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Novel low-pass filter with adjustable parameters
of exponential-type forgetting

Ivo Petráš, Senior Member, IEEE

Abstract—In this paper, a novel form of Gaussian filter, the
Mittag-Leffler filter, is presented. This new filter uses a Mittag-
Leffler function in the probability density function. Such Mittag-
Leffler distribution is used in the convolution kernel of the
filter. The filter has three parameters that may adjust the curve
shape due to the filter forgetting factor. Illustrative examples
present the main advantages of the proposed filter as compared
to classical Gaussian filtering techniques. Some implementation
notes, together with the Matlab function, are also presented.

Index Terms—Exponential-type forgetting, Gaussian function,
Gaussian filter, Mittag-Leffler function, Mittag-Leffler filter.

I. INTRODUCTION

F ILTERING is processing a signal whereby some un-
wanted components or properties are removed from the

signal or some aspects of the signal are suppressed. It often
means removing some frequencies or frequency bands from
the signal. However, we do not have to use filters exclusively
in the frequency domain, and certain frequency components
can be removed without having to act in the frequency domain.
Filters are widely used, for example, in signal processing in
electronics and telecommunications, in radars, control systems
sensors, as well as image processing, and computer graphics.
Various forms of filters are used, for instance, the Laplacian
filter [1], Bayesian filter [2], Gaussian filter [3], and so on.

This paper describes a new filter based on the famous
Gaussian filter. It is well known that this filter is often used
in many areas of signal and image processing for smoothing
and noise reduction, e.g., [4], [5], [6], [7]. It is a convolutional
filter that uses a Gaussian function as a convolution kernel and
mathematically adjusts the input signal by convolution with
a Gaussian function. In other words, a Gaussian filter is a filter
whose impulse response is a Gaussian function. Among other
things, these filters have the important property that they do
not overshoot at the input of the step function and, at the same
time, minimize the rise and fall time. This behavior is closely
related to the Gaussian filter having the minimum possible
group delay.

The main contributions of this paper are as follows:
• generalization of the Gaussian filter to the novel form,

based on the Mittag-Leffler distribution function,
• suggestion of the implementation algorithm for the new

Mittag-Leffler filter with adjustable forgetting parameters.
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The structure of this paper is as follows. Section I briefly
describes the introduction to the problem. Section II presents
the essential mathematical tools. The main results are shown in
Section III. The illustrative examples are presented in Section
IV to demonstrate the benefits of the proposed new filter.
Finally, some concluding remarks are given in Section V.

II. PRELIMINARIES

A. Gaussian function and Gaussian distribution

The Gaussian function, named after Johann Carl Friedrich
Gauss is a function that can be expressed in elemental form

f(x) = ae−
(x−b)2

2c2 , (1)

for arbitrary real parameters a, b, and c > 0.
Gaussian functions (1) are often used in statistics to repre-

sent the probability density function (PDF) of a normal shifted
distribution (a.k.a. Gauss distribution) for a real-valued random
variable with expected value (or mean) b = µ and variance
c2 = σ2. The general form of its PDF φ(x) is

φ(x;σ) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

, (2)

where the variable µ ∈ R is the mean (or expectation) of the
distribution, while the positive variable σ ∈ R is its standard
deviation. The variance of this Gauss distribution is then σ2.

The simplest case of the normal distribution is known as the
normal unit distribution or the standard normal distribution.
This is a particular case when σ = 1 and µ = 0. It means that
x has variance, standard deviation of 1, and mean of 0.

Except for the mentioned utilization of the Gaussian func-
tion as PDF for normal distribution, we may use it in signal
processing to define Gaussian filters and image processing,
where a two-dimensional Gaussian filter is used for blurs.

Moreover, the exponential law is the classical approach
to studying the dynamics of systems, but there are many
systems where dynamics obey a faster or slower law than the
exponential law. In that case, the Mittag-Leffler function can
best describe such anomalous dynamics changes [8].

B. Mittag-Leffler function and Mittag-Leffler distribution

The Mittag-Leffler function Eα,β(z), named after Magnus
Gustaf Mittag-Leffler, is a special function that depends on two
parameters, α, and β. It may be expressed by the following
series [9]:

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0, z ∈ C, (3)
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where Γ(.) is the gamma function, for β = 1, we obtain a one-
parameter Mittag-Leffler function Eα,1(z) ≡ Eα(z).

