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Abstract. We investigate the minimum number of cycles of specified
lengths in planar n-vertex triangulations G. It is proven that this number
is Ω(n) for any cycle length at most 3 + max{rad(G∗), d(n−32 )log3 2e}, where
rad(G∗) denotes the radius of the triangulation’s dual, which is at least log-
arithmic but can be linear in the order of the triangulation. We also show
that there exist planar hamiltonian n-vertex triangulations containing O(n)
many k-cycles for any k ∈ {dn− 5

√
ne, . . . , n}. Furthermore, we prove that

planar 4-connected n-vertex triangulations contain Ω(n) many k-cycles for
every k ∈ {3, . . . , n}, and that, under certain additional conditions, they
contain Ω(n2) k-cycles for many values of k, including n.
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1 Introduction

In this paper, a triangulation shall be a plane graph unless explicitly stated otherwise, i.e.
an embedded planar graph, in which every face is a triangle, but we exclude K3 so that a
triangulation shall here always be 3-connected. In a graph G, the length of a shortest cycle
in G is called its girth, and the length of a longest cycle its circumference. The latter will be
abbreviated to circ(G). For a graph G, its cycle spectrum is the set of all lengths of cycles
occurring in G. We will here be interested in counting cycles in triangulations. For a graph
G, a set X ⊂ V (G) is a cut if G −X has more connected components than G. A cut on k
vertices is a k-cut.

Hitherto, most results on the enumeration of cycles in n-vertex triangulations G focus on
the two ends of the cycle spectrum. Historically, the first result which can be interpreted
as a statement on counting cycles in triangulations is Euler’s formula, which implies that
G contains Ω(n) many 3-cycles. Hakimi and Schmeichel [9] presented tight upper and lower
bounds on the number of 3-cycles and 4-cycles as well as those graphs for which the bounds are
attained except for a few cases which were later completed by Alameddine [2]. In particular,
it follows from [9] that any n-vertex triangulation G contains Θ(n) many 3-cycles as well
as Ω(n) and O(n2) many 4-cycles. There exist infinitely many triangulations with a linear
number of 3-cycles (4-cycles), for instance 4-connected (5-connected) triangulations: a 3-cycle
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(4-cycle) in such a graph cannot be separating, so it must be the boundary of a triangular
face (the symmetric difference of the boundaries of two triangular faces sharing an edge).

Hakimi and Schmeichel also showed that there must occur Ω(n) and O(n2) many 5-
cycles. They conjectured a precise upper bound of 2n2 − 10n + 12 and this was confirmed
only very recently [8]. Moreover, they proved that in an n-vertex triangulation there are at
least 6n 5-cycles, and there are infinitely many triangulations attaining this bound. Since
in triangulations every inclusion-minimal cut induces a cycle, these results immediately give
information on the number of 3-, 4-, and 5-cuts in triangulations. For k > 5, Hakimi and
Schmeichel write that they “have no interesting lower bound” for the number of k-cycles.
This motivates the following question.

Problem 1. What can be said, asymptotically, about the minimum number of k-cycles oc-
curring in a given triangulation for k > 5?

Hakimi and Schmeichel [9] also proved that every triangulation is weakly pancyclic, i.e.
it contains cycles of all lengths between its girth, which is always three, and circumference.
It is however not true that every n-vertex triangulation G contains Ω(n) many k-cycles for
every integer k with 3 ≤ k ≤ circ(G): Hakimi, Schmeichel, and Thomassen [10] constructed
an infinite family of triangulations with exactly four hamiltonian cycles. And one cannot do
better: Kratochvil and Zeps [12] proved that if a triangulation different from K4 contains a
hamiltonian cycle, then it contains at least four of them. They also show that this theorem
holds for triangulations of arbitrary surfaces.

On the one hand, the results we just mentioned illustrate that a hamiltonian triangulation
may have very few hamiltonian cycles; on the other hand, a triangulation may be far from
hamiltonian. In the sixties Moon and Moser [19] proved that there are infinitely many n-
vertex triangulations that have circumference at most 9nlog3 2, and 40 years later Chen and
Yu [6] showed that this upper bound is best possible up to the constant factor.

In 1979 Hakimi, Schmeichel, and Thomassen proved that every 4-connected n-vertex
triangulation contains at least n/ log2 n hamiltonian cycles. This was improved in 2018
when Brinkmann, Souffriau, and Van Cleemput [3] showed that there is a linear number of
hamiltonian cycles in 4-connected triangulations. For very recent developments concerning
the enumeration of hamiltonian cycles in triangulations, we refer the reader to [1, 13, 15, 17].
It follows from a classic paper of Tutte [25] that in 4-connected n-vertex triangulations the
number of (n− 1)-cycles is also at least linear in n, and one can infer from papers of Thomas
and Yu [24] and Sanders [22] that the same holds for (n − 2)- and (n − 3)-cycles. (In fact,
[24] even yields a quadratic number of (n− 2)-cycles; we shall come back to this deep result
later on.) This naturally leads to the following question.

