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Abstract

For every local quantum field theory on a static, globally hyperbolic spacetime of

arbitrary dimension, assuming the Reeh-Schlieder property, local preparability of

states, and the existence of an energy density as operator-valued distribution, we

prove an approximate quantum energy inequality for a dense set of vector states.

The quantum field theory is given by a net of von Neumann algebras of observables,

and the energy density is assumed to fulfill polynomial energy bounds and to locally

generate the time translations. While being approximate in the sense that it is

controlled by a small parameter that depends on the respective state vector, the

derived lower bound on the expectation value of the spacetime averaged energy

density has a universal structure. In particular, the bound is directly related to the

Tomita-Takesaki modular operators associated to the local von Neumann algebras.

This reveals general, model-independent features of quantum energy inequalities for

a large class of quantum field theories on static spacetimes.

1 Introduction

In classical (macroscopic) physics, and in particular in general relativity,

the energy density of matter is typically non-negative at any point in space-

time. At a more technical level, this is expressed through describing matter

by means of a stress-energy tensor field on spacetime (more commonly, by a

stress-energy tensor, for short) on which various types of energy conditions

1

http://arxiv.org/abs/2210.01145v2


are imposed. Such energy conditions are important in order to ensure that

gravity, as formulated in Einstein’s equations, acts always as an attractive

force, i.e. leads to geodesic focussing. In turn, this is crucial for the validity

of singularity theorems in general relativity, and also for the ability to rule

out certain causal pathologies in solutions to Einstein’s equations of grav-

ity. We will not attempt any review or representative selection of the rich

amount of literature on the topic and instead just refer to the references

[19, 48, 50] for an overview and review on the subject.

On the other hand, it is known that in quantum field theory the energy

density at any given spacetime point is unbounded below as a functional

of physical quantum states, even if the total energy, i.e. the energy den-

sity integrated over a Cauchy surface, is non-negative for any quantum

field state. This property of the energy density in quantum field theory

has been established both in quantum field models as well as on general

grounds. However, it has been found that suitable spacetime averages of

the energy density in quantum field theory or, more technically, integration

of the energy density against smooth, non-negative test functions, leads to

quantities (expectation value functionals) which are bounded below, in

such a manner that the bound does not depend on the states (with respect

to which the expectation values are formed). We will next mention some

investigations and results to this effect, however again without attempting

a fair review of the literature; considerably more discussion to this end is

given in [28, 48] and references cited there.

The object of study is a quantum field theory with a stress-energy ob-

servable, which in general is a tensorial operator-valued distribution. Its

expectation value for a suitable class of states is, somewhat symbolically,

denoted by xTµνpxqyσ where σ labels a state, and x is a spacetime point.

This sloppy notation for a distribution is common and justified since, un-

der general conditions, the expectation value is actually a smooth function
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on spacetime for sufficiently regular states σ. For many types of quan-

tum fields that are subject to a linear hyperbolic equation of motion, or a

Dirac-type equation, there are good candidates for the expectation value

of the stress-energy tensor, in flat as well in general curved spacetimes, for

a class of states σ that fulfill the microlocal spectrum condition, which can

be seen as a generalization of the Hadamard condition on quantum field

states [55, 12, 57]. We won’t review the matter of definition of the quan-

tum stress-energy tensor on curved spacetime here and refer to [68, 52] for

further discussion. For linear quantum fields on curved spacetimes, it has

been shown that a quantum weak energy inequality (QWEI) holds, i.e. if γ

is a smooth timelike curve, and if x̺ptqyσ “ xTµνpγptqqyσ 9γµptq 9γνptq denotes

the expected energy density along the curve in state σ, then an estimate

of the type

inf
σ

ż

f 2ptq x̺ptqyσ dt ě ´Cpγ, fq (1.1)

holds for real-valued, smooth, compactly supported test functions f along

γ [25, 33, 30]. The crucial point is that the right hand side is potentially

negative, but finite for every f and every γ. This finding comes with a

caveat, though, in that it may depend on the type of field equation. For

instance, it has been found that the non-minimally coupled linear scalar

field in general does not admit a bound of this type. In fact, for such

quantum fields, a weaker statement, called a relative quantum weak energy

inequality (rQWEI) holds, of the type

ż

f 2ptq x̺ptqyσ dt ě ´Qσpγ, fq , (1.2)

where the functional Qσpγ, fq ě 0 provides a lower bound in the given

form, but not an upper bound on the integral on the left hand side as σ

ranges over the set of all Hadamard states for fixed γ and f [31]. Limiting
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behaviour of the QWEI has also been investigated, for the case that the

function f approaches the constant value 1 all along the curve γ. If, in

this case, the lower bound on the resulting expression is 0 for all states

contemplated, one speaks of an averaged weak energy condition (AWEC)

if γ is a complete timelike geodesic, and of an averaged null energy con-

dition (ANEC) if γ is a complete null geodesic. For free quantized fields

on Minkowski spacetime, AWEC results can be obtained as limiting cases

of the QWEI [38]; however it has been pointed out that the AWEC may

fail in the presence of negative static Casimir energies as they occur near

domain walls, which may indirectly be taken as a failure of AWEC in in-

teracting quantum field theories possessing bound states which may serve

as domain walls [42]. Results on the ANEC have been obtained for free

fields in Minkowski spacetime [47, 69, 36] and also for interacting quantum

fields in two-dimensional Minkowski spacetime [29, 66]. In higher dimen-

sional Minkowski spacetime, lower bounds on the null energy density of

the expected stress-energy tensor, including ANEC, have been connected

to bounds on entropy-like quantities for certain spacetime regions in gen-

eral quantum field theories [70, 9, 24, 51, 18, 53, 17]. From the perspective

of our present contribution, there is some potential link since methods from

the Tomita-Takesaki modular theory of von Neumann algebras [63, 10] are

used in the mentioned works. One of the prominent appearances of the

Tomita-Takesaki modular theory in general quantum field theory is via the

theorems of Bisognano-Wichmann and Borchers on the geometric action

of Tomita-Takesaki modular objects for operator algebras of observables

associated to certain (wedge) regions and the vacuum vector [2, 5, 6, 43].

Tomita-Takesaki modular objects of local observable algebras relative to a

vacuum state also make an appearance in the main result of the present

work, however without need for their geometric action.

While there are numerous results on QWEIs and also averaged energy
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inequalities for linear quantum field theories, including such on general

spacetimes, there is apparently little on locally averaged lower bounds on

energy expectation values for general and interacting quantum field theo-

ries. The results in this direction so far have been relatively sparse [8, 7, 16],

reflecting the difficulty of obtaining local energy expressions permitting

useful bounds for interacting quantum fields. Moreover, it is unclear what

types of locally averaged energy inequalities one may hope to expect. Cer-

tainly one wouldn’t expect locally spatially averaged energy quantities to

hold as they fail already for linear quantum fields in physical spacetime

dimension [37]. One may even be skeptical about rQWEIs in the light of

the arguments of [42], even though it is not clear how relevant they are

at a formalized mathematical level. As pointed out in [32], lower bounds

on locally spacetime averaged energy expectation values have a potentially

larger domain of applicability. This is basically also the starting point we

adopt for the present work.

