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CHARACTERIZATIONS OF PRODUCT HARDY SPACES ON

STRATIFIED GROUPS BY SINGULAR INTEGRALS AND

MAXIMAL FUNCTIONS

MICHAEL G. COWLING, ZHIJIE FAN, JI LI, AND LIXIN YAN

Abstract. A large part of the theory of Hardy spaces on products of Euclidean
spaces has been extended to the setting of products of stratified Lie groups. This
includes characterisation of H1 by square functions and by atomic decompositions,
proof of the duality of H1 with BMO, and description of many interpolation spaces.
Until now, however, two aspects of the classical theory have been conspicuously
absent: the characterisation of H1 by singular integrals (of Christ–Geller type) or by
(vertical or nontangential) maximal functions. In this paper we fill in these gaps by
developing new techniques on products of stratified groups, using the ideas in [4] on
the Heisenberg group with flag structure.

1. Introduction and statement of main results

Hardy spaces first appeared in the study of boundary behaviour of holomorphic
functions on the disc and upper half plane. The modern theory of Hardy spaces began
in 1960, when E. M. Stein and G. Weiss [37] considered functions defined on Rn×R+,
and it took off in the early 1970s, with the remarkable work of C. Fefferman and Stein
[12] and then R. R. Coifman and Weiss [7]. Much of this theory has been extended to
more general spaces of homogeneous type, in the sense of Coifman and Weiss [6, 7]. In
the late 1970s, G. B. Folland and Stein [17] characterised the Hardy space H1(G) on a
stratified group G in terms of atomic decompositions, square functions, area functions,
and maximal functions. The area integrals and maximal functions involve taking
integrals or suprema over cones in G × R+. Soon after, M. Christ and D. Geller [11]
showed that there are singular integral operators R0, . . . ,Rn on a stratified Lie group
such that f ∈ H1(G) if and only if all Rjf ∈ L1(G). Here R0 is the identity operator
and the other Rj are Riesz transformations, that is, convolutions with derivatives of
a potential.

Harmonic analysis on product spaces Rm×R
n was born in the late 1970s and studied

extensively in the 1980s, in particular by S.-Y. A. Chang, R. Fefferman, R. F. Gundy,
J.-L. Journé, J. Pipher, and Stein (see [3, 14, 21, 29, 31, 34]), motivated by problems
on the boundary behavior of holomorphic functions in several complex variables, which
require consideration of approach regions that behave differently in different variables.
Harmonic analysis on product spaces is influenced by classical harmonic analysis, but
is different in that the different factors in the product may be dilated independently.
The terms one-parameter and multiparameter are often used to highlight the different
structures of the dilations considered. As in classical harmonic analysis, an impor-
tant part of the theory is the development of Hardy and BMO spaces, their duality
and the connections to atomic decompositions. A key ingredient is Journé’s covering
lemma, which provides a tool to replace general open sets by rectangles with controlled
geometry.
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Since the 1980s, the development of multiparameter harmonic analysis proceeded
apace; recent contributions in the area include [16, 28, 30, 33, 32]. Much of the product
space theory on Rm×Rn has been extended to more general product spaces, including
the duality of H1 with BMO, characterisation of H1 by square functions and atomic
decompositions, and description of various interpolation spaces. In [5, 22, 23, 24],
the theory of Hardy spaces Hp, for p less than and close to 1, has been developed
on products X1 ×X2 of spaces of homogeneous type. Hence on products G1 × G2 of
stratified Lie groups, there is already a well-defined Hardy space H1(G1 × G2) that
may be characterised by atomic decompositions and by square or area functions.

Two aspects of the classical theory that have been conspicuous by their absence
until now are a singular integral characterisation of Christ–Geller type and a maximal
function characterisation. The main difficulty is that the geometrical structure is
harder to handle than in the one-parameter case. For example, one may obtain the
atomic decomposition from the nontangential maximal function in the one-parameter
case by using the classical Calderón–Zygmund and Whitney decompositions involving
cubes, but these decompositions are absent in the multiparameter case.

This paper fills these gaps for products of stratified Lie groups, with Theorems 1.1
and 1.3 below. For simplicity, and because new methods would otherwise be needed,
we consider products of only two groups. Our new techniques come from [4], where
similar results are proved on the Heisenberg group with its flag structure.

Unexplained definitions may be found below.

Theorem 1.1. The double Riesz transformations R[1]
j1

⊗ R[2]
j2

characterise the Hardy

space H1(G1 × G2). That is, f ∈ H1(G1 × G2) if and only if each R[1]
j1

⊗ R[2]
j2
f is in

L1(G1 ×G2), and moreover

‖f‖H1(G1×G2) h

d1∑

j1=0

d2∑

j2=0

∥∥∥R[1]
j1

⊗R[2]
j2
f
∥∥∥
L1(G1×G2)

.

Using Theorem 1.1 and the H
1-BMO duality (see for example [22]), we obtain a

decomposition of functions in the product space BMO(G1 ×G2).

Corollary 1.2. For a function u on G1 ×G2, the following are equivalent:

(a) u ∈ BMO(G1 ×G2);
(b) there exist gj1,j2 ∈ L∞(G1 ×G2) such that

u =

d1∑

j1=0

d2∑

j2=0

R[1]
j1

⊗R[2]
j2
(gj1,j2).

Write Γ(g1, g2) for the product Γ1(g1)× Γ2(g2) of the cones treated by Folland and
Stein [14], and for suitable functions ψ[i] on Gi, define the nontangential maximal
function:

Nψ(f)(g1, g2) := sup
{∣∣f ∗ (ψ[1]

t1 ⊗ ψ
[2]
t2 )(h1, h2)

∣∣ : (h1, h2) ∈ Γ(g1, g2), t1, t2 ∈ R+

}
,

where ψ
[i]
ti is a normalised dilate of ψ[i].

Theorem 1.3. The nontangential maximal operator Nψ characterises the Hardy space

H1(G1×G2). That is, f ∈ H1(G1×G2) if and only if Nψf is in L1(G1×G2); moreover

‖f‖H1(G1×G2) h ‖Nψ(f)‖L1(G1×G2)
.
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This paper is organised as follows. In Section 2, we remind the reader of some back-
ground on stratified Lie groups and analysis thereupon, and introduce some notation
to simplify the formulae in the case of products of such groups. In Section 3, we review
some of the main results on Hardy spaces on products of stratified groups; many of
these are valid in the more general context of products of spaces of homogeneous type.
Then we prove our main theorems on the characterisations of H1(G1 × G2), by Riesz
transforms in Sections 4 and by maximal functions in Section 5. The results proved
are actually somewhat more general than stated in Theorems 1.1 and 1.3, but precise
statements require more notation than we have established at this point.

“Constants” are always positive real numbers; we write A . B when there is a
constant C such that A ≤ CB, and A h B when A . B and B . A. We denote the
identity of a group by o, and the indicator function of a set E by χE .

2. Preliminaries

2.1. Stratified nilpotent Lie groups. Let G be a (real and finite dimensional)
stratified nilpotent Lie group of step k with Lie algebra g. This means that we may
write g as a vector space direct sum v1⊕· · ·⊕vk, where [v1, vj] = vj+1 when 1 ≤ j ≤ k;

here vk+1 = {0}. Let Q denote the homogeneous dimension
∑k

j=1 j dim vj of G.
There is a one-parameter family of automorphic dilations δt on g, given by

δt(X1 +X2 + · · ·+Xk) = tX1 + t2X2 + · · ·+ tkXk;

here each Xj ∈ vj and t > 0. The exponential mapping exp : g → G is a diffeomor-
phism, and we identify g and G. The dilations extend to automorphic dilations of G,
also denoted by δt, by conjugation with exp. The natural bi-invariant Haar measure
on G is the Lebesgue measure on g, lifted to G using exp.

By [25], the group G may be equipped with a smooth subadditive homogeneous
norm ρ, a continuous function from G to [0,∞) that is smooth on G\{o} and satisfies

(a) ρ(g−1) = ρ(g);
(b) ρ(xy) ≤ ρ(x) + ρ(y)
(c) ρ(δt(g)) = tρ(g) for all g ∈ G and t > 0;
(d) ρ(g) = 0 if and only if g = o,

Abusing notation, we define ρ(g, g′) = ρ(g−1g′) for all g, g′ ∈ G; this defines a metric
on G. We write B(g, r) for the open ball with centre g and radius r with respect to ρ:

B(g, r) = gB(o, r) = g{h ∈ G : ρ(h) < 1}.
The metric space (G, ρ) is geometrically doubling ; that is, there exists N ∈ N such
that every metric ball B(x, 2r) may be covered by at most N balls of radius r.

