for Sobolev capacity in doubling metric measure spaces supporting
a p-Poincaré inequality.

Theorem 3.3. Assume that Z is a compact metric space and that ν is an Ahlfors Q-regular
measure on Z, for some Q > 0. Let 1 < p < ∞ and 0 < θ < 1, and suppose that x0 ∈ Z
and 0 < r < R < diam(Z)/4C0 for suitably large constant C0 > 2. Then

capBθ
p,p(Z)(B(x0, r), Z \B(x0, R)) ≥ ξ(R) Ξ(r) Ψ(R/r),

where ξ,Ξ, and Ψ are as in Theorem 3.1, and in the case pθ = Q we assume in addition
that r ≤ R/2.

Proof. Fix 0 < θ < 1 and choose β > 0 so that θ = 1 − β/(pε). Let u ∈ Bθ
p,p(Z) be such

that u = 1 in a neighborhood of B(x0, r) and u = 0 in a neighborhood of Z \B(x0, R).
Let Eu be the extension of u to the uniformization Xε of the hyperbolic filling X of Z

as explained in Section 2.5. Then Eu ∈ N1,p(Xǫ, µβ), and by (2.5) we have
∫

Xǫ

gpEudµβ . ‖u‖p
Bθ

p,p(Z)
.

From the way the extension Eu is defined in [9, Theorem 12.1], see (2.4), it follows that
Eu = 1 on Bε(x0, r/(τα)) and Eu = 0 on Xε \ Bε(x0, ταR); here the parameters τ > 1
and α > 1 are as in Section 2.4, and the subscript ε in Bε refers to the fact that these balls
are with respect to Xε. We ensure that C0 ≥ 2τα.

Write r′ = r/(τα) and R′ = ταR. By our assumption on C0, we know that R′ <
diam(Z)/4. Then Eu is a test function for the capacity capN1,p(Xε)

(Bε(x0, r
′),Xε\Bε(x0, R

′))
and so ∫

Xε

gpEu dµβ ≥ capBθ
p,p(Z)(Bε(x0, r

′),Xε \Bε(x0, R
′)).

Recall from [9, Lemma 10.6] that as Z is Ahlfors Q-regular, we have a lower mass
bound exponent for µβ on Xε given by Qβ := max{1, Q + β

ε }. Also from Proposition 2.1
we know that (Xε, dε, µβ) is doubling and supports a 1-Poincaré inequality; hence we are
in a position to apply [32, Lemma 9.3.6] together with [35], to obtain that

capN1,p(Xε)
(Bε(x0, r

′),Xε \Bε(x0, R
′)) ≥ C(R′, r′),

where

12



1. if 1 < p < Qβ, then Qβ = Q + β/ε > 1 and thus

C(R′, r′) ≃
µβ(Bε(x0, r

′))
1− p

Qβ µβ(Bε(x0, R
′))

p
Qβ

(R′)p

≃ (r′)
(Q+β

ε
)(1− p

Qβ
)
(R′)

p
Qβ

(Q+β
ε
)−p

≃ rQ+
β
ε−p.

2. if 1 < p = Qβ, then again Qβ = Q + β/ε and so

C(R′, r′) ≃
µβ(Bε(x0, R

′))

(R′)Qβ

(
log

(
C µβ(Bε(x0, R

′))

µβ(Bε(x0, r′))

))1−Qβ

≃ (R′)Q+β
ε
−Qβ

(
log

(
C R′

r′

))1−Qβ

≃
(
log R

r

)1−p
.

In the last step we need the assumption that R/r ≥ 2.

3. if p > Qβ, then

C(R′, r′) ≃
µβ(Bε(x0, R

′))

(R′)p
≃ (R′)Q+β

ε
−p ≃ RQ+β

ε
−p.

In the above cases we also used (2.3) and the fact that ν is Ahlfors Q-regular. Note that
the balls Bε(x0, R) and Bε(x0, r) are balls centered at the point x0 ∈ Z. (Alternatively,
similar estimates as above can be obtained by applying the capacity estimates given in [6,
Sections 6 and 7].)

From the above estimates and (2.5) we conclude that

‖u‖p
Bθ

p,p(Z)
≥ C(R, r),

where C(R, r) has the desired forms as in the statement of Theorem 3.1 since θp = p−β/ε.
The claim follows by taking the infimum over all such capacity test functions u.