The Mittag-Leffler function is sometimes called the queen
of the functions [10]. There are relations between this function
and other functions, for instance:

E1,1(z) = ez, E0+,1(−z2) =
1

1 + z2
, E2,1(−z2) = cos(z).

(4)
The Mittag-Leffler function appears naturally in the so-

lution of fractional differential equations, which is essential
in fractional calculus theory [9]. The ordinary and gener-
alized Mittag-Leffler functions interpolate between a purely
exponential-law and power-law behavior. It is an important
property that may be used in a filter with variable exponential
forgetting. However, there are methods where the fractional
calculus (fractional-order derivatives/integrals) can be directly
used in filter design and signal processing [11], [12], [13].

Fig. 1. Mittag-Leffler function Eα,1(−x2) for various parameter α within
interval α ∈ (0; 1] and fixed β = 1.

Fig. 2. Mittag-Leffler function Eα,1(−x2) for various parameter α within
interval α ∈ [1; 2] and fixed β = 1.

Fig. 1 and Fig. 2 plot the Mittag-Leffler function Eα,1(−x2)
behavior for various values of α and β = 1, respectively.

Furthermore, the Mittag-Leffler distribution with parameter
α proposed in [16] can be written by the PDF as:

φ(x;σ, α) =

√
σ

π
Γ
(α

2

)
Eα,α

(
−σ(x− µ)2

)
, (5)

where 0 < α ≤ 1, σ > 0, and µ ∈ R. Earlier, in 1990, it
was proved by Pillai [14] that the Mittag-Leffler distribution
with parameter α is attracted to the stable distribution only
with exponent α, 0 < α ≤ 1. It is related to the behavior of
the Mittag-Leffler function depicted in Fig. 1. Hence, function
1 − Eα,1(−xα) is the cumulative distribution function of
a probability measure on the non-negative real numbers.

Mittag-Leffler distribution with parameters α and β can be
written by the PDF as [16]:

φ(x;σ, α, β) =

√
σ

π
Γ
(
β − α

2

)
Eα,β

(
−σ(x− µ)2

)
, (6)

where β ≥ α in (6). For α = β, we get the distribution
described by (5). Some other important properties and relations
to stochastic processes can be found in [14], [15], [16], [17].

However, as we may observe in Fig. 2, the behavior of
the Mittag-Leffler function for parameter α > 1 leads to
oscillations, and therefore such distribution is related to a neg-
ative probability. Many authors have already observed such
behavior, for instance, in 1942 Paul Dirac [18], and in 1987
Richard Feynman [19]. Recently, Leonenko and Podlubny
have shown that extension of the Monte Carlo approach to
fractional differentiation of orders higher than one led to
working with signed probabilities that are not necessarily
positive [20]. We adopted this idea for further consideration,
and we will use the following form of the Mittag-Leffler
distribution with its PDF:

φ(x;σ, α, β) =
1

σ
√

2π
Eα,β

(
− (x− µ)2

2σ2

)
, (7)

where σ, α, and β are positive filter parameters, and µ is the
mean value of an independent variable x usually denoted by
symbol x̄.

It should also be noted that the Mittag-Leffler distribution
is connected to related and other families of distributions [21].

III. MAIN RESULTS

A. Formulation

In general, the objective of the filter is to extract a true
signal from the noisy measured signal

y(t) = yd(t) + ys(t), (8)

where y(t) is the observed (measured) signal at the time t,
yd(t) is the true, deterministic part of the signal, and ys(t)
is a stationary noise, stochastic (random) part in the signal,
which we assume that it has zero mean.

Let us recall the Gaussian low-pass filter in the time domain,
which is defined as the convolution of measured (observed)
signal y(t), and the Gauss function φ(t;σ) is as follows

yGf (t) = y(t) ∗ φ(t;σ) =

∫ ∞
−∞

y(t− τ)φ(τ ;σ)dτ, (9)

where yGf (t) is an output from the filter, i.e., filtered signal.
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B. Proposed method

Following the idea of a generalization of the exponential
function to the Mittag-Leffler function of two parameters,
a novel filter, let us name it the Mittag-Leffler filter, can be
defined as follows

yMLf (t) = y(t)∗φ(t;σ, α, β) =

∫ ∞
−∞

y(t−τ)φ(τ ;σ, α, β)dτ.