We remind the reader that a stratified Lie group is a space of homogenous type in
the sense of Coifman and Weiss [6, 7], and analysis on stratified Lie groups uses much
from the theory of such spaces. In particular, we frequently deal with molecules, that
is, functions ψ that satisfy standard decay and smoothness conditions, meaning that
there is a parameter ε ∈ (0, 1], which we fix once and for all, and a constant C such
that

(1)

|ψ(g)| ≤ C
1

(1 + ρ(g))Q+ε

|ψ(g)− ψ(g′)| ≤ C
ρ(g−1g′)ε

(1 + ρ(g) + ρ(g′))Q+2ε
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for all g, g′ ∈ G. We often impose an additional cancellation condition, namely
∫

G

ψ(g) dg = 0.(2)

We write ‖ψ‖
M(G) for the least constant C such that the conditions (1) hold, M(G) for

the Banach space of all such functions ψ, and M0(G) for the subspace of M(G) of all
ψ that also satisfy condition (2).

The normalised dilate ft of a function f on G by t > 0 is given by ft := t−Qf ◦ δ1/t,
and the convolution f ∗ f ′ of measurable functions f and f ′ on G is defined by

f ∗ f ′(g) =

∫

G

f(h)f ′(h−1g) dh =

∫

G

f(gh−1)f ′(h) dh.

Take left-invariant vector fields X1, . . . , Xn on G that form a basis of v1, and define
the sub-Laplacian L = −∑n

j=1(Xj)
2. Observe that each Xj is homogeneous of degree

1 and L is homogeneous of degree 2, in the sense that

Xj (f ◦ δt) = t (Xjf) ◦ δt and L (f ◦ δt) = t2 (Lf) ◦ δt
for all t > 0 and all f ∈ C2(G).

Associated to the sub-Laplacian, there are various Riesz potential operators L−α,
where α > 0; these are convolution operators with homogeneous kernels—see Folland
[13]. The Riesz transformation Rj := XjL−1/2 is a singular integral operator, and is
bounded on Lp(G) when 1 < p < ∞ as well as from the Folland–Stein Hardy space
H

1(G) to L
1(G). We define R0 to be the identity operator I.

The Hardy–Littlewood maximal operator M on G is defined using the metric balls:

Mf(g) := sup

{
1

|B(g′, r)|

∫

B(g′,r)

|f(g′′)| dg′′ : g ∈ B(g′, r)

}
.

For future use, we note that the layer cake formula implies that, if µ is a radial
decreasing function on G (that is, µ(g) depends only on ρ(g) and decreases as ρ(g)
increases), then

(3) |f | ∗ µε(g) ≤ ‖µ‖
L1(G) Mf(g) ∀g ∈ G.

2.2. Functional calculus for the sub-Laplacian. The sub-Laplacian L has a spec-
tral resolution:

L(f) =
∫ ∞

0

λ dEL(λ)f ∀f ∈ L
2(G),

where EL(λ) is a projection-valued measure supported on [0,∞), the spectrum of L.
For a bounded Borel function η : [0,∞) → C, we define the operator F (L) spectrally:

η(L)f =

∫ ∞

0

η(λ) dEL(λ)f ∀f ∈ L
2(G).

This operator is a convolution with a Schwartz distribution on G.
Take a smooth function η : R+ → R, supported in [1/2, 2], such that

∑
n∈Z η(2

−ns) =
1 for all s ∈ R+. The convolution kernels kη(Li) of the operators η(Li) on G are
Schwartz functions, by [26]. Moreover, we may write η(tLi) = tLiψ(tLi), where ψ(t) :=
t−1η(t) for all t ∈ R+ and suppψ ⊂ [1/2, 2], and deduce that

kη(tLi) = tLikψ(tLi).
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Integration by parts now implies that
∫

G

kη(tLi)(g) dg =

∫

G

tLikψ(tLi)(g) dg = 0.

2.3. The heat and Poisson kernels. Let pt and Pt, where t > 0, be the heat and
Poisson kernels associated to the sub-Laplacian operator L, that is, the convolution

kernels of the operators etL and et
√
L on G. We write Qt for t∂tPt, and to simplify

notation later, we often write P instead of P1. We warn the reader that Pt and Qt are
the normalised dilates of P1 and Q1 by the factor t, but pt is the normalised dilate of
p1 by a factor of t1/2. Let ∇ denote the subgradient on G and /∇ denote the gradient
(∇, ∂t) on G× R+.

Lemma 2.1. The kernels pt and Pt are R+-valued. Further, pt and Pt have integral

1, while Qt has integral 0 for all t ∈ R+. Finally, there exists a constant c such that

pt(g) . t−Q/2 exp
(
−ρ2(g)/ct

)
∣∣ /∇pt(g)

∣∣ . t−(Q+1)/2 exp
(
−ρ2(g)/ct

)

Pt(g) h
t

(t2 + ρ(g)2)(Q+1)/2

∣∣ /∇Pt(g)
∣∣ . t

(t2 + ρ(g)2)(Q+2)/2

for all g ∈ G and t ∈ R+.

Proof. For the heat kernel estimates, see [39, Theorem IV.4.2]. Note that there is a
version of the first estimate with the opposite inequality and a different constant c.

The estimates for Pt and Qt follow from the subordination formula

e−t
√
L =

1

2
√
π

∫ ∞

0

te−t
2/4v

√
v

e−vL
dv

v
.

For the case of the Heisenberg group, much of this is worked out in detail in [4]. �

This lemma implies that the heat kernel p1 and the Poisson kernel P1 (and their
derivatives) both satisfy the standard decay and smoothness conditions (1); the deriva-
tives also satisfy the cancellation condition (2).

Lemma 2.1 also implies the following standard corollary, whose proof we omit.

Corollary 2.2. Suppose that f ∈ Lp(G), where 1 ≤ p ≤ ∞. Then ‖f ∗ Pt‖Lp(G) and∥∥f ∗ t /∇Pt
∥∥
Lp(G)

are uniformly bounded as t runs over R+. Further,

lim
t→0

f ∗ Pt = f ;

the convergence is both pointwise almost everywhere, and in the Lp(G) norm if 1 ≤
p <∞ and in the weak-star topology if p = ∞. Finally,

lim
t→0

f ∗ t /∇Pt = 0;

the convergence is both pointwise almost everywhere, and in the strong operator topol-

ogy if f ∈ L1(G), in the Lp(G) norm if 1 < p < ∞ and in the weak-star topology if

p = ∞.
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2.4. Systems of pseudodyadic cubes. We use the Hytönen–Kairema [27] families
of “dyadic cubes” in geometrically doubling metric spaces. We state a version of
[27, Theorem 2.2] that is simpler, in that we work on well-behaved metric spaces
rather than general pseudometric spaces. The Hytönen–Kairema construction builds
on seminal work of Christ [10] and of Sawyer and Wheeden [35].

Theorem 2.3 ([27]). Let (G, ρ) be a metric stratified group and c0, C0 and κ constants

such that 0 < c0 ≤ C0 < ∞ and 12C0κ ≤ c0. Then for all k ∈ Z, there exist families

Qk(G) of pseudodyadic cubes Q with centres z(Q), such that:

(a) G is the disjoint union of all Q ∈ Qk(G), for each k ∈ Z;

(b) B(z(Q), c0κ
k/3) ⊆ Q ⊆ B(z(Q), 2C0κ

k) for all Q ∈ Qk(G);
(c) if Q ∈ Qk(G) and Q′ ∈ Qk′(G) where k ≤ k′, then either Q ∩ Q′ = ∅ or

Q ⊆ Q′; in the second case, B(z(Q), 2C0κ
k) ⊆ B(z(Q′), 2C0κ

k′);

The family of pseudodyadic cubes Q in Qk(G), where k ∈ Z, of Theorem 2.3 will
be called a Hytönen–Kairema set of cubes on G. We write Q(G) for the union of all
Qk(G). Given a cube Q ∈ Qk(G), we denote the quantity κk by ℓ(Q), by analogy
with the side-length of a Euclidean cube.

2.5. Products of stratified groups. We equip products of stratified groups G1 and
G2 with a product structure: the basic geometric objects are rectangles, which are
products of balls, and pseudodyadic rectangles, which are products of pseudodyadic
cubes. We write Pj(G) for the collection of all pseudodyadic rectangles that are prod-
ucts of cubes in Qj1(G1) and in Qj2(G2); P(G) for the collection of all pseudodyadic
rectangles, and R(G) for the collection of all rectangles. We let ℓ : P(G) → T be
the function such that ℓi(Q1 ×Q2) = ℓ(Qi), the “side-length” of Qi.

We carry forward the notation from Section 2.1, modified by adding a subscript i
or superscript [i] to clarify that we are dealing with Gi. To shorten the formulae, we
often use bold face type to indicate a product object: thus we write G, g, r and t in
place of G1×G2, (g1, g2), (r1, r2) and (t1, t2). For example, Bi(gi, ri) denotes the open
ball on Gi with centre gi and radius ri, with respect to the homogeneous norm ρi, and
a typical rectangle R(g, r) is then a product B1(g1, r1)×B2(g2, r2). We also write t dt
in place of t1t2 dt1 dt2, and T for the product parameter space R+ × R+.

The element of Haar measure on G is denoted dg, but may be written as dg1 dg2
for calculations. The convolution f ∗ f ′ of functions f and f ′ on G is defined by

(f ∗ f ′)(g) :=

∫

G

f(h)f ′(h−1g) dh.

