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ON THE FACTORIZATION INVARIANTS OF ARITHMETICAL

CONGRUENCE MONOIDS

SCOTT T. CHAPMAN, CAROLINE LIU, ANNABEL MA, AND ANDREW ZHANG

Abstract. In this paper, we study various factorization invariants of arithmetical
congruence monoids. The invariants we investigate are the catenary degree, a measure
of the maximum distance between any two factorizations of the same element, the length
density, which describes the distribution of the factorization lengths of an element, and
the omega primality, which measures how far an element is from being prime.

1. Introduction

The fundamental theorem of arithmetic states that, for each integer n greater than 1,
there is a unique factorization of n into primes (up to permutation and multiplication by
units). Yet, it is well known that this property does not hold for other algebraic structures
such as rings of algebraic integers. This phenomenon of non-unique factorization led to
Dedekind’s ideal theory and Kroneker’s divisor theory in the development of algebraic
number theory during the 19th century.

Arithmetical congruence monoids (ACMs) are arithmetic progressions that are closed
under multiplication. Specifically, we have that an ACM is a monoid of the form

Ma,b = {a, a+ b, a+ 2b, a + 3b, . . . } ∪ {1} = (a+ bN0) ∪ {1}

for a, b ∈ Z such that 0 < a ≤ b and a2 ≡ a (mod b). David Hilbert famously used
these monoids as a pedagogical tool to demonstrate the necessity of proving the unique
factorization property of the integers to his students (see [7]). ACMs can exhibit both
unique and nonunique factorization of elements. Consider the following examples.

Example 1.1. We consider the Hilbert monoid, defined as

H = {1 + 4k | k ∈ N0} = 1 + 4N0.

Note that 693 = 21 · 33 = 9 · 77. Additionally, we have 21 = 3 · 7, 33 = 3 · 11, 9 = 3 · 3,
and 77 = 7 ·11. These factorizations in N imply that 21, 33, 9, and 77 are all irreducibles
in H. Thus, the monoid H provides an example of an ACM displaying non-unique
factorization.

Key words and phrases. ACM, arithmetic congruence monoid, factorization invariant, length density,
catenary degree, omega primality.
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Example 1.2. The set of natural numbers N is an ACM, namely M1,1. In contrast with
the Hilbert monoid, N displays unique factorization into primes under the Fundamental
Theorem of Arithmetic. We call such a monoid a unique factorization monoid (UFM).

The structure of ACMs is surprisingly complex. In fact, there exist various open prob-
lems regarding finer measures of the factorization invariants of ACMs (see, for example,
[1, Open Question 4.6 and Open Question 4.18]). The purpose of the present article is to
study the omega primality, length density, and catenary degree in the context of ACMs,
which are values quantifying how far ACMs are from being UFMs. More specifically, the
omega primality function measures how far elements of an ACM are from being prime,
the length density measures the sparseness of factorization lengths within an ACM, and
the catenary degree uses a notion of distance to bound how different factorizations of
the same element can get. While other factorization properties of ACMs have been con-
sidered before [2–4,6,13], the omega primality, length density, and catenary degree have
not been researched as much in this context.

Our paper is structured as follows. In Section 2, we review some of the standard
notation and terminology we shall be using throughout the paper. In Section 3, we
compute a closed form of the omega primality of all ACMs, which depends on the powers
of the primes dividing a and b in Ma,b. In Section 4 we provide a closed form of the length
density of a regular ACM M1,b based on φ(b). We also compute the length density of local
singular ACMs. A conjecture regarding the closed form of the length density of global
singular ACMs is also made. Finally, in Section 5, we compute the catenary degree of
local singular ACMs by splitting this class into three cases. For a local singular ACM
Ma,b with gcd(a, b) = pα, we provide an explicit formula depending on α and the least
power of p within the monoid. We also provide conjectured closed forms for the catenary
degree of global singular ACMs.

2. Preliminaries

Throughout this paper, a monoid is defined to be a semigroup with identity that
is cancellative and commutative. Unless otherwise specified, we will use multiplicative
notation for monoids. Let M be a monoid with identity 1. We set M• := M \ {1}, and
we let M× denote the group of units (i.e., invertible elements) of M . In addition, we
let Mred denote the quotient M/M×, which is also a monoid. The monoid M is reduced
provided that M× is the trivial group, in which case we naturally identify Mred with M .

For b, c ∈ M , we say that b divides c in M if there exists b′ ∈ M such that c = bb′, in
which case we write b |M c. Two elements b, c ∈ M are associates if b |M c and c |M b.
An element a ∈ M \M× is an atom if for all b, c ∈ M the equality a = bc implies that
either b ∈ M× or c ∈ M×. On the other hand, an element a ∈ M \ M× is prime if
a |M bc implies that either a |M b or a |M c. We let A (M) denote the set of all atoms
of M . The monoid M is atomic if each element in M \M× can be written as a (finite)
product of atoms. One can readily check that M is atomic if and only if Mred is atomic.
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Assume now that M is atomic. We let Z(M) denote the free (commutative) monoid
on A (Mred). The elements of Z(M) are factorizations, and if z = a1 · · · aℓ ∈ Z(M) for
a1, . . . , aℓ ∈ A (Mred), then ℓ is the length of z, which is denoted by |z|. Let π : Z(M) →
Mred be the unique monoid homomorphism satisfying that π(a) = a for all a ∈ A (Mred).
For each b ∈ M , the following sets associated to b are fundamental in the study of
factorization theory:

(2.1) ZM(b) := π−1(bU (M)) ⊆ Z(M) and LM(b) := {|z| : z ∈ ZM(b)} ⊆ N0.