Problem 2. Are 4-connected n-vertex triangulations linearly pancyclic, i.e. do they contain
Ω(n) many k-cycles for every k ∈ {3, . . . , n}?

Mohar and Shantanam [18] have recently proven that in a 4-connected triangulation on n
vertices, every edge is contained in cycles of n−2 pairwise distinct lengths. They also showed
that there exists 5

12 ≤ λ ≤
2
3 such that any edge in any planar 4-connected n-vertex graph is

contained in cycles of λ(n − 2) pairwise distinct lengths, and conjectured that λ = 2
3 . The

lower bound 5
12(n− 2) was improved to n

2 + 1 in [16].
We mention that many problems in extremal graph theory revolve around finding, for a

fixed graph H, the maximum number of subgraphs isomorphic to H in an n-vertex graph in
some class G. For graphs H and G and a surface Σ, let C(H,Σ, n) be the maximum number
of copies of H in G, where the maximum is taken over all n-vertex graphs G that embed in Σ.
A very recent manuscript of Huynh, Joret, and Wood [11] gives a panoramic view of results
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in this area and determines, for any fixed surface Σ and any fixed graph H, the asymptotic
behaviour of C(H,Σ, n) as n→∞.

Let G be an embedded graph. We denote by G∗ the dual of G. If G is a plane graph, the
weak dual of G is obtained from G∗ by deleting the vertex corresponding to the unbounded
face of G. For a vertex v in G let v∗ be the face of G∗ corresponding to the vertex v. For
distinct vertices v and w in a graph G, we call a path with end-vertex v a v-path, and a v-
path with end-vertex w a vw-path. For a path P , its length is |E(P )|. The distance dG(v, w)
between v and w is defined as the length of a shortest vw-path in G. Whenever G is clear
from context, we replace dG by d. For a graph G, its radius and diameter are defined as

rad(G) := min
v∈V (G)

max
w∈V (G)

d(v, w) and diam(G) := max
v∈V (G)

max
w∈V (G)

d(v, w),

respectively. In this paper, a face will always include the facial walk bounding it. For a plane
graph G, we denote by F (G) its set of faces. For a cycle C in G, let intC be the set of all
vertices inside of C but not on C, and put IntC := V (C) ∪ intC. The former will be called
the interior of C, the latter the closed interior of C. The exterior extC and closed exterior
ExtC are defined analogously. For any v ∈ V (G), the neighbourhood NG(v) of v in G is
defined to be the set of vertices adjacent to v in G. We simply write N(v) if it causes no
ambiguity.

In Section 2 we show that the minimum number of k-cycles occurring in an n-vertex tri-
angulation G is Ω(n) for any k ∈ {3, . . . , 3+max{rad(G∗), d(n−32 )log3 2e}}. In Section 3, moti-
vated by finding hamiltonian triangulations—a superset of 4-connected triangulations—with
few long cycles, it is shown that there exist hamiltonian n-vertex triangulations containing
O(n) many k-cycles for any k ∈ {dn − 5

√
ne, . . . , n}. Moreover, we prove that 4-connected

n-vertex triangulations contain Ω(n) many k-cycles for any k ∈ {3, . . . , n}, and that, under
certain additional conditions, they contain Ω(n2) k-cycles for many values of k, including n.
The article concludes with comments on directions of future research and open problems in
Section 4.

2 Linearly many short cycles

We here show that an n-vertex triangulation contains linearly many cycles of every length
that is at most the radius of the triangulation’s dual or O(nlog3 2), whichever is greater.

The following definition will be useful. Let G be a 2-connected plane graph. For a
connected subgraph H of G∗, put

H∗ =
⋃
{v∗ : v ∈ V (H)},

i.e. a union of faces. Furthermore, let ∂H∗ be the subgraph of H∗ defined as

(V (H∗), {vw ∈ E(H∗) : vw is incident with exactly one face from H∗})

from which all isolated vertices are removed.
We will make use of the following lemma. A near triangulation is a 2-connected plane

graph all of whose bounded faces are triangular.

Lemma 1. Let G be a near triangulation on at least four vertices and D be the weak dual of
G. If at most two bounded triangular faces in G contain two edges of ∂D∗ and any bounded
triangular face in G that has some edge of ∂D∗ has all three of its vertices contained in ∂D∗,
then D is a path.
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Proof. We prove the statement by induction on the number of vertices of G. If |V (G)| = 4,
then G has exactly two bounded faces and D is a path of length one.

If |V (G)| > 4, then there must be a triangular face ∆ on vertices v1, v2, v3 such that ∆
has only one edge v1v2 contained in ∂D∗ and v3 is in ∂D∗ as well. Note that D − ∆∗ has
precisely two components H1, H2. Denote by G1 and G2 the near triangulations induced
by D − H1 and D − H2, respectively. We may assume that G1 has at most two bounded
triangular faces each containing two edges of ∂D∗1, where D1 is the weak dual of G1. By the
induction hypothesis, D1 is a path. Moreover, this implies that G2 has at most two bounded
triangular faces each containing two edges of ∂D∗2 as D1 has an end-vertex other than ∆∗,
where D2 denotes the weak dual of G2. Again, by the induction hypothesis, D2 and hence
D are paths.