We define the strong maximal operator MS by

MS(f)(g) := sup

{
1

|R|

∫

R

|f(h)| dh : R ∋ g, R ∈ R(G)

}
.

It is a straightforward exercise to show that MS is dominated by the iterated Hardy–
Littlewood maximal operators in the factors:

MSf ≤ M1M2(f) and MSf ≤ M2M1(f) ∀f ∈ L
1
loc(G).

When 1 < p ≤ ∞, the operators M1 and M2 in the factors are Lp-bounded, so the
iterated maximal operators and the strong maximal operator are also Lp-bounded.

Given functions ψ[1] on G1 and ψ[2] on G2, we often deal with the product of their
normalised dilates on G1 ×G2, and we abbreviate this to ψt:

ψt := ψ
[1]
t1 ⊗ ψ

[2]
t2 .
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If ψ[1] ∈ M(G1) and ψ
[2] ∈ M(G2), then

|f ∗ ψt(g)| . MS(f)(g) ∀g ∈ G ∀f ∈ L
1(G),

much as argued to prove (3), but with “biradial” in place of “radial”.

Given an open subset U of G with finite measure |U |, we define the enlargement Ũ
of U using the strong maximal operator MS:

Ũ :=
{
g ∈ G : MSχU(g) >

1

4

}
.

We write M (U) for the family of maximal pseudodyadic rectangles contained in U .

We let Pt := P
[1]
t1 ⊗ P

[2]
t2 ; when t1 = 0 or t2 = 0, we interpret this as a distribution

supported in G2 or in G1 in the obvious way. We write Q
[i]
ti for the convolution kernel

of the operator ti∂tie
−ti

√
Li; then Q

[i]
ti = ti∂tiP

[i]
ti . By arguing as in Corollary 2.2, it is

easy to see that for any measurable subset V of G,

(4) lim
t1→0

χV ∗ (Q[1]
t1 ⊗ P

[2]
t2 )(g) = 0

for almost all g in G and in the weak-star topology of L∞(G).

The double Riesz transforms R[1]
j1

⊗R[2]
j2
f , where 0 ≤ ji ≤ di, of a suitable function

f on G are defined in the obvious way: when j1 and j2 are nonzero,

(5) R[1]
j1

⊗R[2]
j2
f := X

[1]
j1
L−1/2

1 X
[2]
j2
L−1/2

2 f,

and if ji = 0 we replace X
[i]
ji
L−1/2
i by the identity operator Ii.

3. The known product Hardy spaces

3.1. The atomic Hardy space. Fix a constant C and Hytönen–Kairema sets of
pseudodyadic cubes in G1 and G2. A pseudodyadic rectangle R is a product Q1 ×Q2

of pseudodyadic cubes in the factors G1 and G2.
An integrable function aR is said to be a particle associated to the pseudodyadic

rectangle R if the following support and product cancellation conditions hold:

(6) supp aR ⊆ CR

and

(7)

∫

G1

aR(g1, ·) dg1 = 0 and

∫

G2

aR(·, g2) dg2 = 0

(almost everywhere).
A function a on G is said to be a product atom associated to an open subset U of

G of finite measure if a satisfies the following support and size conditions:

supp a ⊂ Ũ

‖a‖
L2(G) ≤

∣∣∣Ũ
∣∣∣
−1/2

,

and we may decompose a as a sum
∑

R∈M (U) aR of particles aR associated to the

pseudodyadic rectangles R ∈ M (U) in such a way that
( ∑

R∈M (U)

‖aR‖2L2(G)

)1/2

≤ |U |−1/2 .
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Definition 3.1. We say that f ∈ L1(G) belongs to the atomic Hardy space H1
atom(G)

if and only if it is possible to represent f as a sum

f =
∑

n∈N
λnan,

where an is an atom and λn ∈ R+ for all n, and
∑

n∈N λn < ∞. We define the norm
‖f‖H1

atom(G) to be the infimum of the sums
∑

n∈N λn over all such representations of f .

It is often more convenient to impose a stronger requirement on particles, namely,
that aR = LN1

1 LN2

1 bR for some L2(G) function bR in the domain of LN1

1 LN2

1 and for large
integers N1 and N2; this means that aR has many vanishing moments, which may make
calculations easier. We may show that this stronger requirement on particles gives the
same atomic Hardy space, using telescopic series arguments to make moments vanish.

3.2. Square function and area function Hardy spaces. For g ∈ G and β ∈
[0,∞), we write Γβ(g) for the product cone Γβ1 (g1)× Γβ2 (g2), where

Γβi (gi) := {(hi, ti) ∈ Gi × R+ : ρi(gi, hi) ≤ βti}.
We work on the domain G1 ×G2 × R+ × R+.

Take functions ψ[i] on Gi that satisfy the standard decay, smoothness and cancella-

tion conditions (1) and (2). Recall that ψt denotes the product function ψ
[1]
t1 ⊗ ψ

[2]
t2 .

Definition 3.2. For ψ[i] as above and β > 0, we define Sψ,β(f)(g) to be
(∫∫

Γβ(g)

|(f ∗ ψt(h)|2
|R(o, βt)| dh

dg

t

)1/2

for all g ∈ G and f ∈ L1(G). We also define

Sψ,0(f)(g) :=
(∫

T

|f ∗ ψt(g)|2
dg

t

)1/2

for all g ∈ G and f ∈ L1(G). The Hardy space H1
sq,ψ,β(G) is defined to be the space

{f ∈ L
1(G) : ‖Sψ,β(f)‖L1(G) <∞},

equipped with the norm

‖f‖H1
sq,ψ,β

(G) := ‖Sψ,β(f)‖L1(G) .

Note that Sψ,β(f) tends to Sψ,0(f) as β → 0, at least pointwise. There are also
discrete versions of this definition, where the integrals over R+ are replaced by sums
over powers of 2 (or some other base). We usually call Sψ,β(f) an area function when
β > 0 and a square function when β = 0, but it is more efficient to treat these together.

As mentioned earlier, much is known about Hardy spaces defined as above, and we
summarise some of the main results. From [22], the space H1

sq,ψ,0(G) is independent of

the choice of the functions ψ[i], provided that they satisfy the decay, smoothness and
cancellation conditions (1) and (2); discrete square functions and area operators Sψ,1
also characterise the same space, which we write simply as H1(G). The key technique
to prove these equivalences is a Plancherel–Pólya inequality. From [23] and [5], we see
also that H1(G) may be characterised using wavelet and atomic decompositions; more

precisely, H1
atom(G) = H

1(G). Further, the double Riesz transformations R[1]
j1

⊗ R[1]
j1

(see Definition 5) and similar singular integral operators are all bounded from H1(G)
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to L1(G). Finally, from [22], the dual of H1(G) is the space BMO defined in terms of
(suitable product) Carleson measures on G.

In Section 3.3 below, we show that the space H1
sq,ψ,β(G) is also independent of β.

Let ∇i and Li denote the subgradient and the sub-Laplacian on Gi; recall that /∇i

denotes the gradient (∇i, ∂t) on Gi × R+. The (vector-valued) convolution kernels of

the operators tiLie−tiLi and ti /∇ie
−ti

√
Li satisfy the decay, smoothness and cancellation

conditions (1) and (2). Hence H1(G) may also be characterised via the Littlewood–
Paley area functions and square functions defined using the heat and Poisson kernels.

3.3. Independence of cone angle. Recall that R(g, t) := B1(g1, t1)×B2(g2, t2). Fix
a parameter θ in (0, 1).

If V is a closed subset of G, then we say that g ∈ G has global θ-density with
respect to V if

|V ∩R(g, t)|
|R(g, t)| ≥ θ

for all t ∈ T . Let V ∗ be the set containing all points of global θ-density of V , then V ∗

is closed and V ∗ ⊆ V . Equivalently,

(V ∗)c = {g ∈ G : MS(χV c)(g) > 1− θ}.

It follows from the L log L → L
1,∞ estimate for the strong maximal function (see, for

example, [8]) that |(V ∗)c| ≤ cθ |V c|, where

cθ =
C

1− θ

(
1 + log+2

(
1

1− θ

))
.

For a closed subset V of G, write

W β(V ) :=
⋃

g∈V
Γβ(g).

Lemma 3.3. Suppose that V is a closed set in G such that |V c| < ∞. Then there

exist constants c0 ≤ 1/4 and C such that if β > 1 and θ = 1− c0β
−Q1−Q2, then

∫∫

W β(V ∗)

F (g, t) |R(o, t)| dg dt .

∫

V

∫∫

Γ(g)

F (h, t) dh dt dg

for all measurable nonnegative-real-valued functions F on G× T .

