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ON EQUIVARIANT FLAG f -VECTORS FOR BALANCED RELATIVE

SIMPLICIAL COMPLEXES

JACOB A. WHITE

Abstract. We study the equivariant flag f -vector and equivariant flag h-vector of a
balanced relative simplicial complex with respect to a group action. When the complex
satisfies Serre’s condition (Sℓ), we show that the equivariant flag h-vector, the equivariant
h-vector, and the equivariant f -vector satisfy several inequalities.

We apply these results to the study of P -partitions of double posets, and weak colorings
of mixed graphs.

1. Introduction

In Stanley’s seminal paper [Sta82], he studies group actions on graded posets. Given a
group G acting on a graded poset P , it also acts on the order complex ∆(P ) of chains of
P . Stanley proves several results about this action.

Stanley also proved several results about balanced Cohen-Macaulay complexes [Sta79].
A balanced simplicial complex is a pure simplicial complex ∆ on vertex set V of dimension
d−1, with a function f : V → [d] such that, for all σ ∈ ∆ and i ∈ [d], we have |σ∩f−1(i)| ≤
1. Given S ⊆ [d], we let ∆|S = {σ ∈ ∆ : f(v) ∈ S for every v ∈ σ}. Stanley showed that if
∆ is Cohen-Macaulay, then so is ∆|S for all S ⊆ [d]. This result was recently generalized,
by replacing the Cohen-Macaulay property with Serre’s condition.

Theorem 1. Let ∆ be a balanced simplicial complex of dimension d − 1. Given S ⊆ [d],
if ∆ satisfies Serre’s condition (Sℓ), then so does ∆|S.

Our goal is to study balanced relative simplicial complexes, equipped with a group action
by a finite group G. Let Φ be a balanced relative simplicial complex of dimension d − 1.
That is, Φ is a collection of subsets of V such that, for ρ ⊆ σ ⊆ τ ⊆ V , if ρ, τ ∈ Φ, then
σ ∈ Φ. We also require that the maximal faces all have the same size d, and assume that
there is a function κ : V → [d] such that, for every maximal face σ ∈ Φ, κ restricted to σ
is a bijection. Given S ⊆ [d], we let Φ|S = {σ ∈ Φ : {κ(v) : v ∈ σ} ⊆ S}.

Theorem 2. Let Φ be a balanced relative simplicial complex on vertex set V of dimension
d − 1 with coloring κ : V → [d]. Suppose that Φ satisfies Serre’s condition (Sℓ). Given
S ⊆ [d], we have Φ|S also satisfies Serre’s condition (Sℓ).

If Φ is relatively Cohen-Macaulay, then so is Φ|S.
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Our primary goal is to apply this result to obtain information about flag enumeration
for Φ with respect to a group action G. Let G be a group which acts on V . We say G acts
on Φ if for every g ∈ G, the following two conditions are satisfied:

(1) For every σ ∈ Φ, we have {gv : v ∈ σ} ∈ Φ.
(2) For every v ∈ V , we have κ(gv) = κ(v).

Let x1, x2, . . . , be a sequence of commuting indeterminates. A power series f in x1, . . . is
a quasisymmetric function if [xa1i1 · · · xakik ]f = [xa11 · · · xakk ]f for every sequence (a1, . . . , ak)
and every increasing sequence i1 < i2 < · · · < ik. The most common basis for the ring of
quasisymmetric functions is the basis of monomial quasisymmetric functions. We define
our quasisymmetric functions in terms of this basis.

For g ∈ G, we define the flag quasisymmetric class function of (Φ,G) to be

Hilb(Φ,G,x; g) =
∑

σ∈Φ:gσ=σ

Mκ(σ),d+1.

This is a quasisymmetric function. As we vary g ∈ G, we obtain a class function on G

whose values are quasisymmetric functions. Equivalently, we can write Hilb(Φ,G,x; g) =∑
S⊆[d] fS(Φ,G; g)MS,d+1 for certain constants fS(Φ,G; g). Then fS(Φ,G) is also a char-

acter. We refer to the character fS(Φ,G) as the equivariant flag f -vector of (Φ,G). Our
goal will be to prove inequalities about the equivariant flag f -vector. To that end, given
two characters χ and ρ of a group G, we write χ ≥G ρ if χ − ρ is also a character. The
equivariant flag h-vector is defined by

hS(Φ,G) =
∑

T :S⊆T

(−1)|T\S|fS(Φ,G).

Theorem 3. Let Φ be a balanced relative simplicial complex of dimension d− 1 and let G
act on Φ. Suppose Φ satisfies condition (Sℓ). Given S ⊆ T ⊆ [d] with |S| ≤ ℓ, then

∑

R:S⊆R⊆T

hR(Φ,G) ≥G 0.

In particular, if Φ is Cohen-Macaulay, then hT (Φ,G) ≥G 0 for all T ⊆ [d].

There is also an equivariant f -vector, given by fi−1(Φ,G) =
∑

S⊆[d]:|S|=i fS(Φ,G). The

equivariant h-vector is given by hi(Φ,G) =
∑

S⊆[d]:|S|=i hS(Φ,G). First, we state some new

inequalities for the equivariant h-vector of a balanced relative simplicial complex which
satisfies condition (Sℓ).

Theorem 4. Let Φ be a balanced relative simplicial complex of dimension d − 1. Let
G act on Φ, and suppose that Φ satisfies (Sℓ). Then hi(Φ,G) ≥G 0 for i ≤ ℓ. For
0 ≤ i ≤ ℓ ≤ j ≤ d, we have

j∑

k=ℓ

(
d− k

j − k

)(
k − ℓ+ i

i

)
hk(Φ,G) ≥G 0.
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For pure simplicial complexes which satisfy (Sℓ), and with j = d, these inequalities were
previously shown in [MT09] and [GPSFY12] for ordinary h-vectors.

We also give some inequalities for the equivariant f -vector.

Theorem 5. Let Φ be a balanced relative simplicial complex of dimension d− 1 and let G
act on Φ. Suppose Φ satisfies condition (Sℓ), and that fi−1(Φ,G) = 0 for i < ℓ.

(1) For i ≥ ℓ, we have

(d− i)fi−1(Φ,G) ≤G (i− ℓ+ 2)fi(Φ,G).

(2) For ℓ ≤ i ≤ ⌊(d+ ℓ− 1)/2⌋, we have fi−1(Φ,G) ≤G fi(Φ,G).
(3) For ℓ ≤ i ≤ ⌊(d+ ℓ)/2⌋, we have fi−1(Φ,G) ≤G fd+ℓ−i−1(Φ,G).

If we assume that the group action is trivial, and we define ai(Φ) = fi+ℓ−1(Φ,G), then
the latter two conditions become:

(1) For i ≤ ⌊(d − ℓ− 1)/2⌋, we have ai ≤ ai+1.
(2) For i ≤ ⌊(d − ℓ)/2⌋, we have ai ≤ ad−ℓ−i.

In the literature, the sequence (a0, . . . , ad−ℓ) is called strongly flawless. Thus, our Theorem
states that if the first several entries of the sequence are 0, then deleting them results in a
strongly flawless sequence.

Our primary application is to double posets and mixed graphs. A mixed graph is a
generalization of a graph where we allow directed edges. A coloring of a mixed graph G
satisfies f(u) 6= f(v) when uv is an undirected edge, and f(u) ≤ f(v) when (u, v) is a
directed edge. Given an automorphism g of G, we let

χ(G,G,x; g) =
∑

f :gf=f

∏

v∈V

xf(v).

Then χ(G,G,x) is a quasisymmetric class function, generalizing the chromatic symmet-
ric function. We wished to determine when [FS,n]χ(G,G,x) is an effective character. There
is also a corresponding chromatic polynomial class function χ(G,G, x).

A mixed graph is acyclic if it does not contain a directed cycle. A mixed cycle in G
is a cycle in the underlying undirected graph that has at least one directed edge. A near
cycle is a mixed cycle of length three that has exactly one undirected edge. We prove the
following:

Theorem 6. Let G be an acyclic mixed graph on n vertices with no near cycles. Let m(G)
be the minimum number of undirected edges on a mixed cycle of G, with m(G) = |G| if
there are no mixed cycles.

