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Abstract

To any free group automorphism, we associate a universal (cone of) limit tree(s)
with three defining properties: first, the tree has a minimal isometric action of the
free group with trivial arc stabilizers; second, there is a unique expanding dilation of
the tree that represents the free group automorphism; and finally, the loxodromic ele-
ments are exactly the elements that weakly limit to dominating attracting laminations
under forward iteration by the automorphism. So the action on the tree detects the
automorphism’s dominating exponential dynamics.

As a corollary, our previously constructed limit pretree that detects the exponen-
tial dynamics is canonical. We also characterize all very small trees that admit an
expanding homothety representing a given automorphism. In the appendix, we prove
a variation of Feighn–Handel’s recognition theorem for atoroidal outer automorphisms.

Introduction

We previously constructed a limit pretree that detects the exponential dynamics for an
arbitrary free group automorphism [22]. In this sequel, we prove the construction is canon-
ical. This completes the existence and uniqueness theorem for a free group automorphism’s
limit pretree. Recall that if we record all the compact geodesics in an R-tree but forget
their lengths, then the resulting structure is a pretree; briefly, a pretree is a set with a struc-
ture that encodes the notion of closed intervals satisfying certain axioms. Pretrees are the
baseline of our constructions; for instance, (R-)trees will be defined as pretrees with convex
metrics, and pseudotrees as pretrees with a certain hierarchy of convex pseudometrics.

In [22], we motivated the existence and uniqueness theorem of a limit pretree by describ-
ing it as a free group analogue to the Nielsen–Thurston theory for surface homeomorphisms,
which in turn can be seen as the surface analogue to the Jordan canonical form for linear
maps. We now give our own motivation for this result.
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Universal representation of an endomorphism

It feels rather odd to discuss my personal motivation while using the communal “we”;
excuse me as I break this convention a bit for this section. In my doctoral thesis, I extended
Brinkmann’s hyperbolization theorem to mapping tori of free group endomorphisms. This
required studying the dynamics of endomorphisms. Along the way, I proved that injective
endomorphisms have canonical representatives. More precisely, suppose ϕ : F → F is an
injective endomorphism of a finitely generated free group; then there is:

1. a minimal simplicial F -action on a simplicial tree T with trivial edge stabilizers;

2. a ϕ-equivariant expanding embedding f : T → T (unique up to isotopy); and

3. an element in F is T -elliptic if and only if one of its forward ϕ-iterates is conjugate
to an element in a [ϕ]-periodic free factor of F .

Existence of the limit free splitting (i.e. T with its F -action) for the outer class [ϕ] was
the core of my thesis (see also [21, Theorem 3.4.5]). Universality follows from bounded
cancellation: any other simplicial tree T ′ satisfying these three condition will be uniquely
equivariantly isomorphic to T [21, Proposition 3.4.6].

In a way, the limit free splitting detects and filters the “nonsurjective dynamics” of the
(outer) endomorphism. When ϕ : F → F is an automorphism, then T is a singleton and the
free splitting provides no new information. On the other extreme, the F -action on T can
be free; in this case, let Γ ..= F\T be the quotient graph. Then the outer endomorphism [ϕ]
is represented by a unique expanding immersion [f ] : Γ → Γ and [ϕ] is expansive — such
outer endomorphisms are characterized by the absence of [ϕ]-periodic (conjugacy classes
of) nontrivial free factors [21, Corollary 3.4.8]. The most important thing is that the
expanding immersion [f ] has nice dynamics and greatly simplifies the study of expansive
outer endomorphisms.

After completing my thesis, I found myself in a paradoxical situation: I had a better
“understanding” of nonsurjective endomorphisms than automorphisms — the main ob-
stacle to studying the dynamics of nonsurjective endomorphisms was understanding the
dynamics of automorphisms. The näıve expectation (when I started my thesis) had been
that nonsurjective endomorphisms have more complicated dynamics as they are not in-
vertible. The current project was born out of an obligation to correct this imbalance.

Universal representation of an automorphism

What follows is a direct analogue of the above discussion in the setting of automorphisms.
The main theorem of [22] produces an action that detects and filters the “exponential”
dynamics of an automorphism. Specifically, suppose ϕ : F → F is an automorphism of a
finitely generated free group. Then there is:

1. a minimal rigid F -action on a real pretree T with trivial arc stabilizers;
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2. a ϕ-equivariant “expanding” pretree-automorphism f : T → T ; and

3. an element in F is T -elliptic if and only if it grows polynomially with respect to [ϕ].

The pair of the pretree T and its rigid F -action is called a (forward) limit pretree for the
outer automorphism [ϕ]. The theorem is stated properly in Chapter III as Theorem III.1.
When [ϕ] is polynomially growing, then the limit pretree is a singleton (and hence unique)
but provides no new information. We are mainly interested in exponentially growing [ϕ]
as their limit pretrees are not singletons. On the other hand, the F -action on a limit
pretree is free if and only if [ϕ] is atoroidal, i.e. there are no [ϕ]-periodic (conjugacy classes
of) nontrivial elements [22, Corollary III.5]. As with expanding immersions and expansive
outer endomorphisms, the expanding “homeomorphism” [f ] (on the quotient space F\T )
has dynamics that could facilitate the study of atoroidal outer automorphisms.

Unlike the endomorphism case, uniqueness of limit pretrees requires a more involved
argument. It was remarked in the epilogue of [22] that the only source of indeterminacy
in the existence proof was [22, Proposition III.2]; this proposition is restated in Section I.4
as Proposition I.2 and a proof is sketched in Sections II.1 and II.4. The main result of this
paper is a universal version of the proposition. It can also be thought of as an existence
and uniqueness theorem for an action that detects and filters the “dominating” exponential
dynamics of an outer automorphism:

Main Theorem (Theorems III.10–III.11).
Let ϕ : F → F be an automorphism of a finitely generated free group and {Adom

j [ϕ]}kj=1

a (possibly empty) subset of [ϕ]-orbits of dominating attracting laminations for [ϕ].
Then there is:

1. a minimal factored F -tree (Y,Σk
j=1δj) with trivial arc stabilizers;

2. a unique ϕ-equivariant expanding dilation f : (Y,Σk
j=1δj) → (Y,Σk

j=1δj); and

3. for 1 ≤ j ≤ k, a nontrivial element in F is δj-loxodromic if and only if its forward
ϕ-iterates have axes that weakly limit to Adom

j [ϕ];

moreover, the factored F -tree (Y,Σk
j=1δj) is unique up to a unique equivariant dilation.

