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Abstract. We study the problem of propagation of an input electromagnetic pulse through a

long two-level laser amplifier under trivial initial conditions. In this paper, we consider an unstable

model described by the Maxwell-Bloch equations without spectral broadening. Previously, this

model was studied by S.V. Manakov in [36] and together with V.Yu. Novokshenov in [37]. We

consider this model in a more natural formulation as an initial-boundary (mixed) problem using

a modern version of the inverse scattering transform method in the form of a suitable Riemann-

Hilbert (RH) problem. The RH problem arises as a result of applying the Fokas-Its method of

simultaneous analysis of the corresponding spectral problems for the Ablowitz-Kaup-Newell-Segur

(AKNS) equations. This approach makes it possible to obtain rigorous asymptotic results at large

times, which differ significantly from the previous ones. Differences take place both near the light

cone and in the tail region, where a new type of solitons is found against an oscillating background.

These solitons are physically relevant, their velocities are smaller than the speed of light. The

number of such solitons can be either finite or infinite (in the latter case, the set of zeros has a

condensation point at infinity). Such solitons can not be reflectionless, they are generated by zeros

of the reflection coefficient of the input pulse (and not by poles of the transmission coefficient).

Thus our approach shows the presence of a new phenomenon in soliton theory, namely, the

boundary condition (input pulse) of a mixed problem under trivial initial conditions can generate

solitons due to the zeros of the reflection coefficient, while the poles of the transmission coefficient

do not contribute to the asymptotics of the solution.
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1. Introduction and results

The integrable Maxwell-Bloch (MB) equations have the following form (cf.[24])

∂E
∂t

+
∂E
∂x

=

∫ ∞

−∞
ρ(t, x, λ)n(λ)dλ,

∫ ∞

−∞
n(λ)dλ = 1, (1)

∂ρ

∂t
+ 2iλρ = NE , (2)

∂N
∂t

= − 1

2

(
Eρ+ Eρ

)
. (3)

Here E = E(t, x) is a complex-valued function of the time variable t and spatial variable x,

ρ = ρ(t, x, λ) and N = N (t, x, λ) are respectively complex-valued and real-valued functions of

t, x and spectral parameter λ, and the bar denotes the complex conjugation.

Equations (1)–(3) arise in a few physical models and their studying was launched in [30]-[33].

The next very important step was done in [1], where the inverse scattering transform method was

developed for a self-induced transparency model. In this paper, we are interested in a model of

quantum laser amplifier, which was studied in [36, 37]. For these models, E(t, x) is the complex-

valued envelope of an electromagnetic wave with a fixed polarization, N (t, x, λ) and ρ(t, x, λ) are

entries of the density matrix of the atom subsystem
(
N (t, x, λ) ρ(t, x, λ)

ρ(t, x, λ) −N (t, x, λ)

)
. (4)

Parameter λ denotes a deviation of the passage frequency from its mean value. The weight function

n(λ) in equation (1) characterizes the inhomogeneous broadening.

In recent years, interest in various problems related to the Maxwell-Bloch equations has grown

noticeably. For short reviews on the MB equations and applications of the inverse scattering

transform method to them see [1, 2], [22]-[24], [26], [40]. We note the work of [35] where the

authors study the Cauchy problem for the Maxwell-Bloch equations of light-matter interaction,

under assumptions that prevent the generation of solitons. It concerns the aftereffect of the passage

of an optical pulse in an active (stable and unstable) medium.

In this paper, we study the case of the infinitely narrow spectral line, i.e. without the spectral

broadening, when n(λ) = δ(λ), where δ(.) is the Dirac δ-function. Then the system (1)–(3) is

reduced to the form (λ = 0)

∂E
∂t

+
∂E
∂x

= ρ,
∂ρ

∂t
= NE , ∂N

∂t
= − 1

2

(
Eρ+ Eρ

)
(5)

where E = E(t, x), N = N (t, x) := N (t, x, 0), ρ = ρ(t, x) := ρ(t, x, 0), and the initial-boundary

value (mixed) problem is defined by the following conditions:

E(0, x) = E0(x), ρ(0, x) = ρ0(x), N (0, x) = N0(x), E(t, 0) = E1(t), (6)

where x ∈ [0, l) (l ≤ ∞) and t ∈ (0,+∞).

Note that the functions ρ(t, x), N (t, x) are not independent; indeed, equations (2), (3) imply
∂
∂t
(|ρ(t, x)|2 +N (t, x)2) = 0, and hence without loss of generality we can assume

|ρ(t, x)|2 +N (t, x)2 ≡ 1.
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Then N (0, x) is given by

N (0, x) = ∓
√

1− |ρ(0, x)|2. (7)

The sign “minus” corresponds to a stable medium (attenuator). The sign “plus” corresponds to

an unstable medium (for example, a quantum two-level laser amplifier), which is the subject of

our study.

An approach to the study of the mixed problem for the Maxwell-Bloch equations, based on

the formalism of the matrix Riemann-Hilbert (RH) problem, was proposed in [26] for the case of

an arbitrary spectral broadening and in [38], [29], [16] for the case without spectral broadening.

Furthermore, the full linearization of the mixed problem is established in [26]. The corresponding

matrix RH problems were formulated in terms of spectral functions defined through given initial

and boundary conditions for the MB equations by using the Fokas-Its method of simultaneous

spectral analysis of the corresponding AKNS equations [17] - [21], [6] - [12].

Our goal is to study the asymptotic behaviour of a solution of the mixed problem for the MB

equations (5). More precisely, we study the problem of propagation of an input electromagnetic

pulse

E(t, 0) = E1(t), t > 0, (8)

through a long two-level laser amplifier under trivial initial conditions, i.e.:

E(0, x) = ρ(0, x) ≡ 0, N (0, x) ≡ 1, x ≥ 0 (9)

(existence and uniqueness of such a solution is established in Proposition 3.1 and Appendix B).

Such a problem was earlier treated in [36] by S.V. Manakov and in [37] together with

V.Yu. Novokshenov, but in a different formulation: they considered the Cauchy problem on the

whole t-axis with an input pulse equal to zero for negative t.

We consider this model in a more natural formulation as an initial-boundary (mixed)

problem using a modern version of the inverse scattering transform method in the form of a

suitable Riemann-Hilbert (RH) problem. The corresponding matrix Riemann-Hilbert problem is

formulated on a contour that is the union of the continuous spectra of the Lax operators (generated

by AKNS spectral problems) for the Maxwell-Bloch equations and which consists of the real axis

and the circle of radius 1/2 centred at the origin of the complex plane. In this case, the jump

matrices are exponentially growing on the circle and the corresponding phase function has saddle

points on the imaginary axis in the absence of stationary points on the real axis. These features

of the RH problem lead to the fact that the asymptotic behaviour of the solution at large times

near the light cone is a train of pulses of unboundedly growing amplitude and contracting width.

Each pulse has a speed that approaches the speed of light.

Our results share some qualitative features with the ones obtained by S.V. Manakov [36] in

1982, but differ from them. This is due to the difference in approaches, which is that we use the

inverse scattering transform method in the form of a matrix RH problem, the Fokas-Its unified

method of simultaneous spectral analysis of the corresponding AKNS equations and the rigorous

Deift-Zhou steepest descent method [14] - [15], while S.V. Manakov did not use the true reflection

coefficient, but its approximation in the form of the Fourier transform of the input pulse in the

assumption of its smallness. At the same time, he claimed that “the long-time solution becomes

essentially (and in a certain sense, extremely) nonlinear.” Therefore it seems that replacing the

reflection coefficient with the Fourier transform of the input pulse is not completely justifiable.
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For a comparison between our results and those obtained in [36] and [37], see Remark 1.6 (for

the region near the light cone), and Remark 1.8 (for the region of a rapidly oscillating self-similar

wave).

Formulation of results.

To formulate the results, let us introduce two functions, r(k) and a(k)−1, which are called the

reflection and transmission coefficients, respectively, associated with the initial and boundary

conditions of the problem (5), (8), (9) (they are defined later in Section 2), and let b(k) = r(k)a(k).

Function r(k) is analytic in Im k ≥ 0, and decays as k → ∞.

Our main results are summarised in Theorems 1.1 and 1.2 (see also Figure 1). Theorem 1.1

covers the region

x < t ≤ x+
1

4x

(
m2 ln2 x+ C ln x · ln lnx

)
, (10)

where C ∈ R is an arbitrary number, and where the parameter m characterizes the

behaviour of the reflection coefficient r(.) and is specified more precisely in Assumptions 1,

2 below. Together with the causality principle (Theorem 3.2) it covers completely the region

0 ≤ t ≤ x+ 1
4x

(m ln x+ C1 ln ln x)
2 , C1 ∈ R.

Theorem 1.2 covers the region

(1− σ)−1x ≤ t ≤ σ−1x, or, equivalently, σ ≤ x

t
≤ 1− σ,

where σ is an arbitrary number in the interval (0, 1
2
).

In Theorem 1.1, we need to make one of the following assumptions on the behaviour of the

reflection coefficient r(k) in the Zakharov-Shabat spectral problem for the Dirac operator with

potential defined by the input pulse E1(t). We assume the fulfilment of Assumption 1 in parts I,

II of Theorem 1.1, and the slightly weaker Assumption 2 in parts III, IV.

Assumption 1. Let the reflection coefficient r(.) satisfy the following condition: there exist a real

number m ≥ 2 and a nonzero complex number C ∈ C \ {0} such that

r(k) =
C

km
+O(k−m−1) as k → ∞, uniformly in Im k ≥ 0.

Assumption 2. Let the reflection coefficient r(.) satisfy the following condition: there exists a

real number m ≥ 2 such that

r(k) ≍ k−m as k → ∞, uniformly in Im k ≥ 0

(here the symbol ≍ means ‘of the same order’, i.e. there exist two positive constants 0 < C1 < C2

such that C1|k|−m ≤ |r(k)| ≤ C2|k|−m as |k| → ∞, uniformly in Im k ≥ 0).

Remark 1.1. Assumption 1 is satisfied for instance in the case of trivial initial data (9) and

a smooth and fast decaying for t → ∞ input pulse (8) with the following behaviour at t = 0 :

E1(t) = c1t
m−1(1+O(t)), t→ +0, for some c1 6= 0. Note though that it is not satisfied by functions

E1 from the Schwartz class with support on [0,+∞), since for them r(k) decays faster than any

power of k as k → ∞ (and also E1(t) decays faster than any power of t as t→ 0+).
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Theorem 1.1. [Near the light cone.] Let an input pulse E1(t) be not identically equal to zero and

be integrable with the first moment

∫ ∞

0

(1 + t)|E1(t)| dt <∞. (11)

Then the solution of the initial-boundary value (ibv) problem (5), (8), (9) (which exists and is

unique in view of Proposition 3.1 and Appendix B below) has the following behaviour:

I. under Assumption 1, in the limit as k0 → ∞, where

k0 = k0(t/x) ≡
1

2

√
x

t− x
, (12)

uniformly in the domain {
(t, x) : x < t ≤ x+

1

x

}

we have

E(t, x) = 4k0 r(ik0) Im−1

(
2
√
x(t− x)

)
+O(k−m0 ), (13)

N (t, x) = 1− 2|r(ik0)|2
(
Im

(
2
√
x(t− x)

))2
+O(k−2m−1

0 ), (14)

ρ(t, x) = 2 r(ik0) Im

(
2
√
x(t− x)

)
+O(k−m−1

0 ). (15)

Here Iν is the modified Bessel function of the first kind of the order ν, ν = m− 1, m.

II. Let ε1 > 0 be a fixed number. Denote

p1(t, x) = m ln x−m ln
√
x(t− x)− 2

√
x(t− x). (16)

Then under Assumption 1, in the limit as x→ ∞, uniformly for (t, x) in the domain

{
(t, x) : x+

1

x
≤ t ≤ x+

1

4x
(m ln x− (m+ ε1) ln ln x)

2

}
(17)

we have e−p1(t,x) = O ((ln x)−ε1) and

E(t, x) = 4 k0 · r(ik0) · Im−1

(
2
√
x(t− x)

)
+O(e−p1(t,x) + k0e

−2p1(t,x)),

N (t, x) = 1− 2|r(ik0)|2
(
Im(2

√
x(t− x))

)2
+O(e−2p1(t,x)k−1

0 + e−3p1(t,x)),

ρ(t, x) = 2 r(ik0) Im

(
2
√
x(t− x)

)
+O(e−p1(t,x)k−1

0 + e−2p1(t,x)).

(Note that the estimate e−p1(t,x) = O((ln x)−ε1) is the worst possible in the region (17)

estimate, but it might be better.)

III. Let ε2 ∈ (0, 1
2
) and K ≥ m+ ε1 be fixed numbers, where ε1 is a constant from part II. Denote

p2(t, x) = m ln x− 2
√
x(t− x)− (m− 1

2
) ln
√
x(t− x). (18)
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Then under Assumption 2, in the limit as x→ ∞, uniformly for (t, x) in the domain

{
(t, x) : x+

1

4x
(m ln x−K ln ln x)2 ≤ t ≤ x+

1

4x
(m ln x− (m+ ε2 − 1/2) ln ln x)2

}
(19)

we have e−p2(t,x) = O ((ln x)−ε2) and

E(t, x) = 2k0 · r(ik0) · e2
√
x(t−x)

√
π · 4
√
x(t− x)

(
1 +O

(
(lnx)−1 + e−p2(t,x)

))
,

N (t, x) = 1− |r(ik0)|2e4
√
x(t−x)

2π
√
x(t− x)

+O
(
e−2p2(t,x)(lnx)−1 + e−3p2(t,x)

)
,

ρ(t, x) =
r(ik0) e

2
√
x(t−x)

√
π 4
√
x(t− x)

+O
(
e−p2(t,x)(lnx)−1 + e−2p2(t,x)

)
.

IV. let Assumption 2 be satisfied, and let n = 0, 1, 2, 3, . . . be an integer. Then in the limit as

x→ +∞ (or, equivalently, t→ +∞) uniformly for (t, x) in the domain

{
(t, x) : x+

1

4x
(m ln x+ (n−m) ln ln x)2 ≤ t ≤ x+

1

4x
(m ln x+ (n+ 1−m) ln ln x)2

}
,

(20)

the solution of the problem (5), (8), (9) has the following asymptotics:

E(t, x) = 2

√
x

t− x

(
(−1)n · ei arg r(ik0)
coshΘn(t, x)

+O
(

1√
ln x

))
, (21)

N (t, x) = 1− 2

cosh2Θn(t, x)
+O

(
1√
ln x

)
, (22)

ρ(t, x) =
2 (−1)n−1 ei arg r(ik0) tanhΘn(t, x)

coshΘn(t, x)
+O

(
1√
ln x

)
, (23)

where

Θn(t, x) = 2
√
x(t− x)−

(
n +

1

2

)
ln
√
x(t− x) + χn(k0(t/x)),

and k0 is defined in (12), and

χn(k0) = ln
|r(ik0)| · n!√
π · 23n+2

.

Remark 1.2. Formula (21) shows that the output field E(t, x) is a sequence of pulses of

unboundedly growing amplitude and contracting width, and formula (22) shows that N (t, x) is

close to 1 away from the peaks and is close to −1 near the peaks.

Remark 1.3. Theorem 1.1, part I, covers both the situations when x is bounded and when x might

grow.

Remark 1.4. Note that the results of parts II, III of Theorem 1.1 are consistent, since

Iν(ξ) =
eξ√
2πξ

(1 +O(ξ−1)) as ξ → ∞, | arg ξ| < π
2
([3, formula (9.7.1)]).

Remark 1.5. In their domain of overlap, part III and part IV with n = 0 of Theorem 1.1 are

consistent.
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Figure 1. Different regions of x > 0, t > 0 quarter plane. The causality region (in purple)

is described in Theorem 3.2, the tail solitonic sector of the light cone (in green) is described

in Theorem 1.2 and the region near the boundary of the light cone (in orange) is described in

Theorem 1.1.

Remark 1.6. Formula (21) can be rewritten in the form

E(t, x) = 4k0


 (−1)n ei arg r(ik0)

cosh
[
2k0t− (2k0 − 1

2k0
)x− x0(t, x)

] +O
(

1
4
√
x(t− x)

)
 ,

where k0 = k0(
t
x
) and x0(t, x) = (n + 1

2
) ln
√
x(t− x)− χ(k0(

t
x
)). Note that it takes the form of a

one soliton solution for the MB equation in an unstable medium,

E(t, x) = −4k2 e
−iϕ0

cosh
[
2k2t− (2k2 − 1

2k2
)x− x0

] , N (t, x) = 1− 2

cosh2
[
2k2t− (2k2 − 1

2k2
)x− x0

] .

We see that the above soliton has velocity
(
1− 1

4k22

)−1

> 1, i.e. bigger than the velocity of

the light, hence it does not have physical meaning. It is remarkable that despite this fact,

with the modulated parameters x0, ϕ0, k2, this soliton has a velocity smaller than the speed of

light and represents the asymptotics of a physically meaningful problem. Indeed, taking into

account that 2
√
x(t− x) = 4k0(t − x), (n + 1

2
) ln
√
x(t− x) = (n + 1

2
) ln(m

2
ln x)[1 + o(1)],

χn(k0) = −m ln k0[1 + o(1)] = (m ln(m
2
ln x) − m ln x)[1 + o(1)] as x → ∞, it is easy to verify

that (21) can be rewritten in the form:

E(t, x) = 4k0

(
(−1)n ei arg r(ik0)

cosh
[
4k0(t− x)−m ln x− (n−m+ 1/2) ln(m

2
ln x) (1 + o(1))

] +O
(

1√
ln x

))
.

(24)

Formula (24) agrees qualitatively with the one obtained by Manakov ([36, formulae (33), (36)]),

but it does not coincide precisely in terms of the amplitude and width of the pulse, which in [36]

additionally depend on the pulse number, while in our case such dependence is absent.

Moreover, in Manakov’s case the field E(t, x) is real-valued, while in our case the field E(t, x)
is complex-valued, as it should be for the envelope of an electromagnetic wave.
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To formulate our second main result, we denote by Zb the set of zeros of b(.) (the b(k) is

introduced in Section 2 below) in the half-plane Im k ≥ 0. For simplicity, we make the following

assumption on their mutual location:

Assumption 3. We assume that all zeros of b(.) in Im k ≥ 0 are simple, do not lie on the real

line, and all their absolute values are pairwise distinct.

We thus can parametrize Zb = {kj}Nj=1 , where N ∈ N ∪ {∞} , |kj| < |kj+1|, Im kj > 0 for all j.

Theorem 1.2. Let an initial pulse E1(.) be a compactly supported locally integrable function, not

identically equal to zero, let Assumption 3 be satisfied and let b(k) = O(k−2) as k → ∞. Let

σ ∈ (0, 1
2
) be any fixed number, and let ε > 0 be so small that for any t, x satisfying σ ≤ x

t
≤ 1− σ

there might be at most one kj ∈ Zb such that

∣∣∣∣
x

t
− 4|kj|2

1 + 4|kj|2
∣∣∣∣ < ε.

Then in the limit

τ ≡ t− x→ ∞,

uniformly in σ ≤ x
t
≤ 1 − σ, the asymptotics of the solution of the problem (5), (8), (9) (which

exists and is unique in view of Proposition 3.1 and Appendix B below) take the following form:

I. Away from solitons: let
∣∣∣xt −

4|kj |2
1+4|kj |2

∣∣∣ ≥ ε for all kj ∈ Zb. Then

E(t, x) = 2 k
1/2
0

τ 1/2
(√

νl e
i ωl(t,x) +

√
νr e

i ωr(t,x)
)
+O

(
τ−1
)
, N (t, x) = −1 +O

(
τ−1
)
,

and

ρ(t, x) =
1

τ 1/2k
1/2
0

(√
νl e

i(ωl(t,x)+
π
2
) −√

νr e
i(ωr(t,x)+

π
2
)
)
+O

(
τ−1
)
,

where k0 = k0(t/x) is defined in (12),

νl = νl(k0) =
1

2π
ln

(
1 +

1

|r(−k0)|2
)
, νr = νr(k0) =

1

2π
ln

(
1 +

1

|r(k0)|2
)
,

and (here, subscripts l, r stand for ‘left’, ‘right’)

ωl(t, x) = 4τk0 − νl ln(16τk0)−
1

π

∫ k0

−k0

ln 1+|r(s)|−2

1+|r(−k0)|−2 ds

s + k0
+ arg (a(−k0)b(−k0)) + arg Γ(iνl)

+ 2
∑

|kj|<k0

arg
k0 + kj
k0 + kj

− π

4
, (25)

ωr(t, x) = −4τk0 + νr ln(16τk0)−
1

π

∫ k0

−k0

ln 1+|r(s)|−2

1+|r(k0)|−2 ds

s− k0
+ arg(a(k0)b(k0))− arg Γ(iνr)

+ 2
∑

|kj|<k0

arg
k0 − kj
k0 − kj

+
π

4
. (26)
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II. Near the solitons: let
∣∣∣xt −

4|kj |2
1+4|kj |2

∣∣∣ < ε, for some j. Then

E(t, x) = 4Bj(t, x) +
2
√
k0 νl
τ 1/2

((
1− i Aj(t, x)

k0 + kj

)2

· ei ωl(t,x) +
Bj(t, x)

2 e−i ωl(t,x)

(k0 + kj)2

)

+
2
√
k0 νr
τ 1/2

((
1 +

iAj(t, x)

k0 − kj

)2

· ei ωr(t,x) +
Bj(t, x)

2 e−i ωr(t,x)

(k0 − kj)2

)
+O(τ−1),

and

N (t, x) = −P (t, x) +Q(t, x)Y (t, x) +Q(t, x)Y (t, x) +O(τ−1),

ρ(t, x) = Q(t, x) + 2Y (t, x)P (t, x) + 2X(t, x)Q(t, x) +O(τ−1),

where

P (t, x) = 1− 2|Bj(t, x)|2
|kj|2

, Q(t, x) =
−2iBj(t, x)

kj

(
1− iAj(t, x)

kj

)
,

X(t, x) =

√
νl

2
√
k0 τ

((
1 +

i Aj(t, x)

k0 + kj

)
Bj(t, x) e

−i ωl(t,x)

k0 + kj
−
(
1− i Aj(t, x)

k0 + kj

)
Bj(t, x) e

i ωl(t,x)

k0 + kj

)

+

√
νr

2
√
k0 τ

((
1− i Aj(t, x)

k0 − kj

)
Bj(t, x) e

−i ωr(t,x)

k0 − kj
−
(
1 +

i Aj(t, x)

k0 − kj

)
Bj(t, x) e

i ωr(t,x)

k0 − kj

)

and

Y (t, x) =
i
√
νl

2
√
k0 τ

(
ei ωl(t,x)

(
1− i Aj(t, x)

k0 + kj

)2

+
Bj(t, x)

2 e−i ωl(t,x)

(k0 + kj)2

)

− i
√
νr

2
√
k0 τ

(
ei ωr(t,x)

(
1 +

i Aj(t, x)

k0 − kj

)2

+
Bj(t, x)

2 e−i ωr(t,x)

(k0 − kj)2

)
.