Let G act on G. Then for S ⊆ [n− 1] with |S| ≤ m(G), we have

[FS,n]χ(G,G,x) is an effective character.

We write χ(G,G, x) =
∑n

i=0 fi−2

(x
i

)
=

∑n
i=0 hi−1

(x+n−i
n

)
.

(1) We have hi ≥G 0 for i ≤ ℓ.

(2) For i ≤ d− ℓ, we have
∑d

j=ℓ

(i+j−ℓ
i

)
hj ≥G 0.

Suppose that m(G) ≥ χ(G).
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(1) For i ≥ χ(G), we have

(d− i)fi−1 ≤G (i− χ(G) + 2)fi.

(2) For χ(G) ≤ i ≤ ⌊(d + χ(G) − 1)/2⌋, we have fi−1 ≤G fi.
(3) For χ(G) ≤ i ≤ ⌊(d + χ(G))/2⌋, we have fi−1 ≤G fd+ℓ−i−1.

We show that there is a balanced relative simplicial complex Φ(G) such that

Hilb(Φ(G),G,x) = χ(G,G,x).

Under this identification, f−2 = h−1 = 0, and for i ≥ −1 we have fi = fi(Φ(G)), which
explains our choice of notation in Theorem 6. The complex Φ(G) is a generalization
of Steingŕımsson’s coloring complex, and was previously introduced in [Whi]. However,
we give a self-contained introduction to this complex. We then show that this complex
satisfies Serre’s condition (Sm(G)). Thus, we obtain a natural collection of balanced relative
simplicial complexes which satisfy Serre’s condition (Sk) for any k.

A double poset D is a set equipped with two partial orders. A double poset is tertispecial
if, whenever m ≺1 m

′, then m and m′ are ≤2-comparable. There is a natural quasisym-
metric generating function Ω(D,x) associated to D, which was introduced by Grinberg
[Gri17] and enumerates D-partitions.

A function f : N → N is a D-partition if and only if it satisfies the following two
properties:

(1) For i ≤1 j in D, we have f(i) ≤ f(j).
(2) For i ≤1 j and j ≤2 i in D, we have f(i) < f(j).

When a group G acts on D, then it also acts on the set of D-partitions of a given weight,
and we can define a quasisymmetric class function Ω(D,G,x). If we write Ω(D,G,x) =∑

S⊆[n−1] χD,G,SFS,n, then the χD,G,S are virtual characters. We proved the following:

Theorem 7 ([Whi21]). Let D be a tertispecial double poset on n elements, and let G act
on D. Given S ⊆ [n− 1], we have [FS,n]Ω(D,G,x) is an effective character.

This paper gives an alternate proof. We show that, given a double poset P , there is
a mixed graph G such that Ω(P,G,x) = χ(G(P ),G,x). Thus we are able to determine
results about double posets from corresponding results on mixed graphs.

The paper is organized as follows. First, we give an overview of quasisymmetric class
functions in Section 2. In Section 3, we review the definition of balanced relative simplicial
complexes, and discuss the equivariant flag f -vector. Then we discuss the Stanley-Reisner
module and the equivariant f -vector. Then we connect groups actions on balanced relative
simplicial complexes to characters on cohomology groups. In Section 4, we study Serre’s
condition, and then prove the various results mentioned in the introduction. In Section
5, we study mixed graphs and their chromatic quasisymmetric class functions. Finally, in
Section 6 we study double posets.
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2. Preliminaries

Given a basis B for a vector space V over C, and ~β ∈ B,~v ∈ V , we let [~β]~v denote the

coefficient of ~β when we expand ~v in the basis B.
Let x = x1, x2, . . . be a sequence of commuting indeterminates. Recall that an integer

composition α of a positive integer n is a sequence (α1, . . . , αk) of positive integers such
that α1 + · · · + αk = n. We write ℓ(α) = k, and α |= n. Let n ∈ N and let F (x) ∈ C[[x]]
be a homogeneous formal power series in x, where the degree of every monomial in F (x)
is n. Then F (x) is a quasisymmetric function if it satisfies the following property: for
every i1 < i2 < · · · < ik, and every integer composition α |= n with ℓ(α) = k, we have

[
∏k

j=1 x
αj

ij
]F (x) = [

∏k
j=1 x

αj

j ]F (x). Often, we will define quasisymmetric functions that are

generating functions over a collection of functions. Given a function w : S → N, we define

(1) xw =
∏

v∈S

xw(v).

For example, the chromatic symmetric function of a graph G is defined as χ(G,x) =∑
f :V→N

xf where the sum is over all proper colorings of G.

Given a subset {s1, . . . , sk} ⊆ [n− 1], with s1 < s2 < · · · < sk, we let

M{s1,...,sk},n =
∑

i1<···<ik+1

k+1∏

j=1

x
sj−sj−1

ij

where we define s0 = 0 and sk+1 = n. These are the monomial quasisymmetric functions,
which form a basis for the vector space of quasisymmetric functions of degree n. This basis
is partially ordered, by saying MS,n ≤MT,n if S ⊆ T.

The second basis we focus on is the basis of fundamental quasisymmetric functions, first
introduced by Gessel [Ges84]. The fundamental quasisymmetric functions FS,d are defined
by:

FS,d =
∑

T :S⊆T

MT,d.

2.1. Group actions and class functions. Given a group action G on a set X, we let
X/G denote the set of orbits. For x ∈ X, Gx is the stabilizer subgroup, and G(x) is the
orbit of x. Finally, for g ∈ G, we let Fixg(X) = {x ∈ X : gx = x}.

We assume familiarity with the theory of complex representations of finite groups - see
[FH91] for basic definitions. Recall that, given any group action of G on a finite set X,
there is a group action on C

X as well, which gives rise to a representation. The resulting
representations are called permutation representations. Given any G-set X, or G-module
V , we let χX,G and χV,G denote the corresponding characters. Let R be a C-algebra. Then
an R-valued class function is a function χ : G → R such that, for every g, h ∈ G, and
χ ∈ C(G, R), we have χ(hgh−1) = χ(g). Let C(G, R) be the set of R-valued class functions
from G to R. For our paper, R is usually QSym or C[x]. We refer to χ ∈ C(G,C) as class
functions when no confusion arises.
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There is an orthonormal basis of C(G,C) given by the characters of the irreducible
representations of G. We refer to elements χ ∈ C(G,C) that are integer combinations of
irreducible characters as virtual characters, and elements that are nonnegative integer linear
combinations as effective characters. Let E(G,C) be the set of effective characters. Finally,
we say χ is a permutation character if it is the character of a permutation representation.
We partially order E(G,C) by saying χ ≤G ψ if ψ − χ is an effective character.

Let B be a basis for R. For b ∈ B, g ∈ G, and χ ∈ C(G, R), let χb(g) = [b]χ(g). Then χb

is a C-valued class function. Thus we can write χ =
∑
b∈B

χbb. Conversely, given a family χb

of C-valued class functions, one for each b ∈ B, the function χ defined by χ(g) =
∑
b∈B

χb(g)b

is an R-valued class function in C(G, R).
Let χ be an R-valued class function. We say that χ is B-realizable if χb is a permutation

character for all b.
A quasisymmetric class function is a QSym-valued class function. Given a quasisymmet-

ric class function F (G,x), we write F (G,x) =
∑

S⊆[n−1] fS,GMS,n, where fS,G ∈ C(G,C).

Finally, we define a function 〈·, ·〉 : C(G, R) × C(G, R) → R by 〈χ,ψ〉 = 1
|G|χ(g)ψ(g)

where x is the complex conjugate. In the case where R = C, this is the usual inner product
on class functions.

Proposition 8. Let G be a finite group, let R be a C-algebra with basis B. Fix χ ∈ C(G, R).

(1) Given an irreducible character ψ, we have 〈χ,ψ〉 =
∑

b,c∈B

〈χb, ψc〉b · c.

(2) Let ψ ∈ C(G,C). If χ is B-realizable, then for all b ∈ B we have [b]〈ψ,χ〉 ≥ 0.

2.2. Polynomial class functions and Principal specialization. Given a polynomial

p(x) of degree d, define the f -vector (f−1, . . . , fd−1) via p(x) =
∑d

i=0 fi−1

(x
i

)
. We say that

p(x) is strongly flawless if the following inequalities are satisfied:

(1) for 0 ≤ i ≤ d−1
2 , we have fi−1 ≤ fi.