For our first theorem’s proof we also need the following technical framework. Brinkmann,
Souffriau, and Van Cleemput [3] introduced so-called counting bases in order to enumerate
hamiltonian cycles in planar graphs. Making use of their method, we are able to solve
Problem 2 affirmatively; the details will be given in the next section. We recall the main
ingredients of this technique which we will then slightly modify so that we can count cycles
of a specified length.

Let G be a graph. A counting base for G is defined to be a triple (P, {CP }P∈P , σ), where
P ⊆ 2E(G), CP is a family of cycles in G for each P ∈ P, and σ : P → P is a function
satisfying the following properties.

(i) For every P ∈ P, CP is non-empty, and for every C ∈ CP , P ⊆ E(C);

(ii) for every P ∈ P, σ(σ(P )) = P 6⊆ σ(P ) and for every C ∈ CP , σ(C,P ) := (C − P ) ∪
σ(P ) ∈ Cσ(P ) (here we extend the function σ with abuse of notation) and σ(σ(C,P ), σ(P )) =
C;

(iii) for any distinct P1, P2 ∈ P and any C ∈ CP1 ∩ CP2 , σ(C,P1) 6= σ(C,P2);

(iv) for any P1, P2 ∈ P with P1 ∩ P2 = ∅ and any C ∈ CP1 ∩ CP2 , σ(C,P1) ∈ CP2 .

Condition (ii) immediately implies that for every P ∈ P, P is non-empty and for every
C ∈ CP , P 6⊆ E(σ(C,P )) and hence σ(C,P ) /∈ CP .

We will give a lower bound on the number of cycles in
⋃
P∈P CP by relating |

⋃
P∈P CP |

to |P|. To this end, we need to factor out the “overlap” when counting the number of cycles
by considering the following notion. Given a counting base C = (P, {CP }P∈P , σ), we define
for P ∈ P and C ∈ CP the overlap

oC(C,P ) := |{P ′ ∈ P : P ∩ P ′ 6= ∅ and C ∈ CP ′}|.

Furthermore, put
OC := max

P∈P, C∈CP
oC(C,P ).

Note that oC(C,P ) ≥ 1 for any P ∈ P and any C ∈ CP ; in particular, OC ≥ 1.
The following powerful tool is due to Brinkmann, Souffriau, and Van Cleemput [3]. We

include a proof for completeness’ sake.

Counting Base Lemma ([3, Theorem 1]). Let G be a graph and C = (P, {CP }P∈P , σ) 6= ∅
a counting base for G. Then ∣∣∣∣∣ ⋃

P∈P
CP

∣∣∣∣∣ ≥ |P|OC
.
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Proof. For a cycle C in G, let m(C) := |{P ∈ P : C ∈ CP }|. We have∣∣∣∣∣∣
⋃
p∈P
CP

∣∣∣∣∣∣ =
∑
P∈P

∑
C∈CP

1

m(C)
.

It is left to show that ∑
C∈CP

1

m(C)
≥ 1

OC

for every P ∈ P, an inequality we abbreviate by (†).
Let P be any element of P, and let C0 ∈ CP . We may assume that m(C0) > OC. Then

there exist t ≥ m(C0)−OC and P 1, . . . , P t ∈ P such that C0 ∈ CP i and P i ∩P = ∅ for every
i ∈ {1, . . . , t}. Note that C0, σ(C0, P 1), . . . , σ(C0, P t) are t+ 1 pairwise distinct cycles in CP .

We claim that m(σ(C0, P i)) ≤ m(C0)− 1 + OC. By definition,

m(σ(C0, P i)) = |{P ′ ∈ P : σ(C0, P i) ∈ CP ′}|.

We distinguish between two cases, depending on whether or not C0 ∈ CP ′ holds. As
σ(C0, P i) /∈ CP i , there are at most m(C0) − 1 many P ′ satisfying σ(C0, P i) ∈ CP ′ and
C0 ∈ CP ′ . For P ′ satisfying σ(C0, P i) ∈ CP ′ and C0 /∈ CP ′ , by the definition of a counting
base, we have that P ′ ∩ σ(P i) 6= ∅. Therefore, there are at most oC(σ(C0, P i), σ(P i)) many
such P ′. This justifies the claim.

As OC ≥ 1, we have

∑
C∈CP

1

m(C)
≥ 1

m(C0)
+

t∑
i=1

1

σ(C0, P i)
≥ 1

m(C0)
+

m(C0)−OC

m(C0)− 1 + OC
≥ m(C0)−OC + 1

m(C0) + OC − 1
.