Here

Aj = Aj(t, x) =
|wj|2 · 2 Im kj
1 + |wj |2

, Bj = Bj(t, x) =
−wj · 2 Im kj
1 + |wj |2

,

and wj = |wj |ei arg wj , where (below, ḃ(kj) is the derivative of b(.) at the point kj)

|wj| =
1

2 Im kj · |a(kj)ḃ(kj)|
exp

{
−2 Im kj

(
t− x− x

4 [(Re kj)2 + (Im kj)2]

)}
·

· exp
[− Im kj

π

∫ k0

−k0

ln (1 + |r(s)|−2) ds

(s− Re kj)2 + (Im kj)2

] ∏

p:|kp|<|kj |

∣∣∣∣
kj − kp

kj − kp

∣∣∣∣
2

,

and

arg wj = − arg
(
a(kj)ḃ(kj)

)
+ 2Re kj ·

(
t− x+

x

4[(Re kj)2 + (Im kj)2]

)
+

+
1

π

∫ k0

−k0

(s− Re kj) ln (1 + |r(s)|−2) ds

(s− Re kj)2 + (Im kj)2
+ 2

∑

p:|kp|<|kj|
arg

(
kj − kp

kj − kp

)
.
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Remark 1.7. Note that in previous studies (cf. [24]) it was believed that in the unstable medium,

zeros of a(.) generate solitons whose speed is higher than the speed of light, and thus are physically

impossible. However, Theorem 1.2 states that zeros of a(.) do not contribute in any way to the

asymptotics. On the contrary, it is zeros of b(.) that generate solitons of the problem, and these

solitons are physically relevant, i.e. they have speeds less than the speed of light.

Remark 1.8. Comparing the formulae of the paper [37] and Theorem 1.2, we see that they

agree qualitatively, but do not agree quantitatively. For instance, in the unnumbered formula after

formula (3.14) in [37], the amplitude of E is proportional to x1/4(t− x)−3/4, while in our formula

it is proportional to ln( t
x
− 1)x1/4(t− x)−3/4.

Besides, our approach shows the presence of a new phenomenon in the theory of solitons,

namely, the boundary condition (input pulse) of a mixed problem under trivial initial conditions

can generate solitons due to zeros of the reflection coefficient, while the poles of the transmission

coefficient do not contribute to the asymptotics of the solution.

Remark 1.9. Note that the conditionm ≥ 2 from Assumptions 1, 2 is used in the proof of Theorem

1.1 to ensure that the left-hand side in (49) belongs to the class L1.

Note also that if an initial pulse E1(t) has a limit E1(0) as t → +0, and Assumption 1 or 2

with m > 1 is satisfied, then E1(0) = 0 and thus the initial and boundary conditions for E(t, x)
match at x = t = 0. Indeed, if E1(0) 6= 0, then reflection coefficient r(k) vanishes not faster than

1/k as k → ∞, as follows from the integral representations for a(k) and b(k) (see Remark 2.2) by

using Riemann-Lebesgues lemma and the known formula: −4K12(t, t)|t=0 = E1(t)|t=0 6= 0.

The paper is organised as follows. In Sections 2, 3 we give some preliminary information about

the MB equations and the corresponding RH problem. Most of the material there follows [16]. In

addition, in Section 3 we prove the causality principle (Theorem 3.2). Section 4 is devoted to the

proof of Theorem 1.1, and Section 5 is devoted to the proof of Theorem 1.2.

Notations. Throughout the paper, we use the following notation. For a function f(t, x; k) that

depends on the real variables t, x ∈ R and a complex variable k ∈ C, we denote

f ∗(t, x; k) := f(t, x; k),

where the bar denotes the complex conjugate.

2. Basic solutions of the Ablowitz-Kaup-Newell-Segur linear equations

In this preparatory section only, we assume the existence of the solution of the initial-boundary

value problem (5), (6), and then derive a meaningful Riemann-Hilbert problem, which is fully

determined by the initial and boundary values.

Then in the next Section 3, we drop the assumption of the existence of the solution of

the initial-boundary problem, and instead start directly from the RH problem, which is fully

determined by the initial and boundary conditions. Based on that, we then prove the existence of

a solution to the initial-boundary value problem.

Most of the constructions of this Section 2 and the next Section 3 are taken from [16], and we

sketch them for the convenience of the reader.
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Lax-pair representation of the MB equations.

The Ablowitz-Kaup-Newell-Segur (AKNS) equations for the Maxwell-Bloch equations without

spectral broadening have the form [1, 2, 24]:

Φt =U(t, x; k)Φ, U(t, x; k) = −(ikσ3 +H(t, x)), (27)

Φx =V (t, x; k)Φ, V (t, x; k) = ikσ3 +H(t, x) +
iF (t, x)

4k
, (28)

where Φ = Φ(t, x; k), σ3 =

(
1 0

0 −1

)
, and

H(t, x) =
1

2

(
0 E(t, x)

−E(t, x) 0

)
, F (t, x) =

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
.

It is well known [2] that the overdetermined system of differential equations (27), (28) is compatible

if and only if the compatibility condition

Ux(t, x; k)− Vt(t, x; k) + [U(t, x; k), V (t, x; k)] = 0 (29)

holds (here, [U, V ] = UV − V U is the matrix commutator). It is equivalent to the system of

nonlinear equations

∂H(t, x)

∂t
+
∂H(t, x)

∂x
=

1

4
[σ3, F (t, x)],

∂F (t, x)

∂t
= [F (t, x), H(t, x)], (30)

which are the matrix form of the MB equations (5).

Jost solutions.

We suppose here that the solution (E(t, x), N (t, x), ρ(t, x)) of the mixed problem (5), (6) for the

Maxwell-Bloch equations in the domain t ∈ R+, 0 ≤ x ≤ l ≤ ∞ does exist, unique, smooth and

tends to its limits fast enough for large x and large t.

Then the AKNS linear equations (27) and (28) are compatible.

Define solutions W (t, x; k),Φ(t; k),Ψ(t, x; k), w(x; k), Y (t, x; k), Z(t, x; k) of the x- or (and)

t-equations (27), (28) as follows.

Let W (t, x; k) satisfy the x-equation (28) (for all t) together with the initial condition

W (t, 0; k) = I, and let Φ(t; k) satisfy the t-equation (27) for x = 0 under the initial condition

lim
t→∞

Φ(t; k)eiktσ3 = I.

Let Ψ(t, x; k) be the solution of the t-equation (27) (for all x), which also satisfies the initial

condition Ψ(0, x; k) = I, and let w(x; k) satisfy the x-equation (28) for t = 0, with the following

initial condition:

lim
x→l−

w(x; k)e−ixµ(k)σ3 = I,

where

µ(k) = k +
1

4k
.
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Figure 2. The domains Ω±, D± and the oriented contour Σ = R ∪ Cu ∪ Cd.

(If l <∞, then this is equivalent to w(l; k) = eilµ(k)σ3 , and if l = ∞, the initial condition takes the

form lim
x→∞

w(x; k)e−ixµ(k)σ3 = I).

Next, define the Jost solutions Y (t, x; k) and Z(t, x; k) as the matrix products

Y (t, x; k) = W (t, x; k)Φ(t; k), Z(t, x; k) = Ψ(t, x; k)w(x; k). (31)

Note that automatically Y satisfies the x-equation (28), and Z satisfies the t-equation (27). It

is a direct consequence of the following Lemma 2.1 that in fact the functions Y (t, x; k), Z(t, x; k)

satisfy both the t- and x-equations (27), (28).

Lemma 2.1. [[5], Lemma 2.1] Let equations (27) and (28) be compatible for all t, x, k ∈ R. Let

F(t, x; k) be a matrix satisfying the t-equation (27) for all x (the x-equation (28) for all t). Assume

that F(t0, x; k) satisfies the x-equation (28) for some t = t0 ≤ ∞ (the t-equation (27) for some

x = x0 ≤ ∞). Then F(t, x; k) satisfies the x-equation (28) for all t (satisfies the t-equation (27)

for all x).

The proof can be found, for example, in [5] (Lemma 2.1).

Properties of the Jost solutions.

To formulate the properties of the Jost solutions Y, Z, let us introduce the notations:

Ω± = {k∈C± : |k| > 1/2}, D± = {k∈C± : |k| < 1/2}, Σ = R∪Cu(1/2)∪Cd(1/2), (32)

where C± = {k ∈ C : ± Im k > 0} and where Cu(1/2) and Cd(1/2) are the semicircles

Cu(1/2) = {k ∈ C : |k| = 1/2, arg k∈(π, 0)}, Cd(1/2) = {k∈C : |k| = 1/2, arg k∈(−π, 0)}

(the subscripts u, d stand for ‘up’ and ‘down’). The orientation on the contour Σ is from the left to

the right on the real line R and on the half-circles Cu(1/2), Cd(1/2) and is depicted in Figure (2).

Let Ω± and D± be the closures of the domains Ω± and D±, respectively. Note that the contour Σ

is the set where Imµ(k) = 0:

Σ =

{
k ∈ C : Im

(
k +

1

4k

)
= 0

}
= R ∪ Cu(1/2) ∪ Cd(1/2).

The function Y (t, x; k) = (Y[1](t, x; k), Y[2](t, x; k)), defined in (31), has the following properties

([16]):
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Lemma 2.2 ([16]). 1) Y (t, x; k) (k 6= 0) satisfies the t- and x-equations (27), (28);

2) Y (t, x; k) = ΛY ∗(t, x; k)Λ−1, k ∈ R \ {0}, where Λ =

(
0 1

−1 0

)
;

3) det Y (t, x; k) ≡ 1, k ∈ R \ {0};
4) the map (t, x) 7−→ Y (t, x; k) (k 6= 0) is smooth in t and x;

5) the maps k 7−→ Y[1](t, x; k)e
ikt−iµ(k)x, k 7−→ Y[1](t, x; k)e

−ikt+iµ(k)x, k 7−→ Y[2](t, x; k)e
−ikt+iµ(k)x,

k 7−→ Y[2](t, x; k)e
ikt−iµ(k)x are analytic in Ω−, D−, Ω+, D+, respectively;

6) the vector functions Y[1](t, x; k)e
ikt−iµ(k)x, Y[1](t, x; k)e

−ikt+iµ(k)x and

Y[2](t, x; k)e
−ikt+iµ(k)x, Y[2](t, x; k)e

ikt−iµ(k)x are analytic in C− and C+, respectively, con-

tinuous up to the boundary with exception of k = 0 and have the following asymptotic

behaviour:

Y[1](t, x; k)e
iθ(t,x;k) =

(
1

0

)
+O(k−1), k ∈ Ω−, k → ∞,

Y[1](t, x; k)e
−iθ(t,x;k) = O(1) +O(k), k ∈ D− \ {0}, k → 0,

Y[2](t, x; k)e
−iθ(t,x;k) =

(
0

1

)
+O(k−1), k ∈ Ω+, k → ∞,

Y[2](t, x; k)e
iθ(t,x;k) = O(1) +O(k), k ∈ D+ \ {0}, k → 0,

where

θ(t, x; k) = kt− µ(k)x = (t− x)k − x

4k
. (33)

The function Z(t, x; k) = (Z[1](t, x; k), Z[2](t, x; k)), defined in (31), has the following properties

([16]):

Lemma 2.3 ([16]). 1) Z(t, x; k) (k 6= 0) satisfies the t- and x-equations (27), (28);

2) Z(t, x; k) = ΛZ∗(t, x; k)Λ−1, k ∈ R \ {0};
3) detZ(t, x; k) ≡ 1, k ∈ R \ {0};
4) the map (t, x) 7−→ Z(t, x; k) (k 6= 0) is smooth in t and x;

5) the maps k 7−→ Z[1](t, x; k) and k 7−→ Z[2](t, x; k) are analytic in Ω+ ∪ D− and Ω− ∪ D+,

respectively, and the asymptotic behaviour of Z[1](t, x; k)e
ikt−ixµ(k), Z[2](t, x; k)e

−ikt+ixµ(k) is as

follows:

Z[1](t, x; k)e
iθ(t,x;k) =

(
1

0

)
+O(k−1), k ∈ Ω+, k → ∞,

Z[1](t, x; k)e
iθ(t,x;k) =O(1) +O(k), k ∈ D− \ {0} k → 0,

Z[2](t, x; k)e
−iθ(t,x;k) =

(
0

1

)
+O(k−1), k ∈ Ω−, k → ∞,

Z[2](t, x; k)e
−iθ(t,x;k) =O(1) +O(k), k ∈ D+ \ {0}, k → 0.

Remark 2.1. In the case of trivial initial conditions (9) we have w(x, k) = eix(k+1/(4k))σ3 and

hence the matrix Z(t, x; k) = (Z[1](t, x; k), Z[2](t, x; k)) is analytic in k ∈ C \ {0}.
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Spectral coefficients a(k), b(k), A(k), B(k), α(k), β(k).

Since the matrices Y (t, x; k) and Z(t, x; k) are solutions of the t- and x-equations (27), (28), they

are linearly dependent. Consequently, there exists a transition matrix T (k), independent of t and

x, such that

Y (t, x; k) = Z(t, x; k)T (k). (34)

The transition matrix is equal to

T (k) = Z−1(0, 0; k)Y (0, 0; k) = w−1(0; k)Φ(0; k),

and, hence, T (k) = ΛT ∗(k)Λ−1, k ∈ R \ {0}, i.e. T (k) has the form

T (k) =

(
a∗(k) b(k)

−b∗(k) a(k)

)
.

The scattering relation (34) can be written in the form

Y[1](t, x; k) = a∗(k)Z[1](t, x; k)− b∗(k)Z[2](t, x; k), k ∈ Σ \ {0},
Y[2](t, x; k) = a(k)Z[2](t, x; k) + b(k)Z[1](t, x; k), k ∈ Σ \ {0},

. (35)

where Σ = R ∪ Cu ∪ Cd was introduced above in Fig.2. From these relations we obtain that

a(k) = det(Z[1](t, x; k), Y[2](t, x; k)), a∗(k) = det(Y[1](t, x; k), Z[2](t, x; k)),

b(k) = det(Y[2](t, x; k), Z[2](t, x; k)), b∗(k) = det(Y[1](t, x; k), Z[1](t, x; k)).

To study the properties of a(k), b(k), it is convenient to introduce the matrix

Φ(0; k) =

(
A∗(k) B(k)

−B∗(k) A(k)

)
, (36)

which is determined by the boundary condition E1(t) = E(t, 0) (here, the functions A(k), B(k) are

called the spectral functions of the t-equation for x = 0), and the matrix

w(0; k) =

(
α(k) −β∗(k)

β(k) α∗(k)

)
,

which is determined by the initial functions E(0, x), ρ(0, x) and N (0, x) (here, the functions α, β

are called the spectral functions of the x-equation for t = 0).

The functions α(k), β(k) and α∗(k), β∗(k) can be extended analytically in Ω+ ∪ D− and

Ω− ∪D+, respectively, the functions A(k), B(k) and A∗(k), B∗(k) can be extended analytically in

C+ and C−, respectively. They have the following asymptotic behaviour:

α(k) = 1 +O(k−1), β(k) = O(k−1), k → ∞, k ∈ Ω+;

α(k) = O(1), β(k) = O(1), k → 0, k ∈ D−;

α∗(k) = 1 +O(k−1), β∗(k) = O(k−1), k → ∞, k ∈ Ω−;

α∗(k) = O(1), β∗(k) = O(1), k → 0, k ∈ D+;
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A(k) = 1 +O(k−1), B(k) = O(k−1), k → ∞, k ∈ C+;

A∗(k) = 1 +O(k−1), B∗(k) = O(k−1), k → ∞, k ∈ C−;

A(k) = O(1), B(k) = O(1), k → 0, k ∈ C+;

A∗(k) = O(1), B∗(k) = O(1), k → 0, k ∈ C−.

The entries of the transition matrix T (k) in the domains of their analyticity are equal to

a(k) = α(k)A(k)− β(k)B(k), k ∈ Ω+; b(k) = α∗(k)B(k) + β∗(k)A(k), k ∈ D+;

a∗(k) = α∗(k)A∗(k)− β∗(k)B∗(k), k ∈ Ω−; b∗(k) = α(k)B∗(k) + β(k)A∗(k), k ∈ D− .

The spectral functions a(k) and b(k) are defined and smooth for k ∈ Σ \ {0}. The matrix T is

unimodular, T (k) ≡ 1 and, hence,

a(k)a∗(k) + b(k)b∗(k) ≡ 1. (37)

The spectral functions have the following asymptotics:

a(k) = 1 +O(k−1) as k → ∞, k ∈ Ω+, b(k) = O(1) as k → 0, k ∈ D+;

a∗(k) = 1 +O(k−1) as k → ∞, k ∈ Ω−, b∗(k) = O(1) as k → 0, k ∈ D−.

Remark 2.2. In the case of trivial initial data (9) the ibv problem is only defined by the input

pulse which in turn determines the spectral functions in the form [16]: α(k) ≡ 1, β(k) ≡ 0,

a(k) = A(k) = 1 +

∫ T

0

K22(0, τ)e
ikτdτ, b(k) = B(k) =

∫ T

0

K12(0, τ)e
ikτdτ,

where Klm(t, τ) (l, m = 1, 2) are the entries of a transformation operator [16]

Φ(t; k) = e−iktσ3 +

∫ T

t

K(t, τ)e−ikτσ3dτ, k ∈ R, T ≤ ∞,

which satisfy
∫ T
t
|Klm(t, τ)|dτ < ∞. Here T ≤ ∞ is the supremum of the support of E1(t), i.e.

E1(t) = 0 for t ∈ (T,∞). These formulae show that a(k) and b(k) admit analytic continuation in

the domain Im k ≥ 0 in the case T = ∞, and even are entire functions in the case T < ∞, with

b∗(.) satisfying the estimate

b∗(k) = O(k−1eT Im k), k → ∞, Im k ≥ 0. (38)

In either case, the function r(k) = b(k)
a(k)

admits an analytic continuation from the real axis.

Note also that for trivial initial data (9), the functions b(.), r(.) do not vanish identically

provided that E1(t) does not vanish identically.

Zeros of a, b.

Lemma 2.4. Let
{
k(a)

j

}
j
be the set of zeros of a(.) in Ω+, and n

(a)

j be the multiplicity of the zeros,

i.e. a(k(a)

j ) = . . . = a(n
(a)
j −1)(k(a)

j ) = 0, a(n
(a)
j )(k(a)

j ) 6= 0.

Similarly, let
{
k(b)

j

}
j
be the set of zeros of b(.) in D+, and n

(b)

j be the multiplicity of the zeros, i.e.

b(k(b)

j ) = . . . = b(n
(b)
j −1)(k(b)

j ) = 0, b(n
(b)
j )(k(b)

j ) 6= 0. Then
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I. for each zero k(a)

j of a(.) there exist constants µ(a)

0,j, . . . , µ
(a)

n
(a)
j −1,j

∈ C (independent of t, x) such

that

dp

dkp
Y[2](t, x; k)

∣∣∣
k
(a)
j

=

p∑

q=0

(
p

q

)
µ(a)

p−q,j
dq

dkq
Z[1](t, x; k)

∣∣∣
k=k

(a)
j

, p = 0, . . . , n(a)

j − 1,

where
(
p
q

)
= p!

q!(p−q)! is the binomial coefficient, and

for each zero k(b)

j of b(.) there exist constants µ(b)

0,j, . . . , µ
(b)

n
(b)
j −1,j

∈ C (independent of t, x) such

that

dp

dkp
Y[2](t, x; k)

∣∣∣
k
(b)
j

=

p∑

q=0

(
p

q

)
µ(b)

p−q,j
dq

dkq
Z[2](t, x; k)

∣∣∣
k=k

(b)
j

, p = 0, . . . , n(b)

j − 1.

II. Let k(a)

j (respectively k(b)

j ) be a zero of a(.) (resp. b(.)) and

let T (a)

1,j , . . . , T
(a)

n
(a)
j ,j

(resp. T (b)

p,j , p = 1, . . . , n(b)

j ) be the coefficients in the Taylor expansion of

the function 1
a(k)

(resp. 1
b(k)

) at the point k = k(a)

j (k = k(b)

j ), i.e.

1
a(k)

=
∑n

(a)
j

q=1

T
(a)
q,j(

k−k(a)j

)
q +O(1), k → k(a)

j (resp. 1
b(k)

=
∑n

(b)
j

q=1

T
(b)
q,j(

k−k(b)j

)
q +O(1), k → k(b)

j ).

Define the constants

A(a)

p,j =
∑n

(a)
j −p
q=0 T (a)

q+p,j

µ
(a)
q,j

q!
, p = 1, . . . , n(a)

j

(resp.A(b)

p,j =
∑n

(b)
j −p
q=0 T (b)

q+p,j

µ
(b)
q,j

q!
, p = 1, . . . , n(b)

j ).

Then

1

a(k)
Y[2](t, x; k)e

iθ(t,x;k) −



n
(a)
j∑

q=1

A(a)

q,j e
2iθ(t,x;k)

(
k − k(a)

j

)q


Z[1](t, x; k)e

−iθ(t,x;k) = O(1), k → k(a)

j

(resp. 1
b(k)

Y[2](t, x; k)e
iθ(t,x;k) −

[∑n
(b)
j

q=1

A
(b)
q,j e

2iθ(t,x;k)

(
k−k(b)j

)
q

]
Z[2](t, x; k)e

−iθ(t,x;k) = O(1), k → k(b)

j ).

Proof. I. Indeed, a(k) = det[Z[1](t, x; k), Y[2](t, x; k)] and b(k) = det[Y[2](t, x; k), Z[2](t, x; k)], and

hence the argument from [25, Lemma D.1] is readily applied. The fact that µ(a)

q,j, µ
(b)

q,j are

independent of t, x follows from the fact that Z[1], Z[2], Y[2] satisfy the t- and x-equations (27), (28).

II. The proof is a tedious multiplication of Taylor expansions of Y[1], Z[2] in a manner similar

to [25, Lemma D.2] and we omit it.

(Note however that in [25, Lemma D.2] instead of the sum
∑n

(b)
j

q=1

A
(b)
q,j e

2iθ(t,x;k)

(
k−k(b)j

)
q another one

was considered, namely
∑n

(b)
j

q=1

Ã
(b)
q,j (t,x) e

2iθ(t,x;k
(b)
j

)

(
k−k(b)j

)
q , and hence the corresponding quantities Ã(b)

q,j(t, x)

depended on t and x. For our RH problem it is more convenient to consider quantities A(b)

q,j which

are not dependent on t, x).
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Riemann-Hilbert problem.