Thus the factored tree (up to rescaling of its factors δj) is a universal construction for outer
automorphisms of free groups, and we call it the complete dominating (resp. topmost) tree if
we consider the whole set of orbits of dominating (resp. topmost) attracting laminations.
As a corollary, the previously constructed limit pretrees are independent of the choices
made in the proof of Theorem III.1, i.e. the limit pretree is canonical (Corollary III.9). Let
us now briefly define the emphasized terms in the theorem’s statement.

An F -tree is an (R-)tree with an isometric F -action. Informally, an F -tree is factored if
its metric has been equivariantly decomposed as a sum

∑k
j=1 δj of pseudometrics. For a fac-

tored F -tree (Y,Σk
j=1δj), an element in F is δi-loxodromic if it is it is Y -loxodromic and its
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axis has positive δi-diameter. An equivariant homeomorphism (T,Σk
j=1dj) → (Y,Σk

j=1δj)
of factored F -trees is a dilation if it is a homothety of each pair of factors dj and δj ; a
dilation is expanding if each factor-homothety is expanding.

A lamination in F is a nonempty closed subset in the space of lines in F . A sequence
of lines (e.g. axes) weakly limits to a lamination if some subsequence converges to the
lamination. Any [ϕ] has a finite set of attracting laminations which is empty if and only
if [ϕ] is polynomially growing; this set is partially ordered by inclusion and has an order-
preserving [ϕ]-action. The maximal elements of the partial order are called topmost. An
attracting lamination A for [ϕ] has an associated stretch factor λ(A); it is dominating if
any distinct attracting lamination A′ for [ϕ] containing A has a strictly smaller stretch
factor λ(A′) < λ(A). Topmost attracting laminations are vacuously dominating; moreover,
the [ϕ]-action permutes the dominating attracting laminations.

Remark. If one considers a subset {Atop
j [ϕ]}kj=1 of [ϕ]-orbits of topmost attracting lam-

inations, then we prove the topmost tree has the additional property that its factor-
pseudometrics are pairwise mutually singular : for each i, there is an element that is
δi-loxodromic but δj-elliptic for j ̸= i (see Section III.4). We highlight this feature by
using the notation (Y,⊕k

j=1δj) for topmost trees.

Some applications of universal representations. Fix an automorphism ϕ : F → F ;
since [ϕ] has a unique equivariant dilation class [Y,Σk

j=1δj ] of complete dominating limit
trees, any invariant of the class is automatically an invariant of [ϕ]. For instance, the
Gaboriau–Levitt index i(Y ) (as defined in [11, Chapter III]) is the dominating forward
index for [ϕ]. In fact, since the limit pretree T for [ϕ] is canonical, its index i(T ) (defined
in [22, Appendix A]) is the exponential (forward) index for [ϕ]; when [ϕ] is atoroidal, the
index i(T ) is closely related to the Gaboriau–Jaeger–Levitt–Lustig index for [ϕ] defined
in [10, Section 6]. Each factor δj has an associated F -tree (Y dom

j , δj); the pairing of δj
with the orbit of dominating attracting lamination Adom

j [ϕ] means i(Y dom
j ) is an index

for Adom
j [ϕ] respectively.

Our main application is a characterization of minimal F -trees with ϕ-equivariant ex-
panding homotheties:

Main Corollary (Theorem V.3).
Let ϕ : F → F be an automorphism and (Y, δ) a minimal very small F -tree. The F -

tree (Y, δ) admits a ϕ-equivariant expanding homothety if and only if it is equivariantly
isometric to the dominating tree for [ϕ] with respect to a subset of [ϕ]-orbits of dominating
attracting laminations with the same stretch factor.

In the appendix, we prove a variation of Feighn–Handel’s recognition theorem for
atoroidal outer automorphisms.
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Some historical context

This paper continues Gaboriau–Levitt–Lustig’s philosophy of prioritizing limit trees in
their alternative proof of the Scott conjecture [12]. In particular, our paper relies only
on the existence of irreducible train tracks [4, Section 1] but none of the typical splitting
paths analysis of relative train tracks [3, 9]. Zlil Sela gave another dendrogical proof the
conjecture (now Bestvina–Handel’s theorem) that used Rips’ theorem in place of train
track technology [25]. Frédéric Paulin gave yet another dendrological proof that avoids
both train tracks and Rips’ theorem [23].

About the same time, Bestvina–Fieghn–Handel used train tracks and trees to prove fully
irreducible (outer) automorphisms have universal limit trees [2]. They used this to give a
short dendrological proof of a special case of the Tits Alternative for Out(F ); their later
proof of the general case was much more involved due to the lack of such a universal limit
construction [3]. Universal limit trees have been indispensable for studying fully irreducible
automorphisms. In principle, a universal construction of limit trees for all automorphisms
would lead to a dendrological proof of the Tits alternative and extend much of the theory
for fully irreducible automorphisms to arbitrary automorphisms. Speaking of dendrological
proofs of the Tits alternative, we mention that Camille Horbez gave such a proof with a
very different approach [15].

Continuing the work started in [3], Feighn–Handel defined and proved the existence
of completely split relative train tracks (CTs) in [9, Section 4]; they use CTs to charac-
terize abelian subgroup of Out(F ) [8]. The main obstacle when working with topological
representatives is that they are not canonical, which can make defining invariants of the
outer automorphism quite technical. This is the difficulty that we had to deal with in this
paper; however, now that it is done, we can use our new universal representatives to define
other invariants rather easily. A minor inconvenience when working with CTs is that they
are only proven to exist for some (uniform) iterate of the outer automorphism; we were
very careful (perhaps to a fault) in this paper to ensure our universal representatives exist
for all outer automorphisms. Finally, a subtle advantage to our approach is that we find
universal representatives for automorphisms and not just outer automorphisms!

In a sequel to [25], Sela used limit trees and Rips’ theorem to give a canonical hierar-
chical decomposition of the free group F that is invariant under a given atoroidal auto-
morphism [24]. This second paper was never published and a third announced paper that
extends the canonical decomposition to arbitrary automorphisms was never released even
as a preprint (as far as we know). We remark that the limit trees used in that paper were
not (or rather, were never proven to be) canonical/universal. Perhaps, one could combine
Sela’s canonical decomposition with Bestvina–Feighn–Handel’s work to give a universal
construction of limit trees for atoroidal automorphisms — our approach is independent
of Sela’s work and applies more generally to exponentially growing automorphisms. Con-
versely, we suspect that a careful study of the structure of our topmost trees might recover
Sela’s canonical hierarchical decomposition.
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Morgan–Shalen introduced the term “R-trees” in [20]. They also defined “Λ-trees”
for an ordered abelian group Λ. At first glance, the hierarchy of pseudometrics on a real
pretree (defined in Section I.2) looks like a Λ-tree. But paths in our constructed hierarchies
“exit” infinitesimal trees through metric completion points; whereas paths in a Λ-tree exit
at infinity. Hierarchies appear to be a new construction to the best of our knowledge.