(2) For 0 ≤ i ≤ d
2 , we have fi−1 ≤ fd−i−1.

There is a lot of interest in log-concave and unimodal sequences in combinatorics. We con-
sider strongly flawless sequences to be interesting, as strongly flawless unimodal sequences
can be seen as a generalization of symmetric unimodal sequences. Examples of results with
strongly flawless sequences include the work of Hibi [Hib89] and Juhnke-Kubitzke and Van
Le [JKL18]. We denote the entries of the f -vector as fi(p(x)) when discussing multiple
polynomials.

There is a generalization of f -vector for polynomial class functions, which we call the
equivariant f -vector. Given a group G, and a polynomial class function p(G, x), we write

p(G, x) =
∑d

i=1 fi−1

(x
i

)
, where the fi are characters. We say that p(G, x) is effectively

flawless if we have the following system of inequalities:

(1) For 0 ≤ i ≤ d−1
2 , we have fi−1 ≤G fi.

(2) For 0 ≤ i ≤ d
2 , we have fi−1 ≤G fd−i−1.
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Given a quasisymmetric function F (x) of degree d, there is an associated polynomial
ps(F )(x) given by principal specialization. For x ∈ N, we set

xi =

{
1 i ≤ x

0 i > x

The resulting sequence is a polynomial function in x of degree d, which we denote by
ps(F )(x). If we write F (x) =

∑
S⊆[d−1]

cS,dMS,d, then fi(ps(F (x))) =
∑

S⊆[d−1]:|S|=i+1

cS,d.

Let F (G,x) be a quasisymmetric class function of degree d, and g ∈ G. Define ps(F ) ∈
C(G,C[x]) by ps(F )(x; g) = ps(F (x; g))(x). We refer to ps(F ) as the principal specializa-
tion, which results in an polynomial class function.

The following results were obtained in [Whi21].

Proposition 9. Let F (G,x) be a quasisymmetric class function be of degree d, and g ∈ G.

(1) If we write F (G,x) =
∑

S⊆|=[d−1]

χS,dMS,d, then ps(F ) =
d∑

i=0
χS,d

( x
|S|+1

)
.

(2) If F (G,x) is M -realizable and M -increasing, then ps(F ) is effectively flawless.

Proposition 10. Let (f−1, . . . , fd−1) be a sequence of characters for G. Suppose that there
exists an integer 0 ≤ r ≤ d such that, for all i, we have

(d− i)fi−1 ≤G (i− r)fi.

Then the sequence (fr−1, . . . , fd−1) is effectively flawless.

Proof. We prove the result by induction on r. First, suppose that r = 0.
We see that (i+1) ≤ (d− i). Thus we have (i+1)fi ≤G (d− i)fi−1 ≤G (i+1)fi. Hence

(i + 1)(fi − fi−1) is an effective character. This implies that (i + 1)cj is a non-negative
integer for all j, which means cj is a non-negative rational number. Therefore fi − fi−1 is
an effective character.

Now let i ≤ ⌊d/2⌋. We can generalize the inequality (d − i)fi−1 ≤G ifi to obtain(d−i
j−i

)
fi−1 ≤G

( j
j−i

)
fj−1 whenever i ≤ j. When we set j = d − i, then

(d−i
j−i

)
=

( j
j−i

)
, and

thus we get fi−1 ≤G fd−i−1.
Now suppose that r > 0. Let gi = fi+1. Then we see that

(d− 1− i)gi−1 = (d− (i+ 1))fi ≤G (i+ 1− r)fi+1 = (i+ (r − 1))gi.

Thus, by the induction hypothesis, we have (gr−2, . . . , gd−1) is effectively flawless. However,
(gr−2, . . . , gd−2) = (fr−1, . . . , fd−1). �

3. Balanced Relative Simplicial Complexes

Now we discuss balanced relative simplicial complexes, and their flag quasisymmetric
class functions.

Definition 11. A balanced relative simplicial complex of dimension d− 1 on a vertex set
V is a non-empty collection Φ of subsets of V , along with a function κ : V → [d] with the
following properties:
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1

2

Figure 1. A coloring complex Φ. Dashed lines correspond to faces that
are not in Φ.

(1) For every ρ ⊆ σ ⊆ τ , if ρ, τ ∈ Φ, then σ ∈ Φ.
(2) For every ρ ∈ Φ, there exists σ ∈ Φ such that ρ ⊆ σ and |σ| = d,
(3) For every ρ ∈ Φ, we have {κ(v) : v ∈ ρ} has size |ρ|.

The name comes from the fact that there exists simplicial complexes (∆,Γ) with Γ ⊆ ∆,
and Φ = ∆ \ Γ. Given σ ∈ Φ, we let κ(σ) = {κ(v) : v ∈ σ}.

Given S ⊆ [d], we let fS(Φ) denote the number of faces σ such that κ(σ) = S. This is
the flag f -vector of Φ. We encode the flag f -vector with a quasisymmetric function

Hilb(Φ,x) =
∑

S⊆[d]

fS(Φ)MS,d+1.

This is the flag quasisymmetric function associated to Φ. It has degree d+ 1.
Let V (Φ) be the vertex set of Φ. A bijection g : V → V is an automorphism of Φ if it

satisfies the following two properties:

(1) For every v ∈ V , we have κ(gv) = κ(v).
(2) For every {v1, . . . , vk} ∈ Φ, we have {g(v1), . . . , g(vk)} ∈ Φ.

Let G be a group which acts on V (Φ). Then G also acts on 2V (Φ) by g(S) = {gv : v ∈ S}.
Suppose that, for each g ∈ G, the resulting action on 2V (Φ) is an automorphism of Φ. Then
we say G acts on Φ. For S ⊆ [d], let κ−1(S) = {σ ∈ Φ : κ(σ) = S}. Then G acts on κ−1(S)
as well. Given g ∈ G, we define

Hilb(Φ,G,x; g) =
∑

σ∈Φ:gσ=σ

Mκ(σ),d+1.

As we vary g, we obtain a quasisymmetric class function, which we call the flag quasisym-
metric class function of (Φ,G), and denote Hilb(Φ,G,x).

As an example, consider the balanced relative simplicial complex Φ with vertex set
{a, b, c, d, e} appearing on the left in Figure 1. Here we note that

Φ = {{e}, {a, e}, {b, e}, {c, e}, {d, e}, {a, b, e}, {b, c, e}, {c, d, e}, {a, d, e}}.

The coloring κ is given on the right in Figure 1. Then Φ is a balanced relative simplicial
complex. We see that Aut(Φ) is isomorphic to Z/2Z × Z/2Z. We let Z/2Z act as the
permutation (ac)(bd)(e). Then

Hilb(Φ,Z/2Z,x) =M{2},4 + ρ(M{1,2},4 +M{2,3},4 + 2M{1,2,3},4).
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We denote the coefficients of [MS,d] Hilb(Φ,G), by fS(Φ,G) and refer to them as the
equivariant flag f -vector of Φ. These coefficients are permutation characters. Similarly,
we can write

Hilb(Φ,G,x) =
∑

S⊆[d]

hS(Φ,G)FS,d+1,

where the hS(Φ,G) are virtual characters, which we call the equivariant flag h-vector.
Since G acts on Φ, we can say two faces σ and τ are G-equivalent if σ = gτ for g ∈ G.

We see that κ(τ) = κ(σ). For C ∈ Φ/G, we define κ(C) = κ(σ) for any σ ∈ C. We see
that κ is well-defined on Φ/G. We let

HilbO(Φ,G,x) =
∑

C∈Φ/G

Mκ(C),d+1

be the orbital flag quasisymmetric function.

Proposition 12. Let Φ be a balanced relative simplicial complex of dimension d − 1.
Suppose that G acts on Φ.

(1) Let S ⊆ [d]. Then fS(Φ,G) = χκ−1(S),G.

(2) For S ⊆ [d], we have fOS (Φ,G) = |κ−1(S)/G|.
(3) We have

HilbO(Φ,G,x) =
1

|G|

∑

g∈G

Hilb(Φ,G,x; g).

Proof. For the first part, let S ⊆ [d]. Given g ∈ G, we see that [MS,d+1] Hilb(Φ,G,x; g) =
|{σ ∈ Φ : κ(σ) = S, gσ = σ}| = |Fixg(κ

−1(S))|. The first result follows.

