
Fast Computation of Generalized Dedekind Sums

Preston Tranbarger
prestontranbarger@tamu.edu
Department of Mathematics

Texas A&M University
College Station, TX 77843-3368, U.S.A.

Jessica Wang
jwang22@wpi.edu

Department of Mathematical Sciences
Worcester Polytechnic Institute

Worcester, MA 01609-2280, U.S.A.

Abstract

We construct an algorithm that reduces the complexity for computing generalized Dedekind
sums from exponential to polynomial time. We do so by using an efficient word rewriting process
in group theory.

1 Introduction and Main Result

The classical Dedekind sum is well-studied both inside and outside of number theory due to its
connections with the Dedekind eta function and its applications in topology and combinatorial
geometry. For more background on classical Dedekind sums, we refer the reader to [RG72].

Let h and k be coprime integers with k > 0. The classical Dedekind sum is defined as

s(h, k) =

k∑
n=1

B1

(
n

k

)
B1

(
hn

k

)
,

where B1(x) is the first Bernoulli function

B1(x) =

{
0, if x ∈ Z
x− bxc − 1

2 , otherwise.

The classical Dedekind sum satisfies the following reciprocity property ([RG72]):

s(h, k) = −s(k, h) +
1

12

(
h

k
+

1

hk
+
k

h

)
− 1

4
.

Using the definition of classical Dedekind sum, it is readily seen that it can be computed in O(k)
time. However, one can obtain an O(log(k)) time algorithm to compute the classical Dedekind sum
using the reciprocity property ([BR15]).

The generalized Dedekind sum associated with newform Eisenstein series was introduced by
Stucker, Vennos, and Young in [SVY20]. Since then, various aspects of generalized Dedekind sums
have been studied, including the kernel ([NRY21], [LVBY21]), the image ([Maj22]), and their general
behaviour ([DG20]).

1

ar
X

iv
:2

21
0.

01
17

2v
1

 [
m

at
h.

N
T

]
 3

 O
ct

 2
02

2

mailto:prestontranbarger@tamu.edu
mailto:jwang22@wpi.edu

Definition 1.1. Let γ =
(
a b
c d

)
∈ Γ0(q1q2) with primitive Dirichlet characters χ1, χ2 and respective

conductors q1, q2. Let q1, q2 > 1 and χ1χ2(−1) = 1, then

Sχ1, χ2

(
a b
c d

)
=

c∑
j=1

q1∑
i=1

(
χ2(j)χ1(i)B1

(
j

c

)
B1

(
n

q1
+
aj

c

))
.

The generalized Dedekind sum has the following crossed homomorphism property.

Lemma 1.2 (Crossed Homomorphism Property [SVY20]). Let γ1, γ2 ∈ Γ0(q1q2). Then

Sχ1,χ2
(γ1γ2) = Sχ1,χ2

(γ1) + ψ(γ1)Sχ1,χ2
(γ2),

where ψ
(
a b
c d

)
= χ1χ2(d).

Remark. In Lemma 1.2, ψ(γ) is trivial on Γ1(q1q2), so Sχ1,χ2
may be viewed as an element of

Hom(Γ1(q1q2),C).

Note that it requires O(cq1) time to compute a generalized Dedekind sum from the definition.
Similar to the classical Dedekind sums, we are interested in constructing a faster algorithm. Instead
of using the reciprocity property, we provide an alternative approach using a word-rewriting process.

Theorem 1.3. Given primitive Dirichlet characters χ1, χ2 and respective conductors q1, q2 > 1
such that χ1χ2(−1) = 1. Let γ =

(
a b
c d

)
∈ Γ0(q1q2). For fixed q1, q2, the time complexity of finding

Sχ1,χ2
(γ) as a function of γ is O(log(c)).

Remark. The algorithm for Theorem 1.3 can be found in Section 3.1. We give the specific details
of our model of computation in Section 3.2.