3.2 Loewner-type bounds for Besov capacity

Next we obtain an estimate for the Besov capacity associated to two compact continua
E,F , given in terms of their Hausdorff contets. Recall the definition of Hausdorff content
from Subsection 2.6.

Theorem 3.4. Assume that Z is a compact metric space and that ν is an Ahlfors Q-regular
measure on Z, for some Q > 0. Let x0 ∈ Z, R > 0 and 0 < s < Q. Suppose also that E,F
are two disjoint compact sets such that E,F ⊂ B(x0, R). Then for each p > max{1, Q− s}
and for each θ satisfying Q−s

p < θ < 1, we have

capBθ
p,p(Z)(E,F ) &

Hs
∞(E) ∧Hs

∞(F )

Rs−Q+θp
.
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The proof of the theorem, given next, is modeled after the corresponding result for
Sobolev capacities found in [30].

Proof. Fix p > 1 such that Q−s
p < 1, and let θ > 0 be such that Q−s

p < θ < 1. Choose
β > 0 in the hyperbolic filling construction given in Subsection 2.4 so that θ = 1− β/(pε).
Then, because of the condition that Q − s < θp, necessarily p + s − Q − β/ε > 0. Let
u ∈ Bθ

p,p(Z) such that u = 1 in a neighborhood of E and u = 0 in a neighborhood of F ,
and let Eu be the extension of u to the uniformization Xε of the hyperbolic filling X of Z
as explained in Section 2.5. Then Eu ∈ N1,p(Xǫ, µβ), and by (2.5) we have

∫

Xǫ

gpEudµβ . ‖u‖p
Bθ

p,p(Z)
.

We now proceed essentially as in [30, Proof of Theorem 5.9]. We cannot apply the
theorem from [30] directly because we do not have knowledge of the requisite lower mass
bound property for µβ on Xε. Nevertheless, their proof does apply here because we only
need to apply the lower mass bound property on balls centered at points in ∂Xε = Z,
and for such balls we have the needed lower mass bound estimate from (2.3). For the
convenience of the reader, we provide the complete proof here. See also [36] for a similar
adaptation of [30].

We first show that

Hs
∞(E) ∧Hs

∞(F )

Rs+p−(Q+β/ε)
.

∫

B(x0,4R)
gpEudµβ.

If there exist points x ∈ E and y ∈ F such that neither |Eu(x)− (Eu)Bε(x,R)| nor |Eu(y)−
(Eu)Bε(y,3R)| exceeds 1/3, then

1 ≤ |Eu(x) − Eu(y)| ≤
1

3
+ |EuBε(x,R) − EuBε(y,3R)| +

1

3
,

and so from the 1-Poincaré inequality on Xε together with Hölder’s inequality, the above
inequality implies that

1

3
≤ C

∫

Bε(y,3R)
|Eu−EuBε(y,3R)|dµβ ≤ CR

(∫

Bε(y,3R)
gpEudµβ

)1/p

.

Hence from (2.3) we get

ν(Bε(y,R))

Rp−β/ε
.

µβ(Bε(y,R))

CRp
≤

∫

Bε(y,3R)
gpEudµβ. (3.2)

Then, from the Ahlfors Q-regularity of ν, together with the estimates Hs
∞(E) . Rs and

Hs
∞(F ) . Rs and the identity θp = p− β/ε, it follows that

Hs
∞(E) ∧Hs

∞(F )

Rs−Q+θp
.

Rs

Rs−Q+p−β/ε
.

∫

Bε(x0,4R)
gpEudµβ

14



as desired.
Now suppose that the above assumption fails. Then either for each x ∈ E we have

1/3 ≤ |Eu(x) − EuBε(x,R)|, or else for each y ∈ F we have 1/3 ≤ |Eu(y) − EuBε(y,3R)|.
Suppose now that for each x ∈ E we have

1

3
≤ |Eu(x) − EuBε(x,R)|.

Set τ := s+p−(Q+β/ε)
p ; note that τ > 0. Then since x is a Lebesgue point of Eu, we have

C(τ)

∞∑

j=0

2−iτ .

∞∑

j=0

|EuBj (x) − EuBj+1(x)| .

∞∑

j=0

2−jR

(∫

Bj(x)
gpEudµβ

)1/p

.

