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ON THE DOUBLING CONDITION

IN THE INFINITE-DIMENSIONAL SETTING

DARIUSZ KOSZ

Abstract. We present a systematic approach to the problem whether a topologically

infinite-dimensional space can be made homogeneous in the Coifman–Weiss sense. The

answer to the examined question is negative, as expected. Our leading representative

of spaces with this property is Tω = T× T× · · · with the natural product topology.
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1. Introduction

Given a nonempty topological space (X, T ), its topological dimension dim(X) is the

smallest number n ∈ N ∪ {0} with the property that each open cover B of X has a re-

finement1 B̃ such that each point x ∈ X belongs to no more than n+1 elements of B̃. If

no such n exists, then we put dim(X) = ∞.

The following note is devoted to explaining why a topologically infinite-dimensional

space cannot be doubling. We shall refer to the doubling condition by using the notion

of homogeneity in the Coifman–Weiss sense, see Definition 1.6.

Theorem 1.1. Let (X, T ) be a topological space. If dim(X) = ∞, then it is not pos-

sible to find a quasimetric ρ and a Borel measure µ for which Tρ = T and (X, ρ, µ) is

homogeneous in the Coifman–Weiss sense.

The same is true if the small ind(X) or large Ind(X) inductive dimension is used instead2.

Indeed, homogeneous spaces are metrizable, see Facts 2.2 and 2.3, and separable, see [St,

Proposition 2.2], while all dimensions are topologically invariant and ind(X) = Ind(X) =

dim(X) holds for separable metric spaces, see [En, Preface].

It should be emphasized that Theorem 1.1 can be derived from general theory in just

a few lines, by using several results that are already known, as a black box, see the

proof in Section 2. However, the problem lies at the intersection of different fields of

research, and the solution relies on analytical, geometrical, and topological arguments

that should be combined in the appropriate way. Therefore, we believe that it is worth

making the topic more systematized by presenting a detailed approach which will be

both elementary and instructive to the reader. We break down the original problem into

several simpler subtasks, explain the reasons for making each reduction, and comment

on possible obstacles or alternative paths along the way.

Studying this kind of problem was originally motivated by a recent question by Roncal,

related to the analysis on the infinite-dimensional torus. Since this space can be seen as

1That is, a second open cover with all elements being subsets of elements of the first cover.
2For the definitions of the inductive topological dimensions, see for example [En].
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2 DARIUSZ KOSZ

a model example of X from Theorem 1.1, we would like to look at the problem from the

standpoint of this particular setting first, and only then pass to the general case.

The infinite-dimensional torus Tω. By Tω we mean T×T×· · · , that is, the product

of countably many copies of the one-dimensional torus T. One can equip Tω with the

usual product topology TTω and the normalized Haar measure dx3 to make it a compact

Hausdorff group and a metrizable probabilistic space. Then a lot of classical analysis can

be developed in the context of Tω, including harmonic analysis which we focus on here.

Although the structure of Tω seems nice at the first glance, careful looking at specific

problems in this setting often leads to negative results or counterexamples to what we

know from the Euclidean case Rd. To mention just a few such issues, one observes:

• divergence of Fourier series of certain smooth functions [FR19],

• no Lebesgue differentiation theorem for natural differentiation bases [FR20, Ko],

• unboundedness of maximal operators [Ko, KMPRR],

• problems with introducing a satisfactory theory of weights [KMPRR].

The instances we have chosen share one common feature. Precisely, they all originate

in Rd-related questions to which answers are positive in the qualitative sense for each d

but also the worse in the quantitative sense the bigger d is. In many cases the key reason

for this phenomenon is the behavior of the so-called doubling condition. Indeed, although

the estimate |B(x, 2r)| ≤ C(d)|B(x, r)| is satisfied uniformly in x ∈ Rd and r ∈ (0,∞)

for d fixed, the optimal constants C(d) = 2d grow exponentially with d. This fact usually

becomes the main obstacle while trying to prove results with dimension-free bounds.

From this point of view one may expect that for Tω the doubling condition is unlikely

to hold as, loosely speaking, for each d a piece of Rd can be embedded in Tω. In this

direction, the following question was asked by Roncal.