Before diving into the technicalities of the algorithm, we provide the reader with a general
outline. Given γ ∈ Γ1(q1q2) < SL2(Z) written as a word in the generators of SL2(Z), we can apply
the Reidemeister rewriting process to express it as a word in the elements of a particular generating
set of Γ1(q1q2). By precomputing the Dedekind sum of each element of this generating set, we
can use Lemma 1.2 to compute any Dedekind sum. However, in using the Reidemeister rewriting
process, the length of the word can be exponentially large in terms of the logarithms of the entries of
γ. Therefore, to achieve the polynomial time in Theorem 1.3, we modify the Reidemeister rewriting
process, as in Theorem 2.10 below, to collect the exponents of successive letters in the rewritten
word. In the specific case of Γ1(q1q2), we develop a useful identity in Lemma 2.15 to ensure a finite
alphabet.

2 Preliminaries

2.1 General Preliminaries

In this section we will define some general group theoretic definitions and results which will aid in
the construction of the algorithm. For the rest of this subsection, we let G be a finitely generated
group and H be a subgroup of G. We will work with specific groups in Section 2.2.

Definition 2.1. We say T is a right transversal of H in G if each right coset of H in G contains
exactly one element of T . Moreover, T must contain the identity.

2

Note that a transversal differs from an arbitrary set of coset representatives in that it must
contain an identity. This fact proves to be essential for later preliminaries.

Definition 2.2. Given a right transversal T of H in G, a right coset representative function for
T is a mapping: G→ T via g 7→ g, where g is the unique element in T such that Hg = Hg.

We present a simple lemma which will be used repeatedly throughout this paper.

Lemma 2.3. Given a right transversal of H in G and a, b ∈ G,

ab = ab.

Proof. By Definition 2.2, H(ab) = H(ab) = (Ha)b = (Ha)b = H(ab) = H(ab).

We continue by defining an important function and exploring some of its properties.

Definition 2.4. Given a right transversal of H in G and a, b ∈ G, we define

U(a, b) = ab(ab)−1.

Lemma 2.5. Given a right transversal of H in G and a, b ∈ G, then U(a, b) ∈ H.

Proof. By Definition 2.2, Hab = Hab, thus Hab(ab)−1 = H, so ab(ab)−1 ∈ H.

Given a finite set of generators for a group, we use the information thus far to describe a set of
generators for a given subgroup.

Lemma 2.6 (Schreier’s Lemma [MKS04, Theorem 2.7]). Let S be a set which finitely generates G,
and let T be a right transversal of H in G. The set of Schreier generators

{U(t, s) : t ∈ T , s ∈ S}

generates H.

Remark. We say a set generates a group if every element in the group can be expressed as a
combination of elements in the set and their inverses.

We now describe a rewriting process.

Theorem 2.7 (Reidemeister Rewriting Process [MKS04, Corollary 2.7.2]). Let G = 〈g1, · · · , gn〉.
Let h = gε1q1g

ε2
q2 · · · g

εr
qr ∈ H (where εk = ±1) be a word in the gi. Fix a right transversal of H in G.

Define the mapping τ of the word h by

τ(h) = U(p1, gq1)ε1U(p2, gq2)ε2 · · ·U(pr, gqr)εr ,

where

pk =

{
gε1q1g

ε2
q2 · · · g

εk−1
qk−1 if εk = 1

gε1q1g
ε2
q2 · · · gεkqk if εk = −1.

Then τ(h) = h, for all h ∈ H.

The Reidemeister rewriting process allows us to express a word in the generators of G as a word
in the Schreier generators of H (using Lemma 2.6).

3

Example 2.8. Let G = 〈g1, · · · , gn〉, and H be a subgroup of G. Let h = g1g1g1g
−1
2 g−1

2 ∈ H, then
by Theorem 2.7,

τ(h) = U
(
1, g1

)
U
(
g1, g1

)
U
(
g2

1 , g1

)
U
(
g3

1g
−1
2 , g2

)−1
U
(
g3

1g
−2
2 , g2

)−1
= h. (1)

Note that Theorem 2.7 requires εk = ±1 (for example, h must be written as g1g1g1g
−1
2 g−1

2 ,
not g3

1g
−2
2). Since the length of τ(h) is the same as the length of h, this rewriting process is often

inefficient. We provide Theorem 2.10 to reduce the number of computations, which requires the
lemma below.