Proof outline for existence of topmost tree (Theorem III.7)

One method for constructing limit trees is iterating expanding irreducible train tracks. This
is carried out in Section II.1 but it has two drawbacks: exponentially growing automor-
phisms do not always have expanding irreducible train tracks; and even when they do, the
point stabilizers of the corresponding limit tree are not canonical as they can change with
the choice of train tracks. We handle the first obstacle in Section II.4 by constructing a
limit tree (Y1, δ1) using a descending sequence of irreducible train tracks, where only the
last train track is expanding. Such descending sequences always exist for exponentially
growing automorphisms.

Next, we construct in Section III.1 a pretree with an F -action whose point stabilizers
are canonical. Set G1

..= F , and let G2 be the [ϕ]-invariant subgroup system determined by
the point stabilizers of G1 acting on Y1. By restricting [ϕ] to G2 and inductively repeating
the construction, we get a descending sequence of limit forests (Yi, δi)

n
i=1. Each limit forest

(Yi, δi) has ([ϕ]-orbits of) attracting laminations Ai[ϕ] for [ϕ] that are forward limits of Yi-
loxodromic elements in Gi. Starting with X(1) = Y1, equivariantly replace the points in Xi

fixed by Gi+1 with the pretrees Yi+1 to produceX
(i+1) for i < n. The limit pretree T = X(n)

has canonical point stabilizers: the maximal polynomially growing subgroups.
Everything we have mentioned so far is a rehash of [22]. From the blow-up construction,

the limit pretree T inherits an F -invariant hierarchy (δi)
n
i=1 of convex pseudometrics — the

pseudometric δi is defined on maximal Gi-invariant convex subsets of T of δi−1-diameter 0.
The theorem is finally proven in Section III.4. The new insight for this proof: if attracting
laminations Ai[ϕ] are topmost, then the Gi-invariant pseudometric δi can be extended to
an F -invariant convex pseudometric, still denoted δi, on T . Let {Aι(j)[ϕ]}kj=1 be a subset of
topmost attracting laminations. The sum of the corresponding F -invariant pseudometrics
on T , denoted ⊕k

j=1δι(j), is an F -invariant convex pseudometric on T . Let Y be the

partition of T into its maximal subsets of ⊕k
j=1δι(j)-diameter 0; as these subsets are convex,

Y inherits a pretree structure from T . The pseudometric ⊕k
j=1δι(j) on T induces a convex

metric, also denoted ⊕k
j=1δι(j), on Y . The metric space (Y,⊕k

j=1δι(j)) is our topmost tree.
This concludes the outline.

At the end of Section III.5, we prove universality. The proof relies on Chapter IV:
variations of Bestvina–Feighn–Handel’s convergence criterion [2]; it boils down to bounded
cancellation and Perron–Frobenius theory.

We use the results of [22] as black boxes and the two papers can be read in any order.

6



Acknowledgments. I thank Gilbert Levitt for encouraging me to include the character-
ization of expanding forests and the referee for improving my exposition. This material is
based upon work supported by the National Science Foundation under Grant No. DMS-
1926686 at the Institute for Advanced Study.

Contents

I Preliminaries 8
I.1 Group systems and actions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
I.2 Pretrees, trees, and hierarchies . . . . . . . . . . . . . . . . . . . . . . . . 8
I.3 Simplicial actions and train tracks . . . . . . . . . . . . . . . . . . . . . . 10
I.4 Growth types and limit trees . . . . . . . . . . . . . . . . . . . . . . . . . 12
I.5 Bounded cancellation and laminations . . . . . . . . . . . . . . . . . . . . 14

II Limit forests 18
II.1 Constructing limit forests (1) . . . . . . . . . . . . . . . . . . . . . . . . . 18
II.2 Stable laminations (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
II.3 Coordinate-free laminations . . . . . . . . . . . . . . . . . . . . . . . . . . 28
II.4 Constructing limit forests (2) . . . . . . . . . . . . . . . . . . . . . . . . . 30
II.5 Stable laminations (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III Main constructions 37
III.1 Assembling limit hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . 37
III.2 Attracting laminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
III.3 Pseudolaminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
III.4 Topmost forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
III.5 Dominating forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

IV Convergence criteria 50
IV.1 Proof of Lemma IV.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
IV.2 Proof of Lemma IV.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IV.3 Sketch of Lemma IV.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
IV.4 Sketch of Lemma IV.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

V Expanding forests 57
V.1 Nonconvergence criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
V.2 Expanding is dominating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Recognizing and centralizing atoroidal automorphisms 59

7



I Preliminaries

In this paper, F denotes a free group with 2 ≤ rank(F ) < ∞. Subscripts never indicate
the rank but instead are used as indices. For inductive arguments, we also work with a
free group system of finite type: disjoint union

⊔
j∈J Fj of nontrivial finitely generated free

groups Fj indexed by a possibly empty finite set J . In this paper, F is always a free group
system of finite type with some component Fj that is not cyclic.

I.1 Group systems and actions

Nearly all statements and results about groups and connected spaces that we are interested
in still hold when “connectivity” is relaxed and we work with “systems” componentwise. In
general (almost categorical) terms, a system of [?-objects] is a disjoint union O =

⊔
j∈J Oj

of [?-objects] Oj indexed by some set J . An [?-isomorphism] of systems ψ : O → O′ is a
bijection σ : J → J ′ of the corresponding indexing sets and a union of [?-isomorphisms]
ψj : Oj → O′

σ·j . The calligraphic font is reserved for systems.
In more concrete terms, here are some basic concepts that will show up in the paper:

1. an isomorphism of group systems ψ : G → G′ is a bijection whose restriction to any
component Gj ⊂ G is a group isomorphism of components; for group systems, we
always assume (for convenience) components are nontrivial if the system is nonempty.

2. two isomorphisms of group systems ψ,ψ′ : G → G′ are in the same outer class [ψ] if
the component isomorphisms ψj , ψ

′
j : Gj → G′

σ·j differ only by post-composition with
an inner automorphism of G′

σ·j for all j ∈ J .

3. a metric on a set system X is a disjoint union of metrics dj : Xj ×Xj → R≥0 on the
components Xj ⊂ X .