We drop the subscript M in (2.1) whenever the monoid is clear from the context.
In [1], the authors show that all ACMs fall into one of three mutually exclusive classes:

regular, local singular, and global singular. A regular ACM is an ACM of the form M1,b.
These ACMs exist for all positive integers b, as a2 = a implies that a2 ≡ a (mod b) for
a = 1.

Definition 2.1. Let M be a monoid. A divisor theory for M is a free commutative
monoid F (P ) and a monoid homomorphism σ : M → F (P ) satisfying the following
properties.

(1) σ(u) = 1 for any u ∈ M×;
(2) σ(u) 6= 1 for any u 6∈ M×;
(3) for any nonunits x, y ∈ M, σ(x) |M σ(y) implies x |M y;
(4) for every p ∈ P, there is a finite subset X ⊆ M such that p = gcd(σ(X)).

A monoid M with a divisor theory is called a Krull monoid.

We can use this idea to classify regular ACMs, in a theorem first shown in [12].

Theorem 2.2. Let P = {p ∈ N | p is prime and gcd(p, b) = 1}. The free monoid
F (P ) ≤ (N,×) and the homomorphism ι : M1,b → F (P ) form a divisor theory for M1,b.
Thus M1,b is Krull.

Singular ACMs are monoids Ma,b such that gcd(a, b) 6= 1. The factorization structure
of a singular ACM depends on gcd(a, b), which we will call d. We then set f = b/d. Note
that d = 1 if and only if a = 1. Then, an ACM Ma,b is singular if and only if a 6= 1.
Singular ACMs are divided into two classes based on d: local ACMs have d a power of
a prime, and global ACMs have d divisible by more than one prime.

The following two theorems introduced in [2] create a criterion for inclusion of elements
in a singular ACM and in the set of irreducibles of a singular ACM, which we will use
extensively in later sections when computing our respective factorization invariants.

Theorem 2.3. For a singular ACM Ma,b, we have x ∈ Ma,b if and only if x ≡ 1 (mod b).

Theorem 2.4. Let x, y ∈ Ma,b be such that x, y 6= 1 and y |N x. Set d = gcd(a, b).

(1) If d |N (x/y) then x/y ∈ Ma,b

(2) If x ∈ A (Ma,b) then y ∈ A (Ma,b).

Now, let M be a monoid and define the delta set of x ∈ M as follows.
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Definition 2.5. Let L(x) = {n1, n2, . . . nk} where n1 < n2 < · · · < nk. Then ∆(x) =
{ni+1 − ni|1 ≤ i < k}. Furthermore,

∆(M) =
⋃

x∈M

∆(x).

Finally, for a local singular ACM M , we know that d = pα where p is prime. We then
set β to be the smallest number such that pβ ∈ M.

Now that we have established some basic notation regarding ACMs, we will introduce
the factorization invariants that we will discuss in this paper.

The omega primality function measures how far a nonunit element of a monoid is from
being prime. First introduced in [8], it is defined as follows.

Definition 2.6. For some x ∈ M , we have ωM(x) = m, or simply ω(x) = m if the

monoid in question is clear; if m is the smallest positive integer such that if x |
∏k

i=1 ai
for ai ∈ M and k > m, there exists some proper subset S ⊂ {1, 2, . . . , k} such that
x |
∏

i∈S ai. If no m satisfying this condition exists, we let ω(x) = ∞.

Example 2.7 ([14, Example 2.5]). In the monoid (N,×), we have that ω(p) = 1 for
any prime number p, and if n = p1p2 · · · pk for primes p1, p2, . . . , pk ∈ N, then we have
that ω(n) = k. This is because if n | a1a2 · · · aℓ for a1, a2, . . . , aℓ ∈ N, we must have that
the product p1p2 · · ·pk appears somewhere within the prime factorization of a1a2 · · · aℓ.
In the worst case scenario, each prime within the prime factorization of n appears in a
different ai, so ω(n) ≤ k. And because n = p1p2 · · ·pk, we find that ω(n) = k.

Definition 2.6 then prompts the definition of bullets.

Definition 2.8. For a monoid M and x ∈ M , a bullet of x is a product a1a2 · · · ak
where ai ∈ A (M) for i ∈ {1, 2, . . . , k} such that x | a1a2 · · · ak and x does not divide
the product of any proper subset of {a1, a2, . . . , ak}. We denote bul(x) to be the set of
bullets of x.

Proposition 2.10 of [8] then defines the ω-primality function in terms of bullets and
provides a proof to show that it is analogous to Definition 2.6.

Proposition 2.9. For each x ∈ M for a monoid M , we have that

ω(x) = sup{k | a1a2 · · · ak ∈ bul(x), ai ∈ (M)}.

Using both definitions of bullets, [8, Proposition 2.12] provides some basic properties
of the ω-primality function.

Proposition 2.10. In a commutative, cancellative, and atomic monoid M , the following
statements hold.