A first step, and difficulty to some extent, is to settle for definite as-

sumptions for a general quantum field theory with a stress-energy tensor,

or a bit more specifically, an energy density. To this end, we follow in this

work largely the approach of [66] and [34]. We consider a quantum field

theory in the operator algebraic setting on a static, globally hyperbolic

spacetime. Standard assumptions are made, such as commutativity of lo-

cal observables at causal separation, existence of a ground state for the

time translations, the Reeh-Schlieder property for local algebras, and local

preparability of states (which is related to the split property and the type

III property of local algebras [71, 72, 62, 27]). These assumptions have been

shown to be fulfilled for a large class of linear quantum field theories (see

Section 3 for a discussion). Furthermore, it will be assumed that there is

an operator-valued distribution ̺pF q, F P C8
0 pMq, on a suitable common

dense domain, affiliated with the local observable algebras, fulling polyno-
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mial “H-bounds”, where H denotes the Hamilton operator of the quantum

field theory, and generating the time translations locally. The latter means

that if G is a test function of a certain type, and A is a local observable

with a suitable localization relative to G, then r̺pGq, As “ rH,As. (A

fully rigorous formulation of the property will be given in Section 2. As

usual, rX, Y s “ XY ´Y X denotes the algebraic commutator.) Using these

assumptions, we reach at the following main result. Let Ω denote the unit

vector inducing the ground state, and let O7 be a spacetime region which is

suitably larger than supppGq. Then for every unit vector ψ in the common

dense domain of all energy density operators, it holds that for every ǫ ą 0

there is some λ0 ą 0 so that

pψ,̺pGqψq ě ´ǫ ´
?
2π }e´pλK7q2{2∆

´1{2
7 ̺pGqΩ} (1.3)

for all 0 ă λ ă λ0, where ∆7 “ eK7 denotes the Tomita-Takesaki modular

operator associated to the local observable algebra ApO7q and Ω; note that

∆
´1{2
7 “ e´K7{2. The round brackets are used for the scalar product of

the ambient Hilbert space (the ground state Hilbert space). The number

λ0 ą 0 depends on the state vector ψ and on ǫ. The dependence on λ0

means that the bound (1.3) is not a state-independent quantum inequality

as in the QWEIs for linear quantum fields. It has more the character

of a rQWEI, where the state dependence enters through the dependence

on λ0. It should be noted that ̺pGqΩ cannot be expected to lie in the

domain of ∆
´1{2
7 ; a result to that effect will be provided in Appendix B.

Thus, the expression on the right hand side of (1.3) will diverge to ´8
for λ Ñ 0. What is of interest, however, is the “universal” appearance

of the expression, which not only is independent of the state vector ψ,

but actually of any details of the energy density, and the way it is tied to

the Tomita-Takesaki modular operators associated to local von Neumann

algebras of the quantum field theory and the ground state vector.
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This work is organized as follows. In Section 2 we introduce our setup

of a quantum field theory on a static, globally hyperbolic spacetime in

operator algebraic language. In particular, we define the concept of an

energy density, subject to certain (physically motivated) conditions. Sec-

tion 3 comprises a discussion of the imposed assumptions with regard to

their generality and validity in quantum field theory models, as well as a

standard approximation result that will be important in the proof of the

main theorem in Section 4. In Theorem 4.1 we first present a preliminary,

simple quantum energy inequality for the locally averaged energy density

with respect to non-dense bounded sets of unit vectors. The main result,

Theorem 4.3, constitutes a refined version of this inequality with a lower

bound for a dense set of state vectors, as sketched above. This result is

followed by a concluding discussion in Section 5. Two technical appendices

appear after the main body of the article.

2 Setting

We consider a quantum field theory on a p1`dq-dimensional static, globally

hyperbolic spacetime pM, gq with manifold M “ R ˆ Σ, where Σ is a d-

dimensional manifold. Points in M will generically be denoted by pt, pq
with t P R and p P Σ. The metric g on the spacetime is given by

g “ α dt2 ‘ p´hq , (2.4)

where h is a Riemannian metric on Σ and α is a smooth, strictly positive

function on Σ. The level sets of the time function pt, pq ÞÑ t, i.e. the sets

Σt “ ttu ˆ Σ pt P Rq, are assumed to be Cauchy surfaces. There is a

Killing flow tτsusPR on M associated to the global timelike Killing vector

field Bt, consisting of the time shift isometries τspt, pq “ pt` s, pq. We also

recall the following notation. For any subset T Ă M , J˘pT q are the causal
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future (`) and causal past (´) sets of T , respectively. The domain of

dependence (also called Cauchy development) DpT q of T consists of those

points for which all future- or past-inextendible causal curves through them

intersect T . Finally, we call T causally convex if it agrees with its causal hull

J`pT q X J´pT q, i.e. if every causal curve with endpoints in T is contained

in T . We refer to [54, 67] for further background on Lorentzian geometry

and discussion of these concepts.

The quantum field theory on a static spacetime pM, gq is described in

the model-independent, operator algebraic framework [1, 43, 34]. It is

assumed that there is a family of von Neumann algebras tApOquOĂM on a

separable Hilbert space H, indexed by the open subsets O of M . We list

below the properties we will impose on our quantum field theory, while the

next section will contain a discussion as to how general these assumptions

are, and the extent to which they are proven, or can be expected to hold,

in specific quantum field theory models. We also present some further

consequences of the assumptions.

(a) Isotony: O1 Ă O2 ñ ApO1q Ă ApO2q

(b) Locality: O1 Ă OK ñ ApO1q Ă ApOq1

Here, OK “ MzpJ`pOqYJ´pOqq denotes the causal complement of O,

i.e. the set of all spacetime points which cannot be connected to O by

any causal curve. Furthermore, for any N Ă BpHq, the commutant of

N is denoted by N
1 “ tX P BpHq : XN “ NX for all N P N u.

(c) Covariance: There is a strongly continuous one-parameter unitary

group tUtutPR on H so that UtApOqU´1
t “ ApτtpOqq holds for all t P R

and all open subsets O of M .

(d) Existence of a ground state: There is a unit vector Ω P H so that

UtΩ “ Ω for all t P R. Moreover, denoting by H the “Hamiltonian”,

that is, the selfadjoint generator of tUtutPR given by Ut “ eitH , it
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holds that specpHq Ă r0,8q (the spectrum of H contains no negative

values).

(e) Reeh-Schlieder property: If O is any non-empty open subset ofM , then

Ω is cyclic for ApOq, meaning that the set ApOqΩ “ tAΩ : A P ApOqu
is dense inH. This implies that Ω is also separating for ApOq whenever
there is an non-empty open subset O1 of M with O1 Ă OK; we recall

that Ω is called separating for ApOq if for every A P ApOq the equation
AΩ “ 0 implies A “ 0.

(f) Local preparability of states: If O and O1 are causally convex open

subsets of M with O1 Ă O, then for every unit vector ψ P H there is

some Y P ApOq with }Y } “ 1 such that

pψ,Aψq “ pYΩ, AYΩq pA P ApO1qq . (2.5)

It will be helpful to introduce further notation. For f P S pRq (the

Schwartz functions) we write

ufpAq “
ż 8

´8

fptqUtAU
´1
t dt (2.6)

whenever A P BpHq. We then write A8pOq for the ˚-subalgebra of ApOq
formed by finite polynomials of elements of the form ufpBq (required to be

in ApOq) for f P S pRq and B P ApOq. Note that

d

dt
UtufpBqU´1

t

ˇ

ˇ

ˇ

ˇ

t“0

“ irH, ufpBqs “ u 9f
pBq (2.7)

where 9f “ df{ dt. Therefore, if A P A8pOq, then HnAΩ lies in H for every

n P N. Put differently, AΩ is in the C8-domain of H whenever A P A8pOq.

The further important assumption we make is that there is an energy
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density given by a quantum field which generates the derivation of the

Hamiltonian H locally, satisfies a polynomial H-bound and is affiliated

with the local von Neumann algebras ApOq. In more detail:

(A) We assume that for any F P C8
0 pMq, there is a linear operator ̺pF q,

depending linearly on F , defined on a common dense domain D Ă H,

and that ̺pF q is essentially selfadjoint on D if F is real-valued. The

domain D is assumed to be invariant under the action of the ̺pF q
and the Ut, and to contain Ω. Moreover, covariance will be assumed:

Ut̺pF qU ˚
t “ ̺pF ˝ τ´tq pF P C8

0 pMq, t P Rq . (2.8)

(B) Operator-valued distribution: For every m P N and ψ P D, the map

F1 b ¨ ¨ ¨ b Fm ÞÑ pψ,̺pF1q ¨ ¨ ¨̺pFmqψq pFj P C8
0 pMqq (2.9)

extends linearly to a distribution on Mm.