4. for a group system G indexed by J and object system O indexed by J ′, a G-action
on O (or G-object system O) is a union of component Gj-actions on Oβ·j for some
bijection β : J → J ′.

5. for an automorphism of a group system ψ : G → G and a G-object system O, the
ψ-twisted G-object system Oψ is given by precomposing the component Gσ·j-action
on Oβσ·j with the component isomorphism ψj : Gj → Gσ·j to get a Gj-object Oβσ·j .

I.2 Pretrees, trees, and hierarchies

Pretrees are what arises when one wants to discuss “treelike” objects without reference
to a metric or topology. In this paper, the pretrees are the “primitive” objects and met-
rics/topologies are additional structures on the pretree — think of it the same way a
Riemannian metric is a compatible addition to a manifold’s smooth structure.
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Fix a set T ; an interval function on T is a function [·, ·] : T × T → P(T ), where P(T )
is the power set of T , that satisfies the following axioms: for all p, q, r ∈ T ,

1. (symmetric) [p, q] = [q, p] contains {p, q};

2. (thin) [p, r] ⊂ [p, q] ∪ [q, r]; and

3. (linear) if r ∈ [p, q] and q ∈ [p, r], then q = r.

A pretree is a pair (T, [·, ·]) of a nonempty set T and an interval function [·, ·] on T .
The subsets [p, q] ⊂ T are called closed intervals and they should be thought of as the

points between p and q (inclusive). We can similarly define open (resp. half-open) intervals
by excluding both (resp. exactly one) of {p, q}. Generally, “interval” (with no qualifier)
refers to any of the three types of intervals we have defined. An interval is degenerate if it
is empty or a singleton. We usually omit the interval function and denote a pretree by T .
Note that the real line R is a pretree.

Any subset S ⊂ T of a pretree inherits an interval function: [u, v]S ..= [u, v] ∩ S for all
u, v ∈ S. A subset C ⊂ T is convex if [p, q] ⊂ C for all p, q ∈ C; or equivalently, [·, ·]C is
the restriction of [·, ·] to C×C ⊂ T ×T . A system of pretrees is a set system T =

⊔
j∈J Tj

and a disjoint union of interval functions on Tj ; we call these systems pretrees for short.
Let (T, [·, ·]) and (T ′, [·, ·]′) be pretrees. A pretree-isomorphism is a bijection f : T → T ′

satisfying f([p, q]) = [f(p), f(q)]′ for all p, q ∈ T . Similarly, a pretree-automorphism of
(T, [·, ·]) is a pretree-isomorphism g : (T, [·, ·]) → (T, [·, ·]). A pretree is real if its closed
intervals are pretree-isomorphic to closed intervals of R. By definition, the real line R is
a real pretree. Note that being real is a property of a pretree, not an added structure
like a metric! An arc of a real pretree T is a nonempty union of an ascending chain of
nondegenerate intervals. A real pretree is degenerate if it is a singleton; and a system of
real pretrees is degenerate if all components are degenerate.

Fix a real pretree T ; a convex pseudometric on T is a function d : T×T → R≥0 satisfying
the following axioms: for all p, q, r ∈ T ,

1. (symmetric) d(p, q) = d(q, p);

2. (convex) d(p, r) = d(p, q) + d(q, r) if q ∈ [p, r]; and

3. (continuous) d(p, q) = 2 d(p, q′) for some q′ ∈ [p, q].

For any given convex pseudometric d on T , the preimage d−1(0) ⊂ T × T is an equiv-
alence relation on the real pretree T such that each equivalence class is convex and the
set Td of equivalence classes inherits a real pretree structure. A convex metric on T is a
convex pseudometric whose equivalence relation d−1(0) is the equality relation on T . A
(metric) tree (or R-tree) is a real pretree with a convex metric; a forest is a system of trees.
For example, the real line R is a tree with the standard metric dstd(p, q) ..= |p − q|. Note

9



that a convex pseudometric d on a real pretree T induces a convex metric, still denoted d,
on the real pretree Td; we refer to the tree (Td, d) as the associated tree.

A λ-homothety of trees h : (T, d) → (Y, δ) is a pretree-isomorphism h : T → Y that
uniformly scales the metric d by λ:

δ(h(p), h(q)) = λ d(p, q) for all (p, q) ∈ dom(d) = T × T ;

equivalently, h∗δ = λd, where h∗δ is the pullback of δ via h. A homothety is a λ-homothety
for some λ > 0; it is expanding (resp. an isometry) if λ > 1 (resp. λ = 1). An isometry
ι : (T, d) → (T, d) is elliptic if it fixes a point of T ; otherwise, it is loxodromic and acts by a
nontrivial translation on its axis, the unique ι-invariant arc of (T, d) isometric to (R, dstd);
the translation distance ∥ι∥d ∈ R≥0 is 0 if ι is elliptic and equal to the displacement of
points in ι’s axis if ι is loxodromic. These definitions extend componentwise to forests.

Let d1 be a nonconstant convex pseudometric on T and di+1 : d
−1
i (0) → R≥0 a noncon-

stant disjoint union of convex pseudometrics for 1 ≤ i < n. The sequence (di)
n
i=1 will be

known as an n-level hierarchy of convex pseudometrics on T ; We will say just hierarchies
for short. A hierarchy (di)

n
i=1 has full support if dn is a disjoint union of convex metrics.

A pseudotree is a pair (T, (di)
n
i=1) of a real pretree and a hierarchy with full support;

a pseudoforest is a system of pseudotrees. A (λi)
n
i=1-homothety of n-level pseudoforests

h : (T , (di)ni=1) → (Y, (δi)ni=1) is a system of pretree-isomorphisms h : T → Y that scales
each pseudometric di by λi:

δi(h(p), h(q)) = λi di(p, q) for all i ≥ 1 and (p, q) ∈ dom(di);

a homothety is a (λi)
n
i=1-homothety for some λi > 0; it is expanding (resp. isometry) if

each λi > 1 (resp. each λi = 1). As with trees, an isometry of a pseudotree is either elliptic
(fixes a point) or loxodromic (translates a “pseudoaxes”). Hierarchies and pseudoforests
are the fundamental (perhaps novel) tool in this paper. They are first used in Chapter III.

I.3 Simplicial actions and train tracks

For a pretree T , a direction at p ∈ T is a maximal subset Dp ⊂ T \ {p} not separated by p,
i.e. p /∈ [q, r] for all q, r ∈ Dp. A branch point is a point with at least three directions,
and a branch is a direction at a branch point. An endpoint is a point with at most one
direction. A simple pretree is a pretree whose closed intervals are finite subsets. A pretree T
is simplicial if it is real, its subset V of branch points and endpoints is a simple pretree,
and no convex proper subset contains V ; a vertex is a point in V . An (open) edge in
a simplicial pretree T is a maximal convex subset e ⊂ T that contains no vertex. By
construction, edges are open intervals; the corresponding closed intervals in T are called
closed edges.