(1) The set {ω(x) | x ∈ M} is unbounded.
(2) For all x, y ∈ M , ω(xy) ≤ ω(x) + ω(y). We then call ω subadditive.
(3) For some prime p ∈ M , we have ω(xp) = ω(x) + 1 for all x ∈ M .
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Length density, a concept introduced in [5], is a novel tool used to analyze the
sparseness of the distribution of the lengths of factorizations in monoids. We denote
ℓ(x) = min L(x) and L(x) = max L(x). We set L∆(x) := L(x)− ℓ(x). The set of elements
x ∈ M such that L∆(x) 6= 0 is the length ideal of M , denoted by MLI .

Definition 2.11. For every x ∈ MLI we define the length density of x as

LD(x) =
|L(x)| − 1

L∆(x)
.

Furthermore, the length density of M is defined as

LD(M) = inf{LD(x) | x ∈ MLI}.

The catenary degree uses the idea of distance between factorizations of the same ele-
ment to measure how close to a unique factorization monoid an ACM is. The distance
function is a metric that parameterizes “how close” irreducible factorizations of an ele-
ment of a monoid are.

Definition 2.12. For an atomic monoid M and x ∈ M, two factorizations z1, z2 ∈ Z(x)
can be written as

z1 = α1 . . . αjγ1 . . . γℓ and z2 = β1 . . . βkγ1 . . . γℓ,

where j, k, ℓ ∈ N0 and αi, βi, γi ∈ A (M) such that {α1 . . . αj} ∩ {β1 . . . βk} = ∅. Then,
d(z1, z2) = max{j, k} ∈ N0 is called the distance between z1 and z2.

We use the distance function to define a chain of factorizations.

Definition 2.13. Let M be an atomic monoid and x ∈ M. A sequence of factorizations
z0, z1, . . . , zt, where each zi ∈ Z(x) is called a chain of factorizations of x. For each
1 ≤ i ≤ t, the ith link of the chain are the factorizations zi−1, zi. The length of the ith
link is di = d(zi−1, zi).

Definition 2.14. Let M be an atomic monoid with x ∈ M. Let N be a positive integer.
A chain of factorizations z0, z1, . . . , zt in Z(x) is called an N-chain if each distance di ≤ N
for i ∈ {1, . . . , t}.

We can now define the catenary degree.

Definition 2.15. Let M be an atomic monoid, and let x ∈ M. The catenary degree of
x is defined as

c(x) = min{N | there exists an N -chain between any z1, z2 ∈ Z(x)}.

We define the catenary degree of M to be

c(M) = sup{c(x) | x ∈ M}.
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3. Omega Primality

In this section, we provide closed formulas to compute the omega primality of the
elements of an ACM. To do so, we first consider regular ACMs and then singular ACMs.

Proposition 3.1. Let M1,b be a regular ACM for some b ∈ N>1, and let x be an element
of M1,b. Then ω(x) =

∑n
i=1 ei, where

∏n
i=1 p

ei
i is the factorization of x in (Z, ·).

Proof. First, let us show that ω(x) ≤
∑n

i=1 ei. Observe that, for elements c, d ∈ M1,b,
we have that c |M1,b

d if and only if c |Z d. Indeed, if there exists k ∈ Z such that ck = d
then it is easy to see that k ≡ 1 (mod b). Now let z = a1 · · · am be an arbitrary bullet of
x and define Ja, bK to be the positive integers between a, b, inclusive. For each j ∈ J1, mK,
there exists i ∈ J1, nK such that vpi(a1 · · · aj · · · am) < vpi(x) = ei. Consequently, we have
that m ≤

∑n
i=1 ei which, in turn, implies that the inequality ω(x) ≤

∑n
i=1 ei holds by

virtue of [14, Proposition 2.10].
Fix i ∈ J1, nK. Note that pi and b are relatively prime positive integers. Dirichlet’s

Theorem states that if gcd(a, d) = 1, there exists infinitely many primes of the form
a+nd. So, there are infinitely many primes of the form pi+kb. Hence there exist distinct
k1, . . . , kei ∈ N such that qj = pi + kjb is a prime number for every j ∈ J1, eiK. Without

loss of generality, assume that qj ∤Z x. Set xi
j := piq

ϕ(b)−1
j for j ∈ J1, eiK, where ϕ denotes

the Euler’s totient function; these are all elements of M1,b by Euler’s Theorem stating
that for any modulus n and any integer a coprime to n, one has aϕ(n) ≡ 1 (mod n). Now
consider the product

z =
∏

i∈J1,nK
j∈J1,eiK

xi
j .

There is no loss in assuming that gcd(xi
j , x

i′

j′) is either 1 or a prime number provided

that either i 6= i′ or j 6= j′. We may also assume that xi
j ∈ A (M1,b), which implies that

z is a factorization of x. It is not hard to see that x |M1,b
z. Moreover, we have that

x ∤M1,b
z(xi

j)
−1 for any i ∈ J1, nK and any j ∈ J1, eiK. Consequently, z is a bullet of x

with |z| =
∑n

i=1 ei, which concludes our proof. �

We now consider singular ACMs.