∞∑

j=0

(2−jR)1−(Q+β/ε)/p

(∫

Bj(x)
gpEudµβ

)1/p

,

where Bj(x) := B(x, 2−jR). Here we also used the fact that for balls Bε(x, ρ) with x ∈ Z
and 0 < ρ ≤ diam(Z) we have µβ(Bε(x, ρ) ≃ ρQ+β/ε. Hence there exists jx ∈ N∪ {0} such
that

2−jxτp . (2−jxR)p−(Q+β/ε)

∫

Bjx (x)
gpEudµβ. (3.3)

The above inequality, together with our choice of τ , gives

2−jxs . Rp−(Q+β/ε)

∫

Bjx (x)
gpEudµβ .

By the 5-covering Lemma [29] there exists a countable pairwise disjoint family of balls
{B(xk, 2

−jxkR)}k∈N such that

E ⊆
⋃

k

B(xk, 2
−jxk 5R)

and

2−jxks . Rp−(Q+β/ε)

∫

Bjxk
(xk)

gpEudµβ. (3.4)

Hence, by (3.4) and the pairwise disjointness property, we have

Hs
∞(E) ≤ C

∞∑

k=1

(2−jxkR))s . Rs+p−(Q+β/ε)

∫

B(x0,4R)
gpEudµβ.

A similar argument shows that if for each y ∈ F we have

1

3
≤ |Eu(y) − EuB(y,3R)|,
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then

Hs
∞(F ) . Rs+p−(Q+β/ε)

∫

B(x0,4R)
gpEudµβ .

Combining the two possibilities and applying the identity θp = p− β/ε, we see that

Hs
∞(E) ∧Hs

∞(F )

Rs−Q+θp
.

∫

B(x0,4R)
gpEudµβ (3.5)

as desired.
The proof is completed by first recalling from (2.5) that

∫
Xε

gpEu dµβ . ‖u‖Bθ
p,p(Z), and

then taking the infimum over all capacity test functions u in the above two cases.

If E and F are connected sets and s = 1, then Hs
∞(E) ≃ diam(E) and Hs

∞(F ) ≃
diam(E). If they are not necessarily connected but ν(E) > 0 and ν(F ) > 0, then for each
0 < s < Q we have that Hs

∞(E) ≥ ν(E)Rs−Q and Hs
∞(F ) ≥ ν(F )Rs−Q.

4 Bθ
p,p-morphisms and quasisymmetric maps

From [20, Theorem 1.1] it is known that there is a correspondence between quasisymmetric
mappings between two Ahlfors regular compact metric spaces and certain classes of weights
on the hyperbolic fillings of either of the metric spaces. The perspective of [36, 37] is
different in that unlike [20], they consider impact of quasisymmetric mappings on the
relevant Besov classes of functions on the metric spaces themselves.

In this section, we extend the theory from [36] to Ahlfors regular spaces which do
not support any Poincaré inequalities, see Theorem 4.3 below. We begin by recalling the
definitions of quasisymmetry.

Definition 4.1. Let (Z, dZ) and (W,dW ) be metric spaces.

(a) A homeomorphism ϕ : Z → W is a quasisymmetric map if there is a continuous
monotone increasing function η : [0,∞) → [0,∞) with η(0) = 0 and η(t) > 0 when
t > 0, such that for each triple of points x, y, z ∈ Z we have

dW (ϕ(x), ϕ(z))

dW (ϕ(x), ϕ(y))
≤ η

(
dZ(x, z)

dZ(x, y)

)
.

(b) A homeomorphism ϕ : Z → W is weakly quasisymmetric if there is some H > 0 such
that for each triple of points x, y, z ∈ Z we have

dW (ϕ(x), ϕ(z))

dW (ϕ(x), ϕ(y))
≤ H whenever

dZ(x, z)

dZ(x, y)
≤ 1.

In addition, ϕ is uniformly locally weakly quasisymmetric if there is some ρ > 0 such
that the restriction of ϕ to balls in Z of radii at most ρ are weakly quasisymmetric
with the same constant H.
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Remark 4.2. From [29, Theorem 10.19] we know that if both Z and W are connected
doubling metric spaces, then weak quasisymmetry is equivalent to quasisymmetry. More-
over, the proof given there works even if ϕ is only known to be uniformly locally weakly
quasisymmetric; this is seen as follows.

From uniformly locally weak quasisymmetry, together with the connectendess property,
we know that the homeomorphism is promoted to uniformly local quasisymmetry; that is,
there is some r0 > 0 such that whenever x, y, z ∈ Z are three distinct points such that
diam{x, y, z} ≤ r0, we have

dW (ϕ(x), ϕ(y))

dW (ϕ(x), ϕ(z))
≤ η

(
dZ(x, y)

dZ(x, z)

)
.