Question 1.2. Can one equip Tω with a quasimetric ρ and a measure µ so as to assure

the doubling condition and, at the same time, keep the structure of Tω?

Several remarks regarding Question 1.2 are in order.

(1) In the literature devoted to studying Tω, the most popular metric is given by

ρTω(x, y) :=

∞
∑

n=1

ρT(xn, yn)

2n
, x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈ Tω,

where the following toric distance is used4

ρT(x, y) := min{|x− y|, 1− |x− y|}, x, y ∈ T.

For (Tω, ρTω , dx) the doubling condition fails to hold, see [Fe, Chapter 2.3].

(2) Bendikov in [Be, Remark 5.4.6] defines a family of metrics ρA on Tω by

ρA(x, y) :=
(

∞
∑

n=1

anρ
2

T(xn, yn)
)

1

2

, A = (a1, a2, . . . ) ∈ A,

where A is the space of all summable sequences with strictly positive entries. It

was asked in [Fe, Nota 2.34] whether there exists an assumption on a sequence

3This is just the product of uniformly distributed probabilistic measures on T.
4In this formula we refer to the elements x, y ∈ T as numbers belonging to [0, 1).
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A ∈ A under which (Tω, ρA, dx) is a space of homogeneous type. This can be

seen as a special case of Question 1.2.

(3) The last part of Question 1.2 is essential, and omitting it would make the problem

trivial. Indeed, in this case the following (not insightful) solution could be given:

Yes, because there exist doubling spaces of the same cardinality as Tω.

For example, one could take R with the standard distance and Lebesgue measure,

and equip Tω with ρ and µ transferred from R via a given bijection π : R → Tω5.

We show that the answer to Question 1.2 is negative, as expected. This result has

important consequences for the whole field of harmonic analysis on Tω, as it reveals that

this subject goes beyond the theory of doubling spaces. In what follows, we present two

theorems referring to either geometrical or topological structure of Tω.

Theorem 1.3. Suppose that ρ is a bounded translation invariant quasimetric on Tω.

Then it is not possible to find a measure µ, defined on the σ-algebra generated by ρ, for

which (Tω, ρ, µ) is homogeneous in the Coifman–Weiss sense.

Theorem 1.4. Suppose that ρ is a quasimetric on Tω such that Tρ = TTω . Then it

is not possible to find a Borel measure µ for which (Tω, ρ, µ) is homogeneous in the

Coifman–Weiss sense.

Theorem 1.3 is independent of Theorem 1.1, while Theorem 1.4 is its special case with

simpler proof. Both results answer the question in [Fe, Nota 2.34] in the negative.

Homogeneous spaces. Finally, we briefly recall the notion of homogeneity, see [CW].

Alongside, we conduct a short discussion on quasimetrics, strongly inspired by [St].

Definition 1.5. A quasimetric on a nonempty set X is a mapping ρ : X ×X → [0,∞)

satisfying the following conditions:

• ρ(x, y) = 0 if and only if x = y,

• ρ(x, y) = ρ(y, x),

• ρ(x, y) ≤ K(ρ(x, z) + ρ(z, y)) for some numerical constant K ∈ [1,∞).

If the last condition is satisfied with K = 1, then ρ is called a metric.

There is a canonical way to introduce a topology on X that corresponds to a given

quasimetric ρ. Namely, for each x ∈ X and r ∈ (0,∞) we denote

Bρ(x, r) := {y ∈ X : ρ(x, y) < r},

the ball centered at x and of radius r. Then a set G ⊂ X is said to be open – that

is, G ∈ Tρ – if for each x ∈ G there exists rx ∈ (0,∞) such that Bρ(x, rx) ⊂ G. This

definition turns out to be good for several reasons (commented in detail later on):

(a) it extends the standard definition used in the metric case K = 1,

(b) it ensures that topology properties behave well under perturbations of ρ,

(c) it always leads to a topology which is metrizable.

However, one needs to be careful because, quite surprisingly, in the case K > 1 it may

happen that balls are not open or even Borel according to how Tρ looks like.