Proof. First, if (h, t) ∈ W β(V ∗), then there exists g̃ ∈ V ∗ ∩ R(h, βt). We see easily
that

|R(g̃, βt) ∩R(h, t)c| ≤
(
1− 2c0β

−Q1−Q2
)
|R(g̃, βt)| ,

for some constant c0 ≤ 1/4. Hence

|V ∩ R(h, t)| ≥ |V ∩ R(g̃, βt)| − |R(g̃, βt) ∩ R(h, t)c|
≥
(
θ − 1 + 2c0β

−Q1−Q2
)
|R(g̃, βt)|

= c0β
−Q1−Q2 |R(g̃, βt)| ≥ C |R(g, t)| .
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Now, by Fubini’s Theorem,
∫

V

∫∫

Γ(g)

F (h, t) dh dt dg

=

∫∫

T×G

∫

V

χR(o,t)
(
h−1g

)
F (h, t) dh dg dt

≥
∫∫

W β(V ∗)

∫

G

χR(o,t)
(
h−1g

)
F (h, t) dg dh dt

=

∫∫

W β(V ∗)

F (h, t) |R(o, t)| dh dt,

as required. �

Proposition 3.4. With the notation of Definition 3.2,

H
1
sq,ψ,β(G) = H

1
sq,ψ,1(G),

and these spaces have equivalent norms for all β > 0.

Proof. It suffices to suppose that β > 1 and show that

‖Sψ,β(f)‖L1(G) . βQ1+Q2(1 + log+2 β) ‖Sψ,1(f)‖L1(G) .

For all λ > 0, set

V = {g ∈ G : Sψ,1(f)(g) ≤ λ},

and θ = 1− β−Q1−Q2/4. Then, from Lemma 3.3 and Fubini’s theorem,

∫

V ∗

Sψ,β(f)(g)2 dg =

∫

V ∗

∫∫

Γβ(g)

|f ∗ ψt(h)|2
|R(o, βt)| dh

dg

t
dg

. βQ1+Q2

∫∫

W β(V ∗)

|f ∗ ψt(h)|2 dh
dg

t

. βQ1+Q2

∫

V

∫∫

Γ(g)

|f ∗ ψt(h)|2
|R(o, βt)| dh

dg

t
dg

h βQ1+Q2

∫

V

Sψ,1(f)2 dg.

Therefore

|{g ∈ G : Sψ,β(f)(g) > λ}|

≤ |(V ∗)c|+ C

λ2

∫

V ∗

Sψ,β(f)(g)2 dg

≤ CβQ1+Q2(1 + log+2 β)

(
|(V ∗)c|+ 1

λ2

∫

V

Sψ,1(f)(g)2 dg
)
.

Integrating with respect to λ yields

‖Sψ,β(f)‖L1(G) . βQ1+Q2(1 + log+2 β) ‖Sψ,1(f)‖L1(G) ,

which completes the proof of Proposition 3.4. �
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3.4. Summary. The known results cited in Section 3.2 and our additional material
here may be summarised in the following proposition.

Proposition 3.5. The atomic Hardy space H1
atom(G) and the square function and

area function Hardy spaces H1
sq,ψ,β for different ψ and β coincide and have equivalent

norms.

4. The singular integral characterisation

We consider a stratified Lie group G. Recall that R0 is the identity operator I, and
when 1 ≤ j ≤ di, the jth Riesz operator Rj on G is defined by

Rj := Xj(L)−1/2;

its convolution kernel, kj say, is smooth away from the identity of G, and homogeneous
of degree −Q. According to Christ and Geller [11], f ∈ H

1(G) if and only if all
Rjf ∈ L1(G), and there is a corresponding norm equivalence. We say that the singular
integral operators Rj , where 0 ≤ j ≤ dj, characterise H1(G).

Definition 4.1. Suppose that the singular integral operators K[i]
j , where 0 ≤ j ≤ ni,

characterise H1(Gi), in the sense above. The space H1
SIO(G) is defined to be the set of

all f ∈ L1(G) such that
n1∑

j1=0

n2∑

j2=0

∥∥∥K[1]
j1

⊗K[2]
j2
f
∥∥∥
L1(G)

<∞,

with norm

‖f‖H1
SIO

(G) :=

n1∑

j1=0

n2∑

j2=0

∥∥∥K[1]
j1

⊗K[2]
j2
f
∥∥∥
L1(G)

.

In this section, we generalise Theorem 1.1, which states that the spaces H1
Riesz(G)

and H1(G) coincide and have equivalent norms.

Theorem 4.2. Suppose that the singular integral operators K[i]
j , where 0 ≤ j ≤ ni,

characterise H1(Gi). Then the double singular integral operators K[1]
j1
⊗K[2]

j2
characterise

the Hardy space H1(G). That is, f ∈ H
1(G) if and only if each K[1]

j1
⊗K[2]

j2
f is in L

1(G)
and moreover

‖f‖H1(G) h

n1∑

j1=0

n2∑

j2=0

∥∥∥K[1]
j1

⊗K[2]
j2
f
∥∥∥
L1(G)

.

It is known (see [23] and [5]) that singular integral operators associated to homo-
geneous kernels are bounded from H1(G) to L1(G), so it suffices to show that if all
the double singular integral transforms of a function f are in L1(G) then f ∈ H1(G).
Our proof of Proposition 4.3 below extends [4], which introduced a new method, using
randomisation, to characterise flag Hardy space on Heisenberg groups by products of
singular integrals.

4.1. The square function and singular integral transforms.

Proposition 4.3. Suppose that f ∈ L2(G), and K[1]
j1

⊗ K[2]
j2
f ∈ L1(G) when ji =

0, . . . , ni. Then f ∈ H1(G), and

‖f‖H1(G) ≤ C‖f‖H1
SIO

(G).
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Proof. We use a randomisation argument coupled with the analogous one-parameter
result of Christ and Geller [11]. Fix a smooth function η on R+, supported in [1/2, 2],
such that

∑
m∈Z η(2

−mt) = 1 for all t ∈ R+. By Section 2.2, the convolution kernels
kη(Li) of the operators η(Li) on Gi are Schwartz functions of mean 0.

Let rm : [0, 1] → R be a collection of independent Rademacher random variables
(see [20]). Fix i, take η as above, and define

Ts(f) =
∑

m∈Z
rm(s)η(2

−mLi)f

for all f ∈ H1(Gi) and all s ∈ [0, 1]. Straightforward calculation shows that
∣∣∣∣ξ
k∂kξ

(∑

m∈Z
rm(s)η(2

−mξ)

)∣∣∣∣ ≤ Ck ∀ξ ∈ R+ ∀k ∈ N,

and from the multiplier theorem (see for example, [17, Theorem 6.25]), the operator
Ts is bounded from H1(Gi) to L1(Gi) with norm uniformly bounded for s ∈ [0, 1].
Together with the Christ–Geller characterisation [11, Theorem A], this implies that

∥∥∥∥
∑

m∈Z
rm(s)η(2

−mLi)f
∥∥∥∥
L1(Gi)

.

( ni∑

ji=0

∥∥∥K[i]
ji
f
∥∥∥
L1(Gi)

)

for all f ∈ L1(Gi) such that K[i]
ji
f ∈ L1(Gi). Iteration of the argument shows that

∥∥∥∥
∑

m∈Z
rm(s1)η(2

−mL1)

(∑

n∈Z
rn(s2)η(2

−nL2)f

)∥∥∥∥
L1(G)

.

n1∑

j1=0

∥∥∥∥K
[1]
j1

∑

n∈Z
rn(s2)η(2

−nL2)f

∥∥∥∥
L1(G)

=

n1∑

j1=0

∥∥∥∥
∑

n∈Z
rn(s2)η(2

−nL2)K[1]
j1
f

∥∥∥∥
L1(G)

.

n1∑

j1=0

n2∑

j2=0

∥∥∥K[1]
j1

⊗K[2]
j2
f
∥∥∥
L1(G)

,

because operators involving convolutions (even with distributions) on G1 and opera-
tors involving convolutions (even with distributions) on G2 commute. By Khinchin’s
inequality (see, for example, [20, Appendix C.5]), this implies that

∥∥∥∥
(∑

n∈Z

∑

m∈Z

∣∣η(2−mL1)η(2
−nL2)f

∣∣2
)1/2∥∥∥∥

L1(G)

.

∫∫

[0,1]×[0,1]

∥∥∥∥
∑

m∈Z
rm(s1)η(2

−mL1)
∑

n∈Z
rn(s2)η(2

−nL2)f

∥∥∥∥
L1(G)

ds1 ds2

.

n1∑

j1=0

n2∑

j2=0

∥∥∥K[1]
j1

⊗K[2]
j2
f
∥∥∥
L1(G)

.

This ends the proof of Proposition 4.3. �

Remark 4.4. It is straightforward to extend this result to products of more than two
factors. It is just a matter of repeating the randomisation argument more times.
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5. Maximal function characterisation

In this section, we prove Theorem 1.3. As we have already noted, in the one-
parameter setting, a common strategy for showing that maximal functions characterise
the Hardy space is to use atoms; this strategy does not work in the multi-parameter
case. Merryfield [31] managed to extend the one-parameter result to the product
space Rm × Rn; his new tool is the solution of a particular Cauchy–Riemann type
equation. However, it is not clear whether there is a version of his lemma on spaces of
homogeneous type, or even just on homogeneous groups. In [4], a new method, using
Poisson kernels and harmonic functions, was introduced to characterise flag Hardy
space on Heisenberg groups by maximal functions. Here we extend this method to
product groups.