Since m(C0)−OC+1
m(C0)+OC−1 is non-decreasing in m(C0) and m(C0) ≥ OC + 1, (†) holds.

We also require the following lemma (more precisely, its second part—its first part will
be useful later on). Thereafter, we can state and prove our first main result.

Lemma 2. Let G be a near triangulation, C be the boundary cycle of the unbounded face of
G, and v1v2, v2v3, v3v4 be three consecutive edges in C. Then the following hold.

(i) There exists a k-cycle in G containing v1v2v3 for every k ∈ I := {min{|E(C)|, |N(v2)|+
1}, . . . ,max{|E(C)|, |N(v2)|+ 1}}.

(ii) If v1 6= v4 and v2v3v4v2 is a triangular facial boundary, then there exists a k-cycle in G
containing v1v2v3v4 for every k ∈ I.

Proof. Let D0 be the weak dual of G. We construct a sequence of ` := |V (D0)| − |N(v2)|+ 1
subgraphs D1, . . . , D` of D0 by removing vertices one-by-one from D0 as follows. Suppose we
have already constructed Di for some i with 0 ≤ i < `. We may take v ∈ V (Di) such that
Di − v remains connected and the triangular face v∗ does not contain v2 but some edge in
∂D∗i . Define Di+1 := Di − v. It is not hard to see that this iterative procedure holds, every
∂D∗i is a cycle containing v1v2v3, ∂D

∗
` is the cycle on {v2} ∪N(v2), and∣∣|E(∂D∗i )| − |E(∂D∗i+1)|

∣∣ = 1

for all i ∈ {0, . . . , `−1}. Therefore, among these `+1 cycles ∂D∗i , there are k-cycles containing
v1v2v3 for all k ∈ I. This proves the first statement. Moreover, if v1 6= v4 and {v2, v3, v4}
induces a triangular face, then every cycle containing v1v2v3 must contain v3v4 as well. This
thus proves the second statement.
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Theorem 1. Let G be an n-vertex triangulation. For every integer k with 3 ≤ k ≤ 3 +
max{rad(G∗), d(n−32 )log3 2e} there are Ω(n) many k-cycles in G.

Proof. We first show that for every integer k with 3 ≤ k ≤ 3 + rad(G∗) there are Ω(n) many
k-cycles in G. Let v and w be two vertices in G∗. We claim that there is a vw-path P in G∗

such that P is an induced path in G∗ and ∂P ∗ is a cycle containing two edges of v∗ and two
edges of w∗. Assume that the unbounded face of G is neither v∗ nor w∗, and denote by D0

the weak dual of G. We construct a sequence of subgraphs D1, D2, . . . of D0 by successively
removing, one-by-one, vertices from D0 as follows. If there is a vertex u in Di that is neither
v nor w such that either ∂D∗i contains two edges of u∗, or ∂D∗i contains one edge of u∗ but
not all vertices of u∗, then we obtain Di+1 by deleting u from Di. It is clear that Di is always
a connected induced subgraph of D0 containing v, w and ∂D∗i is a cycle for all i.

Let D` be the graph we obtain when no further vertex can be removed. Then there is no
vertex v0 ∈ V (G) lying in the interior of ∂D∗` , as otherwise there would exist pairwise distinct
vertices v1, v2, v3 in ∂D∗` which can be reached from v0 by a v0v1-path, a v0v2-path, and a
v0v3-path, all three of which are pairwise internally disjoint. It is clear that in each of the
three regions of the closed interior of ∂D∗` formed by these three paths, there is a bounded
triangular face which either has two edges of ∂D∗` or has an edge of ∂D∗` and a vertex not
in ∂D∗` , yielding a contradiction, as we should then remove the corresponding vertex of one
such face that is neither v nor w from D`. Therefore, we can apply Lemma 1 to deduce that
D` is a path. It is also obvious that v and w are the end-vertices of D`. This implies that
∂D∗` is a cycle containing two edges of v∗ and two edges of w∗.

Let v be any vertex in G∗. By the claim above, we can find a v-path P in G∗ of length
r := rad(G∗) such that P is an induced path and ∂P ∗ is a cycle. We denote the vertices of P
by v, w1, . . . , wr. Let Pi ⊆ P be the vwi-path for all i ∈ {1, . . . , r}. As ∂P ∗ is a cycle, each
∂P ∗i is a cycle. The set C := {∂P ∗i }ri=1 contains exactly one k-cycle for each k ∈ {4, . . . , r+3},
and there exist edges e and f in v∗ such that the edge-set of the intersection of any cycle in
C with v∗ is {e, f}. We call this property (†).

We repeat the above procedure for every vertex in G∗, of which there are 2n−4 by Euler’s
formula. In this fashion, due to (†), any given cycle was counted at most twice. Hence, there
exist at least n− 2 k-cycles for every k with 3 ≤ k ≤ r+ 3. We remark that the cycles found
in the aforementioned proof have an empty interior or exterior. We have completed the first
part of the proof.