5In other words, one chooses ρ and µ so that π is a measure preserving isometry.
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Definition 1.6. Given a nonempty set X, a quasimetric ρ, and a Borel measure µ, we

call the space (X, ρ, µ) homogeneous in the Coifman–Weiss sense if µ(Bρ) ∈ (0,∞) holds

for all balls Bρ ⊂ X6, and there exists a numerical constant C ∈ [1,∞) such that

µ(Bρ(x, 2r)) ≤ Cµ(Bρ(x, r)) for all x ∈ X, r ∈ (0,∞).

If this last condition holds, then we say that µ is doubling with respect to ρ.

Notice that in general, under the assumption that all balls are measurable, the doubling

condition leads to the following trichotomy:

• µ(Bρ) = 0 for all balls Bρ ⊂ X and, consequently, µ(X) = 0,

• µ(Bρ) ∈ (0,∞) for all balls Bρ ⊂ X ,

• µ(Bρ) = ∞ for all balls Bρ ⊂ X .

Thus, the condition µ(Bρ) ∈ (0,∞) in Definition 1.6 excludes only trivial examples.

Acknowledgments. The author is indebted to Luz Roncal for drawing his attention to

a very interesting problem discussed in this article, as well as for many long discussions

which led to a deeper understanding of the subject and significant improvements in the

presentation of the results.

The author was supported by the Basque Government through the BERC 2022-2025

program, by the Spanish State Research Agency through BCAM Severo Ochoa excellence

accreditation SEV-2017-2018, and by the Foundation for Polish Science through the

START Scholarship.

2. Proofs of Theorems 1.1, 1.3, and 1.4

2.1. Analysis: from quasimetric to metric spaces. Instead of dealing directly with

the problems stated in Section 1, we opt to make some reductions in advance, in order to

get rid of several technicalities such as measurability of balls. The first reduction refers

to the ‘metamathematical principle’ [St, Section 3] which says that many quasimetric-

related questions can be boiled down to the metric case.

One reason the definition of quasimetric is convenient to use is that if ρ is a quasimetric

and ρ̃ is symmetric and comparable to ρ, then ρ̃ is a quasimetric as well. For metrics the

corresponding statement is not true. However, the strength of this flexibility sometimes

turns into weakness. Indeed, the definition of topology using balls is perfectly suited to the

metric case and we pay a certain cost to ensure (a). If K = 1, then the triangle inequality

provides that, for an arbitrary reference point x and two points y, z lying close to each

other, the distances ρ(x, y), ρ(x, z) are similar. Precisely, we have |ρ(x, y) − ρ(x, z)| ≤

ρ(y, z). Thus, if y ∈ Bρ(x, r), then also Bρ(y, r̃) ⊂ Bρ(x, r) for some appropriately chosen

r̃, so that the ball Bρ(x, r) is open. This is not true in general if K > 1. To see this, take

R with the standard metric ρR(x, y) = |x− y| and modify it putting

• ρ̃R(x, y) = 2ρR(x, y) if one of the points is 0 while the other one belongs to a given

set E ⊂ (1, 2),

• ρ̃R(x, y) = ρR(x, y) otherwise.

6In particular, it is assumed that balls are µ-measurable sets.
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In view of the former discussion ρ̃R is a quasimetric. Moreover, looking at the notion of

convergence, we would expect it to generate the same topology on R as the standard one.

However, the exact forms of the balls Bρ̃R(0, r) with r ∈ (1, 4) are strongly dependent on

the form of E itself, while this set is arbitrary. In particular, one can choose E for which

none of these balls is Borel7.

Nonetheless, once we realize that, instead of balls, the topology Tρ is what we should

look at, things start to get more optimistic. To see this, we need the following definition.

Definition 2.1. Two quasimetrics on X, ρ1 and ρ2, are called equivalent if there exists

a numerical constant M ∈ [1,∞) such that M−1ρ1 ≤ ρ2 ≤ Mρ1.

It is easy to verify the result below, which one can relate to (b).

Fact 2.2. If ρ1 and ρ2 are equivalent, then Tρ1 = Tρ2. Also, for a quasimetric ρ and

α ∈ (0,∞), the mapping ρα defines a quasimetric such that Tρα = Tρ.

The next fact, which justifies (c), can be used to reduce our problems to the metric case.