(10)
Obviously, we obtain the classical Gaussian filter (9) for

parameters α = 1 and β = 1. Moreover, we obtain many
filters with adjustable forgetting factors with α, β, and σ as
tuning knobs. In other words, we can shape the curve of the
probability density function. On the other hand, the different
distribution shapes mean that we use a different distribution
functions, for example, Cauchy distribution, normal distribu-
tion, and many others from this family.

Taking into account the Mittag-Leffler distribution (7) and
filter definition (10), we can write the novel filter as:

yMLf (t) =
1

σ
√

2π

∫ ∞
−∞

y(t− τ)Eα,β

(
− (τ − τ̄)2

2σ2

)
dτ.

(11)
Such a three-parameter filter is more flexible than the

classical one and has more degrees of freedom due to the
additional tuning parameters α and β with which we can shape
the distribution curve and, therefore, exponential forgetting.

C. Implementation notes

For practical implementation of Gaussian filter in discrete-
time domain, we may use methods described, for instance,
in [22], [23]. The Gaussian filter (9) is not causal, meaning
the filter window is symmetric in the time domain. It makes
the Gaussian filter physically infeasible because the Gaussian
function (1) for x ∈ (−∞,∞) would theoretically require
an infinite window length. For practical implementation, it is
reasonable to shorten the filter window and use it directly for
narrow windows. However, in some cases, this truncation can
cause significant errors. In real-time systems, there is a delay
because the incoming samples must fill the filter window
before the filter can be applied to the signal being processed.
The Gaussian filter kernel in the convolution is continuous.
The most common replacement for the continuous kernel is
the discrete equivalent sampled Gaussian kernel, represented
by sampling points from the continuous Gaussian kernel.
Instead of integration operation in convolution, the summation
operation over all samples can be used.

It is also well-known that conventional averaging filters
based on a moving average, or based on a weighted moving
average with exponential forgetting, are not always suitable
for their method of assigning weights to older samples of the
filtered signal because a frequent request is that the lowest
weight was not assigned to the oldest sample, but the sample
with a high proportion of the stochastic component. On the
other hand, such filters ensure a quick response to a change to
a deterministic or stochastic component by assigning a higher
weight to more current components. A requirement is also
that the filter algorithm was mathematically and programming
relatively simple for use even in digital controllers with limited

computing capacity and so that the use of the filter was not
limited due to a large number of stochastic values in the
measured waveforms.

We may expect similar problems as mentioned above in
the Mittag-Leffler filter implementation. Moreover, the Mittag-
Leffler function brings some problems with its implementation
in real-time applications due to the infinity upper sum limit in
the definition. This problem can be circumvented by using the
definition of the Mittag-Leffler function in the integral form
[9]. However, there can be a problem with the numerical in-
tegration method. These limitations were partially solved, and
Podlubny and Kacenak proposed a practical implementation
algorithm for the Mittag-Leffler function as a Matlab function
[24]. For further investigation, we use their function:

function [e]=mlf(alf,bet,c,fi)
%
% MLF -- Mittag-Leffler function.
% MLF(alpha,beta,Z,P) is the Mittag-Leffler function
% E_{alpha,beta}(Z) evaluated with accuracy 10ˆ(-P)
% for each element of Z, alpha and beta are scalars,
% P is integer, Z can be a vector or a 2-dimensional
% array. The output is of the same size as Z.