Let us define the matrix

M(t, x; k)=





(
Z[1](t, x; k)e

ikt−ixµ(k),
Y[2](t, x; k)

a(k)
e−ikt+ixµ(k)

)
, k ∈Ω+,

(
Y[1](t, x; k)

a∗(k)
eikt−ixµ(k), Z[2](t, x; k)e

−ikt+ixµ(k)
)
, k∈Ω−,

(
Y[2](t, x; k)

b(k)
eikt−ixµ(k), Z[2](t, x; k)e

−ikt+ixµ(k)
)
, k∈D+,

(
Z[1](t, x; k)e

ikt−ixµ(k),
−Y[1](t, x; k)

b∗(k)
e−ikt+ixµ(k)

)
, k∈D−.

(39)

Proposition 2.1. The function M defined in (39) solves the following RH problem:

Riemann-Hilbert problem 1. Find a 2 × 2 matrix M(t, x; k) that satisfies the following

properties:

(i) analyticity: M(t, x; k) is analytic in k ∈ C \
(
Σ ∪

{
k(a)

j

}
j
∪ { k(a)

j }j ∪
{
k(b)

j

}
j
∪ { k(b)

j }j
)
and

continuous up to the boundary, where k(a)

j and k(b)

j are zeros of a(.) in Ω+ and b(.) in D+,

respectively;

(ii) pole conditions: at the zeros k(a)

j of the function a(.) in the domain Ω+ and their complex

conjugates, the following pole conditions are satisfied:

M(t, x; k)


1

∑n
(a)
j

q=1

−A(a)
q,j e−2iθ(t,x;k)

(
k−k(a)j

)
q

0 1


 = O(1), k → k(a)

j ,

M(t, x; k)




1 0
∑n

(a)
j

q=1

A
(a)
q,j e2iθ(t,x;k)(
k−k(a)j

)
q 1


 = O(1), k → k(a)

j ;

(iii) pole conditions: at the zeros k(b)

j of the b(.) in the domain D+ and their complex conjugates,

the following pole conditions are satisfied:

M(t, x; k)




1 0
∑n

(b)
j

q=1

−A(b)
q,j e2iθ(t,x;k)(
k−k(b)j

)
q 1


 = O(1), k → k(b)

j ,

M(t, x; k)



1
∑n

(b)
j

q=1

A
(b)
q,j e−2iθ(t,x;k)

(
k−k(b)j

)
q

0 1


 = O(1), k → k(b)

j ;

(iv) jump conditions: M−(t, x; k) =M+(t, x; k)J(t, x; k), k ∈ Σ \ {−1
2
, 0, 1

2
}, where

J(t, x; k) =




1 + |r(k)|2 −r(k)e−2iθ(t,x;k)

−r∗(k)e2iθ(t,x;k) 1


 , k ∈ R, |k| > 1

2
,

=




1 −(r∗(k))−1e−2iθ(t,x;k)

−r(k)−1e2iθ(t,x;k) 1 + |r(k)|−2


 , k ∈ R, |k| < 1

2
, k 6= 0;

(40)
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=




0 −r(k)e−2iθ(t,x;k)

r(k)−1e2iθ(t,x;k) 1


 , k ∈ Cu(1/2),

=




0 (r∗(k))−1e−2iθ(t,x;k)

−r∗(k)e2iθ(t,x;k) 1


 , k ∈ Cd(1/2), (41)

where r(k) := b(k)/a(k) is defined on R ∪ Cu(1/2), and θ(t, x; k) = kt − xµ(k) is defined in

(33).

(v) M(t, x; k) is bounded in the neighbourhoods of the points {−1
2
, 0, 1

2
};

(vi) normalisation: M(t, x; k) = I +O(k−1), |k| → ∞.

Proof. The proof is standard and boils down to direct verification of all the properties.

Remark 2.3. If the zeros of a(.), b(.) lie on the circle Cu(
1
2
), the corresponding limits in the

conditions (ii), (iii) are understood within the respective domain.

Note that RH problem 1 is fully determined by the initial and boundary data (6).

Note also that the RH problem 1 is formulated on the contour Σ, which is the union of the

continuous spectra of both Lax operators for the Maxwell-Bloch equations.

3. Matrix Riemann-Hilbert problem

In this section, we drop the assumption of the previous Section 2 that there exists a solution to

the initial value boundary problem (5), (6).

From now on we restrict ourselves to the case of the input pulse, i.e. we assume that the initial

conditions are trivial, i.e. given by formulae (9), and a boundary function (8) satisfies condition

(11). Recall (see Remark 2.2) that the functions b(.), r(.) do not vanish identically provided that

E1(t) does not vanish identically.

Proposition 3.1. Let E1(t) be a locally integrable function satisfying (11) and not identically

equal to zero, let a(.), b(.) be corresponding to E1(t) spectral functions of the t-equation defined by

formulae (36) (i.e. a(k) = A(k), b(k) = B(k)) and let r(k) = b(k)
a(k)

and let r(k) = O(k−2) as

k → ∞. Then

I. RH problem 1 has a unique solution.

II. Functions E , ρ,N defined by the following formulae

E(t, x) =− lim
k→∞

4ikM12(t, x; k), (42)

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M(t, x; +i0)σ3M

−1(t, x; +i0), (43)

satisfy the MB equations (5) together with the initial and boundary conditions (8),(9).

III. Given a solution M(t, x; k) of the RH problem 1 (which exists and is unique in view of part I

of this Proposition), define functions Y[1], Y[2], Z[1], Z[2] by formula (39). Then these functions

satisfy the properties of Lemmas 2.2, 2.3 and, moreover, the function Z = (Z[1], Z[2]) satisfies

the property in Remark 2.1, i.e. Z is analytic in k ∈ C \ {0}.
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Proof. I. Note that the RH problem satisfies the Schwartz reflection symmetry [41]: JT (k) = J(k)

for k ∈ Σ\R, J(k)+JT (k) is positive definite for k ∈ R (here superscript T denotes transposition,

and J(k) = J(t, x; k)), which implies [41, Theorem 9.3] the solvability of the RH problem.

Furthermore, it is easy to see that det J(t, x; k) ≡ 1, k ∈ Σ \ {−1
2
, 0, 1

2
}, and hence

detM(t, x; k) ≡ 1 for ∀k ∈ C \Σ. The uniqueness then follows by a standard argument: assuming

that there exists another solution M̃, it follows that the function M̃M−1

(i) has identity jumps across Σ,

(ii) does not have poles at the points k(a)

j , k(b)

j and their complex conjugates,

(iii) is bounded everywhere,

(iv) tends to the identity matrix at infinity.

It then follows from the Liouville theorem that M̃M−1 is the identity matrix.

II. Step 1: differentiability of M(t, x; k) in t, x. In view of Remark 2.2, the function r(k) = b(k)
a(k)

admits an analytic continuation from the real axis. It then follows that the solution of the

RH problem is differentiable in t, x (cf. [28, Theorem 2.2]). Indeed, first of all we note that

differentiation of the jump matrices J(t, x, k) with respect to t and x multiply their entries on k

and k− 1
4k

correspodently. This forces us to pass to the equivalent Riemann-Hilbert problem. This

can be done due to the analyticity of the reflection coefficient by reformulating the RH problem

for a new contour, which should bypass only the origin of the complex plane because at infinity

r(k) vanishes like k−m (m ≥ 2). The factorization of the jump matrix given on the interval (−1
2
, 1
2
)

L̂

Cu

Cd

D

D 1/2−1/2 0

Figure 3. All branch of the jump contour Σ(1) are oriented from the left to the right.

J(t, x, k) =

(
1 0

−r−1(k)e2iθ(t,x;k) 1

)(
1 (−r∗(k))−1e−2iθ(t,x;k)

0 1

)

suggests a suitable transformation of the RH problem, namely:

M (1)(t, x, k) =M(t, x, k)G(1)(t, x, k),
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where (see figure 3)

G(1)(t, x, k) =

(
1 0

−r(k)−1e2iθ(t,x;k) 1

)
, k ∈ D,

=

(
1 (r∗(k))−1e−2iθ(t,x;k)

0 1

)
, k ∈ D,

=

(
1 0

0 1

)
, k /∈ D ∪D,

This transformation implies the following RH problem:

M
(1)
− (t, x, k) =M

(1)
+ (t, x, k)J (1)(t, x, k), k ∈ Σ̂(1),

M (1)(t, x, k) → I, k → ∞,

where Σ(1) = (−∞,−1
2
) ∪ (1

2
,∞) ∪ Cu(

1
2
) ∪ Cd(

1
2
) ∪ L̂ ∪ L̂ and the jump matrix

J (1)(t, x, k) = (G
(1)
+ (t, x, k))−1J(t, x, k)G

(1)
− (t, x, k) =

=

(
1 0

0 1

)
, k ∈ (−1

2
,
1

2
)

=

(
1 0

−r−1(k)e2iθ(t,x;k) 1

)
, k ∈ L̂,

=

(
1 (r∗(k))−1e−2iθ(t,x;k)

0 1

)
, k ∈ L̂

and J (1)(t, x, k) = J(t, x, k) for k ∈ (−∞,−1
2
) ∪ (1

2
,∞) ∪ Cu(

1
2
) ∪ Cd(

1
2
). We have to note that

matrix M (1)(t, x, k) is analytic everywhere with the exception of the contour Σ1. Indeed, at the

point k = 0 matrices M(t, x, k) and G(1)(t, x, k) are bounded in upper and lower half vicinities of

zero. Hence the matrix M (1)(t, x, k), is also bounded there and continuous in punchered vicinity

and therefore it analytic and at the point zero.

As usual, let us put M
(1)
+ (t, x, s) = I + N (1)(t, x, s) when s ∈ Σ

(1)
+ and pass to the singular

integral equation:

N (1)(t, x, s)− 1

2πi

∫

Σ(1)

N (1)(t, x, z)[I − J (1)(t, x, z)]

(z − s)+
dz =

1

2πi

∫

Σ(1)

[I − J (1)(t, x, z)]

(z − s)+
dz.

After X. Zhou [41] it is well known that such type of singular integral equations are uniquely

solvable in Hilbert space L2(Σ(1)). In particular, the unique solvability of the mixed problem to

Maxwell-Bloch equations can be found in [26]. Thus the above singular integral equation has a

unique solution N (1)(t, x, s) ∈ L2(Σ(1)). Now we can differentiate the last equation in t and x

as many times as it allows the number m. Indeed, to differentiate these equations and matrix

N (1)(t, x, s) it is sufficient that its formal derivatives are convergent. So the derivative of order p

leads to the multiplication of the integrand by the factor kq(k + 1
4k
)p−q where (q ≤ p). Thus, the

integrands have the order O(kp−m) when k → ∞ since the reflection coefficient r(k) decreases as

O(k−m). The power factors on the finite part of the contour Σ(1) do not affect the convergence of
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the integrals, while at infinity the L2-convergence takes place under the condition 2(m−p) > 1 that

means 1 ≤ p < m− 1/2. Therefore we have to take into account such inequalities: 1 ≤ p ≤ m− 1

and, hence, m ≥ 2. This provides a unique solvability and existence of the partial derivatives of

N (1)(t, x, k) with respect to t and x. Hence for k 6= 0 matrices M (1)(t, x, k) and M(t, x, k) have

partial derivatives of order p ≤ m− 1 under condition that m ≥ 2.

Step 2: Lax pair equations from the RH problem solution. It is known (see, for example, [26],

[16]) that the next theorem is valid.

Theorem 3.1. Let Φ(t, x, k) :=M (1)(t, x, k)e−ik(t−x)σ3−i
xσ3
4k . Then Φ(x, t, k) satisfies

the Ablowitz-Kaup-Newell-Segur system of equations:

Φt =− (ikσ3 +H(t, x))Φ,

Φx =

(
ikσ3 +H(t, x) +

iF (t, x)

4k

)
Φ,

The matrices H(t, x) and F (t, x) are defined as

H(t, x) = −i[σ3, m(1)(t, x)], m(1)(t, x) := −1

π

∫

Σ(1)

[
I +N (1)(t, x, k)

] [
I − J (1)(t, x, k)

]
dk,

F (t, x) :=

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
= −M (1)(t, x, 0)σ3

(
M (1)(t, x, 0)

)−1
.

Corollary 3.1. AKNS equations are evidently compatible, i.e. Φtx = Φxt, and hence the Maxwell-

Bloch equations in the form (30) are satisfied.

Step 3: initial and boundary conditions. It remains to check that the initial and boundary

conditions are fulfiled. The verification that the E , ρ,N satisfy the trivial initial conditions (9)

follows in the same way as the proof of Theorem 3.2.

To check the fulfilment of the boundary conditions, set x = 0 in RH problem 1 and make the

following transformation:

M (1)(t; k) =M(t, x = 0; k)G(1)(t; k), where

G(1)(t; k) =

(
1 0

−r(k)−1e2itk 1

)
, k ∈ D+, G(1)(t; k) =

(
1 (r∗(k))−1e−2itk

0 1

)
, k ∈ D−,

and G(1)(t; k) = I elsewhere. We then obtain an equivalent RH problem

M
(1)
− (t; k) =M

(1)
+ (t; k)J (1)(t; k), k ∈ R,

with the jump matrix J (1)(t; k) =

(
1 + |r(k)|2 −r(k)e−2itk

−r∗(k)e2itk 1

)
, k ∈ R, and the pole conditions as

in RH problem 1 at the zeros k(a)

j of the function a(.) in the domain Im k ≥ 0 and their complex

conjugates.

Note that this RH problem has a unique solution that is given as follows:

M (1)(t; k) =





(
Ψ1(t; k)e

ikt, 1
a(k)

Φ2(t; k)e
−ikt
)
, Im k > 0,(

1
a∗(k)

Φ1(t; k)e
ikt, Ψ2(t; k)e

−ikt
)
, Im k < 0,
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where Φ(t; k),Ψ(t; k) are the solutions of the t-equation (27), Φt(t; k) + ikσ3Φ(t; k) =(
0 −1

2
E1(t)

1
2
E1(t) 0

)
Φ(t; k), which are uniquely determined by the boundary conditions

lim
t→∞

Φ(t; k)eiktσ3 = I, Ψ(t = 0; k) = I, respectively. It then readily follows from (42) that

E(t, x = 0; k) = −4i lim
k→∞

M12(t, x = 0; k) = −4i lim
k→∞

M
(1)
12 (t; k) = E1(t), which is what we aimed to

prove.

III. The properties of the columns follow from the fact that M(t, x; k) satisfies the

RH problem 1. Indeed, we can write matrix M(t, x, k) as follows

M(t, x; k)=:





(
Ẑ[1](t, x; k)e

iθ(t,x,k),
Ŷ[2](t, x; k)

a(k)
e−iθ(t,x,k)

)
, k ∈Ω+,

(
Ỹ[2](t, x; k)

b(k)
eiθ(t,x,k), Z̃[2](t, x; k)e

−iθ(t,x,k)
)
, k∈D+,

(
Ŷ[1](t, x; k)

a∗(k)
eiθ(t,x,k), Ẑ[2](t, x; k)e

−iθ(t,x,k)
)
, k∈Ω−,

(
Z̃[1](t, x; k)e

iθ(t,x,k),
−Ỹ[1](t, x; k)

b∗(k)
e−iθ(t,x,k)

)
, k∈D−,

where, in view of property (i) of RH problem 1, the functions Ẑ[1](t, x; k) and Ŷ[2](t, x; k) (Ẑ[2](t, x; k)

and Ŷ[1](t, x; k)) are meromorphic in k ∈ Ω+ (k ∈ Ω−), while Ỹ[2](t, x; k) and Z̃[2](t, x; k)

(Z̃[1](t, x; k) and Ỹ[1](t, x; k)) are meromorphic in k ∈ D+ (z ∈ D−). Moreover, the residual

conditions (ii), (iii) of RH problem 1 imply that Ẑ[1](t, x; k), Z̃[2](t, x; k), Ẑ[2](t, x; k), Z̃[1](t, x; k)

do not have poles in their domains. Furthermore, expansions for a(k)−1, b(k)−1 from Lemma

2.4 and the residual conditions (ii), (iii) show that the rest of the columns, i.e. Ŷ[2](t, x; k),

Ỹ[2](t, x; k), Ỹ[1](t, x; k), Ŷ[1](t, x; k) also do not have poles in their domains (otherwise the products

in the conditions (ii), (iii) would not be regular).

From the jump conditions on Cu(
1
2
) it follows that Ŷ[2](t, x; k) = Ỹ[2](t, x; k) for k ∈ Cu(

1
2
),

and hence in view of analyticity Ŷ[2](t, x; k) ≡ Ỹ[2](t, x; k) =: Y[2](t, x; k) is analytic in k ∈ C+.

Similarly, from the jump condition on Cd(
1
2
) it follows that Ŷ[1](t, x; k) ≡ Ỹ[1](t, x; k) =: Y[1](t, x; k)

is analytic in k ∈ C−.

Furthermore, the jump condition on Cu(
1
2
) also implies

Ŷ[2](t, x; k) = b(k)Ẑ[1](t, x; k) + a(k)Z̃[2](t, x; k), k ∈ Cu(1/2), (44)

and hence Z̃[2](t, x; k) has an analytic continuation into k ∈ Ω+, and thus is analytic in C+. Besides,

Ẑ[1](t, x; k) admits an analytic continuation into D+, and thus is analytic in C+. Similarly, from

the jump condition on Cd(
1
2
) it follows that Ỹ[1](t, x; k) = a∗(k)Z̃[1](t, x; k) − b∗(k)Ẑ[2](t, x; k) and

thus Z̃[1](t, x; k) and Ẑ[2](t, x; k) are analytic in C−.

The jump condition on R \ [−1
2
, 1
2
] implies

Ŷ[2](t, x; k) = b(k)Ẑ[1](t, x; k) + a(k)Ẑ[2](t, x; k), k ∈ (−∞,−1/2) ∪ (1/2,+∞).

Comparing that with (44), we conclude that Ẑ[2](t, x; k)≡Z̃[2](t, x; k) =:Z[2](t, x; k) is analytic in

C \ {0}.
To obtain that Ẑ[1](t, x; k) ≡ Z̃[1](t, x; k) for all k ∈ C \ {0}, the easiest way is to observe that

if M(t, x; k) is a solution to the RH problem 1, then ΛM(t, x; k)Λ−1 is also a solution (here, Λ is

defined in Lemma 2.2), and thus from uniqueness we obtain that ΛM(t, x; k)Λ−1 =M(t, x; k).
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Causality principle.

Theorem 3.2. [Causality principle.] Let the conditions of Proposition 3.1 be satisfied. Then

for x ≥ t the solution of RH problem 1 is unique and trivial, i.e. M(t, x; k) ≡ I and

E(t, x) = ρ(t, x) ≡ 0, N (t, x) ≡ 1 for x ≥ t.

Proof. Note that the spectral function r(k) is not identically zero, is analytic in k ∈ C+ and

r(k) = O(k−1) as k → ∞. Now, we need to treat the cases x > t and x = t differently. For x > t

we have that k20 =
x

4τ
and τ ≡ t− x are negative. The distribution of signs of the phase function

θ = θ(t, x; k), defined in (33), is determined by the equality

sgn(Re(iθ)) = −sgn Im θ = −τ sgn
[(

1 +
k20
|k|2

)
Im k

]
,

which means that e∓2iθ = O(e±τ Im k) as |k| → ∞, ± Im k ≥ 0. On the other hand, for x = t we

have e∓2iθ = O(e
x Im k
2|k|2 ) = O(1) as |k| → ∞, ± Im k ≥ 0, for every fixed x. This kind of behaviour

of the exponents, a factorization of the jump matrix (x ≥ t)

J(t, x; k) =

(
1 + |r(k)|2 −r(k)e−2iθ

−r∗(k)e2iθ 1

)
=

(
1 −r(k)e−2iθ

0 1

)(
1 0

−r∗(k)e2iθ 1

)
,

and analyticity of the functions r(k) and r∗(k) in C±, respectively, allows applying the following

transformation to the basic RH problem: M (1)(t, x; k) =M(t, x; k)G(1)(t, x; k), where

G(1)(t, x; k) =

(
1 −r(k)e−2iθ(t,x;k)

0 1

)
, k ∈ Ω+,

=

(
1 0

r∗(k)e2iθ(t,x;k) 1

)
, k ∈ Ω−.

The function M (1) then satisfies the following jump condition,

M
(1)
− (t, x; k) =M

(1)
+ (t, x; k)J (1)(t, x; k), k ∈ R, |k| > 1

2

with the jump matrix

J (1)(t, x; k) = (G
(1)
+ (t, x; k))−1J(t, x; k)G

(1)
− (t, x; k) ≡ I, k ∈ R, |k| > 1

2
.

Another factorization of the jump matrix,

J(t, x; k) =

(
1 −(r∗(k))−1e−2iθ

−r(k)−1e2iθ 1 + |r|−2

)
=

(
1 0

−r(k)−1e2iθ 1

)(
1 −(r∗(k))−1e−2iθ

0 1

)
,

defines G(1)(t, x; k) in the domains D±:

G(1)(t, x; k) =

(
1 0

−r(k)−1e2iθ 1

)
, k ∈ D+,

=

(
1 (r∗(k))−1e−2iθ

0 1

)
, k ∈ D−,



25

and we have

M
(1)
− (t, x; k) =M

(1)
+ (t, x; k)J (1)(t, x; k), k ∈ R, |k| < 1

2
, k 6= 0,

with the jump matrix

J (1)(t, x; k) = (G
(1)
+ (t, x; k))−1(k)J(t, x; k)G

(1)
− (t, x; k) ≡ I, k ∈ R, |k| < 1

2
, k 6= 0.

It is easy to verify that on the circle |k| = 1/2

J (1)(t, x; k) = (G
(1)
+ (t, x; k))−1J(t, x; k)G

(1)
− (t, x; k) ≡ I, k ∈ Cu(1/2) ∪ Cd(1/2).

Furthermore, note that in view of formulae (35), we have

M (1)(t, x; k) =
(
Z[1](t, x; k)e

iθ(t,x;k), Z[2](t, x; k)e
−iθ(t,x;k)

)
, k ∈ Ω+ ∪ Ω−.

In view of Remark 2.1, the function Z(t, x; k) is analytic in k ∈ C \ {0}, and hence M (1) does not

have poles at the zeros of a(.), b(.).