Fact 2.3. Consider a quasimetric ρ on X and take q ∈ (0, 1] satisfying (2K)q = 2. Then

ρq(x, y) := inf
{

n
∑

j=1

ρ(xj , xj−1)
q : x = x0, x1, . . . , xn = y, n ∈ N

}

determines a metric on X which is equivalent to ρq. Precisely, one has ρq ≤ ρq ≤ 4ρq.

The proof of Fact 2.3 can be found in [PS, Proposition], see also [AIN]. We now explain

briefly what is the motivation behind such a definition of ρq. If K > 1, then ρ(x, y) >

ρ(x, z) + ρ(z, y) can happen. Thus, to assure the triangle inequality we would like to

make the distance between x and y not larger than the right hand side. The same applies

to ρ(x, z), ρ(z, y) so we eventually take into account all finite chains going from x to

y. But then, as the number of intermediate points goes to infinity, the corresponding

expressions may go to zero8. Hence, we need to adjust our original idea and, as it turns

out, penalizing long chains by using q close to zero does the job perfectly.

Corollary 2.4. Regarding Theorems 1.1, 1.3, and 1.4 it is enough to consider metrics.

Indeed, by using Facts 2.2 and 2.3, one can verify that if (Tω, ρ, µ) is a quasimetric

space which is homogeneous in the Coifman–Weiss sense, then (Tω, ρq, µ) is a homoge-

neous metric space that enjoys the same topology. Also, if ρ is bounded and translation

invariant, then so is ρq.

From now on, we can concentrate solely on metrics. However, to satisfy the reader’s

curiosity, we shall comment on which results have their quasimetric analogues.

2.2. Geometry: from doubling to geometrically doubling spaces. Our next goal

is to show that yet another important reduction can be made. Namely, although both

ρ and µ are involved in verifying whether (X, ρ, µ) is homogeneous or not, it is actually

the metric that plays the more important role here.

7See [St, Example 1.1] for a simple example of quasimetric space such that all balls fail to be Borel.
8For example, if ρ̃(x, y) := (x− y)2, x, y ∈ R, then limn→∞ ρ̃(0, 1

n
) + ρ̃( 1

n
, 2

n
) + · · ·+ ρ̃(n−1

n
, 1) = 0.
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It is clear that if µ is doubling with respect to ρ and the second option in the said

trichotomy occurs, then one should not be able to find arbitrarily many disjoint balls of ra-

dius r
2
centered at points y ∈ Bρ(x, 2r). Indeed, if that would be the case, then at least one

of these balls, say Bρ(y0,
r
2
), should have very small measure compared to µ(Bρ(x, 4r))

9,

and the doubling condition would fail for one of the balls Bρ(y0,
r
2
), Bρ(y0, r), Bρ(y0, 2r).

The discussion above motivates the following definition.

Definition 2.5. A quasimetric space (X, ρ) is called geometrically doubling if there exists

a number N ∈ N such that every ball Bρ(x, 2r) can be covered by no more than 2N balls

of radius r. In this case, we also say that ρ is geometrically doubling.

It turns out that, in some sense, failing to be geometrically doubling is the only obstacle

that prevents a given space from becoming homogeneous after a suitable choice of µ.

Fact 2.6. If a metric space (X, ρ, µ) is homogeneous in the Coifman–Weiss sense, then ρ

is geometrically doubling. Conversely, if ρ is a geometrically doubling metric on X, then

there exists a Borel measure µ such that (X, ρ, µ) is homogeneous in the Coifman–Weiss

sense, provided that (X, ρ) is complete.

Indeed, the first part of Fact 2.6 is a known fact mentioned by the authors in [CW], see

also [Hy]. Precisely, if ρ is not geometrically doubling, then for each M ∈ N there exist

a ball Bρ(x, 2r) and points y1, . . . , yM ∈ Bρ(x, 2r) such that ρ(yi, yj) ≥ r if i 6= j, so that

the balls Bρ(y1,
r
2
), . . . , Bρ(yM , r

2
) are disjoint. Then the doubling condition cannot hold

in view of the previous discussion. The reverse part is harder and its proof can also be

found in [LS], see also . The quasimetric analogue of Fact 2.6 is also true10. Finally, in

general the completeness assumption cannot be ignored11.