Proposition 3.2. Let Ma,b be a singular ACM for some a, b ∈ N>1 such that a ≤ b, and
let gcd(a, b) =

∏m
i=1 q

ri
i with qi ∈ P and ri ∈ N for every i ∈ J1, mK. Let x ∈ Ma,b such

that

x =

(

m
∏

i=1

qri+ei
i

)(

n
∏

j=1

p
sj
j

)

with pj ∈ P for all j ∈ J1, nK and pj 6= qi for any j ∈ J1, nK and any i ∈ J1, mK. Thus,

ω(x) = max

{

1 +

⌈

r1 + e1
r1

⌉

, . . . , 1 +

⌈

rm + em
rm

⌉

,

n
∑

j=1

sj

}

.
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Proof. Set d := gcd(a, b) =
∏m

i=1 q
ri
i . Observe that, for elements c, e ∈ Ma,b, we have that

c |Ma,b
e if and only if c |Z e. Indeed, if there exists k ∈ Z≥2 such that ck = e, then for

n ∈ N we have
k ≡

c

e
≡ nd ≡ nd · a ≡

c

e
· e ≡ a (mod b).

Let z = a1 · · · am be an arbitrary bullet of x. Reasoning as in the first paragraph of
the proof of Proposition 3.1, it is easy to show that ω(x) < ∞. Consequently, we may
assume that z is a bullet of maximal length. Next we show that xd | π(z). Suppose that
x = a1 · · · am. Now set a′1 := a1q and a′m+1 := aq for some prime q satisfying that q ∤ x
and q ≡ 1 (mod b). For i ∈ J2, mK, set a′i := ai. It is easy to see that z′ = a′1 · · · a

′
m+1 is a

bullet of x with length bigger than m, a contradiction. Hence xd | π(z). Since d |Ma,b
ai

for each i ∈ J1, mK and xd | π(z), the inequality

(3.1) m ≤ max

{

1 +

⌈

r1 + e1
r1

⌉

, . . . , 1 +

⌈

rm + em
rm

⌉

,

n
∑

j=1

sj

}

holds.
Now let q be a prime number such that q ∤ x and q ≡ ad−1 (mod b). For each

j ∈ J1, nK, let tj be a prime number such that tj ∤ x and tj ≡ p−1
j (mod b); observe that

such a prime tj exists by Euler’s theorem and Dirichlet’s theorem. For every j ∈ J1, nK,
set xi

j = tjpjqd ∈ Ma,b for every i ∈ J1, sjK. Set

k := max

{

0,

(

n
∑

j=1

sj

)

−max

{

1 +

⌈

r1 + e1
r1

⌉

, . . . , 1 +

⌈

rm + em
rm

⌉}

}

.

It is not hard to see that (qd)k
∏n

j=1(tjpjqd)
sj is a bullet of x with length the upper

bound in Equation (3.1), which concludes our argument. �

Remark 3.3. As a consequence of Propositions 3.1 and 3.2, we obtain that ω(Ma,b) = ∞
for every ACM Ma,b.

4. Length Density

In this section, we consider the length density of both regular ACMs and local singular
ACMs. We first note the following result achieved in [5], which bounds the length density
using the delta set.

Lemma 4.1 ([5, Proposition 3.1]). For a monoid M and element x ∈ MLI , we have

1

max∆(x)
≤ LD(x) ≤

1

min∆(x)
.

We now note the following upper bound on the length of a factorization.

Lemma 4.2. For an irreducible x, let x = a1a2 . . . an where a1a2 . . . an is the prime
factorization of x on N. We have n ≤ φ(b).
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Proof. Assume there is a set S = {s1, s2, . . . sn}, where si = a1a2 . . . ai and n ≥ b. Since
x ∈ M , we have gcd(si, b) = 1. Then, by Pigeonhole Principle, there exists i < j such
that si ≡ sj (mod b). Let t =

sj
si
. Dividing both sides of the equality by si gives t ≡ 1

(mod b), implying t ∈ M . By Theorem 2.4, we have that x
t
∈ M as well, which is a

contradiction because x is irreducible. �

We now consider the length density of regular ACMs.

Theorem 4.3. Let M1,b be a regular ACM. Then

LD(M1,b) =

{

∅ φ(b) ≤ 2
1

φ(b)−2
φ(b) ≥ 3

.

Proof. It has been shown in [3] that when φ(b) ≤ 2, M is half-factorial and thus the
length density does not exist.

Now we will show LD(M1,b) = 1
φ(b)−2

for φ(b) ≥ 3. Note that LD(M1,b) ≤ 1
φ(b)−2

by

the following construction. Let a be an integer with order φ(b) (mod b), and let a−1 be
its inverse (mod b). Note that by Dirichlet’s theorem we have a prime a1 ≡ a (mod b)

and a prime b1 ≡ a−1 (mod b). So a
φ(b)
1 b

φ(b)
1 has solely two factorizations, (a1b1)

φ(b) and

(a
φ(b)
1 )(b

φ(b)
1 ). This implies LD(x) = 1

φ(b)−2
and LD(M) ≤ 1

φ(b)−2
. Assume towards a

contradiction that max∆(x) ≥ φ(b) − 1. This implies that there exists x ∈ M1,b such
that

x = a1a2 . . . an = b1b2 . . . bm,

where n > m, n−m ≥ φ(b)− 1, and all ai and bi are irreducible. Additionally, x must
have no factorization of length l where n > l > m. We will now induct on the value of
m.