Remark. Being simplicial is a property of a pretree, not an added structure! Besides that,
our definition of a simplicial pretree is more general (with one exception) than the standard
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definition of a simplicial tree and has the advantage that it is independent of any choice of
metric/topology. See [22, Interlude] for a discussion on this distinction. The one exception:
the real line R is not a simplicial pretree!

An F -pretree is a pretree with an F -action by pretree-automorphisms. An F -pseudotree
is a pair of a real F -pretree and an F -invariant hierarchy with full support; equivalently, an
F -pseudotree (resp. F -tree) is a pseudotree with an isometric F -action. An F -pseudotree
or F -tree is minimal if the underlying F -pretree has no proper nonempty F -invariant
convex subset; in this case, the underlying F -pretree has no endpoints. We mostly consider
minimal F -pseudotrees with trivial arc (pointwise) stabilizers.

Suppose an F -pseudotree (T, (di)
n
i=1) has trivial arc stabilizers. For any nontrivial sub-

group G ≤ F , the characteristic convex subset (of T ) for G is the unique minimal nonempty
G-invariant convex subset T (G) ⊂ T . In an F -tree (T, d) with trivial arc stabilizers, the
restriction of d to T (G) is a G-invariant convex metric, still denoted d; the minimal G-tree
(T (G), d) is the characteristic subtree (of (T, d)) for G.

Remark. We do not really need an isometric action to define characteristic convex subsets
and minimality. All we need is the F -action on the real pretree T to be rigid/non-nesting :
no closed interval is sent properly into itself by the F -action [22, Section II.2]. While rigid
actions are central to [22], they are superseded by isometric actions in this paper.

An F -pretree T is simplicial if T is simplicial and admits an F -invariant convex metric d;
equivalently, a simplicial F -pretree is a simplicial pretree with a rigid F -action. Any
simplicial F -pretree has an open cone (over a finite dimensional open simplex) worth of
F -invariant convex metrics (up to an equivariant isometry isotopic to the identity map).
The definitions given so far extend componentwise to systems.

Let T and T ′ be simplicial pretrees and f : T → T ′ a tight cellular map, i.e. a function
that maps vertices to vertices and the restriction to any closed edge is a pretree-embedding,
i.e. a pretree-isomorphism onto its image. For any choice of convex metrics d, d′ on T , T ′

respectively, there is a unique map (T , d) → (T ′, d′) that is linear on edges and isotopic
to f ; whenever a choice of convex metrics is made, we implicitly replace f with this map.

Let T be a free splitting of F , i.e. minimal simplicial F-pretrees with trivial edge
stabilizers, and suppose ψ : F → F is an automorphism of a free group system. The ψ-
twisted free splitting T ψ is the same real pretrees T but the original simplicial F-action
is precomposed with ψ. A (relative) topological representative for ψ is a ψ-equivariant
tight cellular map f : T → T on a nondegenerate free splitting T of F : ψ-equivariance
means f(x · p) = ψ(x) · f(p) for all x ∈ F and p ∈ T , or equivalently, f : T → T ψ is
equivariant. Given a topological representative f : T → T for ψ, we let [f ] denote the
induced map on the quotient F\T ; we say [f ] is a topological representative for the outer
class [ψ]. A (relative) train track for ψ is a topological representative τ : T → T for ψ
whose iterates τm (m ≥ 1) are topological representatives for ϕm; or equivalently, whose
iterates τm restrict to pretree-embeddings on closed edges.
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For any free splitting T of F , Bass-Serre theory gives a uniform bound on the number
of F-orbits of edges (linear in rank(F)) and relates the vertices with nontrivial stabilizers
in a (componentwise) connected fundamental domain to a (possibly empty) free factor
system F [T ] of F — take this as the working definition of free factor systems. The theory
also gives a uniform bound on the complexity (e.g. ranks) of free factor systems. A free
factor system F [T ] proper if F [T ] ̸= F ; equivalently, F [T ] is proper if and only if T is not
degenerate. Any proper free factor system of F has strictly lower complexity than F . The
trivial free factor system of F is the (possibly empty) free factor system consisting of the
cyclic F-components; it is always proper since we assume F has a noncyclic component.

Remark. We will abuse notation and write F [T ] = F [T ′] for two free splittings T , T ′ of F
when we mean: an element of F is T -elliptic if and only if it is T ′-elliptic.

Fix an automorphism ψ : F → F and a topological representative f : T → T for ψ.
By ψ-equivariance of f , the proper free factor system F [T ] is [ψ]-invariant — again, we
can take this as the definition of [ψ]-invariance for proper free factor systems. Form a
nonnegative integer square matrix A[f ] whose rows and columns are indexed by the F-
orbits of edges in T ; and the entry at row-[e] and column-[e′] is given by the number of
e-translates in the interval f(e′), where e, e′ are edges in T . The topological representative f
is irreducible if the matrix A[f ] is irreducible; or equivalently, if, for any pair of edges e, e′

in T , a translate of e is contained fm(e′) for some m = m(e, e′) ≥ 1. It is a foundational
theorem of Bestvina–Handel that automorphisms have irreducible train tracks.

Theorem I.1 (cf. [4, Theorem 1.7]). Let ψ : F → F be an automorphism of a free group
system and Z a [ψ]-invariant proper free factor system of F . Then there is an irreducible
train track τ : T → T for ψ, where the components of Z are T -elliptic.

The proof outline of [22, Theorem I.1] explains how to deduce the theorem as currently
stated from the cited theorem.

Suppose ψ : F → F is an automorphism with an irreducible topological representative
f : T → T . Perron–Frobenius theory implies the matrix A[f ] has a unique real eigen-
value λ = λ[f ] ≥ 1 with a unique positive left eigenvector ν[f ] whose entries sum to 1.
From the eigenvector ν[f ], we get an F-invariant convex metric df on T (well-defined up
to an equivariant isometry isotopic to the identity map). The restriction of f to any edge
is a λ-homothetic embedding with respect to df ; the metric df is the eigenmetric (on T )
for [f ]. If λ = 1, then f is a ψ-equivariant simplicial automorphism of T .