Lemma 2.9. Let a, b ∈ G and k ∈ Z>0. Given a right transversal of H in G, the following product
identities hold:

U
(
a, bk

)
= U

(
a, b
)
U
(
ab, b

)
. . . U

(
abk−1, b

)
, (2)

U
(
a, b−k

)
= U

(
ab−1, b

)−1
U
(
ab−2, b

)−1
. . . U

(
ab−k, b

)−1
. (3)

Proof. By Definition 2.4 the right hand side of (2) equals

ab
(
ab
)−1

abb
(
abb
)−1

. . . abk−1b
(
abk−1b

)−1

. (4)

Applying Lemma 2.3, this simplies to

ab
(
ab
)−1

abb
(
ab2
)−1

. . . abk−1b
(
abk
)−1

. (5)

Note that many terms cancel, so (5) becomes abk
(
abk
)−1

= U
(
a, bk

)
. The proof of (3) follows in a

similar manner, though care is required in handling the inverses.

Theorem 2.10 (Modified Reidemeister Rewriting Process). Given a right transversal of H in G,
let G = 〈g1, · · · , gn〉. Let h = ga1q1 g

a2
q2 · · · g

ar
qr ∈ H (where ai ∈ Z6=0) be a word in powers of the gi.

Define the mapping τ of the word h by

τ(h) = U(p1, g
a1
q1)U(p2, g

a2
q2) · · ·U(pr, g

ar
qr),

where
pk = ga1q1 g

a2
q2 · · · g

ak−1
qk−1 .

Then τ(h) = h, for all h ∈ H.

Proof. This follows by applying Lemma 2.9 to Theorem 2.7.

We illustrate Theorem 2.10 and its proof by an example.

Example 2.11. Continuing with the assumptions in Example 2.8, we now write h = g1g1g1g
−1
2 g−1

2 =

g3
1g
−2
2 ∈ H. We want to show (as Theorem 2.10 claims) that τ(h) = U(1, g3

1)U(g3
1 , g
−2
2). From

Lemma 2.9, we have

U(1, g3
1) = U(1, g1)U(g1, g1)U(g2

1 , g1),

U(g3
1 , g
−2
2) = U(g3

1g
−1
2 , g2)−1U(g3

1g
−2
2 , g2)−1.

So (1) becomes

τ(h) = U(1, g3
1)U(g3

1 , g
−2
2) = h,

which is in the form of Theorem 2.10.

4

As desired, this process provides us with a product expansion with far fewer terms than that of
Theorem 2.7.

2.2 Specific Preliminaries

Let us now consider the subgroup Γ1(N) of SL2(Z).

Definition 2.12. Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

The following lemma is well known.

Lemma 2.13 ([Iwa97, Theorem 1.1]). We have

SL2(Z) = 〈S, T 〉.

More specifically, any matrix M ∈ SL2(Z) can be decomposed into the following form:

M =

(
a b
c d

)
= ±T a1ST a2S . . . T ar−1ST ar . (6)

Note that −I = S2.

Remark. One can quickly compute the values of the ai via a variant on the Euclidean algorithm.

Remark. In (6), the sum of the |ai| grows as O(c) but r grows as O(log(c)) (this follows as a
consequence of the above remark and [Knu97, Section 4.5.3]). This is significant because the original
Reidemeister rewriting process treats M as a word in S and T with length (|a1|+· · ·+|ar|)+r = O(c).
The modified Reidemeister rewriting process treats M as a word in the powers of S and T with length
2r which grows as O(log(c)).

In the case of Γ1(N) in SL2(Z), the modified Reidemeister rewriting process allows us to express
a word in the generators of SL2(Z) as a word in the elements of Γ1(N) with the form U(l, gk), where l
is in a right transversal of Γ1(N) in SL2(Z) and g ∈ {S, T} and k ∈ Z. However, since k is arbitrarily
large, this set of elements is infinite. We present a way to reduce this infinite set to a finite set.

Lemma 2.14. Given a right transversal of Γ1(N) in SL2(Z),

MTN = M

for all M ∈ SL2(Z).

Proof. Note TN ∈ Γ(N). Since Γ(N) is normal in SL2(Z), we have MTNM−1 ∈ Γ(N) < Γ1(N)

for all M ∈ SL2(Z). Thus Γ1(N)MTN = Γ1(N)M and MTN = M .

Lemma 2.15. Let a = qN + r for 0 ≤ r < N and let M ∈ SL2(Z). Given a right transversal of
Γ1(N) in SL2(Z),

U
(
M, T a

)
= Uq

(
M,TN

)
U
(
M, T r

)
.