For the second result, we see that [MS,d+1] Hilb
O(Φ,G,x) = |{C ∈ Φ/G : κ(C) = S}| =

|κ−1(S)/G|.
For the third result, we have

1

|G|

∑

g∈G

Hilb(Φ,G,x; g) =
1

|G|

∑

g∈G

∑

S⊆[d]

|Fixg(κ
−1(S))|MS,d+1

=
∑

S⊆[d]

1

|G|

∑

g∈G

|Fixg(κ
−1(S))|MS,d+1

=
∑

S⊆[d]

|κ−1(S)/G|MS,d+1

= HilbO(Φ,G,x)

where the first equality is our first identity, the third equality comes from Burnside’s
Lemma, and the last equality comes from our second identity. �

3.1. Group action on homology. Let Φ be a balanced simplicial complex of dimension
d − 1, with presentation (∆,Γ). Suppose that G acts on Φ. We discuss various group
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actions on chain groups and homology groups. Here we let C̃i(Φ) = C̃i(∆,Γ), the relative

chain group of the pair (∆,Γ). Similarly, we let H̃i(Φ) = H̃i(∆,Γ).
Let S ⊆ [d] We write ∆|S = {σ ⊆ V (Φ) : σ ⊆ τ for some τ ∈ Φ|S}, and let Γ|S =

Φ|S \ ∆|S . We see that G acts on both ∆|S and Γ|S as simplicial complexes. We let

C̃i(Φ|S) = C̃i(∆|S)/C̃i(Γ|S) denote the ith reduced chain group, which is generated by

faces of dimension i. We see that ∂i : C̃i(∆|S) → C̃i−1(∆|S) and ∂i : C̃i(Γ|S) → C̃i−1(Γ|S)

are both G-invariant. Thus ∂i : C̃i(Φ|S) → C̃i−1(Φ|S) is also G-invariant. Hence G acts on

H̃i(Φ|S). We let χH̃i−1(Φ|S),G
denote the resulting character.

Theorem 13. Let Φ be a balanced relative simplicial complex, and let G act on Φ. Then

Hilb(Φ,G,x) =
∑

S⊆[d]




|S|∑

i=0

(−1)|S|−iχH̃i−1(Φ|S),G


FS,d.

Proof. Let S ⊆ [d], and let g ∈ G. Then

[FS,d] Hilb(Φ,G,x; g) =
∑

T⊆S

(−1)|S\T |[MT,d] Hilb(Φ,G,x; g)

=
∑

T⊆S

(−1)|S\T ||{σ ∈ κ−1(T ) : gσ = σ}|

=

|S|∑

i=0

(−1)|S|−i
∑

T⊆S:|T |=i

|{σ ∈ FT (Φ|S) : gσ = σ}|

=

|S|∑

i=0

(−1)|S|−i|{σ ∈ Φ|S : |κ(σ)| = i, gσ = σ}|

= (−1)|S|
|S|∑

i=0

(−1)i trg(C̃i−1(Φ|S))

= (−1)|S|
|S|∑

i=0

(−1)i trg(H̃i−1(Φ|S))

=

|S|∑

i=0

(−1)|S|−iχ
H̃i−1(Φ|S),G

(g).

The first equality comes from the definition of fundamental quasisymmetric functions.
The second equality uses the definition of the flag quasisymmetric class function. The
third equality comes from choosing to sum over subsets by their size, and recognizing that
if σ ∈ κ−1(T ) and T ⊆ S, then σ ∈ FT (Φ|S). The fourth equality comes from simplifying
the inner summation. The fifth and last equalities come from the definition of the related
group actions. The sixth equality is the Hopf trace formula.

�
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4. Complexes Satisfying Serre’s Condition

Given a balanced relative simplicial complex Φ and v ∈ V (Φ), we define linkΦ(v) =
(link∆(v), linkΓ(v)). Similarly, given S ⊆ V (Φ), we let Φ \ S = (∆ \ S,Γ \ S).

A relative complex Φ with presentation (∆,Γ) satisfies Serre’s condition (Sℓ) if

H̃i−1(link∆(σ), linkΓ(σ)) = 0

for all σ ∈ ∆ with i ≤ min(dim linkΦ(σ), ℓ−1).We say that Φ is relatively Cohen-Macaulay
if it satisfies (SdimΦ).

Our first goal in this section is to prove Theorem 2. In the case Φ is a balanced simplicial
complex, this result was shown by Holmes and Lyle [HL21]. Our proof is a generalization
of their proof.

We prove several lemmas first.

Lemma 14. Let Φ be a relative simplicial complex with presentation (∆,Γ) which satisfies
(Sℓ), and let σ ∈ ∆. Then linkΦ(σ) also satisfies (Sℓ).

Proof. Let τ ∈ linkΦ(σ). Then linklinkΦ(σ)(τ) = linkΦ(σ∪τ). Since Φ satisfies (Sℓ), we have

H̃i−1(linkΦ(σ∪τ)) = 0 for i ≤ min(dim(linkΦ(σ∪τ)), ℓ−1). Hence H̃i−1(linklinkΦ(σ)(τ)) = 0
for i ≤ min(dim(linklinkΦ(σ)(τ)), ℓ − 1). Thus linkΦ(σ) satisfies (Sℓ). �

A subset J ⊆ V (Φ) is independent if, for all σ ∈ ∆, we have |σ ∩ J | ≤ 1. The set J is
excellent if for every facet σ ∈ ∆, we have |σ ∩ J | = 1.

Lemma 15. Let Φ be a relative simplicial complex with presentation (∆,Γ). Let I be an

independent set of Φ such that ∆\I 6= ∅. Suppose that Φ satisfies (Sℓ). Then H̃i−1(Φ\I) = 0
for i ≤ min(dim(Φ \ I), ℓ− 1).

Proof. We prove the result by induction on ℓ, where the case ℓ = 1 is trivial. So suppose
ℓ ≥ 2. Since Φ satisfies (Sℓ), it also satisfies (Sℓ−1), and thus by the induction hypothesis,

we have H̃i−1(Φ \ I) = 0 for i ≤ min(dim(Φ \ I), ℓ− 2). Thus we only need to show that

(2) H̃ℓ−2(Φ \ I) = 0 when ℓ− 1 ≤ dim(Φ \ I).

We prove Equation (2) by induction on |I|. Suppose that I = {x}. Let ∆1 = {σ ∈ ∆ :
σ∪{x} ∈ ∆}, and Γ1 = {σ ∈ Γ : σ∪{x} ∈ Γ}. Then ∆ = ∆1∪∆\{x}, and Γ = Γ1∪Γ\{x}.
Also, link∆(x) = ∆1 ∩∆ \ {x} and linkΓ(x) = Γ1 ∩ Γ \ {x}. We let Φ1 = (∆1,Γ1).

Consider the Mayer-Vietoris long exact sequence

H̃ℓ−1(Φ1)⊕H̃ℓ−1(Φ\{x})
i∗x−→ H̃ℓ−1(Φ) → H̃ℓ−1(linkΦ(x)) → H̃ℓ−2(Φ1)⊕H̃ℓ−2(Φ\{x}) → H̃ℓ−2(Φ)

We claim that H̃i(Φ1) = 0 for all i. We see that x is a cone point of ∆1. If x ∈ Γ, then

x is a cone point of Γ1. Otherwise, Γ1 = ∅. Thus, H̃i(∆1) = H̃i(Γ1) = 0 for all i. Applying

the long exact sequence for a relative pair, it follows that H̃i(Φ1) = 0 for all i.
Since ℓ − 1 ≤ dim(Φ \ {x}) ≤ dim(Φ), we see that ℓ − 2 ≤ dim(linkΦ(x)). Since Φ

satisfies (Sℓ), it follows that H̃ℓ−2(linkΦ(x)) = 0 = H̃ℓ−2(Φ). By exactness, we see that



12 JACOB A. WHITE

H̃ℓ−2(Φ \ {x}) = 0. Also, if we let ix denote the inclusion Φ \ {x} into Φ, then i∗x is the
induced map on homology. By exactness, i∗x is surjective.

