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Independence of Linear Statistics with

Random Coefficients and Characterizations of

Geometric and Poisson Distributions

Lev B. Klebanova

Abstract

There is given a characterization of the geometric distribution by

the independence of linear forms with random coefficients. The re-

sult is a discrete analog of the corresponding theorem on exponential

distribution. The property of linear statistics independence is also a

characterization of Poisson law.
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1 Introduction

Many different characterizations of the distribution are known (see [2]). An
essential part of them is connected to the characterizations property of in-
dependence of statistics, especially by that of linear forms. The main result
here is the linear forms are independent for Gaussian distribution only. The
property allows explaining the appearance of Maxwell distribution in Physics.
Recently, there were published facts on the independence of linear forms with
random coefficients (see [3, 4]). They lead to the characterization of expo-
nential and hyperbolic secant distributions. Unfortunately, it was not clear if
it is possible to use the independence property to characterize some discrete
distributions. Here we modify previous methods to obtain characterizations
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of geometric and Poisson distribution. We hope the methods will lead to
characterizations of other discrete distributions. As far as we know, there
are only a few characterizations of the distributions of positive integer-valued
random variables. Among them let us note the characteristic properties of
geometric distribution by the independence of linear forms of order statistics
[1]. However, the structure of the forms used here is absolutely different.

2 Main results

In the paper, [4] there was given a characterization of exponential distribution
by the independence of linear forms

S1 = (1− p)aX + ε(p)aY and S2 = pbX + (1− ε(p))bY.

Here X and Y are independent identically distributed (i.i.d) positive random
variables, p ∈ (0, 1), and ε(p) is independent of the pair (X, Y ) Bernoulli
random variable with the parameter p. Below we give a similar result for
a geometric random variable. However, the multiplication of X by p or by
1 − p leads out the class of integer-valued random variables. Therefore, we
have to use a thinning operator instead of multiplication.

Let us give a precise formulation. Suppose X and Y are i.i.d. random
variables taking non-negative integer values. Suppose that p ∈ (0, 1) is fixed,
and εp is independent of the pair (X, Y ) Bernoulli random variable with the
parameter p. Let {εj(1 − p), j = 1, 2, . . .} be a sequence of i.i.d. Bernoulli
random variables with parameter 1−p and independent on X, Y, ε(p). Define
the forms

L1 = X̃1−p + ε(p)Y and L2 = X̃p +
(
1− ε(p)

)
Y. (2.1)

Here X̃1−p =
∑X

j=1 εj(1− p) and X̃p =
∑X

j=1

(
1− εj(1− p)

)
.

Theorem 2.1. The forms L1 and L2 defined above are stochastical indepen-
dent if and only if X has a geometric distribution.

Proof. Consider joint probability generating function of L1 and L2.

IE
(
uL1vL2

)
= IE

(
uX̃1−p+ε(p)Y vX̃p+(1−ε(p))Y

)
=

P((1− p)u+ pv)
(
pP(u) + (1− p)P(v)

)
, (2.2)
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Forms L1, and L2 are independent if and only if the right-hand side of (2.2)
may be written as a product of two probability generating functions depend-
ing on u and v separately.

Let us verify the forms are independent in the case of exponentially dis-
tributed X . Really, in this case, we have

P(z) =
a− 1

a− z

for any a > 1. Substitution of this function on the right-hand side of (2.2)
gives us the product

(a− 1)2

(a− u)(a− v)
.

It means the forms are independent for exponentially distributed X .
Let us prove the inverse statement. Independence of L1 and L2 holds if

and only if their joint probability generating function is a product of corre-
sponding marginal generating functions:

P
(
(1− p)u+ pv

)(
pP(u) + (1− p)P(v)

)
=

P
(
(1− p)u+ p

)(
pP(u) + (1− p)

)
P
(
(1− p) + pv

)(
p + (1− p)P(v)

)
.(2.3)

The relation (2.3) holds for all u and v such that |u| ≤ 1, |v| ≤ 1.
Setting here u = v = 0 we obtain

P2(0) = P(p)
(
P(0)p+ 1− p

)
P(1 − p)

(
p+ (1− p)P(0)

)
.

However, p ∈ (0, 1) and from the definition of probability generating function
we see P(p) > 0 and P(1 − p) > 0. Therefore P(0) > 0. Because any
probability generating function is analytic in the disc |z| ≤ 1 on the complex
plain P(z) is uniquely defined by the sequence of its derivatives at point
z = 0.

Rewrite (2.3) in the form

P
(
(1− p)u+ pv

)(
pP(u) + (1− p)P(v)

)
= H1(u)H2(v). (2.4)

Taking the logarithm and differentiating with respect to v both sides of (2.4),
we obtain at the point v = 0 that

p
P ′

(
(1− p)u

)

P
(
(1− p)u

) +
(1− p)P ′(0)

pP(u) + (1− p)P(0)
= C, (2.5)

where C = H ′

2(0)/H2(0). From (2.5) follow two facts:
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1. The value P ′(0) may be arbitrary;

2. For any k > 1 the value of Pk(0) is uniquely determined by previous
values Pk−1(0),Pk−2(0), . . . ,P(0) that is by two parameters P(0) and
P ′(0).

However, one of these parameters is fixed in view of the condition

∞∑

k=0

Pk(0)

k!
= 1

and the solution of (2.2) may depend on one parameter only. Such solution
is P(z) = (a− 1)/(a− z).

Let us now proceed to the characterization of Poisson distribution. Let
X, Y are i.i.d. non-negative integer-valued random variables. Suppose that
{εj(p), j = 1, 2, . . .} and {ε̃j(q), j = 1, 2, . . .} are independent with each
other and with the pair (X, Y ) sequences of Bernoulli random variables with
parameters p, q ∈ (0, 1). Consider linear forms K1 and K2 of X and Y :

X̃1−p =

X∑

j=1

εj(1− p), X̃q =

X∑

j=1

(
1− ε̃j(1− q)

)

Ỹ1−q =
Y∑

j=1

ε̃j(1− q), Ỹp =
Y∑

j=1

(
1− εj(1− p)

)

K1 = X̃1−p + Ỹ1−q, K2 = X̃q + Ỹp. (2.6)

Theorem 2.2. Forms (2.6) are independent if and only if X has Poisson
distribution.

Proof. The joint probability generating function of K1 and K2 is

IE(uK1vK2) = IE
(
uX̃1−pvỸpuX̃qvỸ1−q

)
=

P((1− p)u+ pv)P((1− q)u+ qv). (2.7)

Probability generating function of Poisson distribution has form

Po(z) = exp{λ(z − 1)}.

Substituting this function on the right-hand side of (2.7) leads to a product
of functions depending on u and v separately.

The rest of the proof is similar to that of the Theorem 2.1; we omit it.
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3 Conclusions

Characterization of distributions by the property of independent statistics is
an interesting part of Probability. Basically, it is purely theoretical interest.
However, characterizations of distributions can also be useful in statistical
hypotheses testing (see [5]). Obtained here characterizations use rather sim-
ple statistics and there is a hope they may also be used for the construction
of statistical tests.

ACKNOWLEDGEMENT

The work was partially supported by Grant GAČR 19-28231X.
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