5

Proof. Beginning with Definition 2.4, we have

U
(
M, T a

)
= MT a

(
MT a

)−1

. (7)

By applying Lemma 2.14, expanding T a, and multiplying by the identity I = (M)−1M , (7) becomes

MT qN
(
M
)−1

MT r
(
MT r

)−1
.

By Lemmas 2.3 and 2.14, M = M = MTN . Since MT qN (M)−1 =
(
MTN (M)−1

)q
, we get that

(7) equals (
MTN

(
MTN

)−1
)q

MT r
(
MT r

)−1

.

Using Lemma 2.15 in conjunction with Theorem 2.10, we can rewrite every word in the genera-
tors of SL2(Z) as a word in the letters of a finite subset of Γ1(N). This is central to our algorithm
in Section 3.1. However, before we are able to present this algorithm, we need a few more results
describing the structure of congruence subgroups of SL2(Z). One can find these results in many
sources, including [Ste07].

Lemma 2.16. We have

[Γ1(N) : Γ0(N)] = N
∏
p|N

(
1− 1

p

)
,

[Γ0(N) : SL2(Z)] = N
∏
p|N

(
1 +

1

p

)
,

[Γ1(N) : SL2(Z)] = N2
∏
p|N

(
1− 1

p2

)
.

Lemma 2.17. There exists a bijection Γ1(N)\Γ0(N)→ (Z/NZ)× via(
a b
c d

)
7→ d mod N.

Lemma 2.18 ([Ste07, Proposition 8.6]). Let P = {(c, d) : c, d ∈ Z/NZ, gcd(c, d,N) = 1}. There
exists a bijection Γ1(N)\SL2(Z)→ P via(

a b
c d

)
7→ (c mod N, d mod N).

3 Algorithm

In this section, we provide an algorithm for computing the generalized Dedekind sums and a time
complexity analysis for each step of the algorithm. We also compare our algorithm to the naive
algorithm of simply using Definition 1.1. We divide our algorithm into precomputations (which
only needs to be computed once for each pair of characters) and the main computation.

6

3.1 Stating the Algorithm

Let N = q1q2 for primitive Dirichlet characters χ1, χ2 with respective conductors q1, q2. Let q1, q2 >
1 and χ1χ2(−1) = 1. Given γ0 =

(
a b
c d

)
∈ Γ0(N), we present an algorithm to find Sχ1,χ2

(γ0).

Group Theoretic Precomputation

• Find a right transversal TΓ0 of Γ1(N) in Γ0(N) (using Lemma 2.17).

• Find a right transversal TSL2(Z) of Γ1(N) in SL2(Z) (using Lemma 2.18).

• Find the set U = {U(t, T i) : t ∈ TSL2(Z), 1 ≤ i ≤ N} ∪ {U(t, Sk) : t ∈ TSL2(Z), 0 ≤ k ≤ 2}.
Note this set includes the set of the Schreier generators of Γ1(N) in SL2(Z) (see Lemma 2.6).

Dedekind Sum Precomputation

• Use Definition 1.1 to compute the Dedekind sums Sχ1,χ2

(
TΓ0

)
.

• Use Definition 1.1 to compute the Dedekind sums Sχ1,χ2
(U).

The Main Computation

We write γ0 = γ1g, where γ1 ∈ Γ1(N) and g ∈ TΓ0
. Let g 7→ g denote the right coset representative

function uniquely described by TSL2(Z) per Definition 2.2. By Lemma 1.2,

Sχ1,χ2
(γ0) = Sχ1,χ2

(γ1) + Sχ1,χ2
(g).

Since g ∈ TΓ0 , Sχ1,χ2(g) has been precomputed, so we are now only concerned with Sχ1,χ2(γ1).
Using Lemma 2.13, we write

γ1 = ±T a1ST a2S . . . T ar−1ST ar .

Using Theorem 2.10, we rewrite

τ(γ1) = U(p1, T
a1)U(p1T a1 , S)U(p2, T

a2)U(p2T a2 , S) · · ·U(pr, T
ar)U(prT ar ,±I) = γ1, (8)

where
pk = T a1ST a2S . . . T ak−1S.