(C) Furthermore, it will be assumed that there is an integer ℓ so that

p1 ` Hq´ℓ̺pF qp1 ` Hq´ℓ extends, for any F P C8
0 pMq, to a bounded

operator on H. This is referred to by saying that “the ̺pF q fulfill

a polynomial H-bound”. It implies that ̺pF qp1 ` Hq2ℓ extends to a

bounded operator for all F P C8
0 pMq [40]. Therefore, all vectors in

dompp1`Hq2ℓq, the (graph norm closed) domain of definition of p1 `
Hq2ℓ, are in the (graph norm closed) domain of definition domp̺pF qq
of the selfadjoint extension of ̺pF q for real-valued F .

(D) It is also assumed that the ̺pF q are affiliated with the local von

Neumann algebras in the following sense: For real-valued F such that

supppF q Ă O, it holds that every bounded function bp̺pF qq of ̺pF q
in the sense of the spectral calculus (for b : R Ñ R continuous and

bounded) is contained in ApOq.1
1We notationally identify ̺pF q and its selfadjoint extension as no ambiguity is likely to arise.
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OsupppGq

St0`θ

St0´θ

Σt0`θ

Σt0´θ

DpSt0`θq

DpSt0´θq

Oˆ
O5

O7

Figure 1: Illustration of the relative localization of supppGq (shaded in blue), the inter-
section DpSt0´θqXDpSt0`θq (shaded and hatched in grey), and O according to assumption
(E). The time coordinate t runs vertically upwards. The causally convex open spacetime
regions Oˆ, O5 and O7 appear in Theorem 4.3.

(E) The property giving ̺ the significance of an energy density is the fol-

lowing (see Figure 1 for a depiction of the geometric setup). Suppose

that g P C8
0 pΣq is non-negative, fulfilling gppq “ 1 for all p P S with

S an open subset of Σ, and let g0 P C8
0 pRq be non-negative, with

supppg0q “ rt0 ´ θ, t0 ` θs for some t0 P R and some θ ą 0, and
ş8

´8 g0ptq dt “ 1. Then for G defined by Gpt, pq “ g0ptqgppq and any

O Ă DpSt0´θq XDpSt0`θq X supppGq, it is assumed that

r̺pGq, AsΩ “ rH,AsΩ “ HAΩ pA P A8pOqq . (2.10)

Here we have used the notation St “ ttu ˆ S, and also HΩ “ 0

(assumption (d)) in the rightmost equality of (2.10). Note furthermore

that the condition O Ă DpSt0´θqXDpSt0`θq implicitly requires a small

enough θ and a large enough S.
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3 Discussion of the assumptions

In the present section, we will provide some more comments on the as-

sumptions made, as well as some additional results which will be used

later.

The assumptions (a)–(d) are quite standard for algebraic quantum field

theory. They are generalizations of the Haag-Kastler axioms for an opera-

tor-algebraic setting of a quantum field theory in a vacuum representation

on Minkowski spacetime [43, 44] to a theory in the GNS representation

of a ground state on a static, globally hyperbolic spacetime, where they

are typical properties in the example case of linear quantum field theories

[22, 68, 59] (see also [35] for a more general context).

Assumption (e), the Reeh-Schlieder property, was first shown to be ful-

filled for the quantized free scalar field on Minkowski spacetime [56, 60].

It expresses the existence of correlations in the vacuum state, enabling the

approximation of any state with arbitrary accuracy by means of operations

on the vacuum that are localized in any open region. This property is also

known to hold, among other cases, for ground states of certain linear quan-

tum fields on static, globally hyperbolic spacetimes [61], and in a weaker

form for locally covariant quantum field theories on globally hyperbolic

spacetimes, including Klein-Gordon, Dirac and Proca fields [58, 21].

Assumption (f) on the local preparability of states is typically inferred

from the split property and the type III property of the local von Neu-

mann algebras; we refer to the reviews [72, 73, 62] and also [14, 71]. The

split property, which implies statistical independence of local algebras as-

sociated to spacelike separated regions, has been established in the GNS

representation of quasifree Hadamard states of some linear quantum fields

on globally hyperbolic spacetimes [64, 65, 20], and under certain condi-

tions also for general locally covariant quantum field theories [26] (see also
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[27]). The type III property (in the classification of von Neumann factors,

see [43, Sec. V.2.4] for a brief outline) is a common property of local von

Neumann algebras in quantum field theory that has been shown to be ful-

filled, e.g., in the GNS representation of quasifree Hadamard states of the

Klein-Gordon and Dirac field on curved spacetimes [65, 20]; further general

results, sufficient conditions and references can be found in [23, 39, 15, 72].

Concerning the assumptions (A)–(E) on the energy density, they are

largely the assumptions one would make for a local quantum field in an

operator-algebraic context, where assumption (D) expresses the locality

condition in a strong form. The “H-bound” of assumption (C) has been

widely discussed in the said context, and it holds under general conditions

for quantum field theories on Minkowski spacetime; see Chs. 12 to 14 in

[1] as well as [40] and references cited there for further discussion.

One of the consequences is that, for the case of (say, p1`3q-dimensional)

Minkowski spacetime, the domain D can be chosen such that for any

ψ, ψ1 P D there is a smooth function x ÞÑ pψ,̺rxsψ1q of spacetime points

x so that pψ,̺pF qψ1q “
ş

R4 F pxq pψ,̺rxsψ1q d4x holds for all smooth, com-

pactly supported test functions F on Minkowski spacetime. Note that

pψ,̺rxsψ1q is a slightly improper notation for a quadratic form on D de-

fined for every x. In a similar manner, one can assume that every coordi-

nate component of a stress-energy tensor observable of the quantum field

theory is given by an H-bounded quantum field F ÞÑ T µνpF q, and that for

any ψ, ψ1 P D the map x ÞÑ pψ,T µνrxsψ1q is a smooth function on space-

time satisfying pψ,T µνpF qψ1q “
ş

R4 F pxqpψ,T µνrxsψ1q d4x. Actually, the

expectation values of the (renormalized) stress-energy tensor in Hadamard

states of linear quantum fields on generic spacetimes are given by smooth

tensor fields [52, 68].

For the p1 ` dq-dimensional static, globally hyperbolic spacetime M “
R ˆ Σ that we consider, we envisage the energy density as arising from a

13



stress-energy tensor in the sense that

pψ,̺rxsψ1q “ pψ,T µνrxsψ1qeµ0eν0 px “ pt, pq P R ˆ Σq (3.11)

where eµ0 “ α´1{2Bµ
t is the normalized timelike Killing vector field of the

static spacetime.

This brings us to giving a motivation of assumption (E) which we have

highlighted as the property characteristic of an “energy density”. One

would generally expect that the energy density, integrated over a Cauchy

surface of the static foliation we have at hand, yields the total energy. That

means,

ż

Σ

pψ,̺rt, psψ1q dvolhppq “ pψ,Hψ1q (3.12)

for all ψ, ψ1 P D such that the integral exists. Note that the right hand side

is t-independent. Provided that pψ,̺rt, psψ1q and its derivatives vanish fast

enough as “p approaches 8”, one can use the divergence-freeness of the

stress-energy tensor together with Gauss’ law to conclude that the integral

on the left hand side of the previous equation is independent of t, so that

the equation is indeed consistent.

Assuming now that (3.12) holds also for (suitable) vectors ψ, ψ1 con-

tained in A8pMqΩ, and that Gpt, pq “ g0ptqgppq and O are chosen as stated

in assumption (E), one obtains for t P rt0 ´ θ, t0 ` θs (cf. assumption (E)),

and A P A8pOq,

pψ, rH,AsΩq “
ż

Σ

pψ, r̺rt, ps, AsΩq dvolhppq (3.13)

“
ż

Σ

pψ, r̺rt, ps, AsΩq gppq dvolhppq (3.14)

“
ż t0`θ

t0´θ

ż

Σ

pψ, r̺rt, ps, AsΩq gppq dvolhppq g0ptq dt (3.15)

“ pψ, r̺pGq, AsΩq (3.16)
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where we could pass from (3.13) to (3.14) since g is chosen such that

it is equal to 1 on the support of p ÞÑ pψ, r̺rt, ps, AsΩq for t P rt0 ´
θ, t0 ` θs. On the other hand, using that the stress-energy tensor has

vanishing divergence, the integral in (3.13) is t-independent (which is now

a rigorous argument since the integrand is compactly supported in p P Σ for

every t) which permits passage from (3.14) to (3.15) by the specifics of g0.