Next, let us examine the behaviour of M (1) at the origin. For τ < 0,

e±2iθ = O(e±2τ
|k0|
|k|

sin arg k) = o(1) when |k| → 0, and arg k ∈ (0, π) for the sign plus and

arg k ∈ (−π, 0) for the sign minus. Hence G(1)(t, x; k) = O(1) and M (1)(t, x; k) = O(1)

for all |k| → 0. At the infinity, since G(1)(t, x; k) = I + O(k−1) as |k| → ∞, then also

M (1)(t, x; k) = I + O(k−1). Further, M (1)(t, x; k) is analytic everywhere with exception of the

points −1

2
, 0,

1

2
which are removable singularities for M (1)(t, x; k). Then M (1)(t, x; k) ≡ I by the

Liouville theorem. Hence, lim
k→∞

k(M (1)(t, x; k)− I) ≡ 0 and therefore

E(t, x) = −4i lim
k→∞

kM12(t, x; k) = −4i lim
k→∞

(
kM (1)(t, x; k)(G(1)(t, x; k))−1

)
12

≡ 0.

Finally, M(t, x; +i0) ≡ I and therefore F (t, x) ≡ σ3, i.e. ρ(t, x) ≡ 0, and N (t, x) ≡ 1. Theorem

3.2 is proved.

We remind that this trivial result is valid in the causality region t ≤ x. Thus the Riemann-

Hilbert problem provides the well-known causality principle.

4. Asymptotic analysis. Near the light cone. Proof of Theorem 1.1

According to the causality principle, Theorem 3.2, the solution of the mixed problem is trivial in

the region x ≥ t. We thus are only interested in the light cone region, which is defined by the

inequality

τ ≡ t− x > 0.

Moreover, in this Section we will only deal with a narrow region near the light cone, which is given

by the inequalities (10)

x < t ≤ x+
m2 ln2 x+ C ln x · ln lnx

4x
, C > 0,
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where a real number m ≥ 1 is defined either in Assumption 1 or 2, and C > 0 is an arbitrary

constant.

As usual within the framework of the Deift-Zhou method of steepest descent, a crucial role is

played by the signature table of the phase function. For convenience, let us rewrite e∓2iθ(t,x;k) in

the form:

e∓2iθ(t,x;k) = exp

{
∓2i(t− x)

(
k − k20

k

)}
= exp {∓2i(t− x)S(k, k0)} ,

where k0 = k0(t/x) =

√
x

4τ
> 0 is defined in (12) and S(k, k0) = k − k20

k
. Note that the phase

function S(k, k0) has two saddle points, for the derivative is equal to zero at the points ±ik0,

d

dk
S(k, k0) = 1 +

k20
k2

= 0.

It is evident that d2

dk2
S(k = ∓ik0, k0) 6= 0. Then

sgn(Im(θ(t, x; k))) = sgn(ImS(k, k0)) = sgn

(
1 +

k20
|k|2

)
Im k = sgn Im k,

i.e. there are two domains C± where ImS(k, k0) is positive and negative, respectively. Further, the

saddle points ±ik0 are located on the imaginary line. Then, in the spirit of the steepest descent

method, we must move to a new contour where the corresponding requirements

• ReS(k, k0) = const,

• ImS(−ik0, k0) < ImS(k, k0) < ImS(ik0, k0)

are fulfiled. Such a contour is nothing more than the circle |k| = k0, as follows from the identity

θ(t, x; k) = (t− x)

(
Re k ·

(
1− k20

k2

)
+ i Im k ·

(
1 +

k20
|k|2

))
.

4.1. Transformations of the RH problem

Step 1: moving the circle |k| = 1
2
to the circle |k| = 1

2

√
x
t−x . Following the logic explained above,

our first step is to “move” the jump from the circle |k| = 1
2
to the circle |k| = k0. This is done with

the help of the following transformation of the RH problem 1:

M (1)(t, x; k) =M(t, x; k)

(
0 −r(k)e−2iθ

1
r(k)

e2iθ 1

)
,

1

2
< |k| < 1

2

√
x

t− x
, Im k > 0,

M (1)(t, x; k) =M(t, x; k)

(
0 1

r∗(k)
e−2iθ

−r∗(k)e2iθ 1

)−1

,
1

2
< |k| < 1

2

√
x

t− x
, Im k < 0,

M (1)(t, x; k) =M(t, x; k) elsewhere,

where r∗(k) = r(k) and θ = θ(t, x; k). This transformation exploits the fact that r(k) and r∗(k)

are analytic in k ∈ C±, respectively, and effectively “erase” the jump from the circle |k| = 1
2
and

redraw it on the circle |k| = k0 =
1
2

√
x
t−x . This means that RH problem 1 is reformulated now on

the new contour Σ(k0) = R ∪ Cu(k0) ∪ Cd(k0), where the semicircles Cu(k0) and Cd(k0) are the
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upper and lower parts of the circle |k| = k0, respectively, both of which are oriented from the point

−k0 to k0,

Cu = Cu(k0) = {k ∈ C : |k| = k0, arg k∈(π, 0)}, Cd = Cd(k0) = {k∈C : |k| = k0, arg k∈(0,−π)}.
(45)

Function M (1)(t, x; k) satisfies the following RH problem:

• M (1)(t, x; k) is analytic in k ∈ C \ Σ(k0);
• M (1)(t, x; k) has continuous non-tangential boundary values M

(1)
± (t, x; k) (k ∈ Σ(k0)), which

satisfy the jump relation:

M
(1)
− (t, x; k) =M

(1)
+ (t, x; k)J (1)(t, x; k), k ∈ Σ(k0),

• M (1)(t, x; k) is bounded in the neighbourhoods of the points {−k0, 0, k0};
• M (1)(t, x; k) satisfies the pole conditions at the zeros of the function a(.) in the domain |k| ≥ k0,

which are defined by formulae in property (ii) of RH problem 1, and satisfies the pole conditions

at the zeros of the function b(.) in the domain |k| ≤ k0, which are defined by formulae in

property (iii) of RH problem 1;

• M (1)(t, x; k) = I +O(k−1), k → ∞.

The jump matrix J (1)(t, x; k) is defined by the same formulae (40) and (41), but on the new contour

Σ(k0).

Note that since a(k) → 1 as k → ∞, for k0 sufficiently large there are no zeros of a(k) in the

region |k| ≥ k0, Im k ≥ 0. Since in the region (10) we have k0 ≥ 4x(1+o(1))

m2 ln2 x
→ ∞ as x→ ∞, we can

assume without loss of generality that M (1) has no poles caused by zeros of the function a(.).

Step 2: scaling. In the regime x
t−x → +∞ the circle in the jump contour for M (1) is expanding.

For convenience, we introduce the scaling

k = k0z, where k0 = k0(t/x) =

√
x

4(t− x)
,

which transforms that circle to the unit circle in variable z. We have

θ(t, x; k) = (t− x)k − x

4k
=

1

2

√
x(t− x)

(
z − 1

z

)
.

Next, let us parametrize the circle |z| = 1 in the following way: we introduce one parametrization

for the upper part of the circle and another one for the lower part of the circle:

z = ie−iαu , αu ∈
(−π

2
,
π

2

)
, z ∈ Cu(1),

z = −ieiαd , αd ∈
(−π

2
,
π

2

)
, z ∈ Cd(1).

(46)

Note that with these parametrizations both halves of the circle are oriented from the point z = −1

to the point z = 1. Then

−2iθ(t, x; k = k0z) = 2
√
x(t− x)− 4

√
x(t− x) sin2 αu

2
, z ∈ Cu(1),

2iθ(t, x; k = k0z) = 2
√
x(t− x)− 4

√
x(t− x) sin2 αd

2
, z ∈ Cd(1).

(47)

It follows in particular that −2iθ(t, x; k0z) is real on Cu(1) and smaller there than 2
√
x(t− x).



28

Step 3. We would like to remove the jump from the interval z ∈ (−1, 1). To fulfil this objective,

we define

M (2)(z; t, x) =M (1)(t, x; k0z)




1 0
−1

r(k0z)
e2iθ(t,x;k0z) 1


 , |z| < 1, Im z > 0,

M (2)(z; t, x) =M (1)(t, x; k0z)


1

1

r∗(k0z)
e−2iθ(t,x;k0z)

0 1


 , |z| < 1, Im z < 0,

M (2)(z; t, x) =M (1)(t, x; k0z), |z| > 1.

This transformation removes the poles caused by the zeros of the function b(.) in the domain

|z| < 1. This can be seen either directly by applying the corresponding transformationM (1) →M (2)

to the pole conditions of M (1) at the zeros of b(.), or can also be seen in a more simple fashion,

by tracking how M (2) depends on Y, Z (which are defined from M by formula (39)). We have

M (2)(z; t, x) =
(
Z[1](t, x; k0z)e

iθ(t,x;k0z), Z[2](t, x; k0z)e
−iθ(t,x;k0z)

)
, |z| < 1, Im z > 0, and the

statement follows from the properties of Y, Z, pp. 13 - 15. Thus, the function M (2) has no

poles neither at the zeros of the function a(.) nor at the zeros of the function b(.), and satisfies the

following RH problem (see also Figure 4, left):

RH problem for M (2).

(i) M (2)(z; t, x) is analytic in z ∈ C \ Σ, where Σ(2) = {z : |z| = 1} ∪ (R \ (−1, 1)),

(ii) M (2)(z; t, x) → I as z → ∞,

(iii) M
(2)
− (z; t, x) =M

(2)
+ (z; t, x)J (2)(z; t, x), where

J (2)(z; t, x) =

(
1 −r(k0z)e−2iθ

0 1

)
, z ∈ Cu(1),

J (2)(z; t, x) =

(
1 0

−r∗(k0z)e2iθ 1

)
, z ∈ Cd(1),

J (2)(z; t, x) =

(
1 + |r(k0z)|2 −r(k0z)e−2iθ

−r∗(k0z) e2iθ 1

)
, z ∈ (−∞,−1) ∪ (1,+∞),

(48)

where r∗(k0z) = r(k0z) and θ = θ(t, x; k0z).

We see that as k0 → ∞, the jump matrix J (2) is close to the identity matrix over R\[−1, 1], but

its behaviour over Cu(1) and Cd(1) depends significantly on the parameter
√
x(t− x). In the case

when x(t− x) is bounded or grows moderately, the jumps over Cu(1), Cd(1) remain small and we

can use a small-nom theory. On the other hand, when x(t−x) is large, the jumps over Cu(1), Cd(1)

are growing, and to tackle this issue, the idea is to construct a parametrix that satisfies exactly the

jump condition over Cu(1) ∪ Cd(1); this can be done using Hermite polynomials, just as Laguerre

polynomials were used in [4], [28] (note however a significant difference of our parametrix from

the ones from [4], [28]: while there the corresponding parametrices were defined only in relatively

small domains around the critical points, in our case the parametrices will be defined in rather big

domains Ωu,Ωd, see Figure 4, right).
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In the subsequent Sections 4.2 and 4.3 we treat the cases of bounded or moderately growing

parameter x(t− x), and the case of large parameter x(t− x) is considered in Section 4.4.

4.2. Proof of Theorem 1.1, part I

It follows from the form of the jump matrices for M (2) (48), formula (47) and Assumption 1 that

uniformly for 0 <
√
x(t− x) ≤ 1 the jump matrix J (2) admits the estimate

‖J (2)(z; t, x)− I‖L1(Σ(2))∩L2(Σ(2))∩L∞(Σ(2)) = O(k−m0 ), k0 → ∞. (49)

It then follows from the standard small-norm theory thatM (2)(z; t, x)− I = O(k−m0 ) uniformly for

z ∈ C, and

M (2) = I + C[M (2)
+ (.)(I − J (2))], or M (2)(z; t, x) = I +

1

2πi

∫

Σ(2)

[M
(2)
+ (s; t, x)(I − J (2)(s; t, x)) ds

s− z
,

(50)

where M
(2)
+ =M

(2)
+ (.; t, x) is the solution of the singular integral equation

M
(2)
+ = I + C+[M (2)

+ (.)(I − J (2))],

and where we denoted

Cf(k) = 1

2πi

∫

Σ(2)

f(s) ds

s− k
, C+f(k) =

1

2πi

∫

Σ(2)

f(s) ds

(s− k)+
.

Functions E , ρ,N can be obtained from M
(2)
+ by the following Lemma.

Lemma 4.1.

E(t, x) = −4ik0
2πi

∫

Σ(2)

[(J (2)(z; t, x)−I)]12dz+
−4ik0
2πi

∫

Σ(2)

[(M
(2)
+ (z; t, x)−I)(J (2)(z; t, x)−I)]12dz,

(51)

and

ρ(t, x) = −2M
(2)
11 (0; t, x)M

(2)
12 (0; t, x), N (t, x) = 1− 2|M (2)

12 (0; t, x)|2, (52)

where M11(0; t, x), M12(0; t, x) are the corresponding entries of the matrix M (2)(0; t, x),

M (2)(0; t, x) = I −
∫

Σ(2)

(J (2)(z; t, x)− I) dz

2πi z
−
∫

Σ(2)

(M
(2)
+ (z; t, x)− I)(J (2)(z; t, x)− I) dz

2πi z
. (53)

Proof. Indeed, using formulae (42), (44) and tracking back the chain of transformations that led

from M to M (2), we easily obtain that the functions E , ρ, N can be expressed using M (2) by the

same formulae (42), (44), if we change there M to M (2). From the representation (50) we then

obtain

E(t, x) = −4ik0
2πi

∫

Σ(2)

[M
(2)
+ (z; t, x)

(
J (2)(z; t, x)− I

)
]12dz,

and substituting here M
(2)
+ (z; t, x) = I + (M

(2)
+ (z; t, x) − I) we obtain formula (51). Similarly we

obtain formula (53). Finally, to get formulae (52), note that M (2)(0; t, x) has the structure

M (2)(0; t, x) =

(
A B

−B A

)
,

and |A|2 + |B|2 = 1. Multiplying matrices in (44) (where we substituted M with M (2)), we find

that ρ(t, x) = −2AB, N = |A|2 − |B|2 = 1− 2|B|2, which finishes the proof of the Lemma.

We now use Lemma 4.1 to obtain asymptotic formulae (13), (14), (15) for the functions E ,N , ρ.
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Function E(t, x).

We now obtain the asymptotics for E(t, x). The second term in formula (51) is of the order k−2m+1
0 ,

since both M (2) − I and J (2) − I are of the order k−m0 . Furthermore, the first term in formula (51)

can be written more explicitly as

−4ik0
2πi

∫

Σ(2)

(J (2)(z; t, x)− I)12dz =
4ik0
2πi

∫

Σu

r(k0z)e
−i
√
x(t−x)(z− 1

z
)dz

=
4 im+1k0 r(ik0)

2πi

∫

Σu

z−me−i
√
x(t−x)(z− 1

z
)dz +

4ik0
2πi

∫

Σu

O(k−m−1
0 z−m)e−i

√
x(t−x)(z− 1

z
)dz, (54)

where we integrate over the contour Σu,

Σu = (−∞,−1) ∪ Cu ∪ (1,+∞),

and where we used that r(k0z) = im r(ik0)z
−m + O(k−m−1

0 z−m) uniformly for z ∈ Σu, which is

a direct consequence of the representation for r(.) from Assumption 1. The second term in (54)

admits the estimate O(k−m0 ), and the first term is equal to 4im−1k0r(ik0)Jm−1(−2i
√
x(t− x)),

where Jm−1 is the Bessel function of the first kind of the order m − 1. Indeed, recall the integral

representation for the Bessel function [34, formula (7), p.640] (cf. [39, formula (10.9.19)]),

Jν(ξ) =
1

2πi

∫ (0+)

−∞
z−ν−1e

ξ
2
(z−z−1)dz,

where the integral path goes from −∞ along the lower bank of R−, then circumvents the origin

in the positive (counter-clockwise) direction, and then goes back to −∞ along the upper bank of

R+. Note that by Jordan’s lemma, the integral of z−me−i
√
x(t−x)(z− 1

z
) over Σu is equal to minus

integral of it over (−∞, (0+)). Combining together the above estimates and expressing the Bessel

function in terms of the modified Bessel function ([3, formulae (9.6.3), (9.1.35)]),

Iν(ξ) = iνJν(−iξ), ξ > 0,

we obtain formula (13).

Functions N (t, x), ρ(t, x).

Similarly as in the previous paragraph, we note that the last term in formula (53) is of the order

O(k−2m
0 ), since both factors in the integrand are of the order O(k−m0 ). Then

M
(2)
11 (0; t, x) = 1− 1

2πi

∫

R\[−1,1]

|r(k0z)|2
dz

z
+O(k−2m

0 ) = 1 +O(k−2m
0 ), (55)

M
(2)
12 (0; t, x) =

1

2πi

∫

Σu

(
imr(ik0)

zm
+O(

1

km+1
0 zm

)

)
e−i

√
x(t−x)(z− 1

z
)dz

z
+O(k−2m

0 )

= im+2r(ik0)Jm(−2i
√
x(t− x)) +O(k−m−1

0 ), (56)

where we manipulate the integrals similarly to the previous section (devoted to the function E(t, x)).
Using formulae (52) we obtain formulae (14), (15), and thus the statement of Theorem 1.1, part I.

Remark 4.1. Note that the formula N (t, x) = |M (2)
11 (0; t, x)|2−|M (2)

12 (0; t, x)|2, which is equivalent

to the second of formulae (52), does not allow to obtain formula (14), since it gives the error term

O(k−2m
0 ), which is comparable with the main term in (14). We thus need to use an equivalent

formula (52), i.e. N (t, x) = 1− 2|M (2)
12 (0; t, x)|2.
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4.3. Proof of Theorem 1.1, part II

The proof goes in the same way, as in part I, Section 4.2, but the corresponding estimates are

changed.

In the domain (17) we have

2 ≤ 2
√
x(t− x) ≤ m ln x− (m+ ε1) ln ln x,

and thus the quantity p1 = p1(t, x) defined in (16) satisfies in the domain (17) the inequalities

e−p1 ≤ (x(t− x))m/2

(ln x)m+ε1
= O

(
(ln x)m

(ln x)m+ε1

)
= O((ln x)−ε1)

as x → ∞. In other words, p1(t, x) grows at least as ε1 ln ln x, i.e. p1(t, x) ≥ ε1 ln lnx+O(1). Note

also that

e−p1(t,x) = (2k0)
−me2

√
x(t−x).

The estimate of the error matrix (49) is changed to O(e−p1(t,x)) = O((ln x)−ε1), since Jerr − I

is still of the order O(k−m0 ) on R \ [−1, 1], but is of the order O(k−m0 e2
√
x(t−x)) = O(e−p1(t,x)) on

Cu ∪ Cd. Hence, M (2)(z; t, x)− I = O(e−p1(t,x)) uniformly for z ∈ C.

Function E(t, x).

Formula (51) implies, similarly as in formula (54),

E(t, x) = 4k0 r(ik0) Im−1(2
√
x(t− x)) +

4ik0
2πi

∫

Σu

O(k−m−1
0 z−m)e−i

√
x(t−x)(z− 1

z
)dz +O(k0e

−2p1(t,x)),

and since the middle integral is of the order O(k−m0 e2
√
x(t−x)) = O(e−p1(t,x)), we get

E(t, x) = 4k0 r(ik0) Im−1(2
√
x(t− x)) +O(e−p1(t,x) + k0e

−2p1(t,x)).

Functions N (t, x), ρ(t, x).

Formulae (55), (56) are now transformed to

M
(2)
11 (0; t, x) = 1+O(e−2p1(t,x)), M

(2)
12 (0; t, x) = −r(ik0)Im(2

√
x(t− x))+O(k−1

0 e−p1(t,x)+e−2p1(t,x)).

Formulae (52) then finish the proof of Theorem 1.1, part II.

4.4. Parametrices construction

Here we deal with hte parts III, IV of Theorem 1.1. We start with constructing parametrices

around the points z = ±i.
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4.4.1. Hermite polynomials. Denote by πn(.) the monic Hermite polynomial of degree n,

πn(ζ) = ζn +O(ζn−1) as ζ → ∞, orthogonal on R with the weight e−ζ
2
:

∫ +∞

−∞
πn(ζ)πl(ζ)e

−ζ2dζ =
√
π n! 2−n δnl, n, l ≥ 0.

For n ≥ 0, introduce the matrix-valued function

Ln(ζ) =




πn(ζ)
1

2πi

∫ +∞

−∞

πn(s) e
−s2 ds

s− ζ

γn πn−1(ζ)
γn
2πi

∫ +∞

−∞

πn−1(s) e
−s2 ds

s− ζ


 , n ≥ 1, L0(ζ) =


1

1

2πi

∫ +∞

−∞

e−s
2
ds

s− ζ
0 1


 ,

where γn =
−i√π 2n
(n− 1)!

, n ≥ 1. The function Ln(ζ) satisfies the following jump condition:

Ln,−(ζ) = Ln,+(ζ)

(
1 −e−ζ2
0 1

)
, ζ ∈ R,

and has the following large ζ asymptotics:

Ln(ζ) = (I +O(ζ−1))ζnσ3, ζ → ∞.

Note that the rate of vanishing of the off-diagonal terms in the O term can be improved in the

following way:

1

−i n!√
π 2n+1 ζ

0 1


Ln(ζ) =

(
1 +O(ζ−1) O(ζ−2)

O(ζ−1) 1 +O(ζ−1)

)
ζnσ3, ζ → ∞, (57)




1 0
i
√
π n 2n

n! ζ
1


Ln(ζ) =

(
1 +O(ζ−1) O(ζ−1)

O(ζ−2) 1 +O(ζ−1)

)
ζnσ3, ζ → ∞. (58)

Note also that n
n!

equals 0 for n = 0 and hence the above formulae make sense for all n ≥ 0.

4.4.2. Approximation: the first attempt. Introduce the following conformal changes of variables,

valid in some neighbourhoods Ωu,Ωd of the half-circles Cu, Cd, respectively (see Figure 4, right):

ζu = ζu(z; t, x) = 2 4
√
x(t− x) sin

αu
2
, ζd = ζd(z, t; x) = 2 4

√
x(t− x) sin

αd
2
,

where αu = αu(z), αd = αd(z) are defined in (46). In view of (47) we then have that

−2iθ(t, x; k0z) = 2
√
x(t− x)− ζ2u, z ∈ Ωu,

2iθ(t, x; k0z) = 2
√
x(t− x)− ζ2d , z ∈ Ωd.