Now we apply Lemma 2.15. For each exponent of T , we write ai = qiN +ri with 0 ≤ ri < N . Then

U
(
pi, T

ai
)

= Uqi
(
pi, T

N
)
U
(
pi, T

ri
)
. (9)

We apply the Dedekind sum to (9). Since U ⊂ Γ1(N), by Lemma 1.2,

Sχ1,χ2

(
U
(
pi, T

a
))

= qiSχ1,χ2

(
U
(
pi, T

N
))

+ Sχ1,χ2

(
U
(
pi, T

ri
))
. (10)

Using (8) and (9), we can express γ1 as a product of elements in U . Applying Lemma 1.2 to
Sχ1,χ2

(τ(γ1)) and expanding via (10), we acquire the desired Dedekind sum, each term of which
has been precomputed.

Remark. Given TSL2(Z) and g ∈ SL2(Z), we can use Proposition 2.18 to determine g.

7

Example Computation

Consider Γ0(9). Let χ1 = χ2 be the primitive character modulo 3 with conductors q1 = q2 = 3. We
want to compute Sχ1,χ2

(γ0) where

γ0 =

(
17 32
9 17

)
.

From the precomputations, we acquire a right transversal of Γ1(9) in Γ0(9)

TΓ0
= {(1 0

0 1), (5 1
9 2), (7 3

9 4), (2 1
9 5), (4 3

9 7), (8 7
9 8)} ,

a right transversal of Γ1(9) in SL2(Z)

TSL2(Z) =
{

(1 0
0 1), (5 1

9 2), (7 3
9 4), (2 1

9 5), (4 3
9 7), · · · , (5 8

8 13), (5 3
8 5), (7 13

8 15), (7 6
8 7), (1 2

8 17)
}
,

and the set

U = {U(t, T i) : t ∈ TSL2(Z), 1 ≤ i ≤ 9} ∪ {U(t, Sk) : t ∈ TSL2(Z), 0 ≤ k ≤ 2}.

From the precomputations, we also acquire the Dedekind sums Sχ1,χ2
(TΓ0

) and Sχ1,χ2
(U). By

Lemma 2.17, we can write γ0 = γ1g, where

γ1 =
(−152 137
−81 73

)
∈ Γ1(9) and g = (8 7

9 8) ∈ TΓ0
.

Since g ∈ TΓ0 , Sχ1,χ2(g) has been precomputed, so now we only need to compute Sχ1,χ2(γ1). Using
Lemma 2.13, we compute

γ1 = −T 1ST−2ST−2ST−2ST−2ST−2ST−2ST−2ST−11ST−1. (11)

Applying Theorem 2.10 to (11) with all pi written in matrix forms, we get

τ(γ1) =U
(
(1 0

0 1), T 1
)
U
(
(1 1

0 1), S
)
U
((

1 −1
1 0

)
, T−2

)
U
((

1 −3
1 −2

)
, S
)
· · ·

· · ·U
((−15 −13
−8 −7

)
, T−11

)
U
((−15 152
−8 81

)
, S
)
U
(
(152 15

81 8), T−1
)
U
((

152 −137
81 −73

)
,−I

)
= γ1.

Applying Lemmas 2.15 and 2.18 to each term of the above product, we get the following computa-
tion.

U
(
(1 0

0 1), T 1
)

= U0((1 0
0 1), T 9)U((1 0

0 1), T 1), U
(
(1 1

0 1), S
)

= U((1 0
0 1), S),

U
((

1 −1
1 0

)
, T−2

)
= U−1((1 8

1 9), T 9)U((1 8
1 9), T 7), U

((
1 −3
1 −2

)
, S
)

= U((1 6
1 7), S),

...

U
((−15 −13
−8 −7

)
, T−11

)
= U−2((1 1

1 2), T 9)U((1 1
1 2), T 7), U

((−15 152
−8 81

)
, S
)

= U((1 8
1 9), S),

U
(
(152 15

81 8), T−1
)

= U−1((8 7
9 8), T 9)U((8 7

9 8), T 8), U
((

152 −137
81 −73

)
,−I

)
= U((8 7

9 8), S2).