When m = 2, we assume there exists x ∈ M1,b such that x = a1a2 . . . an = b1b2 where
n − 2 ≥ φ(b) − 1, or n ≥ φ(b) + 1. By Lemma 4.2, b1 and b2 have at most φ(b) prime
factors. Thus, by the Pigeonhole Principle, there exists an ai that only has one prime
factor. This ai must divide either b1 or b2, implying that one of them is not irreducible
and giving us a contradiction.

For m = k, assume there does not exist x ∈ M1,b such that x = a1a2 . . . an = b1b2 . . . bm
where n > m and n −m ≥ φ(b) − 1, and x has no factorizations of length l such that
n > l > m. Now, we will prove that for m = k + 1 there also does not exist such a x.
First, note that Lemma 4.2 implies that the prime factorization of x contains at most
mφ(b) primes. Thus, by the Pigeonhole Principle, there exists an ai that contains m− 1
primes. Now, if we treat each prime as distinct (including those of the same value), since
there are m bj in total, there must exist a bj such that ai shares no primes with bj . This
allows us to consider the following factorization of x. Let x = (bj)(ai)(q). When q can be
factored into more than m− 2 irreducibles, x = (bj)(ai)(q) has a factorization of length
l such that l > m. By our assumption on m = k, the maximum length of a factorization
of (ai)(q) is q + p− 3. So, n > l, which implies n > l > m, which is a contradiction.
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We now consider when q can be factored into less than or equal to m− 2 irreducibles.
Factoring (ai)(q), we can use bj combined with primes in q to produce at most φ(b)
irreducibles. We can also use q itself to produce at most m − 2 irreducibles. Therefore
we have φ(b)+m−2 from (ai)(q). Adding on bj gives our maximum factorization length
of φ(b)+m−1, which is only φ(b)−2 larger than m+1. This gives another contradiction.
Since we have reached a contradiction in both cases, by applying Lemma 4.1 we have
that 1

φ(b)−2
≤ LD(M1,b). Thus, LD(M1,b) =

1
φ(b)−2

. �

We additionally state the length density for the the monoid Mb,b where b is an integer
with more than one prime factor.

Proposition 4.4. For a monoid Mb,b where b = pa11 pa22 . . . pann such that p1, p2, . . . pn ∈ P
and a1, a2, . . . an ∈ N with n ≥ 2, we have LD(Mb,b) = 1.

Proof. Note that every element in Mb,b can be represented as bkm where b does not divide
m. We will prove that there exists a factorization of any length between 2 to k inclusive.
Consider the following construction for a factorization of length c where c is an arbitrary
integer between 2 and k inclusive. Let k − (c− 2) = d. Note that

bkm = bc−2(p
(d−1)a1
1 pa22 . . . pann t1)(p

a1
1 p

(d−1)a2
2 . . . p(d−1)an

n t2),

where t1 contains all powers of p1 in m and t2 contains all powers of p2, . . . , pn in m is a
valid construction. Thus, the length density is 1. �

Now we discuss LD(Ma,b) where gcd(a, b) = pα for p ∈ P and α ∈ N. Let β denote the
least integer such that pβ ∈ M . Additionally, let a′ = a

d
, b′ = b

d
, and let δ(α, β) denote

the largest integer less than β

α
. Now, we let M refer to the local singular ACM Ma,b. We

first consider the following theorem proved in [2] by Baginski, Chapman, and Schaeffer.

Theorem 4.5. For all local ACMs M , the delta set can be characterized as follows:

∆(M) =











∅ if α = β = 1

{1} if α = β > 1

[1, β

α
) if α < β

.

Note that the length density of a local singular ACM where α = β = 1 does not exist.
Also, note that by 4.1 and 4.5, the length density of monoids Ma,b when α = β > 1 is 1.
We now find the length density of the other local singular ACMs.

Proposition 4.6. For a local singular ACM M where α 6= β, the LD(M) = 1
δ(α,β)

.

Proof. First, we note 1
δ(α,β)

≤ LD(M). Consider a monoidMa,b with α and β defined as in

Theorem 4.5. Then, ∆(M) = [1, 1
δ(α,β)

]. Thus, max∆(M) = δ(α, β) so δ(α, β) ≤ LD(M).

Now we show LD(M) ≤ 1
δ(α,β)

. Note that since a′ and b′ are relatively prime, by

Dirichlet’s Theorem there exists a prime r such that r ≡ a (mod b). Thus, pαr ∈ M .
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Now, let c = δ(α, β) · (α+ 1)− β. Then we have that

(pα+crk) =
(pαr)δ(α,β)+2

(pβ)
.

Note that by Theorem 2.4 we know (pα+crk) ∈ M . So, we have

pδ(α,β)+2rδ(α,β)+2 = (pα+crk)(pβ) = (pαr)δ(α,β)+2.