We now prove that for every integer k with 3 ≤ k ≤ 3 + d(n−32 )log3 2e there are Ω(n)
many k-cycles in G. For k ∈ {3, 4, 5} a linear lower bound on the number of k-cycles
follows from Euler’s formula and results of Hakimi and Schmeichel [9], as mentioned in the
Introduction. The case k = 6 can be inferred from the first part of this proof. So we may
assume 7 ≤ k ≤ d(n−32 )log3 2e + 3. An edge uv ∈ E(G) is said to be good if u and v have
precisely two common neighbours w1 and w2, and u or v has degree at most 6. We also call
w1uvw2 and w1vuw2 zigzag-paths with the internal edge uv, and we identify a zigzag-path
with its edge set. We define P to be the set of zigzag-paths having a good internal edge.

Let v ∈ V (G). Observe that NG(v) induces an outerplanar subgraph Hv of G, and hence
Hv has at least two vertices v1, v2 of degree 2. It is not hard to see that vv1 and vv2 are good
edges provided that v has degree at most 6 in G. Together with the fact that G has average
degree less than 6, we conclude that |P| ∈ Ω(n).

For any P ∈ P, we define CkP to be the family of k-cycles C with E(C) ⊃ P and σ(P ) :=
w1vuw2 when P = w1uvw2. We claim that Ck = (P, {CkP }P∈P , σ) is a counting base. It
suffices to show that CkP 6= ∅ for every P ∈ P. Let P = w1uvw2 be an element of P. We may
assume that v has degree at most 6.

Recall that a circuit graph is a pair (G0, C0), where G0 is a 2-connected plane graph and
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C0 is a facial cycle of G0, such that for any 2-cut S of G0, every component of G0−S contains
a vertex of C.

Now, we take G0 := G−u−v. Since uv is a good edge, u, v lie in a face which is bounded
by a cycle, denoted by C0, containing w1, w2. Therefore (G0, C0) is a circuit graph. By [23,
Lemma 2.3] there is a w1w2-path in G0 of length at least (n−32 )log3 2, which can be extended to
a cycle C in G containing P of length at least (n−32 )log3 2 + 3. As P is a zigzag-path, without
loss of generality, we may assume that there is precisely one face incident with v lying in the
exterior of C. Therefore, there are at most five faces incident with v lying in the interior of
C. It follows from Lemma 2(ii) that there is a k-cycle containing P as k ≥ 7 ≥ |NG(v)|+ 1.
This assures that CkP 6= ∅.

As |P| ∈ Ω(n) and OCk
≤ 5, applying the Counting Base Lemma to the counting base Ck

yields that there are Ω(n) k-cycles.

For a given n-vertex triangulation G, the radius of G∗ is at least logarithmic in n, but
it can be linear: consider double wheels (i.e. the join of K2 and a cycle), whose duals are
prisms.

It follows from a series of papers that planar 4-connected graphs on n vertices contain
a k-cycle for every k ∈ {n − 7, . . . , n}; for details, see [7]. Taking the proof technique of a
work by Alahmadi, Aldred, and Thomassen [1] into account, it is straightforward to infer
the presence of an exponential number of k-cycles in 5-connected triangulations on n vertices
for every k ∈ {n − 7, . . . , n}. It remains an open question whether for every 5-connected
triangulation G there exists a subset S of the cycle spectrum of G such that |S| ∈ ω(1) and
G contains exponentially many k-cycles for every k ∈ S.

3 Linearly many long cycles

As we have mentioned in the introduction, there are infinitely many n-vertex triangulations
with no k-cycle for all k > 9nlog3 2, see [19]. So in the family of all triangulations the minimum
number of hamiltonian cycles—and indeed the minimum number of long cycles—is simply
0. However, it is a classic problem to investigate how few hamiltonian cycles may occur
if we impose the presence of at least one hamiltonian cycle. (We point out that, from a
more general perspective, Alahmadi, Aldred, and Thomassen [1] observed that a 4-connected
hamiltonian triangulation on any fixed surface may have at most O(n4) cycles.) In 1979,
Hakimi, Schmeichel, and Thomassen showed that there is an infinite family of triangulations
with exactly four hamiltonian cycles [10], and this is a lower bound for the minimum number of
hamiltonian cycles in any hamiltonian triangulation on at least 5 vertices [12]. This motivates

the following result; therein, we will make use of the function g : N → N, t 7→
⌈
(t−3)(t−4)

12

⌉
and, in contrast to all other parts of this paper, not restrict ourselves to the spherical case.

Theorem 2. Consider an integer t ≥ 4 with t = 0, 3, 4, 7 mod. 12, and let f : N→ R≥1 be a
function such that there exists an n0 such that for all n ≥ n0 we have f(n) < n

t − 1. Then
there exists an infinite family G of hamiltonian triangulations of genus g(t) such that every
G ∈ G with n := |V (G)| contains O(f(n)2t−3) k-cycles for any k ∈ {dn− f(n)e, . . . , n}.