Note that every term on the right hand side of these equalities are in the precomputed set U .
Thus, using Lemma 1.2,

Sχ1,χ2
(γ1) = 0 · Sχ1,χ2

(U((1 0
0 1), T 9)) + Sχ1,χ2

(U((1 0
0 1), T 1)) + Sχ1,χ2

(U((1 0
0 1), S))

−1 · Sχ1,χ2
(U((1 8

1 9), T 9)) + Sχ1,χ2
(U((1 8

1 9), T 7)) + Sχ1,χ2
(U((1 6

1 7), S))

...

−2 · Sχ1,χ2(U((1 1
1 2), T 9)) + Sχ1,χ2(U((1 1

1 2), T 7)) + Sχ1,χ2(U((1 8
1 9), S))

−1 · Sχ1,χ2
(U((8 7

9 8), T 9)) + Sχ1,χ2
(U((8 7

9 8), T 8)) + Sχ1,χ2
(U((8 7

9 8), S2)).

Now, using the precomputed Dedekind sums, Sχ1,χ2
(γ0) = Sχ1,χ2

(γ1) + Sχ1,χ2
(g) = 0.

8

Remark. This example shows that γ0 = (17 32
9 17) lies in the kernel of this Dedekind sum. For more

information on the kernel of Dedekind sums, we refer the reader to [NRY21, LVBY21].

3.2 Analysis of Algorithm

First we discuss a simplified model of our computation. We consider a matrix multiplication as one
operation. Since we work in SL2(Z), we assume computing the inverse of a matrix takes constant
time. Since the Dedekind sums lie in cyclotomic extensions of Q, we can represent any Dedekind
sum as a linear combination of powers of a given root of unity. Adding and multiplying these linear
combinations is rather trivial, so we assume that addition and multiplication of Dedekind sums
take constant time.

Lemma 3.1. Given g ∈ SL2(Z) and the right transversals TSL2(Z) or TΓ0
, finding g under the right

coset representative function for Γ1(N)\Γ0(N) or Γ1(N)\SL2(Z) requires O(1) time.

Proof. We simply use the bijections stated in Lemmas 2.17 and 2.18 to find the transversals.

Proposition 3.2. In Section 3.1, the time complexity of the group theoretic precomputations is
O(N3).

Proof. The most computationally expensive step is finding the set U = {U(t, T i) : t ∈ TSL2(Z), 1 ≤
i ≤ N} ∪ {U(t, Sk) : t ∈ TSL2(Z), 0 ≤ k ≤ 2}. This set has at most (N + 3)|TSL2(Z)| elements, thus
|U| grows as O(N3). Since we define matrix multiplication as one operation and determining the
transversal of an element under the right coset representative function takes O(1) time (by Lemma
3.1), it follows that the total time to compute the elements of U takes O(N3) time.

Proposition 3.3. Given γ ∈ Γ0(N), the time complexity of the Dedekind sum precomputations for
finding Sχ1,χ2

(TΓ0
∪U) is O(N3Cq1), where C denotes the maximum absolute value of the lower-left

entry of the elements in TΓ0 ∪ U .

Note that C is solely dependent on the value of N .

Proof. Using Lemma 2.16, we have

[Γ1(N) : Γ0(N)] + |U| = N
(∏
p|N

(
1− 1

p

))
+N2(N + 3)

(∏
p|N

(
1− 1

p2

))
= O(N3).

Since it takes O(cq1) steps to compute the Dedekind sum of a matrix with lower-left entry c from
Definition 1.1, it takes O(N3Cq1) steps to compute the Dedekind sum of all elements in TΓ0

∪U .

Definition 3.4. Let γ = ±T a1ST a2S · · ·T ak ∈ SL2(Z). We say T ai or S is a letter, and 2k is the
length of γ.

Recall that Theorem 1.3 states that the main computation algorithm provided in Section 3.1
has time complexity O(log(c)). We provide a proof below.

Proof of Theorem 1.3. We claim that the time complexity for the modified Reidemeister rewriting
process (Theorem 2.10) is O(log(c)). In (8), given pi, each pi+1 takes one operation to compute
(through multiplying by a matrix on the right). We know that 2k grows in O(log(c)) due to Lemma
2.13, hence it takes O(log(c)) steps to compute all pi. By Lemma 3.1 given g ∈ SL2(Z), finding

9

the corresponding element g in TΓ0 has complexity O(1). Hence in (8), each of the U -functions
takes O(1) time to compute. Since γ1 has length 2k, it also takes O(log(c)) steps to compute the
U -functions given pi. Hence the time complexity for the modified Reidemeister rewriting process is
O(log(c)) +O(log(c)) = O(log(c)).