5.1. The maximal function Hardy spaces. Recall that Γβ(g) denotes the cone
with vertex g and angle β:

Γβ(g) := {(h, t) ∈ G× T : ρi(gi, hi) ≤ βti when i = 1, 2}.
Definition 5.1. Take functions ζ [i] ∈ M(Gi), and define the maximal operator Mζ,β

by

Mζ,β(f)(g) := sup
h∈Γβ(g)

|f ∗ ζt(h)| ∀g ∈ G ∀f ∈ L
1(G).

The Hardy space H1
max,ζ,β(G) is defined to be the space

{f ∈ L
1(G) : ‖Mζ,βf‖L1(G) <∞}

equipped with the norm

‖f‖H1
max,ζ,β

(G) := ‖Mζ,βf‖L1(G) ,

for the Hardy space, we require that the integrals of the ζ [i] are nonzero.

It is obvious that ‖Mζ,γf‖L1(G) ≤ ‖Mζ,βf‖L1(G) when γ ≤ β.

We treat the cases when β > 0 and when β = 0 together. In the important special
cases when the ζ [i] coincide with the Poisson or heat kernels, we have additional tools,
such as Harnack or Moser inequalities. The possibly less well known Plancherel–Pólya
inequality provides similar results for more general ζ .

To characterise H1(G) by maximal functions, we are going to show two results.

Proposition 5.2. If β is large enough, then the spaces H1
sq,P,1(G) and H1

max,P,β(G)
coincide and have equivalent norms.

Proposition 5.3. For different choices of ϕ and ζ and different choices of β and γ,
the spaces H1

max,ϕ,β(G) and H1
max,ζ,γ(G) coincide and have equivalent norms.

Combining the above two results with Proposition 3.4 proves Theorem 1.3.

5.2. Part 1 of the proof of Proposition 5.2. Evidently H1
sq,P,1(G) ⊆ H1

max,P,β(G),
and

‖MP,βf‖L1(G) . ‖SP,1f‖L1(G) .(8)

Indeed, when ‖SP,βf‖L1(G) < ∞, then by [5], we may write f =
∑

j λjaj , where each

aj is an atom, and
∑

j |λj| . ‖SP,βf‖L1(G). Thus, to prove (8), it suffices to verify that

‖MP,β(a)‖L1(G) . 1
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for each product atom a as in Section 3.1. The Poisson kernels P
[1]
1 and P

[2]
1 satisfy

the standard decay and smoothness conditions (1), and the atom a satisfies the stan-
dard product cancellation condition (7). Then the desired estimate of ‖MP,β(a)‖L1(G)

follows from standard product arguments and Journé’s covering lemma.
We provide a brief outline of the proof here for completeness and for the reader’s

convenience. It suffices to show that, for each product atom a,

‖MP,β(a)‖L1(G) . 1.

From Section 3.1, we may write a on G as a sum
∑

R∈M (U) aR, where U is an open
subset of G of finite measure, and the particles aR satisfy support and size conditions.

There are two steps to the proof: first, we find some small positive ǫ, such that for
any pseudodyadic rectangle S containing the pseudodyadic rectangle R,

(9)

∫

G\S
|MP,β(aR)(g)| dg .

(
ℓ1(R)

ℓ1(S)
+
ℓ2(R)

ℓ2(S)

)ǫ
|R|1/2 ‖aR‖L2(G) ,

for all particles aR associated to R. The estimation of this expression may be achieved
by writing S as Q1 ×Q2 and breaking up G \ S into the three regions (Q1)

c × (Q2)
c,

(Q1)
c × Q2 and Q1 × (Q2)

c. In the first region we use the support and cancellation
conditions on aR to estimate aR ∗ Pt(g), and show that

∫

(Q1)c×(Q2)c
|MP,β(aR)(g)| dg .

(
ℓ1(R)

ℓ1(S)
· ℓ2(R)
ℓ2(S)

)ǫ
|R|1/2 ‖aR‖L2(G) ;

in the second region we use the support and cancellation conditions to control the g1
variable and Hölder’s inequality and a Littlewood–Paley argument to control the g2
variable, and show that

∫

(Q1)c×Q2

|MP,β(aR)(g)| dg .

(
ℓ1(R)

ℓ1(S)

)ǫ
|R|1/2 ‖aR‖L2(G) ;

in the third region, we argue similarly, but with the roles of the variables reversed.
Once (9) is proved, we apply Journé’s lemma to obtain an estimate for atoms

rather than particles. Let a be an atom associated to the open set U , and write
a =

∑
R∈m(U) aR. Define

V = {g ∈ G : MSχU(g) > 1/4} and W = {g ∈ G : MSχV (g) > 1/4} .
Then |W | . |V | . |U |. Further,

∫

G

|MP,β(a)(g)| dg

=

∫

W

|MP,β(a)(g)| dg +

∫

G\W
|MP,β(a)(g)| dg

≤ |W |1/2
(∫

W

|MP,β(a)(g)| dg
)1/2

+
∑

R∈m(U)

∫

G\W
|MP,β(aR)(g)| dg.

The first term is estimated using the L2-boundedness of MP,β:

|W |1/2
(∫

W

|MP,β(a)(g)| dg
)1/2

. |W |1/2 ‖a‖
L2(G) . |U |1/2|U |−1/2 = 1.
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The second term is estimates using Journé’s lemma, namely, for each R ∈ m(U), we
can find S ∈ m(W ) (depending on R) such that R ⊆ S and

∑

r∈m(R)

(
ℓ1(R)

ℓ1(S)
+
ℓ2(R)

ℓ2(S)

)ǫ
|R| . |U |.

Then from (9), Hölder’s inequality, Journé’s lemma, and the definitions,
∑

R∈m(U)

∫

G\W
|MP,β(aR)(g)| dg

≤
∑

R∈m(U)

∫

G\S
|MP,β(aR)(g)| dg

.
∑

R∈m(U)

(
ℓ1(R)

ℓ1(S)
+
ℓ2(R)

ℓ2(S)

)ǫ
|R|1/2 ‖aR‖L2(G)

.


 ∑

R∈m(U)

(
ℓ1(R)

ℓ1(S)
+
ℓ2(R)

ℓ2(S)

)2ǫ

|R|




1/2
 ∑

R∈m(U)

‖aR‖2L2(G)




1/2

. |U |1/2|U |−1/2 = 1.

Note that proving this result of products of more than two factors seems to be
nontrivial; Journé’s lemma requires us to have more than one “improving factor”
ℓj(R)/ℓj(S).

It remains to prove the opposite inclusion: H1
max,P,β(G) ⊆ H1

sq,P,1(G), and

‖SP,1f‖L1(G) . ‖MP,βf‖L1(G) .

We first treat a stratified group, and then a product of stratified groups.

5.3. Part 2 of the proof of Proposition 5.2. In this part of the proof, we prove
(10) for a stratified group G with no product structure. This simplifies the notation.
Later the group G will be one of the factors of the product group G that we wish to
consider.

We are going to use integration by parts, and need to know about the behaviour of
certain harmonic functions on G×R+ at the boundaries of this region. Suppose that
f ∈ Lp(G), where 1 ≤ p ≤ ∞, and consider the Poisson integral f ∗Pt(g) and f ∗Qt(g),
where g ∈ G and t ∈ R+, whose behaviour as t→ 0 is discussed in Corollary 2.2.

From Lemma 2.1, if f ∈ L∞(G), then f ∗ Pt and f ∗ Qt are bounded in L∞(G) as
t→ ∞. If f ∈ H1

max,P,γ(G), then
∥∥f1/s ∗ P1

∥∥
H1

max,P,γ
(G)

is bounded for all s > 0. Since

f1/s ∗ P1 →
(∫

G

f(g) dg

)
P1 as s→ ∞

in L1(G) and supt>1 Pt(·) /∈ L1(G) so P1 /∈ H1
max,P,γ(G), we see that f has mean 0.

Thus
‖f ∗ Pt‖L1(G) + ‖f ∗Qt‖L1(G)

=
∥∥f1/t ∗ P1

∥∥
L1(G)

+
∥∥f1/t ∗Q1

∥∥
L1(G)

→ 0

and
‖f ∗ Pt‖L∞(G) + ‖f ∗Qt‖L∞(G)

= t−Q
∥∥f1/t ∗ P1

∥∥
L∞(G)

+ t−Q
∥∥f1/t ∗Q1

∥∥
L∞(G)

→ 0
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as t→ ∞. This convergence is also pointwise almost everywhere.

Proposition 5.4. Suppose that G is a stratified Lie group and γ > 0. If β is large

enough, then

H
1
max,P,β(G) ⊆ H

1
sq,P,γ(G),

and there is a corresponding norm inequality:

(10) ‖f‖H1
sq,P,γ

(G) . ‖f‖H1
max,P,β

(G) ∀f ∈ H
1
max,P,β(G).

Proof. Take f ∈ L1(G) such that MP,β(f) ∈ L1(G). We assume that f is real-valued,
for otherwise we may treat the real and imaginary parts separately. We may also
suppose that f is smooth, by a simple mollification argument.