Proof. Let W be the join of K2 and a cycle D, i.e. a double wheel. Let vw ∈ E(D). vw lies
in the boundary of exactly two facial triangles, avw and bvw. We call W − vw+ ab a flipped
double wheel, and w its apex.

By the Map Colour Theorem of Ringel and Youngs [21] we can embed Kt on a surface of
genus g(t). Consider G ∼= Kt; it is well-known that for the given values of t, the embedding
is a triangulation. We first treat the case when t = 4. Consider the infinite family of
triangulations given in Figure 1. It consists of a complete graph on four vertices a, b, c, d with
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a flipped double wheel inserted into each of its four triangles. We call these triangles as well
as the vertices a, b, c, d original. We insert the same number p of vertices into each original
triangle. We denote this graph by Gp. Put n := |V (Gp)| = 4p+ 4. Henceforth, we assume p
to be large; moreover, the proof uses the embedding of Gp given in Figure 1.

a b

c

d

Figure 1: The plane graph Gp.

In Gp, consider a k-cycle C with k > 3p+ 4. For any fixed original triangle ∆, the cycle
C cannot exit int∆ towards an original vertex and then re-enter int∆. Let ∆ be an original
triangle with vertices x, y, z such that z is cubic in Int∆. Consider the path P := C ∩ Int∆.
Either P is an xy-path, in which case we call this traversal of ∆ flexible, or P is an xz- or a
yz-path, in which case we call this traversal fixed. For any non-negative integer q ≤ p, there
are O(q) flexible traversals avoiding exactly q+ 1 vertices in Int∆, and a constant number of
fixed traversals avoiding exactly q+ 1 vertices in Int∆. As k > 3p+ 4, the cycle C must visit
the vertex c (as defined in Figure 1) and ac, bc, cd /∈ E(C), so at most two traversals of the
interiors of original triangles are flexible.

Let ∆1,∆2,∆3,∆4 be the four original triangles of Gp. Put q := n− k and let qi denote
the number of vertices C avoids in int∆i so that q = q1 + q2 + q3 + q4. It is well-known
that there are

(
q+3
3

)
possible variations for C. We have shown above that a k-cycle C with

k > 3p + 4 admits at most two flexible traversals, so that there are in total O(q5) cycles of
length n− q in Gp for all q < n

4 − 1.
We now use the same strategy for the case when t > 4. Consider v ∈ V (G). Insert into

each of the t− 1 triangular faces surrounding v a flipped double wheel on p+ 3 vertices such
that its apex is identified with v. Among the triangles sharing an edge with G[N(v)] but not
incident with v, choose one arbitrarily and insert thereinto a flipped double wheel as well.
We call the resulting graph Gp. In Gp, consider a k-cycle C with k > (t − 1)p + t. It is
not difficult to see that among the t flipped double wheels present in Gp, at least two of C’s
traversals of flipped double wheels are fixed (as defined in the third paragraph of this proof).
This yields at most t − 2 flexible traversals. Put q := n − k. Arguing as above, there are(
q+t−1
t−1

)
possibilities for C to avoid q vertices. We obtain in total O(q2t−3) cycles of length

n− q for all q < n
t − 1.

One can infer immediately from the above result the following corollary.

Corollary 1. For any non-negative integers c, t there exists a constant c′ > 0 and an infinite
family G of triangulations of genus g(t) such that any G ∈ G contains at least one and at
most c′ k-cycles for any k ∈ {dn− ce, . . . , n}. Furthermore, there exists an infinite family G
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of triangulations of the sphere such that any G ∈ G contains at least one and at most O(n)
many k-cycles for any k ∈ {dn− 5

√
ne, . . . , n}, and an infinite family G′ of triangulations of

the torus such that any G ∈ G′ contains at least one and at most O(n) many k-cycles for any
k ∈ {dn− 11

√
ne, . . . , n}.

We now discuss 4-connected triangulations and recall that by a classic theorem of Whit-
ney [26], these form a subclass of the family of all hamiltonian triangulations. Alahmadi,
Aldred, and Thomassen [1] showed that every 5-connected triangulation has exponentially
many hamiltonian cycles. Lo and Qian [17] extended this result by proving that every 4-
connected triangulation with O(n) many 4-cuts has exponentially many hamiltonian cycles.
For an integer n ≥ 5, the join G of Cn−2 and K2—the so-called double wheel, which is 4-
connected—satisfies c3(G) ∈ Θ(n) and ck(G) ∈ Θ(n2) for all k ≥ 4; here, for a given graph
G, we denote by ck(G) the number of k-cycles occurring in G. We emphasise that thus,
perhaps contrary to intuition, in 4-connected triangulations no better solution to Problem 1
than a quadratic one can be achieved. Double wheels have Θ(n2) 4-cuts, and no 4-connected
triangulation with fewer hamiltonian cycles than a double wheel is known. Indeed, Hakimi,
Schmeichel, and Thomassen [10] conjecture that every 4-connected n-vertex triangulation G
has at least 2(n − 2)(n − 4) hamiltonian cycles1, with equality if and only if G is a double
wheel. As already pointed out by Lo and Qian, it is intriguing to observe that few 4-cuts
seem to imply many hamiltonian cycles, and vice-versa.