This serves to motivate how generally expected characteristic properties

of an energy density in quantum field theory that are related to obvious

“classical” counterparts, such as (3.11) and (3.12), lead to the properties

we have imposed on the energy-density quantum field in our assumption

(E). While we expect that the line of our steps of motivation could be made

rigorous — certainly for linear quantized fields — by a careful choice of

state vectors ψ and ψ1, our conditions set forth in (E) avoid the potential

difficulties that may occur therein (like existence of the quadratic forms

pψ,̺rt, psψ1q, or of the integral in (3.12)) and therefore are a more general

way of capturing the essential properties of a stress-energy observable in

the present, model-independent setting.

For completeness and later use, we put on record a standard result, of

which similar variants can be found in [1] and in [40]. The notation is

as follows. We choose h P C8
0 pRq, h ě 0 with suppphq “ r´1, 1s and

ş8

´8 hptq dt “ 1, and define the δ-family hκptq “ κ´1hpt{κq pκ ą 0, t P Rq.

Lemma 3.1. Let ξ P H, with ξ ‰ 0, be contained in the domain of p1`Hqν

for some ν P N0, and let O Ă M be a non-empty open subset such that the

open interior of OK is non-empty. Then there is a sequence ApNq P A8pOq
pN P Nq so that

}p1 `Hqνpξ ´ ApNqΩq} Ñ 0 pN Ñ 8q . (3.17)

Moreover, the sequence can be chosen such that }ApNqΩ} “ }ξ}.
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Proof. We will show first that for any given η ą 0 there is some A “ Aη so

that

}p1 `Hqνpξ ´ AΩq} ă η . (3.18)

By the Reeh-Schlieder property (e), given any non-empty open subset O1

of M with O1 Ă O, the vacuum vector Ω is cyclic and separating for

ApO1q. With any such choice of O1, and with the δ-family hκ pκ ą 0q as

defined previously, there is some κ0 ą 0 so that (cf. (2.6)) uhκ
pA1q P A8pOq

whenever A1 P ApO1q and 0 ă κ ă κ0.

One can pick 0 ă κ ă κ0 with the property that

}p1 `Hqνpξ ´ ĥpκHqξq} ă η

2
(3.19)

since

}p1 ` Hqνpξ ´ ĥpκHqξq} (3.20)

“
∥

∥

∥

∥

ż 8

´8

hκptqp1 ´ Utqp1 `Hqνξ dt
∥

∥

∥

∥

(3.21)

“
ˆ

ż 8

´8

hκptq dt
˙

¨ sup
´κďtďκ

}p1 ´ Utqp1 ` Hqνξ} Ñ 0 pκ Ñ 0q .

(3.22)

Moreover, making use of the Reeh-Schlieder property, one can choose A1 P
ApO1q with

}ξ ´ A1Ω} ă η

2}p1 `HqνĥpκHq} ` 1
(3.23)

where the denominator on the right hand side displays the operator norm of

p1`HqνĥpκHq for some (fixed) 0 ă κ ă κ0 that has been picked to achieve

the estimate (3.19). This is a bounded operator since ĥ is a Schwartz-type
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function. Hence, we obtain with A “ Aη “ uhκ
pA1q,

}p1 `Hqνpξ ´AΩq} (3.24)

ď }p1 ` Hqνpξ ´ ĥpκHqξq} ` }p1 `HqνĥpκHqpξ ´ A1Ωq}
ă η

2
` η

2
“ η .

This shows that there is a sequence Arns P A8pOq pn P Nq such that

}p1 `Hqνpξ ´ ArnsΩq} Ñ 0 pn Ñ 8q . (3.25)

On redefining ApNq “ p}ξ}{}ArN sΩ}qArN s pN P Nq, we have }ApNqΩ} “ }ξ}.
Moreover, (3.25) implies }ArnsΩ} Ñ }ξ} as n Ñ 8. Thus, we obtain

}p1 `Hqνpξ ´ApNqΩq} (3.26)

ď }p1 ` Hqνpξ ´ ArN sΩq} `
ˇ

ˇ

ˇ

ˇ

1 ´ }ξ}
}ArN sΩ}

ˇ

ˇ

ˇ

ˇ

¨ }p1 ` HqνArN sΩ}

where both terms on the right hand side converge to 0 as N Ñ 8 on

account of (3.25). This proves the lemma.

4 Locally averaged quantum energy inequalities

In the following, we consider a quantum field theory with an energy den-

sity on a static, globally hyperbolic spacetime, subject to the conditions

described in Section 2.

The first result we present is a simple variant of a quantum energy

inequality for a local averaging of the energy density. It doesn’t need all of

the assumptions we have made; local preparability of states is not required.

First, we introduce some notation. We assume that G P C8
0 pM,Rq has

been chosen as in assumption (E), and an open spacetime region O so that

the property (2.10) holds for all A P A8pOq. Then we introduce, for any
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given r ě 1, the subset VrpOq given by

VrpOq “ tAΩ : A P A8pOq , }A} ď r , }AΩ} “ 1 u . (4.27)

Theorem 4.1. Let G and O be as described above. Then for any r ě 1

and every unit vector ψ P VrpOq, the following estimate holds:

pψ,̺pGqψq ě ´r}̺pGqΩ} (4.28)

Proof. Since ψ “ AΩ with A P A8pOq, and the property (2.10) of the

energy density, we have

pψ,̺pGqψq “ pAΩ,̺pGqAΩq (4.29)

“ pAΩ, r̺pGq, AsΩq ` pAΩ, A̺pGqΩq
“ pAΩ, HAΩq ` pAΩ, A̺pGqΩq
ě ´}AΩ} ¨ }A} ¨ }̺pGqΩ} ě ´r}̺pGqΩ}

proving the claim. Note that we have used (2.10) and the fact that H has

non-negative spectrum.

Despite the state-dependence of the lower bound on the energy density

owing to the appearance of r as a factor on the right-hand side in the

previous theorem, it is worth remarking that the bound is non-trivial in

the sense of not being an upper bound. In fact, we have the following

statement:

Theorem 4.2. For the quantized free scalar field on the given static, glob-

ally hyperbolic spacetime, there is for any choice of G and O as in assump-

tion (E) and every ǫ ą 0 a sequence of operators Bm P A8pOq pm P Nq
such that }Bm} ď 1 ` ǫ, }BmΩ} “ 1 and

pBmΩ,̺pGqBmΩq Ñ 8 pm Ñ 8q. (4.30)
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The proof of this theorem will be given in Appendix A. Note that, by

the Reeh-Schlieder property,
Ť

rě1VrpOq is dense in the set unit vectors

in H; however, this is not true for VrpOq for any fixed r ě 1 under the

assumptions we have made. Therefore, the lower bound on the energy

density of Theorem 4.1 is of limited use since, in order to apply to a set of

unit vectors that is dense in the set of all unit vectors, formally r diverges

to 8. Such divergent behaviour is also supported by the results of [37].

The next result, which is the main theorem of our work, is designed to

overcome this shortcoming and gain some more control on a lower bound

on the energy density for a dense set of vector states. To this end, we need

to introduce some notation.