Since Y is compact and ϕ−1 is continuous, it follows that there is some κ > 0 such that
for all x, y ∈ X we have that dW (ϕ(x), ϕ(y)) ≥ κ whenever dZ(x, y) ≥ r0/4. If x, y, z ∈ X
are three distinct points such that dZ(x, z) ≤ r0/2 and dZ(x, y) > r0/2, then by the
connectedness property of Z we can find w0 ∈ Z such that dZ(x, y0) = r0/2, and so by the
monotonicity of the quasisymmetry gauge η,

dW (ϕ(x), ϕ(y))

dW (ϕ(x), ϕ(z))
=

dW (ϕ(x), ϕ(y))

dW (ϕ(x), ϕ(y0))

dW (ϕ(x), ϕ(z))

dW (ϕ(x), ϕ(y0))

≤
diam(W )

κ
η

(
dZ(x, y0)

dZ(x, z)

)
≤

diam(W )

κ
η

(
dZ(x, y)

dZ(x, z)

)
.

Moreover,

dW (ϕ(x), ϕ(z))

dW (ϕ(x), ϕ(y))
=

dW (ϕ(x), ϕ(z))

dW (ϕ(x), ϕ(y0))

dW (ϕ(x), ϕ(y0))

dW (ϕ(x), ϕ(y))

≤
diam(W )

κ
η

(
dZ(x, z)

dZ(x, y0)

)

≤
diam(W )

κ
η

(
dZ(x, z)

dZ(x, y)

dZ(x, y)

dZ(x, y0)

)

≤
diam(W )

κ
η

(
2 diam(X)

r0

dZ(x, z)

dZ(x, y)

)
.

Finally, if dZ(x, y) ≥ r0/2 and dZ(x, z) ≥ r0/2, then by the monotonicity of η again,

dW (ϕ(x), ϕ(z))

dW (ϕ(x), ϕ(y))
=

diam(W )

κ
≤

diam(W )

κ

η
(
dZ(x,z)
dZ (x,y)

)

η
(

r0
2 diam(Z)

) .

It follows that ϕ is globally quasisymmetric as well, with quasisymmetry gauge η̂ given by

η̂(t) = max

{
η(t), diam(W )

κ η(t), diam(W )
κ η(2 diam(Z)

r0
t), diam(W )

κη
(

r0
2 diam(Z)

) η(t)

}
.
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Theorem 4.3. Assume that (Z, dZ , νZ) and (W,dW , νW ) are compact metric measure
spaces, with νZ Ahlfors QZ-regular and νW Ahlfors QW -regular for some QZ , QW > 0. Sup-
pose that a homeomorphism ϕ : Z → W induces a bounded linear operator ϕ# : BθW

p,p (W ) →

BθZ
p,p(Z), that is, there is a constant Cϕ > 0 such that whenever f ∈ BθW

p,p (W ) we have that

f ◦ ϕ ∈ BθZ
p,p(Z) with

‖f ◦ ϕ‖
B

θZ
p,p(Z)

≤ C ‖f‖
B

θW
p,p (W )

,

where θZ = QZ/p and θW ≤ QW /p. Suppose in addition that W is linearly locally path-
connected, that is, there is a constant CL > 1 such that given w ∈ W , 0 < r < diam(W ),
and w1, w2 ∈ B(w, r) \ B(w, r/2) there is a path γ in B(w,CLr) \ B(w, r/CL) with end
points w1, w2. Then ϕ is a quasisymmetric map.

Here we should be careful in stating what f ◦ ϕ is, as it may be the case that ϕ pulls
back a set of νW -measure zero to a set of positive νZ -measure. Instead, we here require that
we only consider the Besov quasicontinuous f in looking at f ◦ ϕ. Such quasicontinuous
representatives of functions in BθW

p,p (W ) (which are, strictly speaking, equivalence classes
of functions) are guaranteed to exit, thanks to the results in [9].

The argument below is very similar to that of [30] where both the metric measure spaces
are assumed to be connected and uniformly locally Ahlfors Q-regular, and to support a
uniformly local Q-Poincaré inequality.

Proof of Theorem 4.3. Since W is connected, therefore Z is also connected, and so by
Remark 4.2, it suffices to show that ϕ is uniformly locally weakly quasisymmetric.