I.4 Growth types and limit trees

Since the introduction of train tracks, it has been standard to construct limit forests by
iterating an expanding irreducible train track (Section II.1). Unfortunately, such a con-
struction is not canonical as it can depend on the initial train track. The main idea of the
paper: patch together a “descending” sequence of limit trees to get a limit pseudoforest
and inductively “normalize” its hierarchy into a canonical limit pseudoforest.
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Fix a free group system G of finite type (unlike F , all components of G can be cyclic),
an automorphism ψ : G → G, and a metric free splitting (T , d) of G whose free factor
system Z ..= F [T ] is [ψ]-invariant. An element x ∈ G [ψ]-grows exponentially rel. d with

rate λx if it is T -loxodromic and the limit inferior of the sequence
(
m−1 log ∥ψm(x)∥d

)
m≥0

is log λx > 0. If an element [ψ]-grows exponentially rel. d, then it [ψ]-grows exponentially
rel. d′ with the same rate for any metric free splitting (T ′, d′) of G with F [T ′] = Z; say the
element [ψ]-grows exponentially rel. Z. An element x ∈ G [ψ]-grows polynomially rel. Z
with degree < n if the sequence (m−n∥ψm(x)∥d)n≥0 converges to 0. Any element of G [ψ]-
grows either exponentially or polynomially rel. Z [22, Corollary III.4]. The growth type of
an element is preserved when passing to invariant subgroup systems of finite type.

The automorphism ψ is exponentially growing rel. Z if some element [ψ]-grows expo-
nentially rel. Z; otherwise, ψ is polynomially growing rel. Z. The growth type of an outer
class [ψ] is also well-defined. The “rel. Z” in our terminology may be omitted when Z is
trivial. The next proposition deals with the first obstacle:

Proposition I.2 (cf. [22, Proposition III.2]). Let ψ : F → F be an automorphism of a free
group system and Z a [ψ]-invariant proper free factor system. Then there is a:

1. a minimal F-forest (Y, δ) with trivial arc stabilizers for which Z is elliptic; and

2. a unique ψ-equivariant expanding homothety h : (Y, δ) → (Y, δ).

The forest (Y, δ) is degenerate if and only if [ψ] is polynomially growing rel. Z.

The constructed F-forest (Y, δ) is the limit forest for [ψ] rel. Z ′, for some [ψ]-invariant
proper free factor system Z ′ that supports Z (see Sections II.1 and II.4). Unfortunately,
these limit forests depend on the choice of Z ′; our goal is to give a canonical contruction.

Given the central tool (hierarchies) and objective (universal limit trees), we outline
again how these two fit together. Gaboriau–Levitt’s index theory [11] gives a uniform
bound on the complexity of the point stabilizers system G[Y] for a minimal F-forest (Y, δ)
with trivial arc stabilizers — this is a partial generalization of Bass–Serre theory. When Y
is not degenerate, the subgroup system G[Y] has strictly lower complexity than F . This
allows us to induct on complexity (see Chapter III).

Suppose the automorphism ψ : F → F has a nondegenerate limit forest (Y1, δ1) with
nontrivial point stabilizers; the system of stabilizers G ..= G[Y] has strictly smaller com-
plexity than F . By ψ-equivariance of λ1-homothety h1 : (Y1, δ1) → (Y1, δ1), the F-orbits
of points with nontrivial stabilizers are permuted by [h1], the subgroup system G is [ψ]-
invariant, and the restriction of ψ to G determines a unique outer automorphism [φ] of G.

Suppose φ : G → G has a nondegenerate limit forest (Y2, δ2) with stretch factor λ2.
Using the blow-up construction from [22], we equivariantly blow-up Y1 with respect to
hi : Yi → Yi (i = 1, 2) to get real pretrees T with a minimal rigid F-action and a ψ-
equivariant “F-expanding” pretree-isomorphism f : T → T induced by h1 and h2. In
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fact, the blow-up construction implies the F-pretrees T inherit an F-invariant 2-level
hierarchy (δ1, δ2) with full support and f is an expanding homothety with respect to this
hierarchy. So we have a limit pseudoforest (T , (δ1, δ2)) for [ψ] (see Section III.1). Under
what conditions can we construct an F-invariant convex metric on T from (δ1, δ2)? The
heart of the paper is the following observation: the two limit forests (Yi, δi) are paired with
attracting laminations L+

i [ψ] partially ordered by inclusion; an F-invariant convex metric
on T can be naturally constructed from (δ1, δ2) if L+

2 [ψ] is not in L+
1 [ψ] (see Section III.4)

or λ1 < λ2 (see Section III.5)!

I.5 Bounded cancellation and laminations

Suppose a minimal F-forest (Y, δ) is very small, i.e. nontrivial arc stabilizers are maximal
cyclic subgroups and the fixed point subset for a nontrivial elliptic element is an arc.
Let (T , d) be a metric free splitting of F and [·, ·]T (resp. [·, ·]Y ) denote the interval function
for T (resp. Y). A map f : (T , d) → (Y, δ) is piecewise-linear (PL) if the restriction to any
closed edge is a linear map; an equivariant PL-map exists if and only if T -elliptic elements
in F are Y-elliptic. Equivariant PL-maps (T , d) → (Y, δ) are surjective and Lipschitz
since the isometric F-action on (Y, δ) is minimal and there are only finitely many F-orbits
of edges in T ; 1-Lipschitz maps are also known as metric maps. Generally, if T ,Y are
free splittings of F , then an equivariant function f : T → Y is a (simplicial) PL-map if
its restrictions to any closed edge is isotopic to a linear map with respect to some/any
F-invariant convex metrics d, δ on T ,Y respectively.

Lemma I.3 (bounded cancellation). Let f : (T , d) → (Y, δ) be an equivariant PL-map.
For some constant C[f ] ≥ 0 and all points p, q ∈ T , the image f([p, q]T ) is in the C[f ]-
neighbourhood of the interval [f(p), f(q)]Y .

Such a C[f ] is a cancellation constant for f . This proof is due to Bestvina–Feighn–Handel.

Sketch of proof [2, Lemma 3.1]. Let Lip(f) be the Lipschitz constant and vol(T , d) the
volume (mod F). Then f = g ◦ h for some equivariant Lip(f)-homothety h and metric
PL-map g. Suppose f is simple: its target is a metric free splitting with free factor
system F [T ]. Then g factors as finitely many equivariant edge collapses and Stallings folds
followed by an equivariant metric homeomorphism. The homeomorphism and each edge
collapse have cancellation constants 0. A fold has a cancellation constant given by the
length of folded segment. Finally, the metric PL-map g has a cancellation constant since
cancellation constants are (sub)additive over compositions of metric maps. As cancellation
constants are preserved by precomposition with homeomorphisms, the PL-map f = g ◦ h
has a cancellation constant C[f ] < Lip(f) vol(T , d).