Now suppose that |I| > 2, and let x ∈ I. Define I ′ = I \{x}. Then ∆ = ∆\ I ′∪∆\{x},
and ∆ \ I = ∆ \ I ′ ∩∆ \ {x}. Similarly, Γ = Γ \ I ′ ∪ Γ \ {x}, and Γ \ I = Γ \ I ′ ∩ Γ \ {x}.

Consider the Mayer-Vietoris long exact sequence

H̃ℓ−1(Φ\I ′)⊕H̃ℓ−1(Φ\{x})
j∗
I′
−i∗x

−−−−→ H̃ℓ−1(Φ) → H̃ℓ−2(Φ\I) → H̃ℓ−2(Φ\I ′)⊕H̃ℓ−2(Φ\{x}).

Here j∗I′ is induced by the inclusion map jI′ : Φ \ I ′ → Φ. By induction, we see that

H̃ℓ−2(Φ \ I ′) = 0 = H̃ℓ−2(Φ \ {x}). Also, jI′ is the inclusion map of Φ \ I ′ into Φ. Since i∗x
is surjective, it follows from exactness that H̃ℓ−2(Φ \ I) = 0.

�

Lemma 16. Let Φ be a relative simplicial complex with presentation (∆,Γ). Let J be an
excellent set of Φ. Suppose that Φ satisfies (Sℓ). Then Φ \ J satisfies (Sℓ).

Proof. We prove the result by induction on dimΦ. Let σ ∈ ∆ \ J with |σ| > 0. By Lemma
14, we know that linkΦ(σ) satisfies (Sℓ). Define J ′ = V (linkΦ(σ)) ∩ J . We claim that J ′

is excellent. If J ′ is not independent as a subset of linkΦ(σ), then J
′ is not independent in

Φ, and thus J is not independent. Therefore, J ′ is an independent set. Let τ be a facet of
linkΦ(σ). Then τ ∪σ is a facet of Φ. Hence (τ ∪σ)∩J = {x} for some unique x ∈ J . Since
σ ∈ ∆ \ J , we see that x ∈ τ , and thus |τ ∩ J ′| ≤ 1. If |τ ∩ J ′| ≥ 2, then |(σ ∪ τ) ∩ J | ≥ 2,
a contradiction. Therefore, J ′ is excellent.

Since dim(linkΦ(σ)) < dim(Φ), by induction linkΦ(σ) \ J
′ satisfies (Sℓ). Observe that

linkΦ\J(σ) = linkΦ(σ) \J
′. Thus H̃i−1(linkΦ\J(σ)) = 0 for i ≤ min(dim(linkΦ\J(σ)), ℓ− 1).

It remains to show that H̃i−1(Φ \ J) = 0 for i ≤ min(dim(Φ \ J), ℓ − 1), which follows
from Lemma 15. �

Proof of Theorem 2. Let Φ be a balanced relative simplicial complex of dimension d − 1
which satisfies (Sℓ). Let S ⊆ [d]. We prove the result by induction on |[d] \ S|. The base
case where S = [d] is true by assumption.

Let x ∈ S, and let S′ = S \ {x}, and let J = κ−1(x). By induction, Φ|S′ satisfies (Sℓ).
We see that J is excellent in Φ|S′ , and that Φ|S = Φ|S′ \ J . Thus the result follows from
Lemma 16. �

We state a few properties about (Sℓ) that we need.

Proposition 17. Let Φ be a balanced simplicial complex of dimension d−1 with presenta-
tion (∆,Γ). Suppose that ∆ satisfies (Sℓ) and Γ satisfies (Sℓ−1). If Γ has dimension d− 2,
or is void, then Φ satisfies (Sℓ).

Proof. Let σ ∈ ∆. Consider the long exact sequence

H̃i−1(link∆(σ)) → H̃i−1(linkΦ(σ)) → H̃i−2(linkΓ(σ))

We see that, when i ≤ min(dim(linkΦ(σ)), ℓ − 1), then H̃i(link∆(σ)) = 0. If linkΓ(Φ) = ∅,

then H̃i−1(linkΓ(σ)) = 0. Otherwise, dim(linkΓ(σ)) = dim(link∆(σ)) − 1. Then since Γ

satisfies (Sℓ−1), we have H̃i−2(linkΓ(σ)) = 0. By exactness, H̃i−1(linkΦ(σ)) = 0. �
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Proposition 18. Let ∆1 and ∆2 be two d-dimensional simplicial complexes such that
∆1 ∩ ∆2 is (d − 1)-dimensional. If ∆1 and ∆2 both satisfy (Sℓ), and ∆1 ∩ ∆2 satisfies
(Sℓ−1), then ∆1 ∪∆2 satisfies (Sℓ).

Proof. Let σ ∈ ∆1 ∪∆2, and i ≤ min(d− |σ|, ℓ − 1). If σ ∈ ∆1 \∆2, then link∆1∪∆2
(σ) =

link∆1
(σ), and H̃i−1(link∆1∪∆2

(σ)) = 0, since ∆1 satisfies (Sℓ). A similar result holds if
σ ∈ ∆2 \∆1.

So we may assume σ ∈ ∆1 ∩ ∆2. Let Γi = link∆i
(σ), and let Γ = link∆1∪∆2

(σ). Then
Γ = Γ1 ∪ Γ2, and Γ1 ∩ Γ2 = link∆1∩∆2

(σ). We consider the Mayer-Vietoris sequence

H̃i−1(Γ1)⊕ H̃i−1(Γ2) → H̃i−1(Γ) → H̃i−2(Γ1 ∩ Γ2).

If 0 ≤ i ≤ min(d − |σ|, ℓ − 1), then since ∆j satisfies (Sℓ), we see that H̃i−1(Γj) = 0.

Similarly, since ∆1∩∆2 satisfies (Sℓ−1), we see that H̃i−2(Γ1∩Γ2) = 0. Thus, by exactness,

H̃i−1(Γ) = 0, and ∆1 ∪∆2 satisfies (Sℓ). �

4.1. Inequalities. Now we discuss inequalities that hold for various equivariant flag f -
and h-vectors for balanced relative simplicial complexes which satisfy (Sℓ). First, we in-
troduce a generalization hS,T (Φ,G) of the flag h-vector and prove some identities about
this generalization. A lot of inequalities come from expressing some summation of flag
h-vectors in terms of hS,T (Φ,G).

Theorem 19. Let Φ be a balanced relative simplicial complex of dimension d − 1. Let G
act on Φ. Given S ⊆ T ⊆ [d], define

hS,T (Φ,G) =
∑

R:S⊆R⊆T

hR(Φ|T ,G).

Let TT\S(Φ) be a transversal for G acting on FT\S(Φ). Then

hS,T (Φ,G) =
∑

Q:T\S⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G)

=
∑

τ∈TT\S(Φ)

hS((linkΦ(τ))|S ,Gτ ) ↑
G
Gτ

.

Proof. First, we show that
∑

Q:T\S⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G) =
∑

R:S⊆R⊆T

hR(Φ|T ,G).

We write∑

Q:T\S⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G) =
∑

Q:T\S⊆Q⊆T

(−1)|T\Q|
∑

R⊆Q

hR(Φ|T ,G)

=
∑

R⊆T




∑

Q:R∪(T\S)⊆Q⊆T

(−1)|T\Q|


hR(Φ|T ,G).
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We see that the coefficient of hR(Φ|T ,G) is 0 unless R ∪ (T \ S) = T , in which case it is 1.
Thus

∑

Q:(T\S)⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G) =
∑

R:R∪(T\S)=T

hR(Φ,G)

=
∑

R:S⊆R⊆T

hR(Φ,G).

Let g ∈ G. We prove that

(3)
∑

Q:(T\S)⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G; g) =
∑

τ∈Fixg(Φ|T\S)

hS((linkΦ(τ))|S ,Gτ , g).

First, observe that
∑

Q:(T\S)⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G; g) =
∑

σ∈Fixg(Φ|T ):(T\S)⊆κ(σ)

(−1)|T\κ(σ)|

=
∑

τ∈Fixg(Φ|T\S)

∑

σ∈Fixg(Φ|T ):τ⊆σ

(−1)|T\κ(σ)|

=
∑

τ∈Fixg(Φ|T\S)

∑

σ∈Fixg(linkΦ|T
(τ))

(−1)|S\κ(σ))|.