Fix α > 0, and define

Lβ(α) := {g ∈ G : MP,β(f)(g) ≤ α} ,

Aβ(α) :=

{
g ∈ G : MS(1− χLβ(α))(g) <

1

4

}
,

where MS is the strong maximal operator, which is L2 bounded. Then

Aβ(α) ⊆ Lβ(α) and |(Lβ(α))c| ≤ |Aβ(α)c| . |(Lβ(α))c| .(11)

Define also

Wβ :=
⋃

g∈Aβ(α)
Γβ(g) and W̃β :=

⋃

h∈Lβ(α)(f)
Γβ(h).

We claim that there exists C0 ∈ (0, 1) such that

χLγ(α) ∗ Pt(g) ≥ C0 ∀(g, t) ∈ Wγ .

Indeed, by definition, for such (g, t),

(1− χLγ(α)) ∗ χB(o,γt) <
1

4
|B(o, γt)| ,

that is,

χLγ(α) ∗ χB(o,γt) ≥
3

4
|B(o, γt)| ,

and the claim follows from Lemma 2.1. We also claim that if β is large enough, then

there is a constant C1 ∈ (0, C0), such that if (g, t) /∈ W̃β , then

χLβ(α) ∗ Pt(g) ≤ C1.

Indeed, if (g, t) /∈ W̃β then ρ(h−1g) ≥ βt for all h ∈ Lβ(α). Hence,

χLβ(α) ∗ Pt(g) =
∫

G

χLβ(α)(h)Pt(h
−1g) dh ≤

∫

B(g,βt)c
Pt(h

−1g) dh

=

∫

B(g,βt)c
P1(h

−1g) dh→ 0

as β → ∞, proving our claim.
Take a smooth function η : R → R such that η(s) = 1 when s ≥ C0 and η(s) = 0

when s ≤ C1. Define Ht := χLβ(α) ∗ Pt. Then
t∂tHt(g) = χLβ(α) ∗Qt(g),

which is uniformly bounded for all g ∈ G and t ∈ R+ and

t∂tHt → 0 as t→ 0
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pointwise almost everywhere, by Corollary 2.2,
It will suffice to show that

(12)

∫

Aγ(α)

SP,γ(f)(g)2 dg .
∫

Lβ(α)

MP,β(f)(g)
2 dg + α2 |Lγ(α)c| .

Indeed, coupled with (11), this implies that

|{g ∈ G : SP,γ(f)(g) > α}|
≤ |{g ∈ Aγ(α)

c : SP,γ(f)(g) > α}|+ |{g ∈ Aγ(α) : SP,γ(f)(g) > α}|

≤ |Aγ(α)c|+
1

α2

∫

Aγ(α)

SP,γ(f)(g)2 dg

. |Lγ(α)c|+
1

α2

∫

Lβ(α)

MP,β(f)(g)
2 dg.

A standard integration with respect to α then implies that

‖SP,γ(f)‖L1(G) . ‖MP,β(f)‖L1(G) ,

that is, the required estimate (10) holds.
We observe that

∫

Aβ(α)

SP,γ(f)(g)2 dg =
∫

Aβ(α)

∫∫

Γγ(g)

∣∣ /∇(f ∗ Pt)(h)
∣∣2 t

|B(o, t)| dt dh dg

.

∫∫

Wγ

∣∣ /∇(f ∗ Pt)(g)
∣∣2 t dt dg

≤
∫∫

G×R+

∣∣ /∇(f ∗ Pt)(g)
∣∣2 |η(Ht(g))|2 t dt dg.

From (12), it will therefore suffice to show that

(13)

I0 :=

∫∫

G×R+

∣∣ /∇(f ∗ Pt)(g)
∣∣2 |η(Ht(g))|2 t dt dg

.

∫

Lβ(α)

MP,β(f)(g)
2 dg + α2 |Lγ(α)c| .

We note that u : (g, t) 7→ F ∗Pt(g) is harmonic on G×R+ for all F ∈ L
1(G)+L

∞(G),
in the sense that

/Lu(g, t) = 0,

where /L := L − ∂2t . Consequently,

∣∣ /∇u(g, t)
∣∣2 = −1

2
/L
(
u2(g, t)

)
∀(g, t) ∈ G× R+.

Further, by our remark on harmonicity, /LHt = 0, and so

/Lη(Ht(g)) = /∇ · (η′(Ht(g)) /∇Ht(g))

= η′′(Ht(g))
∣∣ /∇Ht(g))

∣∣2 .
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It follows that

(14)

∣∣ /∇(f ∗ Pt)(g)η(Ht(g))
∣∣2 = −1

2
/L
(
|f ∗ Pt(g)η(Ht(g))|2

)

− 4f ∗ Pt(g)η(Ht(g)) /∇(f ∗ Pt)(g) · /∇η(Ht(g))

− |f ∗ Pt(g)|2
∣∣ /∇η(Ht(g))

∣∣2

− |f ∗ Pt(g)|2 η(Ht(g))η
′′(Ht(g))

∣∣ /∇Ht(g))
∣∣2 .

We estimate the second, third, and fourth terms on the right hand side of (14) as
follows. First, by the arithmetic–geometric mean inequality and the chain rule,

∣∣4f ∗ Pt(g)η(Ht(g)) /∇(f ∗ Pt)(g) · /∇η(Ht(g))
∣∣

≤ 1

2

∣∣ /∇Pt ∗ f(g)
∣∣2 |η(Ht(g))|2 + 8 |f ∗ Pt(g)|2

∣∣ /∇η(Ht(g))
∣∣2

≤ 1

2

∣∣f ∗ /∇Pt(g)
∣∣2 |η(Ht(g))|2 + 8 ‖η′‖

L∞(R) |f ∗ Pt(g)|2
∣∣ /∇Ht(g)

∣∣2

and we can move the first term on the right hand side of this inequality to the left
hand side of (14). Next,

|f ∗ Pt(g)|2
∣∣ /∇η(Ht(g))

∣∣2 ≤ ‖η′‖2
L∞(R) |f ∗ Pt(g)|2

∣∣ /∇Ht(g)
∣∣2

and similarly,

|f ∗ Pt(g)|2 |η(Ht(g))| |η′′(Ht(g))|
∣∣ /∇Ht(g))

∣∣2

≤ ‖η‖
L∞(R) ‖η′′‖L∞(R) |f ∗ Pt(g)|2

∣∣ /∇Ht(g))
∣∣2 .

We conclude that

(15)

∣∣ /∇(f ∗ Pt)(g)η(Ht(g))
∣∣2

≤ −/L
(
|f ∗ Pt(g)η(Ht(g))|2

)
+ C(η) |f ∗ Pt(g)|2

∣∣ /∇Ht(g))
∣∣2

=: f1(g, t) + f2(g, t),

say. The proof of (13) is now straightforward.
Evidently, I0 ≤ I1 + I2, where

Ij =

∣∣∣∣
∫∫

G×R+

fj(g, t)t dt dg

∣∣∣∣ .

To treat the term I1, we recall that /L = L− ∂2t . Integration by parts and the decay
of the Poisson integral f ∗ Pt at infinity imply that

∫

G

L
(
|f ∗ Pt(g)η(Ht(g))|2

)
t dg = 0

for all t > 0, and also that
∫

R+

∂2t

(
|f ∗ Pt(g)η(Ht(g))|2

)
t dt

=
[
t∂t
(
|f ∗ Pt(g)η(Ht(g))|2

)]t=∞
t=0

−
∫

R+

∂t
(
|f ∗ Pt(g)η(Ht(g))|2

)
dt

= 2
[
(f ∗ Pt(g)η(Ht(g))) t∂t (f ∗ Pt(g)η(Ht(g)))

]t=∞

t=0
−
[
|f ∗ Pt(g)η(Ht(g))|2

]t=∞

t=0

=
∣∣f(g)χLβ(α)(g)

∣∣2 ;
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many of the terms here when t = 0 vanish by our remarks before the enunciation of
this proposition. Therefore

I1 =

∫

Lβ(α)

|f(g)|2 dg,

which is the first term on the right hand side of (13).
Next, since |f ∗ Pt(g)| ≤ MP,β(g) ≤ α when (g, t) ∈ Wβ, and /∇Pt has mean 0,

I2 =

∫∫

Wβ

|f ∗ Pt(g)|2
∣∣ /∇Ht(g)

∣∣2 t dt dg

≤ α2

∫∫

Wβ

∣∣ /∇Ht(g)
∣∣2 t dt dg

≤ α2

∫∫

G×R+

∣∣χLβ(α) ∗ t /∇Pt(g))
∣∣2 dt

t
dg

= α2

∫∫

G×R+

∣∣(1− χLβ(α)) ∗ t /∇Pt(g))
∣∣2 dt

t
dg

h α2 |Lβ(α)c|2 ,
by Littlewood–Paley theory. This is the second term on the right hand side of (13),
and the proposition is now proved. �

Remark 5.5. We summarise the first step of this proof as the application of harmonicity
to estimate the desired square function as a sum of two terms in (15). The “main term”
I1 gives us the function f that we started with, while the “error term” I2 gives us an
expression that we can handle by using Littlewood–Paley arguments.