Introduce now the following function Mappr, which satisfies approximately the jump conditions of

M (2) :

Mappr(z; t, x) =

(
z − i

z + i

)nσ3
, z ∈ C \ (Ωu ∪ Ωd),

Mappr(z; t, x) = Bu(z; t, x)Ln(ζu)r(k0z)
−σ3/2 · e−

√
x(t−x)σ3 , z ∈ Ωu,

Mappr(z; t, x) = Bd(z; t, x)σLn(ζd)σ · (r∗(k0z))σ3/2 · e
√
x(t−x)σ3 , z ∈ Ωd,
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where σ =

(
0 1

1 0

)
. Note that since the jump matrix for M (2) admits the following factorization

on Cu(1), Cd(1),

(
1 −r(k0z)e−2iθ

0 1

)
= (r(k0z))

σ3/2 e
√
x(t−x)σ3

(
1 −e−ζ2u
0 1

)
e−

√
x(t−x) σ3 (r(k0z))

−σ3/2 , z ∈ Cu(1),

(
1 0

−r∗(k0z) e2iθ 1

)
= (r∗(k0z))

−σ3/2 e−
√
x(t−x)σ3

(
1 0

−e−ζ2d 1

)
e
√
x(t−x)σ3 · (r∗(k0z))σ3/2 , z ∈ Cd(1),

thus the function Mappr satisfies exactly the same jump conditions on Cu(1), Cd(1) as M
(2) does.

Next, the Bu, Bd in the definition of Mappr are some yet unknown functions, analytic in

z ∈ Ωu,Ωd, respectively, which are introduced in order to minimize the incoherence of Mappr on

the borders of Ωu,Ωd. We thus define

Bu(z; t, x) =

(
z − i

(z + i) · ζu

)nσ3
· r(k0z)

σ3
2 · e

√
x(t−x)σ3 , z ∈ Ωu,

Bd(z; t, x) =

(
(z − i) · ζd
z + i

)nσ3
· r∗(k0z)

−σ3
2 · e−

√
x(t−x) σ3 , z ∈ Ωd.

(59)

The matching of the Mappr(z) =Mappr(z; t, x) on ∂Ωu thus becomes

Mappr,+(z)Mappr,−(z)
−1 =

(
z − i

(z + i)ζu

)nσ3
· r(k0z)

σ3
2 · e

√
x(t−x) σ3 (I +O(ζ−1

u )
)
·

· e−
√
x(t−x) σ3 · r(k0z)−

σ3
2 ·
(

z − i

(z + i)ζu

)−nσ3
=

=




1 +O( 1
4
√
x(t−x)

) O
(

1
4
√
x(t−x)

)
r(k0z) e

2
√

x(t−x)

(x(t−x))
n
2

O
(

1
4
√
x(t−x)

)
· (x(t−x))

n
2 e−2

√
x(t−x)

r(k0z)
1 +O( 1

4
√
x(t−x)

)


 =

=




1 +O
(

1

(x(t−x))
1
4

)
O(e2

√
x(t−x)+(m

2
−n

2
− 1

4) ln(x(t−x))−m lnx)

O(e−2
√
x(t−x)+(n

2
−m

2
− 1

4) ln(x(t−x))+m lnx) 1 +O
(

1

(x(t−x))
1
4

)


 .

Here we used our Assumption 2 that r(k) ≍ k−m (m ≥ 1) as k → ∞, and hence

r(k0z) ≍
(

x

t− x

)−m/2
= x−m · (x(t− x))m/2 for |z| = 1 as k0 → ∞.

The arguments of the exponents in the 12 and 21 elements of the above estimates suggest

considering the following curves in the x, t plane:

m ln x = 2
√
x(t− x)− β ln

√
x(t− x), (60)
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Cu(1)

Cd(1)

1−1

Ωu

Ωd

1−1

Figure 4. On the left: jump contour for M (2). On the right: jump contour for Merr.

thus the matching becomes

Mappr,+(z)Mappr,−(z)
−1 =




1 +O
(

1
4
√
x(t−x)

)
O
(
(x(t− x))−

1
4
+β

2
−n

2
+m

2

)

O
(
(x(t− x))−

1
4
−β

2
+n

2
−m

2

)
1 +O

(
1

4
√
x(t−x)

)


 . (61)

The goal now is to make both the 12 and 21 entries small, i.e. to make both quantities n−m−β− 1
2

and −n+m+β− 1
2
well below zero. This is not possible whenm+β+ 1

2
is close to an integer. Hence,

instead of Ln(ζ) we need to use another parametrix with an “improved” asymptotic behaviour for

large ζ. This however introduces poles at the points z = ±i, and thus we need to multiply the

whole Mappr by a matrix that accounts for these poles. We do all this in the forthcoming Sections

4.4.4, 4.4.5.

Note that in (60), the parameter β can take both positive and negative values.

Remark 4.2. Note also that inverting (60) one obtains

2
√
x(t− x) = m ln x+ β ln ln x+ β ln

m

2
+O

(
ln ln x

ln x

)
, x→ +∞,

= m ln t+ β ln ln t+ β ln
m

2
+O

(
ln ln t

ln t

)
, t→ +∞.

This is a consequence of the following Lemma 4.2 (cf.[13]), which we use with z = m
2
ln x,

y =
√
x(t− x), γ =

β

2
(and which we prove in Appendix A):

Lemma 4.2. [cf. [13]] Let γ ∈ R and

y − γ ln y = z (62)

for large positive y. Then as z → +∞, y can be expressed in terms of z as follows:

y = z + γ ln z +
γ2 ln z

z
+
γ3
(
− ln2 z + 2 ln z

)

2z2
+O

(
ln3 z

z3

)
, z → +∞.

4.4.3. The case n = 0 and proof of Theorem 1.1, part III. There is one particular case when

the matching condition (61) from previous Section 4.4.2 is sufficiently close to the identity matrix.

This is the case when n = 0, and thus the matrix in the right-hand side of formula 61 on the

half-circles Cu, Cd are upper or lower triangular, and hence there is no competition between 12

and 21 terms.
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Indeed, define the error matrix Merr(z; t, x) =M (2)(z; t, x)Mappr(z; t, x)
−1, then it satisfies the

jump condition Merr,−(z; t, x) =Merr,+(z; t, x)Jerr(z; t, x), z ∈ Σerr = (−∞,−1)∪ (1,+∞)∪∂Ωu ∪
∂Ωd, where

Jerr(z; t, x) =





(
1 r(k0z) · e2

√
x(t−x) · 1

2πi

∫∞
−∞

e−s2ds
s−ζu

0 1

)
, z ∈ ∂Ωu,

(
1 0

r(k0z) · e2
√
x(t−x) · 1

2πi

∫∞
−∞

e−s2ds
s−ζd 1

)
, z ∈ ∂Ωd,

(
1 + |r(k0z)|2 −r(k0z)e−2iθ(t,x;k0z)

−r∗(k0z)e2iθ(t,x;k0z) 1

)
, z ∈ (−∞,−1) ∪ (1,+∞),

and functions E(t, x), N (t, x), ρ(t, x) are reconstructed from the matrix Merr(z; t, x) by formulae

(42), (44), where we change M with Merr.

Quantity p2. Note that in the domain (19) we have

m ln x−K ln ln x ≤ 2
√
x(t− x) ≤ m lnx− (m+ ε2 −

1

2
) ln ln x

and thus the quantity p2 = p2(t, x) defined in (18) admits the estimate

e−p2 =
e2
√
x(t−x) (x(t− x))

m
2
− 1

4

xm
≤ xm (x(t− x))

m
2
− 1

4

xm (lnx)m+ε2− 1
2

≍ (ln x)m− 1
2

(ln x)m+ε2− 1
2

= (ln x)−ε2 ,

and hence p2 is a large quantity (but not too large: similarly we obtain ep2 = O((ln x)K−m+ 1
2 )).

Note also that
√
x(t− x) ≍ ln x as x→ ∞ and that

e−p2 =
e2
√
x(t−x)

(2k0)m
4
√
x(t− x)

. (63)

Estimates of the error matrix Jerr. Note that 1
2πi

∫ +∞
∞

e−s2ds
s−ζu = O(ζ−1

u ) for z ∈ ∂Ωu, and hence

the jump error Jerr is close to the identity matrix on ∂Ωu,

‖Jerr − I‖L2(Cu)∩L1(Cu)∩L∞(Cu) = O
(

1

km0
e2
√
x(t−x) 1

4
√
x(t− x)

)
= O(e−p2).

A similar estimate holds for Cd, and a better estimate holds for the part of the contour on the real

axis,

‖Jerr − I‖L2(R\[−1,1])∩L1(R\[−1,1])∩L∞(R\[−1,1]) = O
(
k−m0

)
= O(e−p2).

Hence, considerations of Sections 4.2, 4.3 can be repeated; in particular, formulae (51), (52) are

valid, if we change there M (2) with Merr, J
(2) with Jerr and Σ(2) with Σerr, respectively.
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Function E(t, x).

An analogue of formula (51) can be written as

E(t, x) = −4ik0
2πi

∫

∂Ωu

r(k0z) e
2
√
x(t−x) 1

2πi

∫ +∞

−∞

e−s
2
ds

s− ζu
dz +

4ik0
2πi

∫

R\[−1,1]

r(k0z)e
−2iθ(t,x;k0z)dz

− 4ik0
2πi

∫

Σerr

[(Merr,+(z; t, x)− I)(Jerr(z; t, x)− I)]12dz =: A1 + A2 + A3.

Integrals A2, A3 admit the estimates

A3 = O
(

e4
√
x(t−x)

k2m−1
0

√
x(t− x)

)
= O(k0e

−2p2), A2 = O
(
k1−m0

)
= O(k0e

−2p2), (64)

and in the term A1 we substitute

1

2πi

∫ +∞

∞

e−s
2
ds

s− ζu
=

i

2
√
π
ζ−1
u +O(ζ−3

u ), (65)

then A1 splits accordingly in two terms: the first one can be computed explicitly by computing

the first order residue at the point z = i (we use the relation ζu =
4
√
x(t− x)eiαu/2(z− i)), and the

second term admits an appropriate estimate:

A1 =
−4ik0
2πi

∫

∂Ωu

r(k0z) e
2
√
x(t−x)

(
i

2
√
π

e−iαu(z;t,x)/2

4
√
x(t− x)(z − i)

+O
(

1

(x(t− x))3/4

))
dz

=
2k0 r(ik0) e

2
√
x(t−x)

√
π 4
√
x(t− x)

+O
(

e2
√
x(t−x)

km−1
0 (x(t− x))3/4

)
=

2k0 r(ik0) e
2
√
x(t−x)

√
π 4
√
x(t− x)

+O
(
k0 e

−p2

ln x

)
, (66)

where we used (63). Combining (64) and (66), we obtain

E(t, x) = 2k0r(ik0)e
2
√
x(t−x)

√
π 4
√
x(t− x)

+O
(
k0e

−2p2 + k0e
−p2(ln x)−1

)
. (67)

Note that k0 =
x

2
√
x(t−x)

≍ x
lnx

and thus the O term in (67) is of the order O
(

x
e2p2 lnx

+ x
ep2 (lnx)2

)
,

i.e. growing. We thus prefer to rewrite (67) by factoring out the main term,

E(t, x) = 2k0r(ik0)e
2
√
x(t−x)

√
π 4
√
x(t− x)

(
1 +O

(
(ln x)−1 + e−p2

))
.

Functions N (t, x) and ρ(t, x).

An analogue of formula (53) gives us

Merr(0; t, x) = I − 1

2πi

∫

Σerr

(Jerr(z; t, x)− I)
dz

z

− 1

2πi

∫

Σerr

(Merr,+(z; t, x)− I) (Jerr(z; t, x)− I)
dz

z

= I − 1

2πi

∫

Σerr

(Jerr(z; t, x)− I)
dz

z
+O

(
e4
√
x(t−x)

k2m0
√
x(t− x)

)

= I − 1

2πi

∫

Σerr

(Jerr(z; t, x)− I)
dz

z
+O

(
e−2p2

)
,
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and hence for the elements Merr,11, Merr,12 of the first row of the matrix Merr we obtain

Merr,11(0; t, x) = 1− 1

2πi

∫

R\[−1,1]

|r(k0z)|2
dz

z
+O

(
e−2p2

)

= 1 +O
(
k−2m
0 + e−2p2

)
= 1 +O

(
e−2p2

)
, (68)

Merr,12(0; t, x) =
−1

2πi

∫

∂Ωu

r(k0z)e
2
√
x(t−x) 1

2πi

∫ +∞

−∞

e−s
2
ds

s− ζu

dz

z
+

1

2πi

∫

R\[−1,1]

r(k0z)e
−2iθ(t,x;k0z)

dz

z

+O
(
e−2p2

)
=: B1 +B2 +O

(
e−2p2

)
.

Here B2 admits the estimate B2 = O(k−m0 ) = O(x−m lnm x), and we elaborate on the term B1

similarly as we did in (66), by substituting formula (65) and computing the residue at z = i. Thus

Merr,12(0; t, x) =
−r(ik0)e2

√
x(t−x)

2
√
π 4
√
x(t− x)

+O
(
k−m0 e2

√
x(t−x)

(x(t− x))3/4
+

1

km0
+ e−2p2

)

=
−r(ik0)e2

√
x(t−x)

2
√
π 4
√
x(t− x)

+O
(
e−p2

ln x
+

lnm x

xm
+ e−2p2

)

=
−r(ik0)e2

√
x(t−x)

2
√
π 4
√
x(t− x)

+O
(
e−p2

ln x
+ e−2p2

)
. (69)

Note that the main term in (69) is of the order e−p2 . Now we use an analogue of formulae (52),

ρ(t, x) = −2Merr,11(0; t, x)Merr,12(0; t, x), N (t, x) = 1 − 2|Merr,12(0; t, x)|2, where we substitute

formulae (68), (69). We thus obtain

ρ(t, x) =
r(ik0)e

2
√
x(t−x)

√
π 4
√
x(t− x)

+O
(
e−p2

ln x
+ e−2p2

)
,

N (t, x) = 1− |r(ik0)|2e4
√
x(t−x)

2π
√
x(t− x)

+O
(
e−2p2

ln x
+ e−3p2

)
.

This completes the proof of Theorem 1.1, part III.

4.4.4. Proof of Theorem 1.1, part IV, first half. In this section we consider one half of the domain

(20), namely (below, n = 0, 1, 2, 3 . . .)

x+
1

4x
(m ln x+ (n−m) ln ln x)2 ≤ t ≤ x+

1

4x

(
m ln x+ (n−m+

1

2
) ln ln x

)2

. (70)

Lemma 4.3. For (t, x) in the domain (70) one has

n−m+O((ln ln x)−1) ≤ β(t, x) ≤ n−m+
1

2
+O((ln ln x)−1), as x→ ∞,

where β = β(t, x) is defined by formula (60).
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Proof. Indeed, (70) implies

m ln x+ (n−m) ln ln x ≤ 2
√
x(t− x) ≤ m ln x+ (n−m+

1

2
) ln ln x, (71)

and hence

(n−m+
1

2
) ln ln x ≤ β(t, x) ln

√
x(t− x) ≡ 2

√
x(t− x)−m ln x ≤ (n−m+

1

2
) ln ln x. (72)

Estimating ln
√
x(t− x) from formula (71) and substituting it into (72), we obtain the statement

of the Lemma.

Define

M (1)
appr(z; t, x) =





N(z; t, x) ·
(
z − i

z + i

)nσ3
, z ∈ C \ (Ωu ∪ Ωd) ,

N(z; t, x) · Bu(z; t, x)∆
(1)(ζu)Ln(ζu)r(k0z)

−σ3
2 e−

√
x(t−x)σ3 , z ∈ Ωu,

N(z; t, x) · Bd(z; t, x) · σ∆(1)(ζd)Ln(ζd)σ · r(k0z)
σ3
2 e

√
x(t−x)σ3 , z ∈ Ωd.

Here ∆(1)(ζ) =


1

√
π n!

2πi · 2n ζ
0 1


 and hence the factor ∆(1)(ζ)Ln(ζ) has the “improved” asymptotics

(58) for large ζ compared to the asymptotics of Ln(ζ). However, ∆
(1)(ζ) has a simple pole at ζ = 0,

which corresponds to a simple pole of M
(1)
appr(z; t, x) at the points z = ±i, and to cancel the latter

we introduce the hitherto unknown function N(z) = N(z; t, x), for which we look in the form

N(z) =



1 +

ia

z + i

ib

z − i
i b

z + i
1− i a

z − i


 ,

where a, b are some yet unknown complex coefficients (which might depend on the parameters t, x).

The condition that N(z)Bu(z)∆
(1)(ζu) is regular at the point z = i is equivalent to the following

system of linear equations for a, b :

(
1 +

a

2

)
· φ2

√
π n!

2π · 2n · 4
√
x(t− x)

− b = 0, a +
b

2
·

√
π n!φ

2

2π · 2n · 4
√
x(t− x)

= 0,

where

φ = φ(t, x) = e
πin
2 · 2−n · (x(t− x))

−n
4 ·
√
r(ik0) · e

√
x(t−x). (73)

Introducing the short-hand notation

ψ = ψ(t, x) :=
φ2 · √π n!

4π · 2n · 4
√
x(t− x)

, (74)

the above system can be rewritten in the form

{
a+ ψb = 0,

ψa− b = −2ψ,
and hence





a =
−2|ψ|2
1 + |ψ|2 ,

b =
2ψ

1 + |ψ|2 .
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Note that a is real and (a + 1)2 + |b|2 = 1, and hence detN(z) ≡ 1. Besides, a, b are uniformly

bounded in t, x, and hence N(z) and N(z)−1 are bounded away from z = ±i.
Let us examine the jumps of the matrix error function

M (1)
err(z; t, x) =M (2)(z; t, x)M (1)

appr(z; t, x)
−1,

with the jump matrix J
(1)
err(z; t, x) = J

(1)
err(z) such that M

(1)
err,−(z; t, x) = M

(1)
err,+(z; t, x)J

(1)
err(z; t, x).

For z ∈ ∂Ωu we have

J (1)
err(z) = N(z) ·

(
z − i

(z + i)ζu

)nσ3
r(k0z)

σ3
2 e

√
x(t−x)∆(1)(ζu)Ln(ζu)r(k0z)

−σ3
2 e−

√
x(t−x)σ3

(
z + i

z − i

)nσ3

=




1 +O
(

1
4
√
x(t−x)

)
O(1) ·

(√
x(t− x)

)β(t,x)+m−n−1

O(1) ·
(√

x(t− x)
)−β(t,x)−m+n− 1

2
1 +O

(
1

4
√
x(t−x)

)


 .

We see that the 12 entry vanishes more rapidly compared to (61). Since β(t, x) satisfies

the estimates from Lemma 4.3 and ln
√
x(t− x) ∼ ln ln x as x → ∞, it follows that

(
√
x(t− x))O((ln lnx)−1) = O(1) and hence

J (1)
err(z) = I +O

(
1

4
√
x(t− x)

)
= I +O

(
1√
ln x

)
= I +O

(
1√
ln t

)
, z ∈ ∂Ωu.

Similarly, J
(1)
err(z) = I +O

(
1√
ln t

)
, z ∈ ∂Ωd. Furthermore,

J (1)
err(z) = I +O

(
1

km0

)
= I +O

(
1

km0

)
= I +O

(
lnm x

xm

)
, z ∈ (−∞,−1) ∪ (1,+∞).

Overall,

J (1)
err(z) = I +O

(
1√
ln x

)
= I +O

(
1√
ln t

)
, z ∈ Σerr := ∂Ωu ∪ ∂Ωd ∪ (−∞,−1)∪ (1,+∞), (75)

and by standard arguments we conclude that M
(1)
err(z; t, x) = I +O

(
1√
ln t

)
, uniformly in z ∈ C.

Reconstruction of E ,N , ρ. Recall (42), (44) that

E(t, x) = −4 i lim
k→∞

k(M(k; t, x)− I)12,

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M(+i0; t, x)σ3M(+i0; t, x)−1.

Tracing back the connection between M (2) and M , it follows that

E(t, x) = −2 i

√
x

t− x
lim
z→∞

z(M (2)(z; t, x)− I)12,

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M (2)(z = +i0; t, x)σ3M

(2)(z = +i0; t, x)−1.
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Substituting here M (2)(z; t, x) =Merr(z; t, x)M
(1)
appr(z; t, x), we get

E(t, x) = −2i

√
x

t− x
· ib(t, x) + E (1)

err(t, x) = 2

√
x

t− x
· 2ψ

1 + |ψ|2 + E (1)
err(t, x),

where

E (1)
err(t, x) = −2 i

√
x

t− x
· lim
z→∞

z(M (1)
err(z; t, x)− I)12.

From the estimates (75) on J
(1)
err it follows that

E (1)
err(t, x) = O

(
x√

x(t− x)

)
· 1

4
√
x(t− x)

= O
(

x

(x(t− x))3/4

)
= O

(
x

(ln x)3/2

)
.

and elaborating on the expression (74) for ψ,

ψ =
(−1)n n! r(ik0)e

2
√
x(t−x)

√
π 23n+2 (x(t− x))

n
2
+ 1

4

(76)

we hence obtain

E(t, x) = 2

√
x

t− x


 (−1)n · ei arg r(ik0)

cosh
(
2
√
x(t− x)− (n+ 1

2
) ln
√
x(t− x) + χn(k0)

) +O
(

1
4
√
x(t− x)

)
 ,

(77)

where χn(k0) = ln

(
n! · |r(ik0)|√
π · 23n+2

)
. Expression (77) coincides with formula (21), and thus the part

IV of Theorem 1.1 is proved for the function E(t, x) in domain (70).

As for the N , ρ, we have

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M (1)

err(+i0; t, x)M
(1)
appr(+i0; t, x)σ3

(
M (1)

appr(+i0; t, x)
)−1

M (1)
err(+i0; t, x)

−1

=M (1)
err(+i0; t, x)

(
1 + a −b
b 1 + a

)
σ3

(
1 + a b

−b 1 + a

)
M (1)

err(+i0; t, x)
−1

=M (1)
err(+i0; t, x)

(
(1 + a)2 − |b|2 2b(1 + a)

2b(1 + a) −(1 + a)2 + |b|2

)
M (1)

err(+i0; t, x)
−1

=M (1)
err(+i0; t, x)

(
1− 2|b|2 2b(1 + a)

2b(1 + a) −1 + 2|b|2

)
M (1)

err(+i0; t, x)
−1,

and thus N (t, x) = 1 − 2|b|2 + O
(

1
4
√
x(t−x)

)
, ρ(t, x) = 2b(1 + a) + O( 1√

lnx
). Thus, part IV of

Theorem 1.1 is proved for the domain (70). Note also that b is close to 0 away from the peaks of

the solitons and is close to 1 near the peaks. Hence, N is close to 1 away from the peaks and is

close to −1 near the peaks.
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4.4.5. Proof of Theorem 1.1, part IV, second half. In this section we consider the other half of

the domain (20) (but, for convenience, with the index n 7→ n− 1), namely (below, n = 1, 2, 3, . . .)

x+
1

4x

(
m lnx+ (n−m− 1

2
) ln ln x

)2

≤ t ≤ x+
1

4x
(m ln x+ (n−m) ln lnx)2 . (78)

Lemma 4.4. For (t, x) in the domain (78) one has

n−m− 1

2
+O((ln lnx)−1) ≤ β(t, x) ≤ n−m+O((ln ln x)−1), as x→ ∞,

where β = β(t, x) is defined by formula (60).