Corollary 2.7. Regarding Theorems 1.1, 1.3, and 1.4 one only needs to look for geomet-

rically doubling metrics satisfying the desired properties.

Indeed, this follows clearly by combining Corollary 2.4 and Fact 2.6. Precisely, we expect

negative answers so it suffices to show that each metric ρ which is either bounded and

translation invariant (Theorem 1.3) or such that Tρ coincides with the given topology

(Theorems 1.1 and 1.4) cannot be geometrically doubling.

To use the geometrical doubling property, we introduce the concept of r-separated sets.

Definition 2.8. For a nonempty quasimetric space (X, ρ) we say that a given subset

E ⊂ X is r-separated, r ∈ (0,∞), if ρ(x, y) ≥ r for all distinct x, y ∈ E. We denote by

ℵ(X, ρ, r) the biggest number n ∈ N such that there exists at least one r-separated set with

n elements. If arbitrarily large r-separated sets can be found, then we put ℵ(X, ρ, r) = ∞.

The following lemma will be very helpful later on.

Lemma 2.9. Let (X, ρ) be a bounded metric space. If ρ is geometrically doubling with

some N ∈ N, then there exists C ∈ (0,∞) such that ℵ(X, ρ, 2−l) ≤ C2Nl for all l ∈ N.

9This follows because there are many disjoint balls, each of them satisfying Bρ(y,
r
2
) ⊂ Bρ(x, 4r).

10In the reverse part, we additionally assume that ρ is such that all balls are Borel.
11To see this, consider Q and ρR restricted to Q×Q, as mentioned in [St].
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Proof. Take L ∈ Z such that supx,y∈X ρ(x, y) < 2L. Then for an arbitrary reference

point x ∈ X we have Bρ(x, 2
L) = X and iterating the covering procedure we conclude

that for each l ∈ N the space X can be covered by 2Nl balls of radius 2L−l, so that

ℵ(X, ρ, 2L−l+1) ≤ 2Nl holds12. A suitable reparametrization gives the thesis with some C

depending on L,N . �

A quasimetric version of Lemma 2.9 is also true, but with C2Ml instead of C2Nl, where

C depends on K,L,N , while M depends only on K,N .

We are ready to prove the first of the two Tω-related theorems.

Proof of Theorem 1.3. Suppose that ρ is a bounded translation invariant metric on Tω.

For each n, j ∈ N consider the set

En,j =
{

(x1, . . . , xn, 0, 0, . . . ) ∈ Tω : x1, . . . , xn ∈
{

0 · 2−j , 1 · 2−j, . . . , (2j − 1) · 2−j
}

}

.

Then En,j has precisely 2nj elements, and it is rn,j-seperated with rn,j satisfying

rn,j = min
x,y∈En,j :x 6=y

ρ(x, y) = min
z∈En,j\{0}

ρ(0, z),

where 0 = (0, 0, . . . ) ∈ Tω is the neutral element of the group. Indeed, the last equality

follows, since ρ is translation invariant and En,j is a subgroup of Tω.

Let us now observe that if z ∈ En,j+1\{0} for some j ∈ N, then either z ∈ En,1\{0} or

2z ∈ En,j \ {0}, see Figure 1. In the first case ρ(0, z) ≥ rn,1, while in the second one, by

translation invariance and the triangle inequality, one has ρ(0, z) = 1

2
(ρ(0, z)+ρ(z, 2z)) ≥

1

2
ρ(0, 2z) ≥

rn,j

2
. Thus, rn,j+1 ≥ min{rn,1,

rn,j

2
} and denoting Cn = rn,1 we conclude that

rn,j ≥ Cn2
−j+1 for each j ∈ N, so that ℵ(Tω, ρ, Cn2

−j+1) ≥ 2nj.

Since both n, j may be arbitrarily large, one can use Lemma 2.9 to deduce that ρ cannot

be geometrically doubling. Indeed, there is no N ∈ N such that ℵ(Tω, ρ, 2−l) ≤ C2Nl

holds for all l ∈ N with some C ∈ (0,∞), as otherwise one gets a contradiction by taking

any n greater than N and sufficiently large j depending on N,C,Cn. �

0

2z

z

Figure 1. Visualization of the sets En,j, j ∈ N, for n = 2. Thick dots and

all dots correspond to the sets E2,2 and E2,3, respectively. Given z ∈ E2,3,

we have 2z ∈ E2,2 and 2z = 0 ⇐⇒ z ∈ E2,1.