Again, we consider a test function G P C8
0 pM,Rq and a non-empty open

region O so that the energy density fulfills (2.10) from assumption (E). We

also consider an arbitrary, causally convex open spacetime region Oˆ which

contains supppGq, together with another causally convex open spacetime

region O7, so that Oˆ Ă O7 and O7 admits a non-empty open causal

complement. By the Reeh-Schlieder property (e), the vacuum vector Ω is

cyclic and separating for ApO7q. Therefore, there are the Tomita-Takesaki

modular conjugation J7 and modular operator ∆7 associated to the pair

pApO7q,Ωq [63, 10, 6], uniquely determined by the defining property

J7∆
1{2
7 AΩ “ A˚Ω pA P ApO7qq . (4.31)

The corresponding modular group t∆is
7 usPR is commonly denoted as

∆is
7 “ eisK7 , (4.32)

where K7 “ logp∆7q is occasionally called the associated modular Hamilto-

nian.
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For λ ą 0 we denote by fλ the scaled Gaussian,

fλpsq “ 1

λ
e´ps{λq2{2 ps P Rq , (4.33)

and f̂λ denotes its Fourier transform, given by f̂λpkq “
ş8

´8 eiskfλpsq ds “?
2πe´pλkq2{2 pk P Rq.

Theorem 4.3. Let the test function G and spacetime regions O, Oˆ and

O7 be chosen with the properties described above. Then for any unit vector

ψ in the dense domain D and arbitrary ǫ ą 0, there is some λ0 ą 0

(depending on ψ and ǫ) such that

pψ,̺pGqψq ě ´ǫ ´ }∆´1{2
7 f̂λpK7q̺pGqΩ} (4.34)

holds for all 0 ă λ ă λ0.

Proof. There is a causally convex open spacetime region O5 such that Oˆ Ă
O5 and O5 Ă O7 (see Figure 1). By the assumption (f) of local preparability

of states there is some operator Y P ApO5q with }Y } “ 1 such that

pψ,Aψq “ pYΩ, AYΩq pA P ApOˆqq . (4.35)

As a consequence, on writing Gt “ G ˝ τt, we obtain for sufficiently small

t2 ą 0,

pψ,̺pGtqψq “ pYΩ,̺pGtqYΩq and (4.36)

pψ,̺pGtq̺pGt1qψq “ pYΩ,̺pGtq̺pGt1qYΩq (4.37)

whenever |t|, |t1| ă t2. This follows from the fact that, if |t|, |t1| ă t2, the

operators ̺pGtq and ̺pGt1q are affiliated with ApOˆq and can be approxi-

mated by suitable bounded operators; e.g. writing Rt,δ “ p1 ` δ|̺pGtq|q´1
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for δ ą 0 yields

lim
δÑ0

pYΩ, Rt,δ̺pGtq̺pGt1qRt1,δY Ωq (4.38)

“ lim
δÑ0

pψ,̺pGtqRt,δRt1,δ̺pGt1qψq

“ pψ,̺pGtq̺pGt1qψq

This also shows that ̺pGtqRt,δYΩ as well as Rt,δY Ω converge as δ Ñ 0

since

}̺pGtqpRt,δ ´Rt,δ1qY Ω}2 “ }̺pGtqpRt,δ ´ Rt,δ1qψ}2 Ñ 0 pδ, δ1 Ñ 0q
(4.39)

and obviously }pRt,δ ´ 1qYΩ} Ñ 0 as δ Ñ 0. Thus, Y Ω lies in the domain

of definition of (the selfadjoint extension of) ̺pGtq — which is closed in

the graph norm of ̺pGtq — and similarly for t1 instead of t. Note that, for

|t| ă t2,

}̺pGtqY Ω} “ }U ˚
t ̺pGqUtY Ω} “ }̺pGqUtY Ω} (4.40)

by (2.8), so that UtY Ω is also in the domain of definition of ̺pGq for

|t| ă t2. Consequently, one obtains

}̺pGqpUt ´ 1qY Ω} Ñ 0 pt Ñ 0q (4.41)

since

}̺pGqpUt ´ 1qY Ω} “ }U ˚
t ̺pGqpUt ´ 1qY Ω} (4.42)

“ }̺pGtqYΩ ´ U ˚
t ̺pGqYΩ}

ď }p̺pGtq ´ ̺pGqqYΩ} ` }pU ˚
t ´ 1q̺pGqYΩ}

“ }p̺pGtq ´ ̺pGqqψ} ` }pU ˚
t ´ 1q̺pGqYΩ}

Ñ 0 pt Ñ 0q .
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In what follows, we use a δ-family hκ pκ ą 0q as introduced prior to Lemma

3.1 . The property (4.41) then allows to conclude

}̺pGqpuhκ
pY q ´ Y qΩ} Ñ 0 pκ Ñ 0q . (4.43)

To see this, we note that (assuming small enough κ ą 0)

}̺pGqpuhκ
pY q ´ Y qΩ} “

∥

∥

∥

∥

̺pGq
ż 8

´8

hκptqpUt ´ 1qY Ωdt

∥

∥

∥

∥

(4.44)

ď
ˆ

ż 8

´8

hptq dt
˙

sup
|t|ďκ

}̺pGqpUt ´ 1qY Ω} Ñ 0 pκ Ñ 0q

by the properties of the hκ. To simplify notation, we will from now on use

the abbreviation

Ypκq “ uhκ
pY q pκ ą 0q . (4.45)

We observe that }Ypκq} ď 1. Furthermore, by (4.43) there is for any given

ǫ ą 0 some κǫ ą 0 so that, for all 0 ă κ ď κǫ, one has

| pψ,̺pGqψq ´ pYpκqΩ,̺pGqYpκqΩq | ă ǫ

2
(4.46)

and Ypκq P A8pO7q (4.47)

We recall that, since p1 ` Hq´ℓ̺pGqp1 ` Hq´ℓ is bounded, it follows that

̺pGqp1 ` Hq´2ℓ is bounded. Since YpκqΩ is in the C8-domain of H, by

Lemma 3.1 that there is an A P A8pOq, with }AΩ} “ }YpκqΩ}, fulfilling

}p1 `Hq2ℓpYpκq ´ AqΩ} ă ǫ

8p1 ` }̺pGqp1 ` Hq´2ℓ}q . (4.48)

Consequently, one obtains

| pYpκqΩ,̺pGqYpκqΩq ´ pYpκqΩ,̺pGqAΩq | ă ǫ

8
. (4.49)
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In the next step we write, by virtue of (2.10),

pYpκqΩ,̺pGqAΩq “ pYpκqΩ, r̺pGq, AsΩq ` pYpκqΩ, A̺pGqΩq
“ pYpκqΩ, HAΩq ` pYpκqΩ, A̺pGqΩq . (4.50)

On the other hand, on account of (4.48),

| pYpκqΩ, HAΩq ´ pAΩ, HAΩq | “ | pHpYpκq ´AqΩ, AΩq | ă ǫ

8
, (4.51)

having used }AΩ} “ }YpκqΩ} ď }Y Ω} “ 1.

Since the ∆is
7 “ eisK7 ps P Rq form a continuous unitary group, there is

some λ0 ą 0 such that for 0 ă λ ă λ0
ˇ

ˇ

ˇ

ˇ

pYpκqΩ, A̺pGqΩq ´
ż 8

´8

fλpsq pYpκqΩ, A∆
is
7 ̺pGqΩq ds

ˇ

ˇ

ˇ

ˇ

ă ǫ

8
(4.52)

with the scaled Gaussian fλ from (4.33). On the other hand, since both Ypκq

and A are contained in ApO7q, and J7 and ∆
1{2
7 are the Tomita-Takesaki

modular objects associated to the pair pApO7q,Ωq, we now obtain

ż 8

´8

fλpsq pYpκqΩ, A∆
is
7 ̺pGqΩq ds “ pA˚YpκqΩ, f̂λpK7q̺pGqΩq

“ pJ7∆
1{2
7 Y ˚

pκqAΩ, f̂λpK7q̺pGqΩq
“ p∆´1{2

7 J7Y
˚

pκqAΩ, f̂λpK7q̺pGqΩq
“ pJ7Y

˚
pκqAΩ,∆

´1{2
7 f̂λpK7q̺pGqΩq

(4.53)

where the general property J7∆
1{2
7 “ ∆

´1{2
7 J7 for the Tomita-Takesaki mod-

ular objects has been used. Observing }J7Y
˚

pκqAΩ} ď 1, we conclude that

the modulus of the last term of the previous series of equations can be

estimated by }∆´1{2
7 f̂λpK7q̺pGqΩ}.
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Finally, combining (4.46), (4.49), (4.51) and (4.52), we find

| pψ,̺pGqψq ´ r pAΩ, HAΩq ` pJ7Y
˚

pκqAΩ,∆
´1{2
7 f̂λpK7q̺pGqΩq s |

ă ǫ

2
` ǫ

8
` ǫ

8
` ǫ

8
ă ǫ . (4.54)

Since pAΩ, HAΩq ě 0, and by the previous estimate on the final expression

|pJ7Y
˚

pκqAΩ,∆
´1{2
7 f̂λpK7q̺pGqΩq| in (4.53), we arrive at

pψ,̺pGqψq ě ´ǫ ´ }∆´1{2
7 f̂λpK7q̺pGqΩ} (4.55)

for all 0 ă λ ă λ0, as stated.