Let ϕ be as in the statement of the theorem. Since ϕ is continuous on the compact space
Z, it is uniformly continuous. Hence we can find R0 > 0 such that whenever x1, x2 ∈ Z
with d(x1, x2) ≤ R0 we have that d(ϕ(x1), ϕ(x2)) < diam(W )/10C4

L. By choosing R0

small, we can also ensure that R0 ≤ diam(Z)/10.
We fix x ∈ Z and consider y, z ∈ Z such that r := d(x, y) ≤ d(x, z) =: R < R0. We

wish to find an upper bound for d(ϕ(x), ϕ(y))/d(ϕ(x), ϕ(z)). Set L = d(ϕ(x), ϕ(y)) and
l = d(ϕ(x), ϕ(z)). If L ≤ 4C2

Ll, then we have a bound in terms of 4C2
L. So suppose that

L > 4C2
Ll. By the choice of R0 we can find w ∈ W such that d(ϕ(x), w) > C2

LL; then
d(ϕ−1(w), x) > R0.

Let E,F ⊂ W such that E is a curve in W \ B(ϕ(x), 2CLl) with end points w,ϕ(y)
and F is a curve in B(ϕ(x), CLl) with end points ϕ(x), ϕ(z); these curves are guaranteed
by the linear local path-connectedness of W . Then by Theorem 3.1,

cap
B

θW
p,p (W )

(E,F ) ≤ cap
B

θW
p,p (W )

(B(ϕ(x), CLl),W \B(ϕ(x), L/CL)) ≤ C log(L/(C2
Ll))

βp

where βp ∈ {−p, 1 − p}. By the assumed morphism property of ϕ, it follows that

cap
B

θZ
p,p(Z)

(E′, F ′) ≤ C log(L/(C2
Ll))

βp ,
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where E′ = ϕ−1(E) and F ′ = ϕ−1(F ). On the other hand, both E′ and F ′ are connected
subsets of ϕ−1(B(ϕ(x), CLl)) and ϕ−1(W \B(ϕ(x), L/CL)). Moreover, F ′ contains both x
and z, while E′ contains both y and w. It follows that

min{H1
∞(E′ ∩B(x, 2r)),H1

∞(F ′ ∩B(x, 2r))} ≥ r,

and so by Theorem 3.4 and the assumption θZp = QZ , we have

cap
B

θZ
p,p(Z)

(E′, F ′) ≥ 1/C.

It follows that log(L/l)p−1 ≤ C, that is,

L ≤ eC
−1/βp

l,

as desired.

From [36] we know that if QZ = QW and Z supports a Q-Poincaré inequality, then

every quasiconformal map ϕ : Z → W is also a B
Q/p
p,p -morphism, that is, ϕ induces a

bounded linear operator ϕ# : BθW
p,p (W ) → BθZ

p,p(Z). In our setting we do not know whether
this converse of Theorem 4.3 holds even if the quasiconfomal map is a quasisymmetric map.
The principal stumbling block in this case is our lack of knowledge of absolute continuity
of the pull-back measure with respect to the underlying measure, namely, whether ϕ#νW
is absolutely continuous with respect to νZ , with appropriate integrability conditions of
the Jacobian. It is however possible that even with such lack of absolute continuity we do
obtain a morphism if, perhaps, we focus on quasicontinuous representative Besov functions.
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48. J. Väisälä, Lectures on n-dimensional quasiconformal Mappings, Springer Lecture

Notes in Mathematics, 229 (1971). 3

Address:

J.L.: University of Jyvaskyla, Department of Mathematics and Statistics, P. O. Box 35,
FI-40014 University of Jyvaskyla, Finland.

E-mail address: juha.lehrback@jyu.fi

N.S.: Department of Mathematical Sciences, P. O. Box 210025, University of Cincinnati,
Cincinnati, OH 45221-0025, U.S.A.

E-mail address: shanmun@uc.edu

22


	1 Introduction
	2 Preliminaries
	2.1 Newton-Sobolev spaces
	2.2 Poincaré inequalities and doubling measures
	2.3 Besov spaces
	2.4 Hyperbolic fillings and uniformization
	2.5 Uniformized measure  and connection to 
	2.6 Capacities and Hausdorff content

	3 Besov capacitary estimates
	3.1 Relative Besov capacitary estimates for annular rings
	3.2 Loewner-type bounds for Besov capacity

	4 Bp,p-morphisms and quasisymmetric maps
	References