5.4. Part 3 of the proof of Proposition 5.2. It remains to take a product group
G, prove the inclusion and inequality

H
1
max,P,β(G) ⊆ H

1
sq,P,1(G)

‖SP,1f‖L1(G) . ‖MP,βf‖L1(G) ∀f ∈ H
1
max,P,β(G).

Again we may and do assume that f is real-valued and smooth.
The initial definitions are the same as in the one-parameter case. Take f ∈ L1(G)

such that MP,β(f) ∈ L1(G) and α > 0. Define

Lβ(α) := {g ∈ G : MP,β(f)(g) ≤ α} ,

Aβ(α) :=

{
g ∈ G : MS(1− χLβ(α))(g) <

1

4

}
,

where MS denotes the strong maximal operator. By the same argument as in the
one-parameter case,

Aβ(α) ⊆ Lβ(α) and |Aβ(α)c| . |Lβ(α)c| .
Define also

Wβ :=
⋃

g∈Aβ(α)
Γβ(g) and W̃β :=

⋃

h∈Lβ(α)(f)
Γβ(h).

As in the one-parameter case, there exists C0 ∈ (0, 1) and C1 ∈ (0, C0), such that

χL1(α) ∗ Pt(g) ≥ C0 ∀(g, t) ∈ Wγ

χLβ(α) ∗ Pt(g) ≤ C1 ∀(g, t) ∈ (W̃β)
c,
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provided that β is large enough.
We let Ht := χLβ(α) ∗Pt; here t1, t2 ≥ 0. Take a smooth real-valued function η on R

such that η(s) = 1 when s ≥ C0 and η(s) = 0 when s ≤ C1. By definition,

t1∂t1Ht(g) = χLβ(α) ∗ (Qt1 ⊗ Pt2)(g),

and this is uniformly bounded for all g ∈ G and t1, t2 ≥ 0; further, by (4),

t1∂t1Ht(g) → 0 as t1 → 0

for almost all g ∈ G.
Again, it will suffice to show that

∫∫

G×T

∣∣ /∇1 /∇2(f ∗ Pt)(g)
∣∣2 |η(Ht(g))|2 t dt dg

.

∫

Lβ(α)

MP,β(f)(g)
2 dg + α2 |L1(α)

c| .

We do this by extending the computation for a single homogeneous group.
First, we fix the variables g2 and t2. By the one-parameter case,

∥∥∥S [1]
P,γ(f)(·, g2)

∥∥∥
L1(G1)

.
∥∥∥M[1]

P,β(f)(·, g2)
∥∥∥
L1(G1)

,

whence

(16)
∥∥∥S [1]

P,γ(f)
∥∥∥
L1(G)

.
∥∥∥M[1]

P,β(f)
∥∥∥
L1(G)

≤ ‖MP,β(f)‖L1(G)

by integration over G2 and the pointwise inequality M[1]
P,β(f) ≤ MP,β(f). A similar

result holds for the Littlewood–Paley operator acting in the second variable only.
The function (g, t) 7→ f ∗Pt(g) is harmonic in the g1 and t1 variables, and in the g2

and t2 variables. This leads to a more complicated analogue of (15), with four terms,
I11, I21, I12, and I22, where the subscript i1i2 indicates a term like Ii1 in the first factor,
and a term like Ii2 in the second factor.

There is one “main term” I11 with a double sub-Laplacian, namely,

/L1/L2

(
|f ∗ Pt(g)η(Ht(g))|2

)
.

When integrated, by iterating the argument used to treat I1 in Section 5.3, I11 gives
∫

L1(α)

|f(g)|2 dg.

The “mixed terms” I21 and I12, with a sub-Laplacian in one variable and a square
function in the other, may be treated by (16) and its analogue with G1 and G2 inter-
changed. Finally, the “double error term” I22 may be treated using Littlewood–Paley
theory, much as we treated I2 before.

5.5. A reproducing formula. We shall use the discrete Calderón reproducing for-
mula from [22, Theorem 2.9]. We first give a definition of the space M(G, r, g) of
molecules of scale r near a point g on a group G of homogeneous dimension Q, and
then define the analogous space on a product group. In the more general setting of
spaces of homogenous type, this space was introduced in [24]. Recall that ε ∈ (0, 1] is
a fixed parameter.
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Definition 5.6. Fix r > 0 and g ∈ G. We say that a function f on G is in M(G, r, g)
if there is a constant C such that

(17)

|f(h)| ≤ C
rε

(r + ρ(g−1h))Q+ε

|f(h)− f(h′)| ≤ C
ρ(h−1h′)ε

(r + ρ(g−1h) + ρ(g−1h′))Q+ε

for all h, h′ ∈ G. If moreover f satisfies the cancellation condition
∫

G

f(g) dg = 0,

then we write f ∈ M0(G, r, g). The norm ‖f‖
M(G,r,g) is defined to be the least constant

C such that the inequalities (17) both hold.

Clearly, the space M(G) of (1) is equal to M(G, 1, o), and f ∈ M(G) if and only if
f ∈ M(G, r, g) for all r > 0 and all g ∈ G. Changing r or g changes the norms.

We now define the molecular space M(G, r, g) on the product group G as follows.

Definition 5.7. Fix r ∈ T and g ∈ G. We say that ψ : G → C is in M(G, r, g) if
ψ(·, h2) ∈ M(G1, r1, g1) for all h2 ∈ G2 and ψ(h1, ·) ∈ M(G2, r2, g2) for all h1 ∈ G1, and

(18)

‖ψ(·, h2)‖M(G1,r1,g1)
≤ C

rε2
(r2 + ρ2(g

−1
2 h2))Q2+ε

‖ψ(h1, ·)‖M(G2,r2,g2)
≤ C

rε1
(r1 + ρ1(g

−1
1 h1))Q1+ε

‖ψ(·, h2)− ψ(·, h′2)‖M(G1,r1,g1)
≤ C

ρ2(h
−1
2 h′2)

ε

(r2 + ρ2(g
−1
2 h2) + ρ2(g

−1
2 h′2))

Q+ε

‖ψ(h1, ·)− ψ(h′1, ·)‖M(G2,r2,g2)
≤ C

ρ1(h
−1
1 h′1)

ε

(r1 + ρ1(g
−1
1 h1) + ρ1(g

−1
1 h′1))

Q+ε

for all h,h′ ∈ G. If moreover ψ satisfies the cancellation conditions
∫

G1

ψ(g1, ·) dg1 = 0 and

∫

G2

ψ(·, g2) dg2 = 0,

then we write ψ ∈ M0(G, r, g). The norm ‖ψ‖
M(G,r,g) is defined to be the least

constant C such that the inequalities (18) above all hold.

Evidently, if ψ1 ∈ M0(G1, r1, g1) and ψ2 ∈ M0(G2, r2, g2), then ψ1⊗ψ2 ∈ M0(G, r, g).
It is easy to check that

‖f‖
M(G,r,g) =

∥∥∥rQ1

1 rQ2

2 ψ(gδr(·))
∥∥∥
M(G)

.

Hence the L1(G) norms of elements of a bounded subset of M(G, r, g) are bounded.
We are now ready to state the version of the Calderón reproducing formula that we

are going to use. Let σ : P(G) → G be an arbitrary function such that σ(R) ∈ R̄ for
all R ∈ P(G) and let ℓ : P(G) → T be the function such that ℓi(Q1 ×Q2) = ℓ(Qi),
the “side-length” of Qi. For ϕ

[1] ∈ M(G1) and ϕ
[2] ∈ M(G2), we take ϕ to be ϕ[1]⊗ϕ[2],

and define ϕR to be the function h 7→ [ϕ̄]ℓ(R)(h
−1σ(R)). Observe that

(19)

∫

G

f(h)ϕ̄R(h) dh =

∫

G

f(h) [ϕ]ℓ(R) (h
−1σ(R)) dh = f ∗ [ϕ]ℓ(R)(σ(R)).
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The point of the following theorem is that the collection {|R|1/2 ϕR : R ∈ P(G)} is a
well-behaved frame in L2(G), with a well-behaved dual frame {|R|1/2 ϕ̃R : R ∈ P(G)}.
By well-behaved, we mean that ϕR and ϕ̃R are concentrated near R, and certain
molecular norms of ϕR and ϕ̃R are uniformly bounded in R and in σ.

Theorem 5.8 ([22, Theorem 2.9]). Suppose that σ : P(G) → G and ϕ ∈ M(G) are
as discussed above. Then, after possible replacing ϕ by a normalised dilate of ϕ, there
exist functions ϕ̃R in M0(G), which may also depend on σ, such that

ψ =
∑

R∈P(G)

|R| 〈ψ, ϕR〉 ϕ̃R

for every ψ in M0(G). Further,
∥∥ϕR

∥∥
M(G,ℓ(R),σ(R))

+
∥∥ϕ̃R

∥∥
M0(G,ℓ(R),σ(R))

is uniformly bounded, irrespective of R and the choice of σ(R).