Aforementioned filter (11) can be easily implemented as
a Matlab function using function mlf(alf,bet,c,fi).
The Matlab code of the suggested Mittag-Leffler filter (11)
is the following [25]:

function [y_filt] = ML_filter(t,y,sigma,alpha,beta)
%
% Mittag-Leffler filter
% Inputs: t = independent variable, e.g., time
% y = noisy data to be filtered at points t
% sigma = standard deviation
% alpha, beta = parameters of Mittag-Leffler function
% Output:y_filt = filtered data given in variable y
%
n = length(y);
a = 1/(sqrt(2*pi)*sigma);
dt = diff(t); dt = dt(1);
%
filter=dt*a*mlf(alpha,beta,-0.5*((t-mean(t)).ˆ2)/...
(sigma.ˆ2));
%
y_filt = conv(y, filter, ’same’);
Ones2Filter = ones(size(y));
Ones_Filter = conv(Ones2Filter, filter, ’same’);
y_filt = y_filt./Ones_Filter;

IV. ILLUSTRATIVE EXAMPLES

For an illustration of the Mittag-Leffler filter benefits, we
use the filter (11). The sampling interval is 0.01 in both cases.

In the first example, we compare the Gaussian and Mittag-
Leffler filters on the noisy signal given by the function y1(t) =
e−tsin(3t+ 1) with random noise from a normal distribution.

In Fig. 3 is depicted the noisy signal y1(t), ideal curve
without noise, and filtered signal yf (t) with filter (11) and the
filter parameters σ = 0.2, α = 1.00, β = 1.00. For these
parameters α and β, we obtain the Gaussian filter (9).

In Fig. 4 is shown the noisy signal y1(t), ideal curve without
noise, and filtered signal yf (t) with filter (11) and the filter
parameters σ = 0.2, α = 1.20, β = 1.00. Thus we get the
Mittag-Leffler filter.

In the second example, we compare the Gaussian filter
and the Mittag-Leffler filter on the noisy signal given by the
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Fig. 3. Gaussian filter with parameters σ = 0.2, α = 1.00, β = 1.00
applied on noisy test signal y1(t) and comparison with ideal curve.

Fig. 4. Mittag-Leffler filter with parameters σ = 0.2, α = 1.20, β = 1.00
applied on noise test signal y1(t) and comparison with ideal curve.

function y2(t) = sin(πt/0.7) + cos(2πt) with random noise
from a normal distribution.

Fig. 5 shows the noisy signal y2(t), ideal curve without
noise, and filtered signal yf (t) with filter (11) and the filter
parameters σ = 0.1, α = 1.00, β = 1.00. Such parameter
values for α and β lead to the classical Gaussian filter (9).

In Fig. 6 is presented the noisy signal y2(t), ideal curve
without noise, and filtered signal yf (t) with filter (11) and the
filter parameters σ = 0.1, α = 0.95, β = 0.90. Obviously,
for these parameters set, we get the Mittag-Leffler filter.

TABLE I
MEAN SQUARED ERRORS COMPARISON

Figure Signal Filter (11) parameters (σ, α, β) MSE value
#3 y1(t) σ = 0.2, α = 1.00, β = 1.00 0.0027
#4 y1(t) σ = 0.2, α = 1.20, β = 1.00 0.0019
#5 y2(t) σ = 0.1, α = 1.00, β = 1.00 0.0233
#6 y2(t) σ = 0.1, α = 0.95, β = 0.90 0.0138

Table I has summarized the comparison of the mean squared

Fig. 5. Gaussian filter with parameters σ = 0.1, α = 1.00, β = 1.00
applied on noisy test signal y2(t) and comparison with ideal curve.

Fig. 6. Mittag-Leffler filter with parameters σ = 0.1, α = 0.95, β = 0.90
applied on noise test signal y2(t) and comparison with ideal curve.

errors (MSE) for two test signals and different sets of the filter
parameters, which were experimentally found and presented
above. As we can see from these first results, the Mittag-
Leffler filter gives better results than the Gaussian filter due
to more adjustable parameters. It means we can shape the
distribution function’s curve and thus the exponential-type
forgetting factor.

V. CONCLUSION

This paper develops a novel low-pass filter based on the
Mittag-Leffler function for signal processing applications. The
proposed filter has three adjustable parameters and is more
flexible than a classical Gaussian filter. For a specific set of
filter parameters, the Gaussian filter is a particular case of the
new Mittag-Leffler filter. A Matlab function of the suggested
Mittag-Leffler filter was created as well. Two illustrative
examples present the benefits of the Mittag-Leffler filter by
comparing the values of the MSE with the Gaussian filter.
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Techniques used in this paper allow us to extend the Mittag-
Leffler filter into two dimensions for image processing.
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