Note that there are no factorizations of pδ(α,β)+2rδ(α,β)+2 with length l such that l >
δ(α, β)+2 or l < 2. We will now prove that there are no factorizations of pδ(α,β)+2rδ(α,β)+2

of length l in such that l is in the interval [3, δ(α, β) + 1].
Consider an irreducible i = py1ry2 ∈ M . By Theorem 2.3, this implies py1ry2 ≡ 1

(mod b′). Note that pαy2ry2 ≡ 1 (mod b′). Thus, pαy1−y2 ≡ 1 (mod b′). However, we
know that the order of p (mod b′) is b. Thus, y1 − y2 is a multiple of b. If y1 − y2 = 0,
then i is not an irreducible, which gives us a contradiction. However, if y1 − y2 6= 0,
αy1 or y2 must be greater than or equal to b, in which case the maximum length of the
factorization containing i is 2. Thus, pδ(α,β)+2rδ(α,β)+2 has only factorizations of length 2
and length δ(α, β) + 2. So,

LD(pδ(α,β)+2rδ(α,β)+2) =
1

δ(α, β)
.

This implies LD(M) ≤ 1
δ(α,β)

. �

Motivated by our previous results, we conjecture that for global singular ACMs, the
following holds.

Conjecture 4.7. For a global singular ACM M,

LD(M) =
1

max∆(M)
.

Currently, the delta set of global singular ACMs remains an open question and is likely
a necessary prerequisite for determining the length density of global singular ACMs.

5. Catenary Degree

In this section, we will determine the catenary degree of local singular ACMs. From
Theorem 2.2, we know that all regular ACMs are Krull. The catenary degree of Krull
monoids has been bounded in [9] and [11]. However, computing the catenary degree of
singular ACMs has remained an open problem.

In our computation of the catenary degree, we will be making extensive use of Theo-
rem 2.4 to create factorization chains. Note that we can rewrite a local singular ACM
Ma,b to become M = Mapα,bpα for p prime and gcd(a, b) = 1. Let β be the smallest power
of p such that pβ ∈ M.
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Theorem 5.1. The catenary degree of the local singular arithmetic congruence monoid
M = Mapα,bpα can be defined as follows:

c(M) =











2 if α = β = 1

3 if α = β > 1

1 +
⌈

β

α

⌉

if α < β

.

To begin, we will compute the catenary degree of the local singular ACM with α =
β = 1. First, note the following structural information about the monoid. Since α = 1,
we have M = Map,bp for gcd(a, b) = 1. Since β = 1, we have p ∈ M. All elements of M
can be written in the form ap+kbp for k ∈ N0, meaning that p ∈ M if and only if a = 1.
Thus, if α = β = 1 then M = Mp,bp for b ∈ N. Consider the following characterization of
the set of irreducibles.

Proposition 5.2. For M = Mp,bp, the set

A (M) = {a | vp(a) = 1}.

If we consider any element m ∈ M with vp(m) > 1, we can write m as qpr in N for
r > 1 and p ∤ q. So, m = p · qpr−1 in N, for r− 1 > 0. By Theorem 2.4, both p and qpr−1

are elements of M, so any m with vp(m) > 1 cannot be irreducible.
Then, since all elements of Mp,bp take the form p+ kbp and are thus divisible by p, for

all a ∈ Mp,bp with vp(a) = 1, it is impossible to factor a into two other elements of M
also with vp at least 1, meaning that all a ∈ {a | vp(a) = 1} are irreducibles.

Now we will construct a 2-chain z0, . . . , zn from any factorization z = z0 of an element
m = prq ∈ M for p ∤ q to the factorization zn = z′ = p · p · · · p · pq. If we reorder and
index the atoms within zi for 0 ≤ i < n so that zi = (pα1)(pα2) · · · (pαr−1)(pαr) for
1 ≤ α1 ≤ α2 ≤ · · · ≤ αr ≤ q, let zi+1 = (pα1)(pα2) · · · (p)(pαr−1αr).

If both pαr−1, pαr ∈ M, then their product p2αr−1αr ∈ M. Then, by Theorem 2.4,
pαr−1αr ∈ M. Since vp(p) = vp(pαr−1αr) = 1, both factors are irreducibles. Note that,
under this construction, the final element of this chain will be z′. Since zi and zi+1 differ
by the relation (pαr−1)(pαr) = p(pαr−1αr), d(zi, zi+1) = 2 for 0 ≤ i < n.

So, given any two factorizations z1, z2 ∈ Z(m), we can construct a 2-chain between
z1 and z2 by using our construction to find a 2-chain from z1 to z′, then from z′ to z2,
making c(m) = 2. Since this construction works for all m ∈ M = Mp,bp, c(M) = 2. Also,
note that since each factorization of m ∈ M must have length vp(m), M is half factorial.

Then, we will compute the catenary degree of a local singular monoid M = Mapα,bpα

for gcd(a, b) = 1 and α > 1. Using a similar logic as in the previous section, if pα ∈ M
then a = 1. So, M takes the form Mpα,bpα for b ∈ N and p ∤ b. As before, we will first
characterize the irreducibles of this monoid.

Proposition 5.3. For M = Mpα,bpα, the set

A (M) = {a | α ≤ vp(a) ≤ 2α− 1}.
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Suppose we have some m ∈ M for m = pnα+n′

q for 0 ≤ n′ < α. If n > 1, we can
factor m in N as m = pα · p(n−1)α+n′

q. Then, by Theorem 2.4, both pα and p(n−1)α+n′

q
are elements of M , so any m = pnα+n′

q with n > 1 is reducible.
Also, since all elements in M take the form pα + kbpα and are divisible by pα, for all

a ∈ Mpα,bpα with α ≤ vp(a) ≤ 2α− 1, it is impossible to factor a into two other elements
of M, meaning that all a in the set described in 5.3 are irreducible in M.