Proof. The proof is exactly the same as in Lemma 4.3.

Now we want to “improve” the 21 term in Ln(ζ) as in formula (58). Define

M (2)
appr(z; t, x) =





N̂(z; t, x) ·
(
z−i
z+i

)nσ3
, z ∈ C \ (Ωu ∪ Ωd) ,

N̂(z; t, x) · Bu(z; t, x) · ∆̂(ζu)Ln(ζu) · r(k0z)−
σ3
2 e−

√
x(t−x)σ3 , z ∈ Ωu,

N̂(z; t, x) · Bd(z; t, x) · σ∆̂(ζd)Ln(ζd)σ · r∗(k0z)
σ3
2 e

√
x(t−x)σ3 , z ∈ Ωd.

Here ∆̂(ζ) =




1 0
2πi · 2n−1 · n√

π n! ζ
1


 has a simple pole at ζ = 0, which corresponds to a simple pole

of M
(2)
appr at the points z = ±i, and to cancel it we introduce the yet unknown function N̂(z; t, x),

for which we look in the form

N̂(z; t, x) =



1 +

i â

z − i

i b̂

z + i

i b̂

z − i
1− i â

z + i


 .

The condition that N̂(z; t, x)Bu(z; t, x)∆̂(ζu) is regular at the point z = i is equivalent to the

following system of linear equations for the unknown coefficients â = â(t, x), b̂ = b̂(t, x) :





(
1− â

2

)
· 2π · 2n−1 · n
φ
2√
π n! · 4

√
x(t− x)

+ b̂ = 0,

â+
b̂

2
· 2π · 2n−1n
√
π n!φ2 · 4

√
x(t− x)

= 0,

or

{
â + ψ̂b̂ = 0,

ψ̂ · â− b̂ = 2ψ̂.
and





â =
2|ψ̂|2

1 + |ψ̂|2
,

b̂ =
−2ψ̂

1 + |ψ̂|2
,

where φ is given by formula (73),

φ = e
πin
2 · 2−n · (x(t− x))

−n
4 ·
√
r(ik0) · e

√
x(t−x),

and

ψ̂ = ψ̂(t, x) :=
π · 2n−1 · n

φ2 · √π n! · 4
√
x(t− x)

. (79)



42

As in the previous section, â is real and (â+ 1)2 + |̂b|2 = 1, and hence det N̂(z; t, x) ≡ 1. Besides,

â, b̂ are uniformly bounded in t, x, and hence N̂(z; t, x) and N̂(z; t, x)−1 are bounded away from

z = ±i.
Let us examine the jumps of the matrix error function

M (2)
err(z; t, x) =M(z; t, x)M (2)

appr(z; t, x)
−1,

whose jump matrix J
(2)
err(z; t, x) = J

(2)
err(z) satisfies the relation M

(2)
err,−(z; t, x) =

M
(2)
err,+(z; t, x)J

(2)
err(z; t, x). Similarly as in the previous subsection 4.4.4, for z ∈ ∂Ωu we have

J (2)
err(z; t, x) =




1 +O
(

1
4
√
x(t−x)

)
O(1) ·

(√
x(t− x)

)β(t,x)+m−n− 1
2

O(1) ·
(√

x(t− x)
)−β(t,x)−m+n−1

1 +O
(

1
4
√
x(t−x)

)


 .

In the above matrix, the 21 term has an improved decay compared to (61). In view of Lemma

4.4, the error matrix admits the estimate

J (2)
err(z; t, x) = I +O

(
1

4
√
x(t− x)

)
= I +O

(
1√
ln x

)
= I +O

(
1√
ln t

)
, z ∈ Σerr. (80)

Since the jump contour Σerr = ∂Ωu ∪ ∂Ωd ∪ (−∞,−1) ∪ (1,+∞) of the error function M
(2)
err is

fixed for all t, x, from here we conclude by standard arguments that M
(2)
err(z; t, x) = I +O

(
1√
ln t

)
,

uniformly in z ∈ C.

Reconstruction of E ,N , ρ. Similarly as in the previous subsection 4.4.4,

E(t, x) = −2 i

√
x

t− x
lim
z→∞

z(M (2)(z; t, x)− I)12,

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M (2)(+i0; t, x)σ3M

(2)(+i0; t, x)−1.

Substituting here M (2)(z; t, x) =Merr(z; t, x)M
(2)
appr(z; t, x), we get

E(t, x) = −2i

√
x

t− x
· i b̂(t, x) + E (2)

err(t, x) = 2

√
x

t− x
· −2ψ̂

1 + |ψ̂|2
+ E (2)

err(t, x),

where

E (2)
err(t, x) = −2 i

√
x

t− x
· lim
z→∞

z(M (2)
err(z; t, x)− I)12.

From the estimate (80) on J
(2)
err it follows that

E (2)
err(t, x) = O

(
x√

x(t− x)

)
· 1

4
√
x(t− x)

= O
(

x

(x(t− x))3/4

)
= O

(
x

(ln x)3/2

)
.

and elaborating on the expression (79) for ψ̂,

ψ̂ =
(−1)n 23n−1 n

√
π (x(t− x))

n
2
− 1

4

n! r(ik0) e
2
√
x(t−x)

, (81)
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we thus obtain

E(t, x) = 2

√
x

t− x


 (−1)n−1 · ei arg r(ik0)

cosh
(
2
√
x(t− x)− (n− 1

2
) ln
√
x(t− x) + χ̂n(k0)

) +O
(

1
4
√
x(t− x)

)


(82)

for n ≥ 1, where χ̂n(k0) = ln

(
(n− 1)! · |r(ik0)|√

π · 23n−1

)
. Expression (82) coincides with formulae (21),

(77) (after changing back n 7→ n+1), and thus expression (77) is valid not only in the domain (70),

but also in (78), i.e. in the full domain (20). This completes the proof of part IV of Theorem 1.1

for the function E(t, x).
As for the functions N (t, x), ρ(t, x), similarly as in subsection 4.4.4, we have

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M (2)

err(+i0; t, x)M
(2)
appr(+i0; t, x)σ3

(
M (2)

appr(+i0; t, x)
)−1

M (2)
err(+i0; t, x)

−1

=M (2)
err(+i0; t, x)

(
1− â b̂

−b̂ 1− â

)
σ3

(
1− â −b̂
b̂ 1− â

)
M (2)

err(+i0; t, x)
−1

=M (1)
err(+i0; t, x)

(
1− 2|̂b|2 −2b̂(1− â)

−2b̂(1− â) −1 + 2|̂b|2

)
M (1)

err(+i0; t, x)
−1,

and thus N (t, x) = 1 − 2|̂b|2 + O
(

1
4
√
x(t−x)

)
, ρ(t, x) = −2b̂(1 − â) + O( 1√

lnx
). Since ψ̂ in (81)

is equal to − 1
ψ
, where ψ is as in (76) if we change there n 7→ n − 1, then the asymptotics for

N (t, x), ρ(t, x) from subsection 4.4.4 are valid not only in the region (70), but also in the region

(78). This completes the proof of part IV of Theorem 1.1.

5. Asymptotic analysis. Region σt ≤ x ≤ (1− σ)t, σ ∈ (0, 1
2
). Proof of Theorem 1.2

Introduce some functions needed in the course of the asymptotic analysis.

Phase functions.

We will need in total three different phase functions, namely

θ̃(k; k0, τ) = τ

(
k − k20

k

)
, h(k; k0, τ) = τ

(
k +

k20
k

)
, g(k; k0, τ) =

{
h(k; k0, τ), |k| > k0,

−h(k; k0, τ), |k| < k0.
(83)

Here τ = t− x, k0 =
√

x
4(t−x) (see (12)).

Note that θ̃(k; k0, τ) = θ(t, x; k), where θ is defined in formula (33).

5.1. Functions δ, F,G,H

Function δ. The function δ is defined as a solution to the scalar conjugation problem

δ+(k; k0)

δ−(k; k0)
= 1 + |r(k)|2, k ∈ (−∞,−k0) ∪ (k0,+∞),
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with the normalisation δ(k; k0) → 1 as k → ∞, and is given explicitly by the formula

δ(k; k0) = exp

{
1

2πi

(∫ −k0

−∞
+

∫ +∞

k0

)
ln(1 + |r(s)|2) ds

s− k

}
. (84)

Function G. The function G is defined as a solution to the scalar conjugation problem

G+(k; k0)

G−(k; k0)
= 1 +

1

|r(k)|2 , k ∈ (−k0, k0), G(k) → 1 as k → ∞,

and is given explicitly by the formula

G(k; k0) = exp

{
1

2πi

∫ k0

−k0

ln (1 + |r(s)|−2) ds

s− k

}
. (85)

Function H. The function H is defined using the function G as follows:

H(k; k0) =




G(k; k0)b(k), Im k > 0,
G(k; k0)

b∗(k)
, Im k < 0.

(86)

It satisfies the following jump condition:

H+(k; k0) = H−(k; k0)
1

1 + |r(k)|−2
, k ∈ (−∞,−k0) ∪ (k0,+∞).

Function F . Function F is defined using G as follows:

F (k; k0) =





a(k)δ(k; k0)G(k; k0), |k| > k0, Im k > 0,

(a∗(k))−1δ(k; k0)G(k; k0), |k| > k0, Im k < 0,
δ(k; k0)

b(k)G(k; k0)
, |k| < k0, Im k > 0,

b∗(k)δ(k; k0)

G(k; k0)
, |k| < k0, Im k < 0.

(87)

It satisfies the conjugation conditions

F+(k; k0)F−(k; k0) =
δ2(k; k0)

r(k)
, k ∈ Cu, F+(k; k0)F−(k; k0) = r∗(k)δ2(k; k0), k ∈ Cd,

and has the asymptotics F (k; k0) → 1 as k → ∞. As before (45), Cu = Cu(k0) and Cd = Cd(k0)

are the upper and lower parts of the circle |k| = k0, oriented from the point −k0 to the point k0,

respectively.

Now we proceed to the asymptotic analysis. We will make 6 transformations

M 7→M (1) 7→M (2) 7→M (3) 7→M (4) 7→M (5) 7→ M (6) (88)

to arrive at a RH problem for M (6), and then do the error analysis.

When performing the steps of transformations (88), we will not track how the appropriate

pole conditions change. Instead, we do all the contour deformations first, and then track back how

M (6) depends on M (and thus on the Jost solutions), which allows us to state the precise pole

conditions for M (6).
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5.2. Steps of transformations of the original RH problem 1

Step 1: Change the size of the circle from 1
2
to k0. Define

M (1)(k; k0, τ) =M(t, x; k)








0 −r(k)e−2iθ

1

r(k)
e2iθ 1




sgn(|k0|− 1
2
)

, |k| ∈ (1
2
, k0), Im k > 0,


 1

−1

r∗(k)
e−2iθ

r∗(k)e2iθ 0




sgn(|k0|− 1
2
)

, |k| ∈ (1
2
, k0), Im k < 0.

where θ = θ(t, x; k) = θ̃(k; k0, τ). This transformation effectively substitutes the jump over the

circle |k| = 1
2
with the jump of the same form over the circle |k| = k0, and changes appropriately

the jumps over the intervals ±(1
2
, k0) (note that the transformation depends on whether k0 is bigger

than 1
2
or smaller.)

Step 2: changing the phase function θ to g. In the sequel, it will turn out that instead of the

phase function θ it will be convenient for us to use a function, that has the same distribution of

signs of its imaginary part on the complex plane as θ does, possess similar asymptotic behaviour

as θ as k → 0 and k → ∞, and at the same time satisfies the condition g+(k) + g−(k) = 0 for

k ∈ Cu ∪ Cd. Such a function g is defined in formula (83).

We define M (2)(k; k0, τ) = M (1)(k; k0, τ)e
i(g(k;k0,τ)−θ(x,t;k))σ3 . This turns the exponentially

growing jump matrices for M (1) on the Cu ∪ Cd into oscillating ones for M (2).

Step 3: preparation for lens opening over (−∞,−k0)∪ (k0,+∞)∪Cu∪Cd. In this step, we would

like to transform the oscillating jump matrix over R and over Cu ∪ Cd into jumps close to the

identity matrix over some contours off the real line and off Cu ∪ Cd, respectively. This is done in

two steps: the δF−1-transformation and the lens opening.

For the purpose, define M (3)(k; k0, τ) =M (2)(k; k0, τ)δ(k; k0)
σ3F (k; k0)

−σ3 , where δ is defined

in (84) and F is defined in (87). Then the jump for M (3) over (−∞,−k0) ∪ (k0,+∞) takes the

form (below, g = g(k; k0, τ))

M
(3)
− (k; k0, τ) =M

(3)
+ (k; k0, τ)




1 0
−a(k)b∗(k) δ2+(k; k0) e2ig

F 2(k; k0)
1




1

−a∗(k)b(k)F 2(k; k0)e
−2ig

δ2−(k; k0)
0 1


 .

Here we used r∗(k)
1+r(k)r∗(k)

= a(k)b∗(k), cf. (37). Furthermore, over the (−k0, k0) the jump is

M
(3)
− (k; k0, τ) =M

(3)
+ (k; k0, τ)




1 0
−δ2(k; k0) e2ig
r(k)F 2(k; k0)

1




1

−F 2(k; k0)e
−2ig

r∗(k)δ2(k; k0)
0 1


 , k ∈ (−k0, k0),

and over Cu, Cd it takes the form

M
(3)
− (k; k0, τ) =M

(3)
+ (k; k0, τ)




1 0
−δ2(k) e2ig+
r(k)F 2

+(k)
1



(
0 −1

1 0

)
, k ∈ Cu,
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L1

L2

L3

L4

L5 L5

L6 L6

Cu

Cd

k0−k0

[
1 F2e−2ih

r∗δ2

0 1

]

L1

L2

L3

L4

L5 L5

L6 L6

k0−k0

[
1 0

ab∗δ2e2ih

−F2
1

] [
1 0

ab∗δ2e2ih

−F2
1

]

[
1 a∗bF2e−2ih

−δ2

0 1

] [
1 a∗bF2e−2ih

−δ2

0 1

]

[
1 0

δ2e2ih

rF2
1

]

[
1 δ2e−2ih

rF2

0 1

]

[
1 F2e−2ih

r∗δ2

0 1

]

[
1 0

F2e2ih

r∗δ2
1

]

Figure 5. On the left: Contours Lj, j = 1, . . . , 6. On the right: Jump contour and jumps for M (4).

and

M
(3)
− (k; k0, τ) =M

(3)
+ (k; k0, τ)

(
0 1

−1 0

)
1

−F 2
−(k; k0)e

−2ig−

r∗(k) δ2(k; k0)
0 1


 , k ∈ Cd.

Here g± are the limiting values of the function g on the contours Cu, Cd, from the positive/negative

side of the contour, respectively.

Step 4: lens opening. Now we are ready to open the lenses over R ∪ Cu ∪ Cd. It is convenient at
the same time to flip the columns inside the circle |k| = k0; the latter erases the jump across the

circle and makes jumps expressed naturally in terms of the phase function h (83), which is our

final phase function.

Define appropriate contours L1, L2, L3, L4, L5, L6 needed for the lens opening as follows. Let

L5 be an oriented composed curve that consists of two pieces: one starts at −∞ + idk0 for some

d > 0 and ends at −k0, another one starts at k0 and ends at +∞+ idk0 (see Figure 5, left). Next,

L6 is the curve symmetric to L5 with respect to the real axis.

Contour L1 starts at the point k = k0, ends at the point k = −k0, and is located above the

circle |k| = k0. Contours L3 starts at the point k = −k0, ends at the point k = k0, and is situated

between the upper part of the circle |k| = k0 and the real axis. Contours L2, L4 are symmetric to

L1, L3 with respect to the real axis, respectively, and are situated in the lower half-plane Im k < 0.

Introduce the following notation. If γ1, . . . , γk are some contours that circumscribe a domain

Ω, then denote Ω =: Int(γ1, . . . , γk).
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Using this notation, define

M (4)(k; k0, τ) =





M (3)(k; k0, τ)




1 0

−a(k)b∗(k) δ2(k; k0)e2ig(k;k0,τ)
F 2(k; k0)

1


 , k ∈ Int(L5,R),

M (3)(k; k0, τ)



1

−a∗(k)b(k)F 2(k; k0)e
−2ig(k;k0,τ)

δ2(k; k0)

0 1




−1

, k ∈ Int(L6,R),

M (4)(k; k0, τ) =





M (3)(k; k0, τ)




1 0

−δ2(k; k0)e2ig(k;k0,τ)
r(k)F 2(k; k0)

1


 , k ∈ Int(L1, Cu),

M (3)(k; k0, τ)



1

−F 2(k; k0)e
−2ig(k;k0,τ)

r∗(k)δ2(k; k0)

0 1




−1

, k ∈ Int(L2, Cd),

M (4)(k; k0, τ) =





M (3)(k; k0, τ)

(
0 1

−1 0

)
, k ∈ Int(Cu, L3),

M (3)(k; k0, τ)

(
0 1

−1 0

)
, k ∈ Int(Cd, L4),

M (4)(k; k0, τ) =





M (3)(k; k0, τ)




1 0

−δ2(k; k0)e2ig(k;k0,τ)
r(k)F 2(k; k0)

1



(

0 1

−1 0

)
, k ∈ Int(R, L3),

M (3)(k; k0, τ)



1

−F 2(k; k0)e
−2ig(k;k0,τ)

δ2(k; k0) r∗(k)

0 1




−1(
0 1

−1 0

)
, k ∈ Int(R, L4),

The jump for M (4) is shown in Figure 5, right.

Step 5: moving the contours L5, L6 to infinity. The next step is to get rid of contours L5, L6 by

moving them to infinity. This is the step where we use the compactness of the input pulse, by

employing (38) that b∗(k)e2ih(k;k0,τ) = O(k−1e(T−2τ) Im k) = o(1), k → ∞, Im k ≥ 0, for τ ≥ T/2.

Here T is the constant that determines the support of the input pulse, i.e. supp E1 ⊂ [0, T ]. Define




M (5)(k; k0, τ) =M (4)(k; k0, τ)




1 0

−a(k)b∗(k) δ2(k; k0)e2ih(k;k0,τ)
F 2(k; k0)

1


 , k ∈ Int(L5, L1),

M (5)(k; k0, τ) =M (4)(k; k0, τ)



1

−a∗(k)b(k)F 2(k; k0)e
−2ih(k;k0,τ)

δ2(k; k0)

0 1




−1

, k ∈ Ω6 = Int(L6,R),

M (5)(k; k0, τ) =M (4)(k; k0, τ), elsewhere.

This transformation removes the jumps over L5, L6, and changes the ones over L1, L2 as follows:

M
(5)
− (k; k0, τ) =M

(5)
+ (k; k0, τ)




1 0

δ2(k; k0)e
2ih(k;k0,τ)

r(k)(1 + r(k)r∗(k))F 2(k; k0)
1


 , k ∈ L1,
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L1

L2

L3

L4

k0−k0

[
1 0

1

r∗

(1+ 1

rr∗
)
e2ih

H2
1

]

[
1 1

r
H2e−2ih

0 1

]

[
1

1

r

1+ 1

rr∗

H2e−2ih

0 1

]

[
1 0

e2ih

r∗H2
1

]

L1

L2

L3

L4

k0−k0

[
1

1

r

1+ 1

rr∗

H2e−2ih

0 1

]

( beih

H
Y[1],

He−ih

b
Y[2])

(−eih

H
Z[2],

He−ih

b
Y[2])

( eih

b∗H
Y[1], b∗He−ihY[2])

( eih

b∗H
Y[1], He−ihZ[1])

(−eih

H
Z[2], He−ihZ[1])

Figure 6. On the left: jumps for M (5). On the right: structure of M (5) in terms of Y, Z.

M
(5)
− (k; k0, τ) =M

(5)
+ (k; k0, τ)


1

F 2(k; k0)e
−2ih(k;k0,τ)

r∗(k)(1 + r(k)r∗(k)) δ2(k; k0)
0 1


 , k ∈ L2.

The jumps for M (5) are naturally expressed in terms of the function H defined in (86) (see

also Figure 6, left). We have M
(5)
− (k; k0, τ) =M

(5)
+ (k; k0, τ)J

(5)(k; k0, τ), where

J (5)(k) =




1 0
1

r∗(k)

1 + 1
r(k)r∗(k)

· e
2ih(k)

H2(k)
1


 , k ∈ L1, =


1

1

r(k)
H2(k)e−2ih(k)

0 1


 , k ∈ L3,

=



1

1
r(k)

1 + 1
r(k)r∗(k)

·H2(k)e−2ih(k)

0 1


 , k ∈ L2, =




1 0

e2ih(k)

r∗(k)H2(k)
1


 , k ∈ L4,

and where J (5)(k0) = J (5)(k0; k0, τ), h(k) = h(k; k0, τ), H(k) = H(k; k0).

Expressing M (5) in terms of the original Jost solutions, and figuring out the pole conditions.

Tracing back the chain of transformations that led from M to M (5), we find that M (5) has the

following structure (see also Figure 6, right):

M (5)(k; k0, τ) =





(
b(k)
H(k)

eih(k)Y[1](t, x; k),
H(k)
b(k)

e−ih(k)Y[2](t, x; k)
)
, k ∈ Int(L1,R),(

eih(k)Y[1](t,x;k)

b∗(k)H(k)
, b∗(k)H(k)e−ih(k)Y[2](t, x; k)

)
, k ∈ Int(L2,R),(

−Z[2](k)e
ih(k)

H(k)
, H(k)

b(k)
e−ih(k)Y[2](t, x; k)

)
, k ∈ Int(L1, L3),(

eih(k) Y[1](k)

b∗(k)H(k)
, H(k)e−ih(k)Z[1](t, x; k)

)
, k ∈ Int(L2, L4),(

−Z[2](k)e
ih(k)

H(k)
, H(k)e−ih(k)Z[1](t, x; k)

)
, k ∈ Int(L3, L4).
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Recalling the definitions of the function H (86), we see that the function a(.) does not

contribute at all to the poles of M (5); the only poles are caused by zeros of the function b(.).

Furthermore, M (5) has no poles in the domains Int(L1,R) and Int(L2,R), and the only poles are

concentrated in the domains Int(L1, L3), Int(L2, L4) and Int(L3, L4). The next transformation

eliminates the poles in the domain Int(L3, L4).