12To see this, notice that if ρ(x, y) ≥ 2r, then there is no ball of radius r containing both x and y.
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At the expense of additional technical difficulties, one can show Theorem 1.3 directly for

all bounded and translation invariant quasimetrics, modifying the proof presented above.

2.3. Topology: from Hausdorff to topological dimension. Next we prove Theo-

rem 1.4. Here we use the following classical result that can be seen as a special case of

the Brouwer fixed-point theorem or a multidimensional variant of the Darboux theorem.

Fact 2.10 (Poincaré–Miranda theorem). For n ∈ N let f1, . . . , fn be continuous functions

defined on [0, 1]n. Assume that for each i ∈ {1, . . . , n} and (x1, . . . , xn) ∈ [0, 1]n there

exists ai ∈ R such that fi(x) ≤ ai if xi = 0 and fi(x) ≥ ai if xi = 1. Then there exists

x∗ ∈ [0, 1]n such that (f1(x
∗), . . . , fn(x

∗)) = (a1, . . . , an).

Thanks to Fact 2.10 we can adapt the idea behind the previous proof to the case of

metrics which are not necessarily translation invariant.

Proof of Theorem 1.4. Suppose that ρ is such that Tρ = TTω . Then ρ is bounded because

(Tω, ρ) is compact. Moreover, E ⊂ Tω is Tρ-compact if and only if it is TTω -closed.

For each n ∈ N consider the set

En :=
{

(x1, . . . , xn, 0, 0, . . . ) ∈ Tω : (x1, . . . , xn) ∈ [0, 1
2
]n
}

which will play the role of the cube [0, 1]n from Fact 2.10. Denote also, for i ∈ {1, . . . , n},

E−
n,i := {x ∈ En : xi = 0} and E+

n,i := {x ∈ En : xi =
1

2
},

and set

Cn := inf
{

ρ(x, y) : x ∈ E−
n,i, y ∈ E+

n,i for some i ∈ {1, . . . , n}
}

.

Since E−
n,i, E

+

n,i are compact and (x, y) 7→ ρ(x, y) is continuous13 on Tω × Tω, we have

Cn ∈ (0,∞). Define auxiliary functions

fn,i(x) := inf
y∈E−

n,i

ρ(x, y), x ∈ En.

Using compactness again we deduce that each fn,i is continuous
14. Moreover, fn,i(x) = 0

for x ∈ E−
n,i and fn,i(x) ≥ Cn for x ∈ E+

n,i.

Next, choose j ∈ N and take v = (v1, . . . , vn) ∈
{

Cn

2j
, 2Cn

2j
, . . . , 2jCn

2j

}n
. By Fact 2.10

there exists xv ∈ En such that (fn,1(xv), . . . , fn,n(xv)) = v. We shall show that the set

En,j :=
{

xv : v ∈
{

Cn

2j
, 2Cn

2j
, . . . , 2jCn

2j

}n
}

of cardinality 2nj is Cn

2j
-separated so that ℵ(Tω, ρ, Cn

2j
) ≥ 2nj holds. To this end, let

xv, xv′ ∈ En,j correspond to distinct vectors v, v′ and assume that v′i0 > vi0 for some

i0 ∈ {1, . . . , n}. Then fn,i0(xv′) ≥ fn,i0(xv)+
Cn

2j
by the definition of fn,i0, while the triangle

inequality gives fn,i0(xv′) ≤ fn,i0(xv) + ρ(xv, xv′), see Figure 2. Thus, ρ(xv, xv′) ≥
Cn

2j
.