Now we will construct a 3-chain z0, . . . , zn from any factorization z = z0 of an element
m = pnα+n′

q in M to the factorization z′ = pα · pα · · · pα · pαq. If we reorder and reindex
the atoms within a factorization zi for 0 ≤ i < n so that

zi = (pα+e1β1)(p
α+e2β2) · · · (p

α+er−1βr−1)(p
α+erβr)

for 0 ≤ e1 ≤ e2 · · · ≤ er < α and for βi ≤ βi+1 if ei = ei+1, we define zi+1 as follows:

(1) If 0 < er−1 + er < α then let

zi+1 = (pα+e1β1)(p
α+e2β2) . . . (p

α)(pα+er−1+erβrβr−1).

We have that pα ∈ A (M) and pα+er−1+erβrβr−1 ∈ A (M) by Proposition 5.3
and Theorem 2.4, respectively. In this case, the relation pα+er−1βr−1 · p

α+erβr =
pα · pα+er−1+erβr−1βr relates zi and zi+1, meaning that d(zi, zi+1) = 2.

(2) If α ≤ er−1 + er < 2α− 1 then

zi+1 = (pα+e1β1)(p
α+e2β2) · · · (p

α)(pα)(per−1+er−αβrβr−1).

Again, pα ∈ A (M) by Proposition 5.3, and per−1+er−αβrβr−1 ∈ A (M) by The-
orem 2.4 and Proposition 5.3. The relation pα+er−1βr−1 · pα+erβr = pα · pα ·
per−1+er−αβrβr−1 relates zi and zi+1, meaning that d(zi, zi+1) = 3.

(3) If er−1 + er = 0 then both er−1 and er are 0. Then, zi must take the form

zi = (pαβ1)(p
αβ2) · · · (p

αβr−1)(p
αβr).

By Theorem 2.4 and Proposition 5.3, pαβr−1βr ∈ A (M). So, we use the relation
pαβr−1 · p

αβr = pα · pαβr−1βr to create

zi+1 = (pαβ1)(p
αβ2) · · · (p

α)(pαβr−1βr),

meaning that d(zi, zi+1) = 2 in this case.

Under this construction, zn = (pα) · · · (pα)(pα+n′

β1 . . . βr) for n′ ≡ e1 + e2 + · · · + er
(mod α), which is equal to z′, meaning that we have created a chain of factorizations
z0, . . . , zn from any factorization z = z0 of m ∈ Mpα,bpα to z′ = zn such that the distance
between two adjacent factorizations is no more than 3. Then, for any z1, z2 ∈ Z(m), we
can construct a 3-chain between them by making a 3-chain from z1 to z′ then z′ to z2,
meaning that c(m) = 3 for all m ∈ M. It follows that c(M) = 3 as well.

Now, we will compute the catenary degree of the local singular ACM with α < β,
which we claim to be 1 +

⌊

β

α

⌋

. However, before doing so, we will partially characterize
the reducibles and irreducibles of the monoid.
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Proposition 5.4. For M = Mapα,bpα for gcd(a, b) = 1 and pβ being the smallest power
of p in M, all numbers m ∈ M such that vp(m) ≥ α + β are reducible.

First, consider some m ∈ M that can be factored in N as m = pα+β+nq for n ∈ N0

and p ∤ q. Then, consider the factorization of m in N m = pβ · pα+nq. By Theorem 2.4,
pα+nq ∈ M, so m must be reducible.

Moreover, note that all m ∈ M must have vp(m) ≥ α, and that all a ∈ M with
vp(a) < 2α must be irreducible, since it is impossible to write a as a product of two
integers both divisible by pα. Then, consider the following theorem, which provide a
lower bound to the catenary degree of M using the delta set of M.

Theorem 5.5 ([10, Theorem 1.6.3]). If M is a non-factorial monoid, then 2+sup∆(M) ≤
c(M).

Then note that by Theorem 4.5, max∆(M) ≤ β/α, so c(M) > 2 + β/α. This is
equivalent to saying c(M) ≥ 1 + ⌈β/α⌉, since the catenary degree must be integral. We
then provide an upper bound on c(M).

Proposition 5.6. For c = 1 +
⌊

α+β−1
α

⌋

, we can construct a c-chain between any two

factorizations z1 and z2 of all numbers m ∈ M. That is, c(M) ≤ 1 +
⌊

α+β−1
α

⌋

.

Consider the element m ∈ M, which can be factored in N as pnβ+kq for k < α + β.
We will describe a way to construct a c-chain for c at most 1 +

⌊

α+β−1
α

⌋

between any

factorization z ∈ Z(m) and the factorization z′ = pβ · pβ · · · pβ ·
∏

ai =
(

pβ
)n

·
∏

ai, for

ai a specific product of atoms multiplying to pkq.
Let the chain be z0, z1, . . . , zt so that z = z0. Then, if we index the atoms within the

factorization zi = (pα+e1q1)(p
α+e2q2) · · · (p

α+erqr) for 0 ≤ e1 < β, p ∤ qi, and 1 ≤ q1 ≤
q2 ≤ · · · ≤ qr, we construct zi+1 as follows. Consider the atoms at the “end” of the
factorization of zi, starting with pα+erqr, p

α+er−1qr−1, . . . . Let s be the smallest number
such that vp (

∏s
i=0 p

α+er−sqr−s) ≥ α + β. Note that vp (
∏s

i=0 p
α+er−sqr−s) < 2α + 2β − 1,

or else this would contradict s being the smallest such number. Then, we have two cases.