As L1(G) is a subspace of the dual space of M0(G), by (19) and a duality argument,

f ∗ ψ(g) =
∑

R∈P(G)

(
|R| f ∗ [ϕ]ℓ(R)(σ(R))

)
ϕ̃R ∗ ψ(g) ∀g ∈ G

for all ψ ∈ M0(G) and all f ∈ L1(G).

5.6. Proof of Proposition 5.3. We are going to prove Proposition 5.3. Again, we
need to extend what we know about homogeneous groups to product groups. We
shall prove a stronger result concerning the grand maximal function, which we now
introduce.

We define

F(G) :=
{
ζ [1] ⊗ ζ [2] :

∥∥ζ [1]
∥∥
M(G1)

≤ 1,
∥∥ζ [2]

∥∥
M(G2)

≤ 1
}
,

and the grand maximal operator G:
G(f)(g) := sup

{
|f ∗ ζt(g)| : ζ ∈ F(G), t ∈ T

}
∀g ∈ G

for all f ∈ L1(G). We write Rh for the operator of right translation by h ∈ G, that
is, Rhζ(g) = ζ(gh) for all g ∈ G and ζ ∈ F(G). Since

Mζ,β(f)(g) = sup
{
|f ∗ ζt(g′)| : g′ ∈ R(g, βt), t ∈ T

}

= sup
{
|f ∗ (Rhζ)t(g)| : h ∈ R(o, β, β), t ∈ T

}
,

and Rhζ is a uniformly bounded (β-dependent) multiple of a function in F(G) when
h ∈ R(o, β, β) we deduce that

Mζ,βf(g) .β G(f)(g) ∀g ∈ G.

Take functions ϕ[i] on Gi such that
∥∥ϕ[i]

∥∥
M(Gi)

≤ 1 and
∫
Gi
ϕ[i] dgi 6= 0. From the

discussion above, it will suffice to prove that there exists θ ∈ (0, 1) such that

Mζ,0f(g) .
(
MS

(
|Mϕ,0(f)(g)|θ

))1/θ
∀g ∈ G(20)

for all β ≥ 0, all ζ ∈ F(G), and all f ∈ L1(G), for then the L1/θ(G) boundedness of
MS shows that

‖G(f)‖
L1(G) .

∫

G

(
MS

(
|Mϕ,0(f)|θ

))1/θ
dg . ‖Mϕ,0(f)‖L1(G) ,
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which implies the required result. We may assume that f is continuous, by mollifica-
tion.

To prove (20), we make and confirm three claims, which together imply the result.
Claim 1 : for θ less than but close to 1,

|f ∗ ζt| .θ ‖ψ‖M0(G)

(
MS

(
|Mϕ,0(f)|θ

))1/θ
(21)

for all f ∈ L1(G), all t ∈ T and all ζ of the form ψ1 ⊗ ψ2, where ψ1 ∈ M0(G1) and
ψ2 ∈ M0(G2). To prove this claim, we use Theorem 5.8, which tells us that

f ∗ ψt(g) =
∑

R∈P(G)

|R| 〈f, ϕR〉 ϕ̃R ∗ ψt(g).(22)

On the one hand, once f is given, we may choose σ such that

|〈f, ϕR〉| =
∣∣(f ∗ [ϕ]ℓ(R))(σ(R))

∣∣ = min{
∣∣(f ∗ [ϕ]ℓ(R))(h)

∣∣ : h ∈ R̄},
and on the other, by the almost orthogonality estimate of [24, (4.4)], for all choices of
σ and all choices of h in R,

|ϕ̃R ∗ ψt(g)| . µj,t(h
−1g)

h
(ℓ1(R) ∧ t1)ε(ℓ1(R)t1)−ε

(ℓ1(R) ∧ t1)−1 + ρ1(h
−1
1 g1))Q1+ε

(ℓ2(R) ∧ t2)ε(ℓ2(R)t2)−ε
(ℓ2(R) ∧ t2)−1 + ρ1(h

−1
2 g2))Q2+ε

.

Here µj,t is the least decreasing biradial majorant for all the functions ϕ̃R ∗ ψt(h
−1·)

when h ∈ R ∈ Pj(G), and a ∧ b denotes the minimum of a and b. Recall that the
“sidelengths” of the cubes making the rectangle R ∈ Pj(G) are κj1 and κj2 . Then,
by also using (22) and (3), we see that

|f ∗ ψt(g)|θ ≤
(∑

j∈Z2

∑

R∈Pj(G)

|R|min
g∈R̄

Mϕ,0(f)(g) |ϕ̃R ∗ ψt(g)|
)θ

≤
(∑

j∈Z2

∑

R∈Pj(G)

|R|θ
(
min
g∈R̄

Mϕ,0(f)(g)

)θ
|ϕ̃R ∗ ψt(g)|θ

)

=

(∑

j∈Z2

∑

R∈Pj (G)

|R|θ−1

∫

R

(
min
g∈R̄

Mϕ,0(f)(g)

)θ
|ϕ̃R ∗ ψt(g)|θ dh

)
(23)

.

(∑

j∈Z2

(κj1Q1

1 κj2Q2

2 )θ−1

∫

G

(
Mϕ,0(f)(h)

)θ
µj,t(h

−1g)θ dh

)

≤
(∑

j∈Z2

(κj1Q1

1 κj2Q2

2 )θ−1
∥∥µθj,t

∥∥
L1(G)

MS (Mϕ,0(f))
θ (g)

)
.

If max{Q1/(Q1 + ε), Q2/(Q2 + ε)} < θ < 1, then computation shows that
∑

j∈Z2

(κj1Q1

1 κj2Q2

2 )θ−1
∥∥µθj,t

∥∥
L1(G)

<∞.

Thus the right-hand side of (23) is bounded by a multiple of
(
MS

(
|Mϕ,0(f)|θ

))
(gR),

which implies (21) and proves our claim.
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Claim 2 : for θ less than but close to 1,

|f ∗ ζt(g)| .θ ‖ζ1‖M0(G1)

(
MS

(
|Mϕ,0(f)|θ

)
(g)
)1/θ

for all f ∈ L
1(G), all t ∈ T , where ζ = ψ1 ⊗ ϕ2; here ψ1 ∈ M0(G1).

The proof of this claim involves use of a reproducing formula that involves the first
variable only, namely,

f [1] ∗1 ψ[1]
t1 (g1) =

∑

Q∈Q(G1)

|Q| f [1] ∗1 [ϕ[1]]ℓ(Q)(σ(Q))ϕ̃
[1]
Q ∗ ψ[1]

t1 (g1) ∀g1 ∈ G1

where f [1] ∈ L
1(G1). This implies that

f ∗ ζt(g) =
∑

Q∈Q(G1)

|Q| f ∗
(
[ϕ[1]]ℓ(Q) ⊗ ϕ

[2]
t2

)
(σ(Q), g2)ϕ̃

[1]
Q ∗ ψ[1]

t1 (g1) ∀g ∈ G,

when f ∈ L1(G); a similar argument to that for Claim 1 may be used. We see that

|ϕ̃R ∗ ζt(g)|θ ≤
(∑

j1∈Z

∑

Q∈Qj1 (G1)

|Q|min
g1∈Q̄

Mϕ,0(f)(g1, g2)
∣∣∣ϕ̃[1]

Q ∗ ψ[1]
t1 (g1)

∣∣∣
)θ

≤
(∑

j1∈Z
(κj1Q1

1 )θ−1
∥∥∥
(
µ
[1]
j1,t1

)θ∥∥∥
L1(G1)

(M1 ⊗ I2)
(
|Mϕ,0(f)|θ

)
(g)

)

. MS

(
|Mϕ,0(f)|θ

)
(g),

as claimed; here I2 denotes the identity operator acting on functions on G2.
Claim 3 : for θ less than but close to 1,

|f ∗ ψt(g)| .θ ‖ψ2‖M0(G2)

(
MS

(
|Mϕ,0(f)|θ

)
(g)
)1/θ

for all f ∈ L1(G), all t ∈ T , where now ψ1 = ϕ1 while ψ2 ∈ M0(G2). The proof of this
is a very minor modification of that of Claim 2.

To finish the proof, we must estimate Mζ,0f , where ζ1 ∈ M(G1) and ζ2 ∈ M(G2).
We write ζ1 = c1ϕ1 + ψ1, where ψ ∈ M0(G1) and c1 is chosen to make the integrals
of both sides equal, and we decompose ζ2 analogously. Then Mζ,0f(g) is dominated
by a sum of four terms, each of which is bounded pointwise by (MS(Mϕ,0f)

θ)1/θ(g).
This proves the desired inequality and hence Proposition 5.3.

6. Concluding remarks

Many of our results can be proved in greater generality. For example, Proposition
5.3 should be true on much more general spaces of homogeneous type. Other results
require the structure of stratified group that we have used here. These include Theorem
1.1 and Proposition 5.2. Indeed, the first relies on the Christ–Geller singular integral
characterisation of the Hardy space on stratified groups, and the second on various
properties of the Poisson kernel. It is an interesting challenge to extend either of
these to a more substantial class of nilpotent Lie groups, let alone to general spaces of
homogeneous type.
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