Otherwise, the PL-map f is not simple. For a contradiction, suppose the image
f([p, q]T ) is not in the Lip(f) vol(T , d)-neighbourhood of [f(p), f(q)]Y for some p, q ∈ T .
Let δ(f(r0), [f(p), f(q)]Y ) > Lip(f) vol(T , d) + ϵ0 for some ϵ0 > 0 and point r0 ∈ [p, q]T .
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For any ϵ > 0, the PL-map f is approximated by an equivariant simple PL-map fϵ with
Lip(fϵ) < Lip(f) + ϵ and C[fϵ] ≥ Lip(f) vol(T , d) + ϵ0 (see [16, Theorem 6.1]). By the
previous paragraph, C[fϵ] < Lip(fϵ) vol(T , d) for ϵ > 0. So C[fϵ] < Lip(f) vol(T , d) + ϵ0
for small enough ϵ > 0 — a contradiction.

Remark. The results in this section apply to ψ-equivariant PL-maps g : (T , d) → (T , d) for
any automorphism ψ : F → F : view g as an equivariant PL-map (T , d) → (T ψ, d) instead.

A line in a forest is an arc that is isometric to (R, dstd); a ray in a forest is an arc
that is isometric to (R≥0, dstd) and its origin is the point corresponding to 0 under the
isometry. Two rays are end-equivalent if their intersection is a ray; an end of a forest is an
end-equivalence class of rays in the forest. Note that there is a natural bijection between
the set of lines in a forest and set of unordered pairs of distinct ends in the same component
of the forest. For simplicial F-pretrees T , the notions of line/ray/end are well-defined for
the cone of F-invariant convex metrics on T .

Corollary I.4 (cf. [10, Lemma 3.4]).
Let f : (T , d) → (Y, δ) be an equivariant PL-map.

1. For any ray ρ in (T , d) with origin p0, the image f(ρ) is either bounded or in the
C[f ]-neighbourhood of a unique ray f∗(ρ) ⊂ f(ρ) with origin f(p0); moverover, if ρ, ρ′

represent the same end e and f(ρ) is unbounded, then so is f(ρ′) and f∗(ρ), f∗(ρ
′)

are end-equivalent — denote their end-equivalence class by f∗(e).

2. For any line l in (T , d), f(l) is in a C[f ]-neighbourhood of a unique line f∗(l) ⊂ f(l)
if both ends of l have unbounded f -images.

3. For any end ϵ of (Y, δ), there is a unique end f∗(ϵ) of (T , d) with ϵ = f∗(f
∗(ϵ)).

Sketch of proof.
(1): Let ρ be a ray in (T , d), p0 ∈ ρ its origin, f(ρ) unbounded, and s0 = f(p0). Use
Figure 1 for reference. By bounded cancellation and the Lipschitz property, f(ρ) has at
most one end of (Y, δ). For some n ≥ 0, assume sn ∈ [s0, f(p)]Y for all p ∈ ρ \ [p0, pn]T .
Set C ..= C[f ]. Since f(ρ) is unbounded,

δ(s0, f(pn+1)) > 2 δ(s0, sn) + C

for some pn+1 ∈ ρ \ [p0, pn]T . Pick sn+1 ∈ [s0, f(pn+1)]Y satisfying δ(s0, sn+1) > 2 δ(s0, sn)
and δ(sn+1, f(pn+1)) > C; so sn ∈ [s0, sn+1]Y . By bounded cancellation, the interval
[s0, sn+1]Y ⊂ f([p0, pn+1]T ) is disjoint from f(ρ\ [p0, pn+1]T ). So the union

⋃
n≥0[s0, sn]Y is

a ray f∗(ρ) in f(ρ) with origin s0. By construction, f(ρ) is in the C-neighbourhood of f∗(ρ).
Any bounded neighbourhood of a ray contains a unique ray, up to end-equivalence.

(2): Represent both ends of l with rays ρ± ⊂ l sharing the same origin. By Part 1 and
bounded cancellation, we have rays f∗(ρ

±) representing unique distinct ends ϵ± of (Y, δ);
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Figure 1: The ray f∗(ρ) with origin s0 = f(p0) is built inductively in the image f(ρ).

moreover, f(l) = f(ρ−) ∪ f(ρ+) is in the C-neighbourhood of f∗(ρ
−) ∪ f∗(ρ

+) ⊂ f(l).
Let f∗(l) ⊂ f∗(ρ

−) ∪ f∗(ρ+) be the line determined by the ends ϵ±. Then f(l) is in the
C-neighbourhood of f∗(l). Any bounded neighbourhood of a line contains a unique line.

(3): The argument is almost the same. Let ρ′ be a ray representing ϵ and s0 = q0 its origin.
Pick points qn+1, sn+1 ∈ ρ′ with δ(s0, sn+1) > 2 δ(s0, sn), δ(s0, qn+1) > 2 δ(s0, sn) +C, and
δ(sn+1, qn+1) > C. Since f : T → Y is surjective, we can lift qn to pn ∈ T . By bounded
cancellation and K-Lipschitz property, the distance d(p0, [pn, pn+m]T ) >

1
K δ(s0, sn). Thus

(pn)n≥0 determines an end e of (T , d) with unbounded f -image. Let ρ be a ray represent-
ing e with origin p0. As ρ

′ ⊂ f(ρ) by construction, we get f∗(ρ) = ρ′ by Part 1. By Part 2,
the end e is the unique end with f∗(e) = ϵ, and we denote it by f∗(ϵ).

The corollary defines the equivariant lifting (resp. projecting) function f∗ (resp. f∗),
where the domain dom(f∗) of f∗ is the set of lines in (Y, δ) and the domain dom(f∗) of f∗
is the set of lines in (T , d) whose ends both have unbounded f -images. Note that the
image im(f∗) is dom(f∗); moreover, f∗ and f∗ are inverses of each other. Both lifting
and projecting functions are canonical : f∗ = g∗ and f∗ = g∗ for any equivariant maps
f, g : (T , d) → (Y, δ) since f, g will be a bounded δ-distance from some equivariant PL-map;
for lack of better notation, we still denote the functions by f∗, f∗ despite this independence.

Alternatively, we view f∗ and f∗ as functions on the sets of F-orbits of lines. We
can equip these sets with a natural topology. The set R(Y, δ) of F-orbits of lines in
(Y, δ) has the following topology: for any p, q ∈ Y, let U [p, q] be the F-orbit of lines
that contain a translate of [p, q]; the collection {U [p, q] : p, q ∈ Y} is a basis for the
space of (F-orbits of) lines. This space is well-defined for the equivariant homothetic class
of (Y, δ). The space of lines is also well-defined for the free splitting T and denoted R(T ).