5 Concluding discussion

We have seen that in quantum field theory on any static, globally hy-

perbolic spacetime, relative lower bounds for certain types of spacetime

averaged energy density can be established under very general, model-

independent assumptions.

Some comments about the role of the parameters ǫ and λ0 in Theorem

4.3 are in order. As can be observed in the proof, any smaller choice of

ǫ will result in a smaller λ0 in order for the statement of Theorem 4.3 to

be fulfilled. However, how small λ0 must be made also depends on ψ, or

rather, the choice of A P A8pOq with (4.48). As a matter of fact, similar to

Theorem 4.1, its operator norm }A} again is a controlling factor of a lower

bound, since for any given ǫ1 ą 0 it holds that

ˇ

ˇ

ˇ

ˇ

pYpκqΩ, A̺pGqΩq ´
ż 8

´8

fλpsqpYpκqΩA∆
is
7 ̺pGqΩq ds

ˇ

ˇ

ˇ

ˇ

ă ǫ1 (5.56)
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as soon as λ is small enough so that

}p1 ´ f̂λpK7qq̺pGqΩ} ă ǫ1

}A} . (5.57)

However, we think that controlling the lower bound on the spacetime av-

eraged energy density ̺pGq by the operator norm }A} as in Theorem 4.1

is very likely a rather crude estimate. In view of the fact that the operator

norm of an operator A P A8pOq fulfilling (4.48) is very hard to control, the

result of Theorem 4.3 offers a better controllable a priori lower bound on

̺pGq, in particular if the modular group t∆is
7 usPR acts geometrically like

in the Bisognano-Wichmann theorem [2]. Nevertheless, the result of Ap-

pendix B shows that one cannot expect a state-independent lower bound,

i.e. λ0 in the statement of Theorem 4.3 is manifestly dependent on ψ (or,

more precisely, on the choices made for Ypκq and A in the proof).

Still, the universal form of the lower bound on the spacetime averaged

density obtained in Theorem 4.3 is remarkable. In the case that ∆is
7 acts

geometrically, the analogy of the result of Theorem 4.3 with a (relative)

QWEI is even more palpable. Consider ̺pGq “ T pGe0 b e0q for stress-

energy tensor T and normalized timelike Killing vector field e0 (cf. (3.11)).

Assume that there exists a timelike Killing flow Φs ps P Rq on the region

O7 of the underlying static spacetime so that

∆is
7 T pGe0 b e0q∆´is

7 “ T ppΦsq˚pGe0 b e0qq
“ T ppG ˝ Φ´sqpΦsq˚pe0 b e0qq , (5.58)

where pΦsq˚ denotes the pushforward of the diffeomorphism Φs on con-

travariant tensor fields of rank 2 (see e.g. Appendix C of [67]). In such a

case, one can choose, given any ǫ1 ą 0, a λ0 ą 0 such that

|pψ,̺pGqψq ´ pψ,̺fλ
pGqψq| ă ǫ1 p0 ă λ ă λ0q (5.59)
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for fλ from (4.33), where we have used the notation

̺fλ
pGq “ T

ˆ
ż 8

´8

fλpsq pG ˝ Φ´sqpΦsq˚pe0 b e0q ds
˙

, (5.60)

with the integral to be interpreted in a suitable test function space, such

as S pRq b C8
0 pΣq. Then the result of Theorem 4.3 together with (5.59)

implies that, for given unit vector ψ P D and ǫ ą 0, there is λ0 ą 0 so that

pψ,̺fλ
pGqψq ě ´ǫ´ }∆´1{2

7 ̺fλ
pGqΩ} (5.61)

for all 0 ă λ ă λ0. This bears a striking similarity to a QWEI in which the

expected energy density averaged along the trajectories of a congruence of

timelike curves is bounded below by a quantity which becomes negatively

divergent if the averaging function (here: fλ) becomes δ-peaked (here: the

limit λ Ñ 0). However, it actually resembles a relative QWEI bound since

λ0 depends on ψ, as discussed. Observe also that there is no lower bound

on the overall extension of the support of G.

We also mention that the lower bounds established in Theorems 4.1 and

4.3 apply, in principle, to other local generators of the time translations

in place of ̺pGq, like those obtained from the split property [14];2 there

may be some domain issues which would have to be clarified for asserting

a rigorous result in such a case.

The lower bounds on the spacetime averaged energy established in the

Theorems 4.1 and 4.3 use minimal, model-independent assumptions and

have, as mentioned, a universal form. Thus their generality has the draw-

back of not being as specific as bounds that use model-dependent prop-

erties. In particular, they do not, for example, reveal the much stronger,

state-independent QWEIs for the minimally coupled quantized Klein-Gor-

don field, or the Dirac field. The approach of splitting pψ,̺pGqψq “
2We thank Roberto Longo for pointing that out to us.
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pAΩ, HAΩq ` pAΩ, A̺pGqΩq, as in (4.29) in the proof of Theorem 4.1,

into a positive part and a remainder is an obvious step in view of the as-

sumptions made, but in the free field models it seems to take away too

much of a positive contribution from the remainder term.

One may hope that progress on a more detailed control of lower bounds

on spacetime averaged energy densities in general quantum field theory may

be made by combining operator product expansion techniques [8] and, e.g.,

conditions of modular nuclearity [49, 13].
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Appendix

A Proof of Theorem 4.2

The quantization of the free scalar field on a static, globally hyperbolic

spacetime is very much established lore and we will be brief in our pre-

sentation. Standard references include [45, 46, 68, 41]. For the sake of

notational simplicity we will restrict our attention to an ultrastatic space-

time, i.e. M with metric g given by (2.4) for α ” 1, however the argu-

ments for the general case of a static, globally hyperbolic spacetime are

analogous up to a slightly more elaborate notation. The Klein-Gordon

operator, viewed as mapping C8pM,Rq into itself, is in the ultrastatic

case given by K “ B2
t ´ ∆ ` µ where ∆ denotes the Laplace operator

of the d-dimensional Riemannian manifold pΣ, hq and µ ě 0 is a con-
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stant. We assume that Q “ ´∆ ` µ is invertible on C8
0 pΣ,Rq (“ab-

sence of zero modes”) which may require µ ą 0 depending on pΣ, hq. The
operator K admits unique advanced and retarded fundamental solutions

Eav{rt : C8
0 pM,Rq Ñ C8pM,Rq, and their difference is E “ Eav ´ Ert. Then

the factor space L “ C8
0 pM,Rq{kerpEq is a symplectic space with symplec-

tic form ςprF s, rF 1sq “
ş

M
F pxqpEF 1qpxq dvolgpxq for any F, F 1 P C8

0 pM,Rq,
having denoted the canonical surjection C8

0 pM,Rq Ñ L by F ÞÑ rF s and
the metric-induced volume form on M by dvolg. There is also, for every

t P R, the symplectic space Dptq “ C8
0 pΣt,Rq ‘ C8

0 pΣt,Rq with symplectic

form dptqpu‘v, w‘yq “
ş

Σt
puy´vwq dvolh with the metric-induced volume

form of pΣ, hq as integration measure. For every t P R, there is a canonical

symplectomorphism Pt from pL, ςq to pDptq, dptqq.
The quantization proceeds by assigning to the symplectic space pL, ςq

the C˚ Weyl algebra A which is generated by a unit 1 and a family of

elements wprF sq for rF s P L, required to fulfill the relations

wprF sq˚wprF sq “ 1 , wprF sq˚ “ wp´rF sq , (A.62)

wprF sqwprF 1sq “ e´iςprF s,rF 1sq{2wprF s ` rF 1sq . (A.63)

Local algebras are then obtained by defining ApOq as the C˚-subalgebra of

A generated by the wprF sq where supppF q Ă O, for any open subset O of

M .