Step 6: eliminating poles in Int(L3, L4). First, we “modify” the functions H,G (85), (86), by

eliminating or introducing zeros and poles of H inside Int(L3, L4), as follows

H̃(k; k0) = H(k; k0)
∏

kj∈Zb∩Int(L3,(−k0,k0))

k − kj
k − kj

, G̃(k; k0) = G(k; k0)
∏

kj∈Zb∩Int(L3,(−k0,k0))

k − kj
k − kj

.

(89)

In doing so we assume that there are no zeros of b(.) on the line L3, which can always be achieved

by slightly deforming L3. Then the function

M (6)(k; k0, τ) =M (5)(k; k0, τ)
∏

kj∈Zb∩Int(L3,(−k0,k0))

(
k − kj

k − kj

)σ3

satisfies the jump conditions, which are obtained from the jumps for the function M (5) if we

substitute there H with H̃, i.e. M
(6)
− (k; k0, τ) =M

(6)
+ (k; k0, τ)J

(6)(k; k0, τ), where

J (6)(k) =




1 0
1

r∗(k)

1 + 1
r(k)r∗(k)

· e
2ih(k)

H̃2(k)
1


 , k ∈ L1, =


1

1

r(k)
H̃2(k)e−2ih(k)

0 1


 , k ∈ L3,

=



1

1
r(k)

1 + 1
r(k)r∗(k)

· H̃2(k)e−2ih(k)

0 1


 , k ∈ L2, =




1 0

e2ih(k)

r∗(k)H̃2(k)
1


 , k ∈ L4,

and where J (6)(k) = J (6)(k; k0, τ), H̃(k) = H̃(k; k0), h(k) = h(k; k0, τ).Moreover, using properties

(35), we can specify the pole conditions of the function M (6) in the domains Int(L1, L3) and

Int(L2, L4) (recall that we assume (Assumption 3) that zeros of b(.) are of the first order):

M (6)(k; k0, τ)

(
1 0

γj e
2ih(k;k0,τ)

(k−kj)G̃2(kj ;k0)
1

)
is regular at the point k = kj ,

M (6)(k; k0, τ)

(
1

−γj G̃2(kj ;k0) e−2ih(k;k0,τ)

(k−kj)
0 1

)
is regular at the point k = kj ,

where kj ∈ Zb ∩ Int(L1, L3),

γ−1
j = a(kj)ḃ(kj),

and the dot ˙ denotes the derivative in k.

5.3. Parametrix analysis

We see that the jump matrices for M (6) are exponentially close to the identity matrix everywhere

except for the neighbourhoods of the points ±k0. We will construct functions that satisfy

approximately the jump conditions near these points.
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5.3.1. Global parametrix. Recall that by our Assumption 3 all the absolute values |kj| for kj ∈ Zb
are mutually different, hence we can always achieve, by slightly moving contours L1, L3, if necessary,

that there is at most one zero of the function b(.) in the domain Int(L1, L3.)

We define the global parametrix Mglob(k) =Mglob(k; k0, τ) to be equal to the identity matrix,

Mglob(k) = I, in the case if Zb ∩ Int(L1, L3) = ∅.
In the case Zb ∩ Int(L1, L3) = {kj} , we define the global parametrix to be equal to

Mglob(k) =Mglob(k; k0, τ) =

(
1 + i A

k−kj
i B
k−kj

i B
k−kj 1− iA

k−kj

)
(90)

where A,B and their complex conjugates A,B are some complex parameters (which might depend

on k0, τ, or, equivalently, on t, x), which are determined from the condition

Mglob(k)

(
1 0

i γj e
2ih(k;k0,τ)

G̃2(k;k0) (k−kj)
1

)
is regular at k → kj.

This leads to the linear system of equations for A,B,

{
A + wjB = 0,

wjA− B = 2 Im kj · wj ,
where wj =

γj · e2ih(kj ;k0,τ)
2 Im kj · G̃2(kj; k0)

, (91)

from where

A = Aj =
|wj|2 · 2 Im kj
1 + |wj |2

, B = Bj =
−wj · 2 Im kj
1 + |wj |2

. (92)

Note that Aj , Bj are uniformly bounded in t, x, that Aj > 0, that A2
j + |Bj|2 = 2 Im kj · Aj (and

hence automatically detMglob(k) ≡ 1), and that Mglob(k) satisfies the following pole condition at

the complex conjugate point kj :

Mglob(k)

(
1

i ζj G̃
2(k) e−2ih(k)

k−kj
0 1

)
is regular at kj .

5.3.2. Local parametrices.

Local behaviour of the function H̃ near k = −k0 and k = k0. We have that

H̃(k; k0) =

(
k + k0
k0

)iνl
· χl(k; k0), H̃(k; k0) =

(
k0 − k

k0

)−iνr
· χr(k; k0),

where

νl = νl(k0) =
1

2π
ln

(
1 +

1

|r(−k0)|2
)
, νr = νr(k0) =

1

2π
ln

(
1 +

1

|r(k0)|2
)
,

and

χl(k; k0) = exp




k0∫

−k0

ln
(

1+|r(s)|−2

1+|r(−k0)|−2

)
ds

(s− k) · 2πi



(
k0 − k

k0

)−iνl
·

∏

kj∈Int(L3,R)

k − kj
k − kj

·
{
b(k)eπνl, Im k > 0,

1
b∗(k)

e−πνl, Im k < 0,
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and

χr(k; k0) = exp




k0∫

−k0

ln
(

1+|r(s)|−2

1+|r(k0)|−2

)
ds

(s− k) · 2πi



(
k + k0
k0

)iνr
·

∏

kj∈Int(L3,R)

k − kj
k − kj

·
{
b(k)eπνr , Im k > 0,

1
b∗(k)

e−πνr , Im k < 0.

Note that the functions χl(k; k0), χr(k; k0) have (nonzero) limits as k → ∓k0, respectively, namely

χl(−k0; k0) = exp




k0∫

−k0

ln
(

1+|r(s)|−2

1+|r(−k0)|2

)
ds

(s+ k0) · 2πi


 · 2−iνl(k0)ei arg b(−k0) ·

∏

kj∈Int(L3,R)

k0 + kj
k0 + kj

(93)

and

χr(k0; k0) = exp




k0∫

−k0

ln
(

1+|r(s)|−2

1+|r(k0)|−2

)
ds

(s− k0) · 2πi


 · 2iνr(k0)ei arg b(k0) ·

∏

kj∈Int(L3,R)

k0 − kj
k0 − kj

, (94)

and |χl(−k0; k0)| = |χr(k0; k0)| = 1.

Local behaviour of the function h near k = −k0 and near k = k0. Define conformal mappings

zl = zl(k; k0), zr = zr(k; k0) as follows:

zl =
k + k0
k0

·
( ∞∑

j=0

(
k + k0
k0

)j)1/2

, zr =
k0 − k

k0
·
( ∞∑

j=0

(
k0 − k

k0

)j)1/2

and define the scaled variables λl = λl(k; k0, τ), λr = λr(k; k0, τ) as follows:

λl = zl
√
τk0, λr = zr

√
τk0,

so that

h(k; k0, τ) = τ

(
k +

k20
k

)
= −2τk0 − τk0 z

2
l = −2τk0 − λ2l ,

h(k; k0, τ) = 2τk0 + τk0 z
2
r = 2τk0 + λ2r .

Parabolic cylinder parametrix. For a ∈ C, the parabolic cylinder function Da(z) is an entire

function that satisfies the differential equation

∂zzDa(z) +

(
a +

1

2
− z2

4

)
Da(z) = 0,

and has the asymptotics as z → ∞

Da(z) = zae−z
2/4

(
1− a(a− 1)

2z2
+
a(a− 1)(a− 2)(a− 3)

8z4
+O(z−6)

)
, arg z ∈

(−3π

4
,
3π

4

)
.

Furthermore, Da(z) satisfies the following relations:

Da(z) = e−πaiDa(−z) +
√
2π

Γ(−a)e
−π(a+1)i/2D−a−1(iz),

Da(z) = eπaiDa(−z) +
√
2π

Γ(−a)e
π(a+1)i/2D−a−1(−iz),

Da(z) =
Γ(a+ 1)√

2π

(
eπia/2D−a−1(iz) + e−πia/2D−a−1(−iz)

)
,

Da+1(z)− zDa(z) + aDa−1(z) = 0, D′
a(z) = −z

2
Da(z) + aDa−1(z) = 0.

(95)
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Let r0 ∈ C be a non-zero complex parameter. Define

ν =
1

2π
ln

(
1 +

1

|r0|2
)
> 0

and consider the following piece-wise analytic function:

Ψ(λ; r0) =

[
v+Diν(2e

−πi/4 λ) −β2u+D−iν−1(2e
−3πi/4 λ)

−β1v+Diν−1(2e
−πi/4 λ) u+D−iν(2e

−3πi/4 λ)

]
, Imλ > 0,

Ψ(λ; r0) =

[
v−Diν(2e

3πi/4 λ) β2u
−D−iν−1(2e

πi/4 λ)

β1v
−Diν−1(2e

3πi/4 λ) u−D−iν(2e
πi/4 λ)

]
, Imλ < 0,

where

u+ = 2iνe3πν/4, u− = 2iνe−πν/4, v+ = 2−iνe−πν/4, v− = 2−iνe3πν/4,

β1 =
−i

√
2π r0 2

2iνeπν/2

Γ(iν)
=

Γ(−iν + 1)22iν√
2π · r0 · eπν/2

, β2 =
Γ(1 + iν)√

2π r0 22iνeπν/2
=
i
√
2π · r0 · eπν/2
22iνΓ(−iν) .

Note that β1β2 = ν, β1 = β2.

Properties (95) allow to verify that Ψ(λ; r0) has the following jump across the real line:

Ψ(λ− i0; r0) = Ψ(λ+ i0; r0)

(
1 + 1

|r0|2
1
r0

1
r0

1

)
, λ ∈ R.

The function

P (λ; r0) = Ψ(λ; r0) · λ−iνσ3e−iλ
2σ3 , arg λ ∈

(
π

4
,
3π

4

)
∪
(−3π

4
,
−π
4

)
,

= Ψ(λ; r0) · λ−iνσ3e−iλ
2σ3

(
1 1

r0
λ2iνe2iλ

2

0 1

)
, arg λ ∈

(
0,
π

4

)
,

= Ψ(λ; r0) · λ−iνσ3e−iλ
2σ3

(
1 0

−1
r0
λ−2iνe−2iλ2 1

)
, arg λ ∈

(−π
4
, 0

)
,

= Ψ(λ; r0) · λ−iνσ3e−iλ
2σ3




1 0
1
r0

1+ 1
|r0|

2
λ−2iνe−2iλ2 1


 , arg λ ∈

(
3π

4
, π

)
,

= Ψ(λ; r0) · λ−iνσ3e−iλ
2σ3


1

−1
r0

1+ 1
|r0|

2
λ2iνe2iλ

2

0 1


 , arg λ ∈

(
−π, −3π

4

)

(96)

satisfies the jump relation P−(λ; r0) = P+(λ; r0)J(λ; r0) on the contour

λ ∈ Σ = (∞e3πi/4, 0) ∪ (∞e−3πi/4, 0) ∪ (0,∞eπi/4) ∪ (0,∞e−πi/4),

where J(λ; r0) is equal to

J(λ; r0) =




1 0
1
r0

1+ 1
|r0|

2
λ−2iνe−2iλ2 1


 , λ ∈ (∞e3πi/4, 0), =

[
1 1

r0
λ2iνe2iλ

2

0 1

]
, λ ∈ (0,∞eπi/4),

=


1

1
r0

1+ 1
|r0|

2
λ2iνe2iλ

2

0 1


 , λ ∈ (∞e−3πi/4, 0), =

[
1 0

1
r0
λ−2iνe−2iλ2 1

]
, λ ∈ (0,∞e−πi/4),
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and has the following asymptotics as λ→ ∞, which is uniform in arg λ ∈ [−π, π] :

P (λ; r0) =



1− ν(1−iν)

8λ2
+ iν(1−iν)(2−iν)(3−iν)

128λ4
+O(λ−6) e−πi/4 β2

2λ
+ eπi/4 β2(1+iν)(2+iν)

16λ3
+O(λ−6)

e−3πi/4 β1
2λ

+ e3πi/4 β1(1−iν)(2−iν)
16λ3

+O(λ−6) 1− ν(1+iν)
8λ2

− iν(1+iν)(2+iν)(3+iν)
128λ4

+O(λ−6)


 .

(97)

Note also that the functions Ψ(λ; r0) and P (λ; r0)λ
−iνσ3 are continuous at the origin.

Approximate solution Mappr. Now we define a function Mappr, which satisfies approximately the

jump conditions near the points −k0, k0. Let δ ∈ (0, 1) be a fixed number and denote by Cl, Cr the

circles of radius δ · k0 centred at −k0, k0,respectively. Denote the corresponding disks by

Int(Cl) = {k : |k + k0| < k0 · δ} , Int(Cr) := {k : |k − k0| < k0 · δ} .
Define

Mappr(k; k0, τ) =





Mglob(k; k0, τ), |k ∓ k0| > δ · |k0|,
Ql(k; k0, τ)P (λl; r0 = r(−k0)) · φl(k; k0, τ)−σ3 , k ∈ Int(Cl),

Qr(k; k0, τ)
(

0 1

−1 0

)
P
(
λr; r0 = r(k0)

)(
0 −1

1 0

)
· φr(k; k0, τ)−σ3 , k ∈ Int(Cr),

where

φl(k; k0, τ) =

(
k + k0

k0 · zl ·
√
τk0

)iνl(k0)
· χl(−k0; k0) · e2iτk0 ,

φr(k; k0, τ) =

(
k0 · zr ·

√
τk0

k0 − k

)iνr(k0)
· χr(k0; k0) · e−2iτk0 .

(98)

Here Ql, Qr are 2× 2 matrix-valued functions analytic in k ∈ Int(Cl), Int(Cr), respectively, which

are needed to make the jump on the circles Cl, Cr for the error matrix

Merr(k; k0, τ) =M (6)(k; k0, τ)Mappr(k; k0, τ)
−1

as close to the identity matrix as possible. We thus define

Ql(k; k0, τ) :=Mglob(k; k0, τ)φl(k; k0, τ)
σ3 , Qr(k; k0, τ) :=Mglob(k; k0, τ)φr(k; k0, τ)

σ3 .

Note that Mappr has the following jumps: Mappr,−(k; k0, τ) =Mappr,+(k; k0, τ)Jappr(k; k0, τ), where

the jump matrix Jappr is as follows: inside Int(Cl) it has the form

Jappr(k; k0, τ) =




1 0
1

r(−k0)

1+ 1
|r(−k0)|

2
· e2ih(k;k0,τ)
χ2
l (−k0;k0)

·
(
k+k0
k0

)−2iνl(k0)

1


 , k ∈ L1 ∩ Int(Cl),

=


1 1

r(−k0)χ
2
l (−k0; k0)e−2ih(k;k0,τ)

(
k+k0
k0

)2iνl(k0)

0 1


 , λ ∈ L3 ∩ Int(Cl),

=


1

1
r(−k0)

1+ 1
|r(−k0)|

2
· χ2

l (−k0; k0)e−2ih(k;k0,τ)
(
k+k0
k0

)2iνl(k0)

0 1


 , λ ∈ L2 ∩ Int(Cl),

=




1 0

1

r(−k0)
· e2ih(k;k0,τ)
χ2
l (−k0;k0)

(
k+k0
k0

)−2iνl(k0)

1


 , λ ∈ L4 ∩ Int(Cl),
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and inside Int(Cr) it has the following form:

Jappr(k; k0, τ) =


1 1

r(k0)
χ2
r(k0; k0)e

−2ih(k)
(
k0−k
k0

)−2iνr(k0)

0 1


 , λ ∈ L3 ∩ Int(Cr),

=




1 0
1

r(k0)

1+ 1
|r(k0)|

2
· e2ih(k)

χ2
r(k0;k0)

·
(
k0−k
k0

)2iνr(k0)
1


 , k ∈ L1 ∩ Int(Cr),

=




1 0

1

r(k0)
· e2ih(k)

χ2
r(k0;k0)

(
k0−k
k0

)2iνr(k0)
1


 , λ ∈ L4 ∩ Int(Cr),

=


1

1
r(k0)

1+ 1
|r(k0)|

2
· χ2

r(k0; k0)e
−2ih(k;k0,τ)

(
k0−k
k0

)−2iνr(k0)

0 1


 , λ ∈ L2 ∩ Int(Cr),

5.4. Reconstruction of E ,N , ρ

Lemma 5.1. In terms of the function Merr, functions E(t, x),N (t, x), ρ(t, x) can be expressed as

follows:

(a) In the case Zb ∩ Int(L1, L3) = ∅ we have

E(t, x) = − lim
k→∞

4ikMerr,12(k),

(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
= −Merr(+i0)σ3Merr(+i0)

−1,

where Merr(k) =Merr(k; k0, τ), τ = t− x, k0 =
1
2

√
x/(t− x).

(b) In the case Zb ∩ Int(L1, L3) = {kj}, we have E(t, x) = 4Bj + Eerr(t, x) and
(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=Merr(+i0)


 −1 +

2|Bj |2
|kj |2

−2iBj

kj

(
1− iAj

kj

)

2i Bj

kj

(
1 +

iAj

kj

)
1− 2|Bj |2

|kj |2


Merr(+i0)

−1, (99)

where

Eerr(t, x) = − lim
k→∞

4ikMerr,12(k), Aj =
2 Im kj · |wj |2
1 + |wj |2

, Bj =
−2 Im kj · wj
1 + |wj |2

,

and where wj is defined in (91). More explicitly, wj = |wj |ei arg wj , where

|wj| =
1

2 Im kj · |a(kj)ḃ(kj)|
exp

{
−2 Im kj

(
t− x− x

4 [(Re kj)2 + (Im kj)2]

)}
·

· exp
[− Im kj

π

∫ k0

−k0

ln (1 + |r(s)|−2) ds

(s− Re kj)2 + (Im kj)2

] ∏

p:|kp|<|kj |

∣∣∣∣
kj − kp

kj − kp

∣∣∣∣
2

,

and

arg wj = − arg
(
a(kj)ḃ(kj)

)
+ 2Re kj ·

(
t− x+

x

4[(Re kj)2 + (Im kj)2]

)
+

+
1

π

∫ k0

−k0

(s− Re kj) ln (1 + |r(s)|−2) ds

(s− Re kj)2 + (Im kj)2
+ 2

∑

p:|kp|<|kj|
arg

(
kj − kp

kj − kp

)
.

Proof.
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Function E(t, x). Tracking back the chain of transformations (88), M → . . .→M (6), we see that

E(t, x) = −4i lim
k→∞

kM(t, x; k) = −4i lim
k→∞

kM (j)(k; k0, τ), for j = 1, 2, . . . , 6,

and hence

E(t, x) = Eappr(t, x) + Eerr(t, x),
where

Eappr(t, x) = −4i lim
k→∞

kMappr(k; k0, τ), Eerr(t, x) = −4i lim
k→∞

kMerr(k; k0, τ).

The term Eappr(t, x) can be computed explicitly. Indeed, using expression (90) for Mglob from

subsection 5.3.1, we see that Eappr(t, x) = 0 in the case Zb ∩ Int(L1, L3) = ∅, and Eappr(t, x) = 4Bj

in the case kj ∈ Int(L1, L3), where Bj is defined in (92),

E(t, x) = 4Bj + Eerr(t, x).

Functions N (t, x) and ρ(t, x). Similarly,
(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=M(+i0)σ3M(+i0)−1 =M (j)(+i0)σ3M

(j)(+i0)−1 for j = 1, 2, 3,

where M(k) =M(t, x; k), M (j)(k) =M (j)(k; k0, τ), and
(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
= −M (j)(+i0)σ3M

(j)(+i0)−1 for j = 4, 5, 6.

Hence (below, we drop dependence of Merr,Mappr on k0, τ),
(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=Merr(+i0) ·

(
−Mappr(+i0)σ3Mappr(+i0)

−1
)
·Merr(+i0)

−1.

The middle factor here can be computed explicitly, we have

Mappr(+i0) =

(
1− iAj

kj

−iBj

kj
−i Bj

kj
1 +

iAj

kj

)

in the case kj ∈ Zb ∩ Int(L1, L3) and Mappr(+i0) = I in the case that there are no zeros of b(.)

between the lines L1 and L3. Thus

−Mappr(+i0)σ3Mappr(+i0)
−1 =


 −1 +

2|Bj |2
|kj |2

−2iBj

kj

(
1− iAj

kj

)

2i Bj

kj

(
1 +

iAj

kj

)
1− 2|Bj |2

|kj |2


 .

and
(
N (t, x) ρ(t, x)

ρ(t, x) −N (t, x)

)
=Merr(+i0)


 −1 +

2|Bj |2
|kj |2

−2iBj

kj

(
1− iAj

kj

)

2i Bj

kj

(
1 +

iAj

kj

)
1− 2|Bj |2

|kj |2


Merr(+i0)

−1.

Proof.End of proof of Lemma 5.1.
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5.5. Riemann-Hilbert problem for Merr

Function Merr satisfies the following RH problem (below we again drop the dependence on k0, τ):

(i) Analyticity: Merr(k) is analytic in C \ Σerr, where Σerr =
4⋃
j=1

Lj ∪ Cl ∪ Cr.

(ii) Normalisation: Merr(k) → I as k → ∞.

(iii) Jump: Merr,−(k) =Merr,+(k)Jerr(k), where

Jerr(k) =Mglob(k)φl(k)
σ3P (λl; r0 = r(−k0))φl(k)−σ3Mglob(k)

−1, k ∈ Cl,

Jerr(k) =Mglob(k)φr(k)
σ3
(

0 1
−1 0

)
P (λr; r0 = r(k0))

(
0 −1
1 0

)
φr(k)

−σ3Mglob(k)
−1, k ∈ Cl,

Jerr(k) =Mglob(k)J
(6)(k)Mglob(k)

−1, k ∈
4⋃

j=1

Lj \ (Cl ∪ Cr),

Jerr(k) =Mglob(k)Jappr(k)
−1J (6)(k)Mglob(k)

−1, k ∈
4⋃

j=1

Lj ∩ (Cl ∪ Cr).

(100)

Lemma 5.2. In the regime τ → +∞, uniformly in C−1 ≤ k0 ≤ C, C > 1, the jump matrix Jerr
admits the following estimates:

‖Jerr(k; k0, τ)− I‖L∞(Σerr)∩L1(Σerr)∩L2(Σerr) = O
(

1

τ 1/2

)
.