The next theorem’s first part answers Problem 2 affirmatively, while its second part proves
that, under certain circumstances, 4-connected triangulations contain a quadratic number of
k-cycles for many values of k. We emphasise here the important open problem to determine
whether there exists a k such that every n-vertex triangulation contains Ω(n2) k-cycles.

Theorem 3. (i) Every n-vertex triangulation with at most one separating triangle contains
Ω(n) k-cycles for every k ∈ {3, . . . , n}.

(ii) Let G be a 4-connected n-vertex triangulation. Suppose there is a set S of separating
4-cycles in G with

ι :=
∣∣{(C,C ′) ∈ S × S : C ∩ C ′ ∼= K2}

∣∣.
Then G contains Ω(|S|/(ι+ 1)) k-cycles for every k ∈ {dn2 +

√
n
2 − 2e+ 2, . . . , n}.

Proof. (i) First, assume that 7 ≤ k ≤ n. Let G be a triangulation on n vertices. For any
edge uv in G, there are exactly two vertices w1, w2 such that {u, v, w1} and {u, v, w2} induce
triangular faces in G. We call w1uvw2 and w1vuw2 zigzag-paths with internal vertices u, v.
We may identify a zigzag-path with its edge set, and define P to be the set of zigzag-paths
that have all internal vertices of degree at least 4 and at least one internal vertex of degree
at most 6. As G has at most one cubic vertex and average degree less than 6, we have that
|P| ∈ Ω(n). For any P ∈ P, we define CkP to be the family of k-cycles C with E(C) ⊃ P and
σ(P ) := w1vuw2 when P = w1uvw2.

We claim that Ck = (P, {CkP }P∈P , σ) is a counting base. It is left to show that every
element of P can be extended to a cycle of length k for any given k ≥ 7.

Let k be an integer satisfying 7 ≤ k ≤ n. We now show that CkP is non-empty for every
P ∈ P. By [5, Lemma 14(i)] there is a hamiltonian cycle h in G that contains P . Denote by v
an internal vertex of P of degree at most 6. As P is a zigzag-path, without loss of generality,
we may assume that there is precisely one face incident with v lying in the exterior of h.
Therefore, there are at most five faces incident with v lying in the interior of h. It follows
from Lemma 2(ii) that there is a k-cycle containing P in Inth as k ≥ 7 ≥ |NG(v)|+ 1. Hence
we conclude that CkP 6= ∅.

1Very recently, this conjecture has been solved asymptotically, see [14].
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As |P| ∈ Ω(n) and OCk
≤ 5, we resolve Problem 2 for k ≥ 7 by applying the Counting

Base Lemma to the counting base Ck. As already mentioned in the proof of Theorem 3, for
k ∈ {3, 4, 5} we get a linear lower bound on the number of k-cycles by Euler’s formula and
results of Hakimi and Schmeichel [9], while the case k = 6 follows from Theorem .

(ii) In this part, we define P to be the set of pairs of independent edges in 4-cycles from
S, i.e. for any P ∈ P, there exists a 4-cycle v1v2v3v4v1 ∈ S such that P = {v1v2, v3v4}.
Furthermore, we define σ(P ) := {v1v4, v2v3} and CkP to be the family of k-cycles C satisfying
that P ⊂ E(C) and C − P is the union of a v1v3-path and a v2v4-path. To show that
Ck := (P, {CkP }P∈P , σ) is a counting base, it is left to verify that CkP is non-empty.

Let P ∈ P with P = {v1v2, v3v4} and C = v1v2v3v4v1 ∈ S. Without loss of generality
we assume that |intC| ≤ n

2 − 2. Put j := |extC| ≥ n
2 − 2, d1 := dExtC−v2−v4(v1, v3), and

d2 := dExtC−v1−v3(v2, v4). We claim that (d1−1)(d2−1) ≤ j. Denote by Li the set of vertices
of ExtC−v2−v4 at distance i from v1. It is not difficult to see that for any i ∈ {1, . . . , d1−1}
there is a path P i in the graph induced by Li with one end-vertex in N(v2) and one other in
N(v4) (here we include the case that P i consists of only one vertex which is in N(v2)∩N(v4)).
Note that P i has length at least d2 − 2. Thus j ≥