Note that reducing the power of a generator in (9) using Lemma 2.15 and looking up the
precomputed Dedekind sum of each letter both have complexity O(1), which does not affect the
time complexity of the algorithm.

3.3 Comparison of Algorithms

In this section, we give some experimental evidence for the speed of our algorithm in comparison
to that which uses Definition 1.1 (using the implementations found in Section 3.4)

Example 3.5. Consider Γ0(28). Let χ1 be the primitive Dirichlet character with conductor
q1 = 4, and let χ2 be the primitive Dirichlet character with conductor q2 = 7 such that χ2(3) =
exp(2πi(5/6)). We let γ =

(
a b
c d

)
where c = 28k, 0 < a < c, and gcd(a, c) = 1. We choose b

and d such that the exponent ar is 0 after applying Lemma 2.13. We compute the Dedekind sum
Sχ1,χ2

(γ) of all matrices that satisfy the conditions, and graph the logarithm of the average time it
takes to compute each k.

Note that the performance of the algorithm always exceeded that of the definition for this pair
of characters.

Example 3.6. Now we present an example for a large matrix. Consider Γ0(35). Let χ1 be the
primitive Dirichlet character with conductor q1 = 5 such that χ1(2) = −i, and let χ2 be the
primitive Dirichlet character with conductor q2 = 7 such that χ2(3) = exp(2πi(1/3)). Let γ =(

46741638 43234369
43234205 39990117

)
. Computing Sχ1,χ2

(γ) by Definition 1.1 takes 5.531 ∗ 104 seconds (around

15 hours), whereas it takes 5.128 ∗ 10−2 seconds using our algorithm.

10

3.4 Code

The algorithm discussed has been implemented using Sage. The reader can find the code at
https://github.com/prestontranbarger/NFDSFastComputation.

Acknowledgements

This research was conducted at the 2022 REU hosted at Texas A&M University and supported by
the National Science Foundation (DMS-2150094). The authors would like to thank Dr. Matthew
Young for his continued support and input throughout the duration of the REU. The authors would
like to thank Agniva Dasgupta for his immense help and feedback. The authors would also like to
thank Mitch Majure for his input and contributions.

References

[BR15] Matthias Beck and Sinai Robins. Computing the continuous discretely. Undergraduate
Texts in Mathematics. Springer, New York, second edition, 2015.

[DG20] Travis Dillon and Stephanie Gaston. An average of generalized Dedekind sums. J.
Number Theory, 212:323–338, 2020.

[Iwa97] H. Iwaniec. Topics in Classical Automorphic Forms. Graduate studies in mathematics.
American Mathematical Soc., 1997.

[Knu97] Donald E. Knuth. The Art of Computer Programming Volume II: Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

[LVBY21] Alexis LaBelle, Emily Van Bergeyk, and Matthew P. Young. Reciprocity and the kernel
of Dedekind sums. arXiv: 2110.12269, 2021.

[Maj22] Mitch Majure. Algebraic properties of the values of newform Dedekind sums. arXiv:
2208.13060, 2022.

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory.
Dover Publications, Inc., Mineola, NY, second edition, 2004.

[NRY21] Evuilynn Nguyen, Juan J. Ramirez, and Matthew P. Young. The kernel of newform
Dedekind sums. J. Number Theory, 223:53–63, 2021.

[RG72] Hans Rademacher and Emil Grosswald. Dedekind sums. The Carus Mathematical Mono-
graphs, No. 16. Mathematical Association of America, Washington, D.C., 1972.

[Ste07] William Stein. Modular forms, a computational approach, volume 79 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2007.

[SVY20] T. Stucker, A. Vennos, and M. P. Young. Dedekind sums arising from newform Eisenstein
series. Int. J. Number Theory, 16(10):2129–2139, 2020.

11

https://github.com/prestontranbarger/NFDSFastComputation

	1 Introduction and Main Result
	2 Preliminaries
	2.1 General Preliminaries
	2.2 Specific Preliminaries

	3 Algorithm
	3.1 Stating the Algorithm
	3.2 Analysis of Algorithm
	3.3 Comparison of Algorithms
	3.4 Code