There is a quasifree ground state ω0 which is given by a complex scalar

product Λ0 over L. It is best described in terms of the symplectic space

Dp0q, i.e. we have chosen t “ 0 for simplicity. The definition is

Λ0pu ‘ v, w ‘ yq “ xQ1{4u ` iQ´1{4v, Q1{4w ` iQ´1{4yy (A.64)
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where

xf, f 1y “
ż

Σ

ff 1 dvolh pf, f 1 P L2pΣ, dvolhq q (A.65)

is the scalar product of the (complex) Hilbert space L2pΣ, dvolhq. One can

check that ImΛ0 “ dp0q, and therefore3

ω0pwpu ‘ vqq “ e´Λ0pu‘v,u‘vq{2 (A.66)

defines a quasifree state ω0 on A. Its GNS representation pH, π,Ωq is a

Fock representation [46]; thus, H equals the symmetric Fock space over the

one-particle Hilbert space H1 “ L2pΣ, dvolhq, and Ω is the Fock vacuum

vector. We denote the represented Weyl algebra generators by

W pu ‘ vq “ πpwpu ‘ vqq . (A.67)

We write χu‘v “ Q1{4u` iQ´1{4v, and a`pχu‘vq for the creation operator of

the vector χu‘v P H1. The notation for the annihilation operator is similar,

without superscript ‘`’. Using this notation, one finds

W pu ‘ vq “ eipa
`pχu‘vq`apχu‘vqq . (A.68)

Furthermore, one can define the one-particle Hamilton operator H1 “ Q1{2

and H “ dΓpH1q, the second quantization of H1 (in the notation of [11]).

The time evolution is on Dp0q given by TtP0rF s “ P0rF ˝ τ´ts, and it holds

that

UtW pu ‘ vqU ˚
t “ W pTtpu ‘ vqq (A.69)

with Ut “ eitH . Clearly, UtΩ “ Ω holds, as well as H ě 0.

3At this point as well as in what follows, we identify rF s P L and u ‘ v “ P0prF sq mostly without

explicitly writing the map P0 between L and D
p0q in order to simplify the notation. We trust that doing

so won’t lead to ambiguities.
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Given any open subset S of Σ0, one defines ApOq as the von Neumann

subalgebra of BpHq generated by the W pu ‘ vq with supppuq and supppvq
contained in S for O “ DpSq. This means ApOq “ πpApOqq2.

The state ω0 is a quasifree Hadamard state, and also the coherent states

ωpu‘vqp ¨ q “ pW pu‘vqΩ, p ¨ qW pu‘vqΩq are Hadamard states. Here, we use

pΨ,Ψ1q to denote the scalar product of vectors Ψ,Ψ1 P H. For Hadamard

states, the expectation value of the quantized stress-energy tensor, and

more specifically, of the energy density, can be defined by a ‘point-splitting’

procedure which agrees with the ‘normal ordering’ prescription in the Fock

space representation of the quasifree ground state we have at hand here.

We will not discuss this at this point and instead refer to the references

[68, 34] where the matter is presented in detail.

Proof of Theorem 4.2. We can to a large amount rely on results of [34] (see,

in particular, Appendix A of that work). It was shown in this reference

that the energy density ̺pGq, defined according to the ‘point-splitting’

procedure, exists as a quadratic form on Hadamard states, and fulfills

pW prF sqΩ,̺pGqW prF sqΩq
“ pW prF sqΩ, HW prF sqΩq ` pW prF sqΩ,W prF sq̺pGqΩq (A.70)

and

puhpW prF sqqΩ,̺pGquhpW prF sqqΩq
“ puhpW prF sqqΩ, HuhpW prF sqqΩq ` puhpW prF sqqΩ, uhpW prF sqq̺pGqΩq

(A.71)

provided thatW prF sq and uhpW prF sqq with h P C8
0 pRq and F P C8

0 pM,Rq
are contained in ApOq, and with localization properties of O relative to

supppGq as assumed for Theorem 4.2. Here, one uses the divergence-

freeness of the expected stress-energy tensor, as mentioned in Section 3.
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Furthermore, one can use (A.6) and (A.16) in [34] to conclude that

pW pu ‘ vqΩ, HW pu ‘ vqΩq “ 1

2
pxu, Quy ` xv, vyq , (A.72)

a well-known result. This means that we can choose, e.g., an open region

O1 with O1 Ă O, and a sequence of unitaries Am “ W pmu ‘mvq pm P Nq
in ApO1q so that

pAmΩ,̺pGqAmΩq “ pAmΩ, HAmΩq ` pAmΩ, Am̺pGqΩq

“ m2

2
pxu, Quy ` xv, vyq ` pA˚

mAmΩ,̺pGqΩq Ñ 8 pm Ñ 8q .
(A.73)

Using a variation of the arguments in Lemma 3.1, one can find a sequence

of positive numbers κpmq converging to 0 form Ñ 8 so that }p1`HqpAm´
uhκpmq

pAmqqΩ} Ñ 0 as m Ñ 8. Then the sequence of operators uhκpmq
pAmq

(m starting at high enough value) is contained in A8pOq and is norm

bounded by 1. Invoking again the arguments of Lemma 3.1, the sequence

of operators Bm “ uhκpmq
pAmq{}uhκpmq

pAmqΩ} is contained in A8pOq, and it

fulfills }BmΩ} “ 1 and }Bm} ď 1 ` ǫ for sufficiently large m. It also fulfills

pBmΩ,̺pGqBmΩq “ pBmΩ, HBmΩq ` pB˚
mBmΩ,̺pGqΩq Ñ 8 pm Ñ 8q

(A.74)

in which the second term remains bounded in m. This proves the theorem.

B ̺pGqΩ is not in domp∆´1{2
7 q

We give an argument illustrating that in general one cannot expect ̺pGqΩ
to be in the domain of ∆

´1{2
7 under the assumptions of Theorem 4.3.4

4The 3rd named author wishes to thank Daniele Guido for having pointed out that fact, and outlined

an argument to that effect, a long time ago.
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To this end, we consider a quantum field theory on p1 ` dq-dimensional

Minkowski spacetime,M “ R1`d, in a vacuum representation with Hilbert

space H, which carries a continuous unitary representation of the proper,

orthochronous Poincaré group that acts covariantly on the family of local

von Neumann algebras ApOq Ă BpHq pO Ă Mq, leaves the vacuum vec-

tor Ω P H invariant, and fulfills the relativistic spectrum condition. Let

WR “ tpx0, x1, . . . , xdq P M : 0 ă |x0| ă x1u denote the right wedge region,

and denote by tUsusPR, for Us “ UpΛR
s q, the one-parameter unitary sub-

group of the representation of the proper, orthochronous Poincaré group

implementing the Lorentz boosts

ΛR
s px0, x1, x2, . . . , xdq (B.75)

“ pcoshpsqx0 ´ sinhpsqx1,´ sinhpsqx0 ` coshpsqx1, x2, . . . , xdq

which leave WR invariant.