∑d1−1
i=1 |Li| ≥ (d1 − 1)(d2 − 1), from which

we obtain that d1 ≤
√
j + 1 or d2 ≤

√
j + 1; without loss of generality assume the former

holds.
By the theorem of Thomas and Yu [24] stating that in a planar 4-connected graph the

removal of any pair of vertices yields a hamiltonian graph, ExtC − v2 − v4 contains a hamil-
tonian v1v3-path. By applying Lemma 2(i) to a (d1 + 2)-cycle containing v1v2v3 and to a
(j + 3)-cycle containing v1v2v3 in ExtC − v4, respectively, we obtain that ExtC − v2 − v4
contains a v1v3-path of length k for every integer k satisfying

√
j + 1 ≤ k ≤ j + 1. Once

more invoking the aforementioned theorem of Thomas and Yu, we know that there exists a
hamiltonian v2v4-path in IntC−v1−v3. As a cycle can be obtained by adding edges v1v2, v3v4
to the union of a v1v3-path in ExtC − v2 − v4 and a v2v4-path in IntC − v1 − v3, for every
integer k satisfying n

2 +
√

n
2 − 2 + 2 ≤ k ≤ n we have that CkP 6= ∅ for every P ∈ P. We can

conclude that for these k, the triple Ck = (P, {CkP }P∈P , σ) is a counting base.
Note that |P| = 2|S| and OCk

≤ ι+ 1. We complete the proof by applying the Counting
Base Lemma to the counting base Ck.

If there are two vertices having t common neighbours, then there is a set S of separating
4-cycles with |S| ∈ Ω(t2) and ι := |{(C,C ′) ∈ S × S : C ∩ C ′ ∼= K2}| = 0. This yields the
following corollary of Theorem 3(ii).

Corollary 2. Every 4-connected n-vertex triangulation with two vertices having Θ(n) com-
mon neighbours contains Ω(n2) k-cycles for every k ∈ {dn2 +

√
n
2 − 2e+ 2, . . . , n}.

For every integer k ≥ 4, Theorem 3(i) is not true for triangulations with k separating
triangles as there exist infinite families of such triangulations with a constant number of
hamiltonian cycles; for k ∈ {4, 5} see [3], and for k ≥ 6, infinitely many non-hamiltonian
examples are easy to describe using toughness arguments. We do not know whether The-
orem 3(i) can be extended to all triangulations containing at most two or at most three
separating triangles.

We conclude this section with an application of Theorem 3(i) to general (i.e. not neces-
sarily 4-connected) triangulations.

Corollary 3. Let G be an n-vertex triangulation containing a triangle ∆ such that Int∆ is a
triangulation containing at most one separating triangle and Θ(n) vertices. Then G contains
Ω(n) many k-cycles for all k ∈ {3, . . . , |V (Int∆)|}.
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4 Notes

1. It remains an open question whether there exists a k such that every n-vertex triangulation
contains Ω(n2) many k-cycles. We do know by Theorem 3(ii) and Corollary 2 that under
certain conditions 4-connected n-vertex triangulations contain Ω(n2) k-cycles for many values
of k, and that every such triangulation contains Ω(n2) many (n− 2)-cycles by a theorem of
Thomas and Yu [24], and Ω(n2) many n-cycles by a very recent breakthrough result of Liu,
Wang, and Yu [14]. Although not explicitly stated, the latter work also implies the presence
of Ω(n2) many (n− 1)-cycles in 4-connected n-vertex triangulations.

2. As mentioned in the introduction, Mohar and Shantanam [18] showed that in an 4-
connected n-vertex triangulation G, every edge in G is contained in a k-cycle for every
k ∈ {3, . . . , n}. It would be interesting to investigate to which degree this can be strengthened
in an enumerative sense. While there are always exactly two 3-cycles through any given edge,
already for 4-cycles the situation is more diverse: any edge in any triangulation on at least five
vertices lies on at least four 4-cycles, but there exist triangulations such as the double wheels
in which many edges lie on a linear (in the graph’s order) number of 4-cycles. Furthermore,
there exists a length k, depending on n, for which we can guarantee that every edge in every
4-connected triangulation lies in an at least linear number of k-cycles: it follows from a result
of Ozeki and Vrána [20] that, given a planar 4-connected graph G, for any 2-element set
X ⊂ E(G)∪E(G), the graph G∪X admits a hamiltonian cycle containing X. Thus, for any
pairwise distinct v, w1, w2 ∈ V (G), where w1 and w2 are adjacent, we obtain a hamiltonian
cycle in G − v passing through w1w2. Hence, for any n-vertex planar 4-connected graph G
and any edge e therein, G contains Ω(n) many (n − 1)-cycles containing e. In fact, double
wheels show that one cannot do better than a linear bound for (n − 1)-cycles through a
specific edge.

3. In analogy to Tutte’s celebrated result that planar 4-connected graphs are hamiltonian [25],
one can ask how the problems and conjectures in this paper relate to the larger family of
planar 4-connected graphs. While this class is known to contain Ω(n) hamiltonian cycles [4],
in stark contrast to 4-connected triangulations, some of its members are not even pancyclic,
as 4-cycles might not be present (consider the line-graph of the dodecahedron).
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