For a fixed τ , the inner summation becomes
∑

σ∈Fixg(linkΦ|T
(τ))

(−1)|S\κ(σ)| =
∑

R:R⊆S

(−1)|(S\R)|fR(linkΦ(τ)|S ,Gτ ; g)

= hS(linkΦ(τ)|S ,Gτ ; g)

Hence we have shown Equation (3).
Let TT\S(Φ) be a traversal for G acting on κ−1(T \ S). Fix τ ∈ TT\S(Φ). Then

hS((linkΦ(τ))|S ,Gτ ) ↑
G
Gτ

(g) =
1

|Gτ |

∑

h∈G
h−1gh∈Gτ

hS((linkΦ(τ))|S ,Gτ ; h
−1gh)

=
1

|Gτ |

∑

h∈G
g∈Ghτ

hS((linkΦ(hτ))|S ,Ghτ ; g)

=
1

|Gτ |

∑

ρ≃τ
g∈Gρ

∑

h∈G
hτ=ρ

hS((linkΦ(ρ))|S ,Gρ; g)

=
∑

ρ≃τ
g∈Gρ

hS((linkΦ(ρ))|S ,Gρ; g)




∑

h∈G
hτ=ρ

1

|Gτ |






EQUIVARIANT FLAG f -VECTORS 15

=
∑

ρ≃τ
g∈Gρ

hS((linkΦ(ρ))|S ,Gρ; g)

where the first equality is a formula for induced class functions. The second equality comes
from applying conjugation. The third equality is the result of replacing one summation
with two summmations, the outer summation being over faces ρ that are equivalent to τ ,
and then over group elements h such that hτ = ρ. Thus, summing over all τ ∈ TT\S(Φ),
we obtain

∑

τ∈TT\S(Φ)

hS((linkΦ(τ))|S ,Gτ ) ↑
G
Gτ

(g) =
∑

τ∈TT\S(Φ)

∑

ρ≃τ
g∈Gρ

hS((linkΦ(ρ))|S ,Gρ; g)

=
∑

τ∈Fixg(Φ)
κ(τ)=T\S

hS((linkΦ(τ))|S ,Gτ ; g)

=
∑

Q:(T\S)⊆Q⊆T

(−1)|T\Q|fQ(Φ|T ,G; g).

�

Theorem 20. Let Φ be a balanced relative simplicial complex of dimension d-1. Suppose
that G acts on Φ, and that Φ satisfies (Sℓ).

Give S ⊆ T ⊆ [d] with |S| ≤ ℓ, let T be a transversal for G acting on κ−1(T \ S). Then
we have

hS,T (Φ,G) =
∑

τ∈TT\S(Φ)

χH̃|S|−2(linkΦ(τ)|S),Gτ
↑GGτ

.

In particular, hS,T (Φ,G) ≥G 0.

Observe that this result implies Theorem 3.

Proof. Now suppose that Φ satisfies (Sℓ) and |S| ≤ ℓ. Let τ ∈ TT\S(Φ). By Theorem 13,we
have

(4) hS((linkΦ(τ))|S ,Gτ ) =

|S|∑

i=0

(−1)|S|−iχ
H̃i−1(linkΦ(τ)|S),Gτ

.

Since Φ satisfies (Sℓ), we know Φ|T satisfies (Sℓ) as well, and hence H̃i−1(linkΦ|T (τ)) = 0 for
i ≤ min(dim(linkΦ|T (τ)), ℓ − 1). Since dim(linkΦ|T (τ)) = |S| − 1, and |S| ≤ ℓ, we see that
the homology is concentrated in the top dimension. Moreover, linkΦ|T (τ) = linkΦ(τ)|S .
Thus all the terms on the right hand side of Equation (4) are 0, except when i = |S|.
Hence

hS((linkΦ(τ))|S ,Gτ ) = χH̃|S|−2(linkΦ(τ)|S),Gτ
.

Hence hS((linkΦ(τ))|S ,Gτ ) is an effective character, and thus hS,T (Φ,G) is also an ef-
fective character. �
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We now prove a Lemma that will be used to prove Theorems 4 and 5.

Lemma 21. Let Φ be a balanced relative simplicial complex of dimension d− 1. Let G act
on Φ. Suppose that Φ satisfies (Sℓ), and let S ⊆ [d]. Let i ≤ ℓ. Then

∑

T⊆S:|T |≥ℓ

(
|T | − (ℓ− i)

i

)
hT (Φ,G) ≥G 0.

Proof. For a set S ⊆ [d], and i < d, we let mi(S) be the (ℓ− i)th smallest element, and let

Mi(S) = {x ∈ S : x ≤ mi(S)}.

So if we write S = {s1, . . . , sk} with s1 < s2 < · · · < sk, then mi(S) = sℓ−i and Mi(S) =
{s1, . . . , sℓ−i}.

Given i ≤ ℓ, and |T | ≥ ℓ, we see that
(|T |−(ℓ−i)

i

)
counts the number of subsets R ⊆ T

with |R| = ℓ and Mi(R) =Mi(T ).
We see that

∑

T⊆S:|T |≥ℓ

(
|T | − (ℓ− i)

i

)
hT (Φ,G) =

∑

T⊆S:|T |≥ℓ

∑

R⊆T :|R|=ℓ
Mi(R)=Mi(T )

hT (Φ,G)

=
∑

R⊆[d]:|R|=ℓ

∑

T :R⊆T⊆S
Mi(R)=Mi(T )

hT (Φ,G)

=
∑

R⊆[d]:|R|=ℓ

∑

T :R⊆T
T\Mi(R)⊆S\[mi(R)]

hT (Φ,G).

The first equality comes from our interpretation of the binomial coefficient, while the second
equality comes from rearranging the order of summation. The third equality comes from
recognizing that R ⊆ T ⊆ S with Mi(R) = Mi(T ) holds if and only if T \ Mi(R) ⊆
S \ [mi(R)]. For each R, the inner sum becomes

∑

T :R⊆T⊆Mi(R)∪(S\[mi(R)])

hT (Φ,G) = hR,Mi(R)∪(S\[mi(R)])(Φ,G)

which is an effective character by Lemma 19, since |R| = ℓ. Thus we have a sum of effective
characters, which is effective. Hence

∑

T⊆S:|T |≥ℓ

(
|T | − (ℓ− i)

i

)
hT (Φ,G) ≥G 0.

�

Proof of Theorem 5. Let Φ, d, G be as in the statement of the Theorem. Suppose fi−1(Φ,G) =
0 for all i < ℓ, and that Φ satisfies (Sℓ).

Let i ≥ ℓ. Then we have

(i− ℓ+ 2)fi(Φ,G) −(d− i)fi−1(Φ,G) =
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∑

S⊆[d]
|S|=i+1

(|S| − (ℓ− 1))fS(Φ,G) −
∑

R⊆[d]:|R|=i

(d− |R|)fR(Φ,G) =

∑

S⊆[d]
|S|=i+1

(|S| − (ℓ− 1))fS(Φ,G) −
∑

R⊆[d]:|R|=i

∑

x∈[d]\R

fR(Φ,G) =

∑

S⊆[d]
|S|=i+1

(|S| − (ℓ− 1))fS(Φ,G) −
∑

S⊆[d]:|S|=i+1

∑

x∈S

fS\{x}(Φ,G) =

∑

S⊆[d]
|S|=i+1

∑

T⊆S

(|S| − (ℓ− 1))hT (Φ,G) −
∑

S⊆[d]
|S|=i+1

∑

x∈S

∑

T⊆S\{x}

hT (Φ,G) =

∑

S⊆[d]
|S|=i+1



∑

T⊆S

(|S| − (ℓ− 1))hT (Φ,G) −
∑

x∈S

∑

T⊆S\{x}

hT (Φ,G)


 =

∑

S⊆[d]
|S|=i+1



∑

T⊆S

(|S| − (ℓ− 1))hT (Φ,G) −
∑

T⊆S

|S \ T |hT (Φ,G)


 =

∑

S⊆[d]
|S|=i+1

∑

T⊆S

(|T | − (ℓ− 1))hT (Φ,G) =

∑

S⊆[d]
|S|=i+1

∑

T⊆S
|T |≥ℓ

(
|T | − (ℓ− 1)

1

)
hT (Φ,G) ≥G0.