The vacuum vector Ω is cyclic and separating for ApWRq. The Tomita-

Takesaki modular group associated to the pair pApWRq,Ωq will be denoted
by t∆is

RusPR with ∆is
R “ eisKR, and we assume that it acts geometrically as

∆is
R “ U2πs ps P Rq . (B.76)

In other words, the result of the Bisognano-Wichmann theorem [2] is as-

sumed. It holds whenever the local algebras are generated by bounded

functions of a (scalar) quantum field. If that is the case, also the timelike

tube theorem holds, which in our context means that if O1 is any open

subset of M with O1 Ă WR, then the von Neumann algebra generated by

all ApΛR
s pO1qq, as s ranges over R, coincides with ApWRq [3]. Furthermore,

if the ∆is
R act geometrically as in (B.76), and if the vacuum representation

of the quantum field theory is irreducible, meaning that ApMq “ BpHq,
then ApWRq is a factor, i.e. ApWRq X ApWRq1 “ C1 [6]. Irreducibility of
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the vacuum representation is in fact a natural assumption, equivalent to

uniqueness of the vacuum vector up to phase. As mentioned, so are the

other assumptions entering the following proposition.

In that proposition, G ÞÑ ̺pGq pG P C8
0 pR1`dqq is an operator-valued

distribution fulfilling the previously given assumptions (A)–(D) for the

case that M “ R1`d. (Assumption (E) is not required.) The Hamilton

operator H is the selfadjoint generator of the unitary representation of the

time shifts with respect to the inertial time coordinate x0. (The unitary

operators implementing the inertial, or “static time direction” shifts have

previously been denoted by Ut “ eitH , which amounts to a slight abuse

of notation given that the unitary operators implementing the Lorentz

boosts are now denoted by Us “ eisKR{2π. We trust that the reader won’t

be confused by this shift in notation.)

Proposition B.1. Suppose that (i) the ∆is
R act geometrically as in (B.76),

(ii) the timelike tube theorem holds, and (iii) ApWRq is a factor.

If ̺pGqΩ is contained in the domain of ∆´δ
R for some δ ą 0, where G P

C8
0 pR1`d,Rq with supppGq Ă WR, then ̺pGq “ r1 for some r P R.

Proof. As ̺pGqΩ lies naturally in the domain of ∆
1{2
R , and also lies in the

domain of ∆´δ
R by assumption, it therefore lies in the domain of all ∆γ

R,

´δ ď γ ď 1{2 by an interpolation argument. Consequently, the H-valued

function ζ ÞÑ ∆´iζ
R ̺pGqΩ is analytic in the open strip Γδ “ tζ “ s ` iγ :

s P R , ´δ ă γ ă 1{2u. Since supppGq Ă WR, there is an open subset

O1 Ă WR so that, for some ǫ ą 0, ΛR
s pO1q Ă supppGqK whenever |s| ă ǫ.

Thus, for any finite choice of A1, . . . , AN in A8pO1q, B P A8pWRq and

|s1
j| ă ǫ (j “ 1, . . . , N , N P N), one has

pBΩ, A1ps1
1q ¨ ¨ ¨ANps1

Nq̺pGqΩq ´ p̺pGqBΩ, A1ps1
1q ¨ ¨ ¨ANps1

NqΩq “ 0 ,

where Ajps1
jq “ Us1

j
AjU´s1

j
. (B.77)
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Using the notation s1 “ s1
1, sN`1 “ ´s1

N , sj “ s1
j ´ s1

j´1 (j “ 2, . . . , N),

the previous equation can be rewritten as

pBΩ, Us1A1Us2A2 ¨ ¨ ¨UsNANUsN`1
̺pGqΩq (B.78)

´ p̺pGqBΩ, Us1A1Us2A2 ¨ ¨ ¨UsNANΩq “ 0 ,

which holds for all Aj P A8pO1q, B P A8pWRq, and all sj in a sufficiently

small open interval around 0. Now we argue that this equation extends

from sj-values in a small open interval around 0 to all sj P R. To see this,

pick any j between 1 and N ` 1. Then, for any sk P R,

ψ “ pUs1A1 ¨ ¨ ¨Usj´1
Aj´1q˚BΩ (B.79)

can be written as ψ “ QΩ with a Q P ApWRq. Hence ψ lies in the domain

of ∆
1{2
R . We therefore have

pBΩ, Us1A1Us2A2 ¨ ¨ ¨UsjAj ¨ ¨ ¨UsNANUsN`1
̺pGqΩq

“ pψ, UsjAj ¨ ¨ ¨UsNANUsN`1
̺pGqΩq

“ pp1 ` ∆
1{2
R qψ, p1 ` ∆

1{2
R q´1UsjAj ¨ ¨ ¨UsNANUsN`1

̺pGqΩq , (B.80)

and we observe that

sj ÞÑ p1 ` ∆
1{2
R q´1Usj (B.81)

is the strong boundary value, for negative imaginary part tending to 0, of

the operator-valued function

ζ ÞÑ p1 ` eKR{2q´1eiζKR{2π , (B.82)

which is strongly analytic in the open strip t´1{2 ă Impζq ă 0u Ă C. The
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same conclusion applies when replacing ψ by

ψ̃ “ Q̃Ω “ pUs1A1 ¨ ¨ ¨Usj´1
Aj´1q˚̺pGqBΩ (B.83)

where Q̃ is a closable operator defined on A8pR1`dqΩ that is affiliated

with ApWRq. Moreover, ζ ÞÑ ∆´iζ
R ̺pGqΩ is analytic in the open strip

Γδ around the real axis as argued before. Therefore, we can conclude

iteratively, starting with j “ 1 and continuing up to j “ N ` 1, that

equation (B.78) extends from sj taken from an open interval around 0 to

all sj P R (j “ 1, . . . , N`1). This implies that (B.77) extends to all s1
j P R

(j “ 1, . . . , N) so that, employing the timelike tube theorem, we obtain

rA,̺pGqsΩ “ 0 (B.84)

for all A P A8pWRq. Using the arguments of [40], one can check that

if ̺pGq is an operator of an H-bounded quantum field, then also every

monomial ̺pGqq, q P N, is H-bounded, i.e. there is for every q P N some

ℓpqq P N with the property that ̺pGqqp1 ` Hq´ℓpqq is bounded. Therefore,

(B.84) implies that

rA,̺pGqqsΩ “ 0 pq P Nq (B.85)

for all A P A8pWRq. This is shown by induction on q, noting that

rA,̺pGqqsΩ = 0 implies 0 “ BrA,̺pGqqsΩ “ rA,̺pGqqsBΩ for all B P
A8pWLq, where WL “ tpx0, . . . , xdq : x1 ă 0 , |x0| ă |x1|u “ intpWRqK is

the left wedge region, and using that ̺pGqqΩ is in the C8-domain of H

together with Lemma 3.1. Then the previous equation implies for every

vector χ P domp̺pGqqq,

pχ,A̺pGqqΩq ´ p̺pGqqχ,AΩq “ 0 pq P N , A P A8pWRqq. (B.86)

For every finite interval spectral projector E of ̺pGq and A P ApWRq we
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can find a sequence in A8pWRq converging strongly to EAE and thus we

obtain from the last equation

EAE̺pGqq ´ ̺pGqqEAE “ 0 pq P N , A P ApWRqq , (B.87)

where we have used that the vector Ω is separating for ApWRq. Assume

that E “ En is the spectral projector corresponding to the spectral interval

r´n, ns of ̺pGq for n P N and let, for given a ą 0, Pa,ν pν P Nq be a sequence
of polynomials approaching λ ÞÑ p1 ` a|λ|2q´1λ uniformly for λ P r´n, ns.
Then we conclude from (B.87) that for every A P ApWRq,

0 “ lim
νÑ8

rEnAEn, Pa,νp̺pGqqs “
„

EnAEn,
̺pGq

1 ` a|̺pGq|2


. (B.88)

This holds for arbitrary n P N and a ą 0. Taking the limit n Ñ 8, we find

that for any a ą 0,

̺pGq
1 ` a|̺pGq|2 P ApWRq X ApWRq1 “ C1 . (B.89)

Since

lim
aÑ0

ˆ

̺pGq
1 ` a|̺pGq|2

˙

ψ “ ̺pGqψ (B.90)

holds for all ψ P domp̺pGqq, the statement of the Proposition is hence

proved.
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