(1) If α + β ≤ vp (
∏s

i=0 p
α+er−sqr−s) < α + 2β, we let

zi+1 = (pα+e1q1)(p
α+e2q2) · · · (p

α+er−s−1qr−s−1)(p
β)
∏

a′i

for some set of a′i ∈ A (M) with
∏

a′i = p(s+1)α+er+···+er−s−βqrqr−1c . . . qr−s. Then,
zi and zi+1 are related by the relation

s
∏

i=0

pα+er−sqr−s = pβ ·
∏

a′i.

There are at most ⌈α+β

α
⌉ atoms on the left-hand side of this equation, and

at most 1 + ⌊α+β−1
α

⌋ atoms on the right of the equation. So, d(zi, zi+1) ≤ 1 +

⌊α+β−1
α

⌋ = ⌈α+β

α
⌉.
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(2) If α + 2β ≤ vp (
∏s

i=0 p
α+er−sqr−s) < 2α+ 2β − 1, then we let

zi+1 = (pα+e1q1)(p
α+e2q2) · · · (p

α+er−s−1qr−s−1)(p
β)(pβ)

∏

a′i

for some set of a′i ∈ A (M) with
∏

a′i = p(s+1)α+er+...er−s−2βqrqr−1 . . . qr−s. Then,
zi and zi+1 are connected via the relation

s
∏

i=0

pα+er−sqr−s = pβ · pβ ·
∏

a′i.

There are at most ⌈α+β

α
⌉ atoms on the left-hand side of this equation, and

at most 2 + ⌊2α−21
α

⌋ atoms on the right-hand side of the equation. Note that

⌈α+β

α
⌉ ≥ 2 + ⌊2α−21

α
⌋, so d(zi, zi+1) ≤ ⌈α+β

α
⌉.

In both cases, d(zi, zi+1) ≤ ⌈α+β

α
⌉ = 1+ ⌊α+β−1

α
⌋. Then, note that under this construc-

tion, the final factorization

zt = (pβ)(pβ) · · · (pβ) ·
∏

a′i = (pβ)n ·
∏

a′i

for
∏

a′i = pkq. Then, to this chain, we add one final element z′ =
(

pβ
)n

·
∏

ai using the
relation

∏

a′i =
∏

ai.

Since
∏

a′i =
∏

ai = pkq, and k < α+ β, there are at most ⌊α+β−1
α

⌋ atoms on both sides

of the relation, meaning that d(zt, z
′) ≤ ⌊α+β−1

α
⌋. Then, the distance between any two

adjacent elements in the entire chain z0, z1, . . . , zt, z
′ is bounded above by 1 + ⌊α+β−1

α
⌋,

so we have constructed a c-chain from any element z ∈ Z(m) to z′ for c ≤ 1 + ⌊α+β−1
α

⌋.

So, for any two z1, z2 ∈ Z(m) for m ∈ M, we can construct a c-chain for c ≤ 1+ ⌊α+β−1
α

⌋

from z1 to z′, then from z′ to z2 using this method, meaning that c(m) ≤ 1 + ⌊α+β−1
α

⌋

for all m ∈ M, or that c(M) ≤ 1 + ⌊α+β−1
α

⌋.
We have shown that

1 + ⌊
α + β − 1

α
⌋ ≥ c(M) ≥ 1 + ⌈

β

α
⌉.

Since 1+ ⌈β

α
⌉ = 1+ ⌊α+β−1

α
⌋, it follows that c(M) = 1+ ⌈β

α
⌉ for M a local singular ACM

with α < β. Thus, we have resolved the catenary degree for all local singular ACMs. As
a corollary, consider the following observation.

Corollary 5.7. For all n ≥ 2, we can find a local singular ACM M such that c(M) = n.

Consider M = Mpn−1,(pn−1−1)p, which has α = 1, β = n − 1. Then, by Theorem 5.1,

c(M) = 1+
⌈

n−1
1

⌉

= n. Besides Theorem 5.1, we will also propose a conjecture regarding
the catenary degree of global singular ACMs. Consider the global singular ACM M =
Mad,df such that gcd(a, f) = 1 and d =

∏n
i=1 p

αi

i for n > 1.
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We will define an analogous structure to β in the local singular case. Let the set X
denote the set of all x =

∏n
i=1 p

kiαi

i ∈ M. Then, define

ζ = min
x∈X

{

max
1≤i≤n

{

ki : x =
n
∏

i=1

pkiαi

i

}}

.

Let µ ∈ X be the element where we find ζ. Then, let µ′ be the element with the second
lowest

max
1≤i≤n

{

ki : x =
n
∏

i=1

pkiαi

i

}

.

Definition 5.8. Let the catenary order ωm of an element m ∈ M be the least power of
m such that mωm does not have a unique factorization.

With these definitions, we propose the following conjecture for the catenary degree of
global singular ACMs, which remains to be resolved:

Conjecture 5.9. For a global singular ACM M,

c(M) = max{ζ + 1, ωµ, c
(

(µ′)ζ · µω−1
)

}.
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