The first equality comes from rewriting the f -vector in terms of the flag f -vector. The
second equality comes from rewriting the second summation to replace (d−|R|) with a sum
over elements of [d]\R. The third equality comes from reindexing the summations by setting
S = R∪{x}. The fourth equality involves combining the summations, and then expressing
the flag f -vector in terms of the flag h-vector. The fifth equality follows from simplifying
the second summations by computing the coefficient of a given hT (Φ,G). Combining like
terms, and using the fact that hT (Φ,G) = 0 when |T | < ℓ, we arrive at the final expression.
However, then we can apply Lemma 21. Thus (d − i)fi−1(Φ,G) ≤ (i − ℓ + 2)fi(Φ,G) for
all i ≥ ℓ.

Applying Proposition 10, we see that (fℓ−1(Φ,G), . . . , fd−1(Φ,G)) is equivariantly flaw-
less. �
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Proof of Theorem 4. We see that

j∑

k=ℓ

(
d− k

j − k

)(
k − (ℓ− i)

i

)
hk(Φ,G) =

j∑

k=ℓ

(
d− k

j − k

)(
k − (ℓ− i)

i

) ∑

T⊆S:|T |=k

hT (Φ,G)

=

j∑

k=ℓ

∑

T⊆S:|T |=k

(
d− k

j − k

)(
|T | − (ℓ− i)

i

)
hT (Φ,G)

=

j∑

k=ℓ

∑

T⊆S:|T |=k

∑

S⊆[d]:|S|=j,T⊆S

(
|T | − (ℓ− i)

i

)
hT (Φ,G)

=
∑

T⊆S:|T |≥ℓ

∑

S⊆[d]:|S|=j,T⊆S

(
|T | − (ℓ− i)

i

)
hT (Φ,G)

=
∑

S⊆[d]:|S|=j

∑

T⊆S:|T |≥ℓ

(
|T | − (ℓ− i)

i

)
hT (Φ,G)

≥G 0

where the last inequality comes from Lemma 21, applied to S. �

5. Mixed Graphs

Given a finite set V , a mixed graph is a triple (V,U,D), where U is a set of undirected
edges, and D is a set of directed edges. A mixed graph is acyclic if it does not contain a
directed cycle. A mixed cycle in G is a cycle in the underlying undirected graph that has
at least one directed edge. A near cycle is a mixed cycle of length three that has exactly
one undirected edge.

There are two polynomial invariants associated to acyclic mixed graphs: the weak and
strong chromatic polynomial, both introduced in [BBC+15], motivated by work in [BBP12].
Given an acyclic mixed graph g, the weak chromatic polynomial χ(g, k) counts the number
of functions f : V → [k] subject to:

(1) For every uv ∈ U , we have f(u) 6= f(v).
(2) For every (u, v) ∈ D, we have f(u) ≤ f(v).

Let F (G) be the set of all weak graph colorings. The strong chromatic polynomial χ̄(g, k)
counts similar functions, only with strict inequalities for the second condition instead of
the weak inequality. We introduced quasisymmetric function generalizations of both poly-
nomials in [Whi], by showing how both polynomial invariants come from characters on
MG.

An automorphism of a mixed graph is a bijection on the vertices which preserve directed
edges and undirected edges. Let Aut(G) be the group of automorphisms of a mixed graph
G.
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Let G ⊆ Aut(G). Then G acts on F (G), via gf = f ◦ g−1 for f ∈ F (G) and g ∈ G.
Given g ∈ G, we define

χ(G,G,x; g) =
∑

f∈Fixg(F (G))

xf .

We show that χ(G,G,x) is a Hilbert quasisymmetric class function for a relative simplicial
complex.

Given a mixed graph G, we let P be the transitive closure of the relation given by the
directed edges. When G has no directed cycles, P is a poset. Let I ⊆ J be two order
ideals. We say that the pair (I, J) is stable if there is no undirected edge in J \I. Let J(G)
be the set of order ideals of P , and let

Φ(G) = {I1 ⊂ I2 ⊂ · · · ⊂ Ik : (Ij , Ij+1) is stable for all 0 ≤ j ≤ k}

We define I0 = ∅, and Ik+1 = N . Then Φ(G) is a balanced relative simplicial complex,
with coloring κ(I) = |I|.

Proposition 22. Let G be a mixed graph with no directed cycles, and let G ⊆ Aut(G).
Then χ(G,G,x) = Hilb(Φ(G),G,x). Thus χ(G,G, x) = psHilb(Φ(G),G,x).

Proof. Let V be the vertex set of G. Let g ∈ G, and write

Hilb(Φ(G),G,x; g) =
∑

I·∈Φ

∑

i0<i1<···<ik

x
|I1|
i0
x
|I2\I1|
i1

· · · x
|N\Ik|
ik

.

Given I· and (i0, . . . , ik), define a function f : V → N by f(n) = ij if n ∈ Ij+1 \ Ij , where
Ik+1 = N . We claim that f is a weak coloring. Let uv be an undirected edge, and suppose
f(u) = ij . If f(v) = ij , then Ij+1 \ Ij contains an edge, which is a contradiction. Thus
f(v) 6= ij . Let (u, v) be a directed edge, and let f(u) = ij. Then u ≥ v in P . Since Ij is
an ideal, v ∈ Ij , so f(v) ≤ ij . Hence f is a weak coloring.

Moreover, every coloring arises from this construction. Let f be a proper coloring of G
that is fixed by g. Let Ij = f−1([j]). Then Ij ⊆ Ik whenever j ≤ k. If we remove the
repeats, we get a sequence I1 ⊂ I2 ⊂ · · · ⊂ Ik, which we denote by I·(f). Moreover, we
claim each Ij must be an order ideal of P . If not, then there exists x ∈ Ij, y ≤ x with
y 6∈ Ij. This implies that f(y) > f(x), and that there is a directed path in G from x to y.
Hence there is an edge (u, v) on the path where f(u) > f(v), a contradiction.

Therefore Ij is an order ideal for all j. Similarly, Ij \ Ij−1 is stable for all j. Finally,
the chain I1 ⊂ I2 ⊂ · · · ⊂ Ik is fixed by g. Thus I·(f) ∈ Φ(G). We also write f(N) =
{i1, . . . , ik} where i1 < i2 < · · · , ik. Then the map f 7→ (I·(f), (i1, · · · , ik)) defines a
bijection between colorings and terms of Hilb(Φ(G),G,x; g). �

Proof of Theorem 6. Let PG be the partial order given by the transitive closure of the di-
rected edges of G. Let ∆(P ) be the order complex of J(P ). We write Φ(G) = (∆(P ),Γ(G)),
where Γ(P ) consists of chains of ideals I1 ⊂ I2 ⊂ · · · ⊂ Ik such that Ij \ Ij−1 contains an
undirected edge of G for some j. Since ∆(J(P )) is shellable, it is Cohen-Macaulay. If
Γ = ∅, then we are done.

Otherwise, it suffices by Proposition 17 to show that dimΓ(G) = dim∆(P ) − 1, and
that Γ(G) satisfies (Sm(G)−1). We first show that dimΓ = dim(∆(P )) − 1. To see this,
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consider any undirected edge e of G. Since G has no near-cycles, P/e is still a partial
order, so we can consider any linear extension ℓ of P/e. Then we can view ℓ as a set
composition C1| · · · |Ck of V where Ci = e for some i, and the other blocks are singletons.
Then C1 ⊂ C1 ∪C2 ⊂ · · · ⊂ C1 ∪ · · · ∪ Ck is an element of Γ(G) of size dim(∆(P )).

Suppose that there is only one undirected edge e, and thatG has no near cycles. Consider
the function f : V (Γ(M)) → V (J(P/e)) given by

f(I) =

{
I/e e ⊆ I

I otherwise

Then f is an isomorphism between Γ(G) and ∆(G/e). Hence Γ(G) is relatively Cohen-
Macaulay.

Suppose that m(G) = 2. It suffices to show that Γ(G) is non-empty. However, that
follows from the fact that it has dimension dim(∆(P ))− 1.

So suppose that m(G) > 2. Then there are at least two undirected edges. Let e be an
undirected edge. Let U ′ = U \ {e}. Then Γ(G) = Γ(G − e) ∪ Γ(G \ U ′). We see that
m(G − e) ≥ m(G) and m(G \ U ′) ≥ m(G). By induction, Γ(G − e) and Γ(G \ U ′) both
satisfy (Sm(G)−1).