Both n, j may be arbitrarily large so one can use Lemma 2.9 to deduce that ρ cannot

be geometrically doubling. Indeed, there is no N ∈ N such that ℵ(Tω, ρ, 2−l) ≤ C2Nl

holds for all l ∈ N with some C ∈ (0,∞), as otherwise one gets a contradiction by taking

any n greater than N , and sufficiently large j depending on N,C,Cn. �

13Here it is important that ρ is a metric.
14Indeed, assuming fn,i(x) ≥ fn,i(x

′), we get 0 ≤ fn,i(x)−fn,i(x
′) ≤ ρ(x, y∗)−ρ(x′, y∗) ≤ ρ(x, x′), by

taking y∗ ∈ E−

n,i for which the value fn,i(x) is attained. Again, it is important here that ρ is a metric.
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xv

xv′

E−
2,1 E+

2,1

E−
2,2

E+

2,2

y∗

Figure 2. Visualization of the ‘cube’ En for n = 2. Thick dots are the

elements of the set E2,j with j = 2, while dashed lines represent the cor-

responding level sets of the functions f2,1, f2,2 (this is an oversimplified

scheme, as in general the structure of the level sets may be much more

complicated). We pick two points xv, xv′ ∈ E2,2 corresponding to vectors

v, v′ such that v′i0 > vi0 for i0 = 1. By y∗ we denote the point from E−
2,1 for

which f2,1(xv) is attained. Then f2,1(xv′) ≤ ρ(xv′ , y
∗) ≤ f2,1(xv)+ρ(xv, xv′).

This time it was crucial that only metrics, not quasimetrics, were considered in the proof.

It remains to show Theorem 1.1. To this end, let us recall the concept of the Hausdorff

dimension. Given a metric space (X, ρ), for each E ⊂ X we define

Hd(E) := lim
δ↓0

(

inf
{

∞
∑

i=1

(

diam(Ui)
)d

: E ⊂
∞
⋃

i=1

Ui, diam(Ui) < δ
})

, d ∈ [0,∞),

and put dimH(E) := inf{d ∈ [0,∞) : Hd(E) = 0}15. The proof of Lemma 2.9 reveals

that if (X, ρ) is geometrically doubling with some N ∈ N, and x ∈ X is any reference

point, then dimH(X) = limr→∞ dimH(Bρ(x, r)) ≤ N . Similarly, the proof of Theorem 1.4

hints that [0, 1]n equipped with any metric generating the standard topology should have

Hausdorff dimension at least n. The latter is a special case of the following general result.

Fact 2.11. Let (X, ρ) be a separable metric space. Then dim(X) ≤ dimH(X).

Indeed, dim(X) = ind(X) follows for separable metric spaces, see [En, Preface], while

ind(X) ≤ dimH(X) follows for metric spaces, see [Ed, Section 3.1]. For separable quasi-

metric spaces dim(X) ≤ 1

q
dimH(X) holds with q ∈ (0, 1] satisfying (2K)q = 2.

Proof of Theorem 1.1. Assume that ρ is a metric for which Tρ = T and (X, ρ) is geo-

metrically doubling. Then dimH(X) is finite by Lemma 2.9. Also, (X, ρ) is separable

because the geometrical doubling property forces that for any M ∈ N the whole space X

can be covered by countably many balls of radius 2−M . Thus, Fact 2.11 gives

dim(X) ≤ dimH(X) < ∞ = dim(X).

15We use the convention dimH(E) = ∞ if the infimum is taken over the empty set.
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This contradicts the existence of ρ with the desired properties. �

The following remarks highlight why the problem stated in Question 1.2 was delicate.

Remark 2.12. In general, being geometrically doubling is not a topological property.

Indeed, one can change ρR to make R with its natural topology not geometrically dou-

bling. It suffices to take ρ := log(1 + ρR) and consider the balls Bρ(0, n) with n → ∞.

Remark 2.13. The subspace {0, 1
2
}ω ⊂ Tω with the topology inherited from Tω can be

made homogeneous in the Coifman–Weiss sense.

Indeed, it suffices to identify {0, 1
2
}ω with the classical Cantor set C ⊂ [0, 1] with the

metric ρC obtained by restricting ρR to C × C. This can be done through the bijection

π : {0, 1

2
}ω → C given by π(x) :=

∑∞
n=1

4xn

3n
. Then the usual Cantor measure µC on C is

doubling, since for all x ∈ C and n ∈ N one has µC(BρC(3
−n)) = 2−n, see also [WWW].

References
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