Proof. The jump matrix Jerr on the contours Lj, j = 1, 2, 3, 4, inside the circles Cl, Cr can be

written more explicitly as follows:

Jerr(k) =Mglob(k)




1 0(
r∗(k)−1·χ−2

l (k,k0)

1+(r(k)r∗(k))−1 − r(−k0)
−1·χ−2

l (−k0,k0)
1+|r(−k0)|−2

)
·
(
k+k0
k0

)−2iνl · e2ih(k) 1


Mglob(k)

−1,

k ∈ L1 ∩ Int(Cl),

=Mglob(k)

(
1
(
χ2
l (k,k0)

r(k)
− χ2

l (−k0;k0)
r(−k0)

)
·
(
k+k0
k0

)2iνl·e−2ih(k)

0 1

)
Mglob(k)

−1, k ∈ L3 ∩ Int(Cl),

=Mglob(k)

(
1
(
r(k)−1·χ2

l (k,k0)

1+(r(k)r∗(k))−1 − r(−k0)−1·χ2
l (−k0,k0)

1+|r(−k0)|−2

)
·
(
k+k0
k0

)2iνl · e−2ih(k)

0 1

)
Mglob(k)

−1,

k ∈ L2 ∩ Int(Cl),

=Mglob(k)

(
1 0(

χ−2
l (k,k0)

r∗(k)
− χ−2

l (−k0,k0)
r(−k0)

)
·
(

k0
k+k0

)2iνl·e2ih(k) 1

)
Mglob(k)

−1, k ∈ L4 ∩ Int(Cl),
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Jerr(k) =Mglob(k)

(
1
(
χ2
r(k,k0)
r(k)

− χ2
r(k0;k0)
r(k0)

)
·
(
k0−k
k0

)−2iνr
·e−2ih(k)

0 1

)
Mglob(k)

−1, k ∈ L3 ∩ Int(Cr),

=Mglob(k)

(
1 0(

r∗(k)−1·χ−2
r (k,k0)

1+(r(k)r∗(k))−1 − r(−k0)
−1·χ−2

r (k0,k0)
1+|r(k0)|−2

)
·
(
k0−k
k0

)2iνr
· e2ih(k) 1

)
Mglob(k)

−1,

k ∈ L1 ∩ Int(Cr),

=Mglob(k)

(
1 0(

χ−2
r (k,k0)
r∗(k)

− χ−2
r (k0,k0)

r(k0)

)
·
(
k0−k
k0

)2iνr
·e2ih(k) 1

)
Mglob(k)

−1, k ∈ L4 ∩ Int(Cr),

=Mglob(k)

(
1
(
r(k)−1·χ2

r(k,k0)
1+(r(k)r∗(k))−1 − r(k0)−1·χ2

r(k0,k0)
1+|r(k0)|−2

)
·
(
k0−k
k0

)−2iνr
· e−2ih(k)

0 1

)
Mglob(k)

−1,

k ∈ L2 ∩ Int(Cr),

It follows that inside the circle Cl, Cr, respectively, the jump matrix Jerr admits the estimate

Jerr(k) = I +O(k ∓ k0) · e−2τk0

∣∣∣k∓k0
k0

∣∣∣
2

. (101)

Furthermore,

Jerr(k) = I +O(τ−1/2k
−1/2
0 ) uniformly for k ∈ Cl ∪ Cr, (102)

as follows from the fact that Mglob(k) and φl(k), φr(k) are uniformly bounded from 0 and ∞ on

the circles Cl, Cr, respectively, and from the estimates

Jerr(k) =Mglob(k)φl(k)
σ3P (λl; r0 = r(−k0))φl(k)−σ3Mglob(k)

−1 = I +O(λ−1
l ) = I +O(τ−1/2k

−1/2
0 ),

and similarly Jerr(k) = I +O(τ−1/2k
−1/2
0 ) for k ∈ Cr.

Using the estimates (102), (101) and using the fact that on the parts of the contours Lj outside

the disks Int(Cl), Int(Cr) the jump matrix is exponentially close to the identity matrix, we obtain

the statement of the Lemma.

5.6. Asymptotics of Merr

Lemma 5.3. Let C > 1 be a fixed real number. In the regime τ → ∞, uniformly for 1
C
≤ k0 ≤ C,

one has

lim
k→∞

−4ik (Merr(k)− I) =
−4i

2πi

∫

Cl∪Cr

(Jerr(s)− I)ds+O(τ−1),

Merr(0) = I − 1

2πi

∫

Cl∪Cr

1

s
(Jerr(s)− I)ds+O(τ−1).

Proof. The error matrix Merr can be obtained as

Merr = I + C[Merr,+(.)(I − Jerr(.))],
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where Merr,+ is the solution of the singular integral equation

Merr,+ = I + C+[Merr,+(.)(I − Jerr(.))],

and where we denote

Cf(k) = 1

2πi

∫

Σerr

f(s) ds

s− k
, C±f(k) =

1

2πi

∫

Σerr

f(s) ds

(s− k)±
.

It follows that

Merr(k) = I +
1

2πi

∫

Σerr

(I − Jerr(s)) ds

s− k
+

1

2πi

∫

Σerr

(Merr,+(s)− I)(I − Jerr(s)) ds

s− k

and

lim
k→∞

−4ik(Merr(k)− I) =
−4i

2πi

∫

Σerr

(Jerr(s)− I) ds+
−4i

2πi

∫

Σerr

(Merr,+(s)− I)(Jerr(s)− I) ds ,

Merr(0) = I − 1

2πi

∫

Σerr

1

s
(Jerr(s)− I) ds− 1

2πi

∫

Σerr

1

s
(Merr,+(s)− I)(Jerr(s)− I) ds .

Using estimates (101), (102), one obtains
∫

Cl,r

(Jerr(k)− I)ds = O
(
k
1/2
0 τ−1/2

)
,

∫

Lj∩Cl,r

(Jerr(k)− I)ds = O
(
k0τ

−1
)
,

∫

Cl,r

(Merr,+(s)−I)(Jerr(s)−I)ds = O(τ−1),

∫

Lj∩Cl,r

(Merr,+(s)−I)(Jerr(s)−I)ds = O(k
3/2
0 τ−3/2),

from where it follows that the main contribution to
∫
Σerr

(Jerr(s)− I)ds comes from Cl, Cr. Similar

argument applies for the integral
∫
Σerr

s−1(Jerr(s)− I)ds, from where we obtain the statement of

the Lemma.

Lemma 5.4. Under conditions of Lemma 5.3, we have

1

2πi

∫

Cl

(Jerr(k)− I)dk =Mglob(−k0)
(

0 i ei ωl

i e−i ωl 0

)
Mglob(−k0)−1 ·

√
k0 νl
2
√
τ

+O
(
1

τ

)
,

1

2πi

∫

Cr

(Jerr(k)− I)dk =Mglob(k0)

(
0 i ei ωr

i e−i ωr 0

)
Mglob(k0)

−1 ·
√
k0 νr
2
√
τ

+O
(
1

τ

)
,

1

2πi

∫

Cl

1

k
(Jerr(k)− I)dk =Mglob(−k0)

(
0 −i ei ωl

−i e−i ωl 0

)
Mglob(−k0)−1 ·

√
νl

2
√
k0 τ

+O
(
1

τ

)
,

1

2πi

∫

Cr

1

k
(Jerr(k)− I)dk =Mglob(k0)

(
0 i ei ωr

i e−i ωr 0

)
Mglob(k0)

−1 ·
√
νr

2
√
k0 τ

+O
(
1

τ

)
,

where ωl = ωl(t, x), ωr = ωr(t, x) are defined as follows:

ωl(t, x) = 4τk0 − νl ln(16τk0)−
1

π

∫ k0

−k0

ln 1+|r(s)|−2

1+|r(−k0)|−2 ds

s+ k0
+ arg (a(−k0)b(−k0)) + arg Γ(iνl)

+
∑

kj∈Zb∩Int(L3,R)

2 arg
k0 + kj
k0 + kj

− π

4
,
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ωr(t, x) = −4τk0 + νr ln(16τk0)−
1

π

∫ k0

−k0

ln 1+|r(s)|−2

1+|r(k0)|−2 ds

s− k0
+ arg(a(k0)b(k0))− arg Γ(iνr)

+
∑

kj∈Zb∩Int(L3,R)

2 arg
k0 − kj
k0 − kj

+
π

4
.

Proof. The jump matrix Jerr on the circles Cl, Cr takes the form (see the first two formulae of

(100) and formula (97))

Jerr(k)− I =Mglob(k)

[(
0

φ2l (k)e
−πi/4β2,l
2

e−3πi/4β1,l
2φ2l (k)

)
1√
τ k0 zl

+O
(

1

τ k0 z
2
l

)]
Mglob(k)

−1, k ∈ Cl,

Jerr(k)− I =Mglob(k)

[(
0

φ2r(k)e
πi/4β1,r
2

e3πi/4β2,r
2φ2r(k)

)
1√

τ k0 zr
+O

(
1

τ k0 z2r

)]
Mglob(k)

−1, k ∈ Cr.

Computing the first-order residues, we find the integrals over the circles Cl, Cr and thus obtain the

statement of the Lemma.

Proof of Theorem 1.2. Functions N , ρ. From the symmetry

Merr(k) =

[
0 1

−1 0

]
Merr(k)

[
0 −1

1 0

]
,

it follows that formula (99) from Lemma 5.1 can be written in the form
(
N ρ

ρ −N

)
=

(
1 +X Y

−Y 1 +X

)(
−P Q

Q P

)(
1 +X −Y
Y 1 +X

)
, (103)

where N = N (t, x), ρ = ρ(t, x) and

1 +X =Merr(0)11, Y =Merr(0)12, P = 1− 2|Bj|2
|kj|2

, Q =
−2i Bj

kj

(
1− i Aj

kj

)
.

Note that detMerr(0) = 1 and hence |1 +X|2 + |Y |2 = 1. Multiplying matrices in the right-hand

side of (103), we find that

N (t, x) = (−|1 +X|2 + |Y |2)P + (1 +X) Y Q+ (1 +X) Y Q,

ρ(t, x) = 2(1 +X)Y P − Y 2Q+ (1 +X)2Q.

From Lemmas 5.4, 5.3 it follows that X = O(τ−1/2), Y = O(τ−1/2), thus

N (t, x) = −P + Y Q+ Y Q+O(τ−1), ρ(t, x) = 2Y P + (1 + 2X)Q+O(τ−1).

Multiplying matrices from Lemma 5.4, Merr(0) and thus X , Y can be written more explicitly,

X =

√
νl

2
√
k0 τ

((
1 +

i Aj

k0 + kj

)
Bj e

−i ωl

k0 + kj
−
(
1− i Aj

k0 + kj

)
Bj e

i ωl

k0 + kj

)

+

√
νr

2
√
k0 τ

((
1− i Aj

k0 − kj

)
Bj e

−i ωr

k0 − kj
−
(
1 +

i Aj
k0 − kj

)
Bj e

i ωr

k0 − kj

)
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and

Y =
i
√
νl

2
√
k0 τ

(
ei ωl

(
1− i Aj

k0 + kj

)2

+
B2
j e

−i ωl

(k0 + kj)2

)
− i

√
νr

2
√
k0 τ

(
ei ωr

(
1 +

i Aj
k0 − kj

)2

+
B2
j e

−i ωr

(k0 − kj)2

)
.

Function E . It follows from Lemma 5.1 that

E(t, x) = 4Bj − lim
k→∞

4ik(M(k)− I)12

= 4Bj −
4i

2πi

∫

Cl∪Cr

(Jerr(k)− I)12dk +O(τ−1)

= 4Bj +
2
√
k0 νl√
τ

[
Mglob(−k0)

(
0 eiωl

e−iωl 0

)
Mglob(−k0)−1

]

12

+
2
√
k0 νr√
τ

[
Mglob(k0)

(
0 eiωr

e−iωr 0

)
Mglob(k0)

−1

]

12

+O(τ−1).

Multiplying the matrices, we complete the proof of Theorem 1.2.

Remark 5.1. Theorem 1.2 can be proved under the weaker assumption of an exponential decay of

the input pulse. In such a case, Step 5 of Section 5.2 is not performed, but instead the parabolic

cylinder parametrices in the neighborhoods of the points ±k0 must be adjusted.

Appendix A. Proof of Lemma 4.2

Proof. Let us look for y in the form y = z+ γp, where 0 < p≪ z; substituting this in (62), we get

p = ln(z + γp), and z = ep − γp. Now we look for p in the form p = ln z − q, where q ≪ p. Then

e−q − γ ln z

z
+
γq

z
− 1 = 0.

e−q − 1 + δ + εq = 0, where we denoted δ =
−γ ln z
z

, ε =
γ

z
.

It follows that q → 0 as z → +∞. By Rouche’s theorem, there exists a fixed r > 0 such that for

sufficiently small ε, δ the equation for q has exactly one root in the disk {q : |q| < r}. Then

q =
1

2πi

∮

|ζ|=r

ζ
(
−e−ζ + ε

)
dζ

e−ζ − 1 + δ + εζ
=

1

2πi

∮

|ζ|=r

ζ
(
−e−ζ + ε

)

e−ζ − 1

∞∑

j=0

(−1)j(δ + εζ)j

(e−ζ − 1)j
dζ,

where we integrate in the counter-clockwise direction. Thus q can be expanded in a series

q =

∞∑

j=1

1

ζj

j∑

k=0

ckj ln
k z

for some real ckj. Computing the corresponding residues, we obtain the statement of the lemma.
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Appendix B. Uniqueness of the solution of the ibv problem

The proof of uniqueness is very similar to the one for the case of MB equations with retarded

time (cf. [35, Appendix A]). It can be carried out for a more general notion of solution than the

classical one.

Definition. Let E0, ρ0 : [0,+∞) → C, N0 : [0,+∞) → R, E1 : (0,+∞) → C be given

functions. We say that a triple of locally integrable functions E , ρ : [0,+∞) × [0,+∞) → C,

N : [0,+∞)× [0,+∞) → R satisfies the Maxwell-Bloch system (5) in the subclassical sense, if for

all t ≥ 0, x ≥ 0, s ≥ 0

E(t+ s, x+ s) = E(t, x) +
∫ s

0

ρ(t + y, x+ y)dy,

ρ(t + s, x) = ρ(t, x) +

∫ s

0

N (t+ y, x)E(t+ y, x)dy,

N (t+ s, x) = N (t, x)−
∫ s

0

Re
[
ρ(t + y, x)E(t+ y, x)

]
dy.

(B.1)

Note that it follows that E is differentiable in the direction (1, 1) and N , ρ have partial derivative

in t. It also follows that the limits lim
s→0+

E(t+ s, s), lim
s→0+

E(s, x+ s), lim
s→0+

N (s, x), lim
s→0+

ρ(s, x) exist

for all t > 0, x ≥ 0. We say that the initial and boundary conditions (6) are satisfied if

lim
s→0+

E(t+ s, s) = E1(t), ∀t > 0, and

lim
s→0+

E(s, x+ s) = E1(t), lim
s→0+

ρ(s, x) = ρ0(x), lim
s→0+

N (s, x) = N0(x), ∀x ≥ 0.

Proposition Appendix B.1. Let functions E0, ρ0 : [0,+∞) → C, N0 : [0,+∞) → R, E1 :

(0,+∞) → C be given, let N0, ρ0 satisfy N0(x)
2 + |ρ0(x)|2 ≡ 1 for all x ≥ 0 and let Ej, j = 0, 1

satisfy the following property:

∀ε > 0 ∃δ > 0 such that for any interval ∆ of the length smaller than δ,

∫

∆

|Ej(s)|ds < ε. (B.2)

Then there exists at most one subclassical solution of MB system (5) with initial and boundary

conditions (6).

Remark Appendix B.1. Property (B.2) is satisfied for instance if
∫∞
0

|Ej(s)|ds <∞, j = 0, 1.

Proof. Step 1: a priori estimates. It follows that ∂
∂t
(|ρ(t, x)|2 +N (t, x)2) = 0, and hence

|ρ(t, x)|2 + N (t, x)2 = |ρ(0, x)|2 + N (0, x)2 = 1 for all t, x ≥ 0. Functions N , ρ thus possess a

priori bounds

|N (t, x)| ≤ 1, |ρ(t, x)| ≤ 1, (B.3)

and from the first of equations (B.1) we obtain the following a priori bound for E :

|E(t, x)| ≤ |E(t− x, 0)|+ x for t > x, and |E(t, x)| ≤ |E(0, x− t)|+ x for t ≤ x. (B.4)

Step 2: rewritting the integral equations in terms of initial and boundary data. We need to

split the equation for E in two pieces, depending on whether t is greater than x or not,

E(t, x) = E(0, x− t) +

∫ t

0

ρ(s, x− t+ s)ds, t ≤ x,

E(t, x) = E(t− x, 0) +

∫ x

0

ρ(t− x+ s, s)ds, t > x,

(B.5)
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and the equations for ρ,N take the form

ρ(t, x) = ρ(0, x) +

∫ t

0

N (s, x)E(s, x)ds,

N (t, x) = N (0, x)−
∫ t

0

Re
(
ρ(s, x)E(s, x)

)
ds.

(B.6)

Step 3: estimates for the differences. Assume that Ê(t, x), ρ̂(t, x), N̂ (t, x) and

Ẽ(t, x), ρ̃(t, x), Ñ (t, x) are two different subclassical solutions of the MB equations satisfying

the same boundary and initial conditions (6). Denote u(t, x) = Ê(t, x) − Ẽ(t, x),
v1(t, x) = ρ̂(t, x) − ρ̃(t, x), v2(t, x) = N̂ (t, x) − Ñ (t, x). Substituting the two sets of solutions

in (B.5), (B.6) and taking the difference between them we obtain

u(t, x) = u(0, x− t) +

∫ t

0

v(s, x− t + s)ds, t ≤ x,

u(t, x) = u(t− x, 0) +

∫ x

0

v(t− x+ s, s)ds, t > x,

v1(t, x) = v1(0, x) +

∫ t

0

(
v2(s, x)Ê(s, x) + Ñ (s, x)u(s, x)

)
ds,

v2(t, x) = v2(0, x)−
∫ t

0

Re
(
v1(s, x)Ê(s, x) + ρ̃(s, x)u(s, x)

)
ds.

Since Ê, ρ̂, N̂ and Ẽ, ρ̃, Ñ satisfy the same boundary and initial conditions, we have u(t−x, 0) = 0

for t > x and u(0, x− t) = vj(0, x− t) = 0 for t ≤ x, j = 1, 2. Applying now the a priori estimates

(B.3), (B.4), we obtain

|u(t, x)| ≤ t · sup
(τ,y)∈[0,t]×[0,x]

|v1(τ, y)|, t ≤ x,

|u(t, x)| ≤ x · sup
(τ,y)∈[0,t]×[0,x]

|v1(τ, y)|, t > x,
(B.7)

and the estimates for v1, v2 will now also depend on whether t is greater or smaller than x:

|vj(t, x)| ≤ sup
(τ,y)∈[0,t]×[0,x]

|vj+1(τ, y)| ·
∫ t

0

(
|Ê(0, x− s)|+ s

)
ds+ t · sup

(τ,y)∈[0,t]×[0,x]

|u(τ, y)|, t ≤ x,

|vj(t, x)| ≤ sup
(τ,y)∈[0,t]×[0,x]

|vj+1(τ, y)| ·
(∫ x

0

(
|Ê(0, x− s)|+ s

)
ds+

∫ t

x

(
|Ê(s− x, 0)|+ x

)
ds

)

+ t · sup
(τ,y)∈[0,t]×[0,x]

|u(τ, y)|, t > x,

(B.8)

for j = 1, 2, where we identify v3 = v1. Applying the estimates (B.7), (B.8) for a point

(t̃, x̃) ∈ [0, t] × [0, x] and then taking supremum over [0, t] × [0, x], we obtain, after some

simplifications and after considering separately the cases t ≤ x and t > x, that for all t, x ≥ 0

sup
(τ,y)∈[0,t]×[0,x]

|u(τ, y)| ≤ t · sup
(τ,y)∈[0,t]×[0,x]

|v1(τ, y)|,

sup
(τ,y)∈[0,t]×[0,x]

|vj(τ, y)| ≤ sup
(τ,y)∈[0,t]×[0,x]

|vj+1(τ, y)| ·
(
t2

2
+ sup

∆:|∆|≤t

∫

∆

|Ê(0, s)|ds+
∫ t

0

|Ê(s, 0)|ds
)

+ t · sup
(τ,y)∈[0,t]×[0,x]

|u(τ, y)|, j = 1, 2,

(B.9)
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where supremum in sup
∆:|∆|≤t

∫
∆
|Ê(0, s)|ds is taken over all the intervals ∆ ⊂ [0,+∞) of length

smaller or equal than t.

Step 4: concluding estimates. Denote

M(t, x) = sup
(τ,y)∈[0,t]×[0,x]

|u(τ, y)|+ sup
(τ,y)∈[0,t]×[0,x]

|v1(τ, y)|+ sup
(τ,y)∈[0,t]×[0,x]

|v2(τ, y)|.

Note that in view of (B.3), |vj(τ, y)| ≤ 2 and thus the supremum of |vj |, j = 1, 2, is finite. In view

of the first estimate in (B.9), the supremum of |u| over a compact is also finite, and hence M(t, x)

is finite. Adding estimates in (B.9), we obtain

M(t, x) ≤
(
3t + t2 + 2 sup

∆:|∆|≤t

∫

∆

|Ê(0, s)|ds+
∫ t

0

|Ê(s, 0)|ds
)
M(t, x). (B.10)

Taking t = t1 > 0 sufficiently small such that the expression in the brackets in the right-hand side

of (B.10) is smaller than 1, we obtain that M(t, x) ≡ 0 for all 0 ≤ t ≤ t1, x ≥ 0, and hence the

functions Ê, ρ̂, N̂ and Ẽ, ρ̃, Ñ coincide in the strip [0, t1]× [0,+∞).

Step 5: extending the strip to the whole quarter-plane. Let t∗ be the supremum of all t, such

that the two sets of solutions coincide in the strip [0, t)× [0,+∞). We want to prove that t∗ = ∞.

Assuming for the contrary that t∗ is finite, we first note that from the continuity of ρ,N in the

direction (0, 1) and the continuity of E in the direction (1, 1) (as follows from (B.1)), it follows that

the two sets of solutions coincide also at the time t∗. Second, the a priori bounds (B.4) guarantee

that the property (B.2) is satisfied also for Ê(t∗, s). The Steps 1-4 can now be applied for the

quarter-plane t ≥ t∗, x ≥ 0, thus extending the strip where the two sets of solutions coincide. This

contradicts the definition of the point t∗, and the above contradiction shows that the two sets of

solutions coincide for all t ≥ 0, x ≥ 0. This finishes the proof of the Proposition.
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