We claim that Γ(G−e)∩Γ(G\U ′) is isomorphic to Γ(G/e). Let I ∈ V (Γ(G−e)∩Γ(G\U ′).
Then there exists f ∈ U ′ such that I is an ideal of P and e ∪ f ⊆ I. Then f ⊆ I/e, so
I/e ∈ V (Γ(G/e)). If we define F : V (Γ(G − e) ∩ Γ(G \ U ′)) → V (Γ(G/e)) by F (I) = I/e,
then F is an isomorphism of simplicial complexes.

We see that m(G) − 1 ≤ m(G/e) ≤ m(G). Moreover, if G/e has a near cycle, then
m(G) = 2. Since we assume m(G) > 2, it follows that G/e has no near cycle, and hence
dim(Γ(G/e)) = dim(Γ(G)) − 1. By induction, Γ(G/e) satisfies (Sm(G)−2). By Proposition
18, it follows that Γ(G) satisfies (Sm(G)−1). Thus By Proposition 17, Φ(G) satisfies (Sm(G)).

Now let G ⊆ Aut(G). By Proposition 22, we see that χ(G,G,x) = Hilb(Φ(G),G,x).
Hence χ(G,G, x) = psHilb(Φ(G),G,x). We write

χ(G,G, x) =

n∑

i=0

fi−2

(
x

i

)
=

n∑

i=0

hi−1

(
x+ n− i

n

)
.

From principal specialization, it follows that

fi−1 =
∑

S⊆[n−1]:|S|=i

[MS,n]χ(G,G,x)

=
∑

S⊆[n−1]:|S|=i

[MS,n] Hilb(Φ(G),G,x)

= fi−1(Φ(G)).

Similarly, hi = hi(Φ(G)). The other results follow from Theorem 5 and from Theorem
20. �
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b

a c

d c

b d

a

Figure 2. A double poset, with ≤1 on the left, and ≤2 on the right.

6. Double Posets

Now we will discuss double posets, and marked posets. The Hopf algebra of double
posets was introduced by Malvenuto and Reutenauer [MR11]. Grinberg associated a qua-
sisymmetric function to any double poset, which is a generalization of Gessel’s P -partition
enumerator. This quasisymmetric function is studied extensively by Grinberg [Gri17], who
proved a combinatorial reciprocity theorem. We studied a quasisymmetric class function
associated to a double poset [Whi21].

Given a finite set N , a double poset on N is a triple (N,≤1,≤2) where ≤1 and ≤2 are
both partial orders on N . Often for standard poset terminology, we will use ≤i as a prefix
to specify which of the two partial orders is being referred to. For instance, a ≤1-order ideal
is a subset that is an order ideal with respect to the first partial order, and a ≤1-covering
relation refers to a pair (x, y) such that x ≺1 y.

Given a double poset D, a pair (m,m′) ∈ M is an inversion if m <1 m
′ and m′ <2 m.

We refer to an inversion (m,m′) as a descent if m ≺1 m
′. We say that D is inversion-

reducible if for every inversion (m,m′), either (m,m′) is a descent, or there exists m′′ with
m <1 m

′′ <1 m
′ such that (m,m′′) or (m′′,m′) is an inversion. Finally, a double poset is

tertispecial if, whenever m ≺1 m
′, then m and m′ are ≤2-comparable.

Let D be a double poset on a finite set N , and let f : N → N. Then f is a D-partition
if and only if it satisfies the following two properties:

(1) For i ≤1 j in D, we have f(i) ≤ f(j).
(2) For i ≤1 j and j ≤2 i in D, we have f(i) < f(j).

We let PD be the set of D-partitions.
Given a double poset D, and a permutation g ∈ SN , we say g is an automorphism of

D if for all i, j ∈ N , and k ∈ {1, 2}, if i ≤k j, then g(i) ≤k g(j). We let Aut(D) be the
automorphism group of D. For instance, for the double poset in Figure 2, the permutation
(ac)(bd) is the only nontrivial automorphism. Similarly the only nontrivial automorphism
of the double poset in Figure 3 is the permutation (a)(bd)(c).

Let G ⊆ Aut(D). For g ∈ G and f : N → N, let g · f be defined by (g · f)(v) = f(g−1 · v)
for all v ∈ N . This defines an action of G on PD. Moreover, we see that xf = xg·f .

For a double poset D on N , G ⊆ Aut(D), and g ∈ G, let

Ω(D,G,x; g) =
∑

f∈PD:gf=f

xf .
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b d
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Figure 3. A double poset, with ≤1 on the left, and ≤2 on the right.

We call Ω(D,G,x) the D-partition quasisymmetric class function. We introduced this
invariant in [Whi21].

As an example, consider the double poset D in Figure 2, and let G = Aut(D). Let ρ
denote the regular representation. Then

Ω(D,G,x) =M{2},4 + ρ(M{2,3},4 +M{1,3},4 +M{1,2},4 + 2M{1,2,3},4)

= F{2},4 + sgn(F{2,3},4 + F{1,2},4 − F{1,2,3},4) + ρF{1,3},4.

As another example, consider the double poset D in Figure 3, and let G = Aut(D). Let
ρ denote the regular representation. Then

Ω(D,G,x) =M{1},4 +M{1,3},4 + ρ(M{1,2},4 +M{1,2,3},4)

= F{1},4 + sgnF{1,2},4.

6.1. From Double Posets to Mixed graphs. Let D be a double poset on a finite
set N . We can associate a mixed graph G(D) to an inversion-reducible double poset D.
We let D1 = {(u, v) : v ≤1-covers u}. We let U = {uv : v ≤1-covers u, v ≤2 v}. Then
G(D) = (V (P ), U,D1). We see that, if g is an automorphism of D, then it is also an
automorphism of G(D). Thus, Aut(D) ⊆ Aut(G(D)).

Moreover, we see that a function f : N → N is a D-partition if and only if f is a weak
coloring of G(D). Thus Ω(D,G,x) = χ(G(D),G,x).

Thus, we can transfer the results from the previous section to derive results about double
posets. First, G(D) has no near cycles. If G(D) had a near cycle C with undirected edge
uv, and there is a directed path from u to v. By definition of G(D), since uv ∈ E(G(P )),
we know v ≤1-covers u and v ≤2 u. However, there is also a directed path of length at
least two from v to u, which implies that u ≤1 v but that v does not cover u. Hence there
is no near cycle. From Theorem 6 we conclude the following:

Theorem 23. Let D be a double poset on n elements. Suppose that D is inversion-
reducible, and let m(D) = m(G(D)). Let G act on D. Then G acts on G(D), and
Ω(D,G,x) = χ(G(D),G,x).

For all S ⊆ [n− 1], if |S| ≤ m(D), we have [FS,n]Ω(D,G,x) ≥ 0.

Now we apply our results to tertispecial posets.
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Proposition 24. Suppose that D is a tertispecial poset on n elements. Then D is inversion
reducible. Moreover G(D) has no mixed cycles. Thus, for every G ⊆ Aut(D) and every
S ⊆ [n− 1], we have [FS,n]Ω(D,G,x) ≥ 0.

Proof. We prove the first condition by induction on n. Suppose that (x, y) is an inversion
pair. if n = 2, then the result is immediate. So suppose n > 2.

Choose t such that x ≺1 t ≤1 y. Since D is tertispecial, we have x ≤2 t or t ≤2 x. In
the latter case, we have found a descent pair (x, t). In the former case the pair (t, y) forms
an inversion pair. We observe that the interval [t, y] is equal to (y) \ (t), where (a) is the
principal order ideal generated by a. Since |[t, y]| < |N |, by induction there is a descent
pair (w, z) in [t, y], and hence [x, y] also has a descent.

To see that G(D) has no mixed cycles, let (u, v) be a directed edge with v ≺1 u. Then
we have u 6≤2 v. However, by the definition of tertispecial, u and v are ≤2-comparable, so
we have v ≤2 u. We see then that for every directed edge (u, v), we have v ≤2 u. Hence
D(P ) must be acyclic. The rest follows from the previous Theorem. �

Thus we have shown Theorem 7.
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