Claim I.5. The canonical lifting function f∗ : R(Y, δ) → R(T ) is a topological embedding.

Henceforth, we identify R(Y, δ) with a subspace of R(T ) using the canonical embedding f∗.
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Sketch of proof. We first prove the injection f∗ is continuous. Let Λ ⊂ R(T ) be a closed
subset and Λf

..= Λ ∩ im(f∗). Suppose [γ] is in the closure of f∗(Λf ) in R(Y, δ). For con-
tinuity, it is enough to show f∗[γ] ∈ Λ. Fix a long interval Iγ ⊂ γ; then Iγ ⊂ [f(p), f(q)]Y
for some p, q ∈ f∗(γ). As [γ] is in the closure of f∗(Λf ), the interval Iγ ⊂ γ is in the
line f∗(l) for some [l] ∈ Λf . By bounded cancellation, the f -image of the intersection
Il ..= f∗(γ) ∩ l contains a long interval in Iγ . As the interval Iγ will exhaust γ, the inter-
val Il exhausts f

∗(γ); in particular, any interval in f∗(γ) is contained in l for some [l] ∈ Λ.
So f∗[γ] is in the closed subset Λ.

We finally prove f∗ : R(Y, δ) → im(f∗) is an open map, where the image im(f∗) ⊂ R(T )
has the subspace topology. Suppose p, q ∈ Y and [γ] ∈ U [p, q], i.e. a line γ in (Y, δ)
contains an interval [p, q]Y . There is an interval [u, v]T ⊂ f∗(γ) whose f -image covers a
long neighbourhood of [p, q]Y . By bounded cancellation, any line f∗(γ′) containing [u, v]T
will have an f∗-image γ′ containing [p, q]Y . So f∗[γ] ∈ U [u, v] ∩ im(f∗) ⊂ f∗(U [p, q]). As
[γ] ∈ U [p, q] was arbitrary, the image f∗(U [p, q]) is open in im(f∗).

Now assume T ′ is a free splitting of F with F [T ] = F [T ′] and let f : T → T ′ be an
equivariant PL-map. The folds in the factorization of f never identify points in the same
F-orbit. For [l] ∈ R(T ), each end of l has unbounded f -image, i.e. dom(f∗) = R(T ); so
f∗ : R(T ) → R(T ′) is a canonical homeomorphism (with inverse f∗). Similarly, if g : T → T
is a ψ-equivariant PL-map for some automorphism ψ : F → F , then g∗, g

∗ : R(T ) → R(T )
are canonical homeomorphisms for [ψ].

Remark. We use ambiguous terminology and say “line” when we mean a line or an F-orbit
of a line; our notation remains distinct: “l” is always a line, while “[l]” is its F-orbit.

A lamination in (Y, δ) (resp. T ) is a nonempty closed subset of R(Y, δ) (resp. R(T ));
when the F-forest in question is clear, we say lamination with no qualifier. An element
of a lamination is called a leaf; a leaf segment of a lamination Λ is a nondegenerate closed
interval in a line representing a leaf of Λ. A lamination is minimal if each leaf is dense in
the lamination; a lamination is perfect if it has no isolated leaves.

Let [l] be a line and Λ a lamination in R(Y, δ) (or R(T )). A sequence [lm]m≥0 in
the space of lines weakly limits to [l] if some subsequence converges to [l]; we say [l] is a
weak limit of the sequence. The sequence [lm]m≥0 weakly limits to Λ if it weakly limits to
every leaf of Λ. The “weak” terminology is used to highlight that the space of lines is not
Hausdorff — a convergent sequence may have multiple limits!

More generally, a sequence [pm, qm]m≥0 of intervals converges to [l] if, for any closed
interval [a, b] ⊂ l, [pm, qm] contains a translate of [a, b] for m≫ 1 (i.e. for large enough m)
— precisely, there is an M [a, b] ≥ 1 such that U [a, b] contains U [pm, qm] for m ≥ M [a, b].
Again, a sequence of intervals weakly limits to [l] if some subsequence converges to [l] and
it weakly limits to Λ if it weakly limits to every leaf of Λ.
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II Limit forests

In this chapter, we sketch the proof of Proposition I.2 (existence of limit forests) and, in the
process, introduce stable laminations. The first half deals with limit forests for expanding
irreducible train tracks; then, in the second half, we extend the results to all limit forests.

II.1 Constructing limit forests (1)

This is a summary of [12, Appendix]; the reader is invited to read that appendix.
Fix an automorphism ψ : F → F with an expanding irreducible train track τ : T → T .

Set λ ..= λ[τ ] > 1 and let dτ be the eigenmetric on T for [τ ]. For m ≥ 0, let dm be the
pullback of λ−mdτ via τm:

dm(p, q) ..= λ−mdτ (τ
m(p), τm(q)) ≤ dτ (p, q) for p, q in a component of T.

By definition, the pullback dm is an F-invariant (not necessarily convex) pseudometric
on T whose quotient metric space is equivariantly isometric to (T ψm, λ−mdτ ). The λ-
Lipschitz property for τ with respect to dτ implies the sequence of pseudometrics dm is
(pointwise) monotone decreasing. The limit d∞ is an F-invariant pseudometric on T , the
quotient metric space (T∞, d∞) is an F-forest, and the ψ-equivariant λ-Lipschitz train
track τ induces a ψ-equivariant λ-homothety h : (T∞, d∞) → (T∞, d∞); in particular, the
equivariant metric surjection π : (T , dτ ) → (T∞, d∞) semiconjugates τ to h: π ◦ τ = h ◦ π.

As τ is a train track, the restriction of π to any edge of T is an isometric embedding.
So T∞ is not degenerate. In fact, the π-image of any edge of T can be extended to an
axis for a T∞-loxodromic element in F . Thus the F-forest (T∞, d∞) is minimal, and the
uniqueness of h follows from [6, Theorem 3.7]. Finally, the minimal F-forest (T∞, d∞)
has trivial arc stabilizers. This sketches the first case of Proposition I.2. The F-forest
(Yτ , d∞) ..= (T∞, d∞) is the (forward) limit forest for [τ ].

II.2 Stable laminations (1)

The first part of this section is mostly adapted from Section 1 of [2]. The following definition
of stable laminations is from [2, Definition 1.3].

Fix an automorphism ψ : F → F with an expanding irreducible train track τ : T → T .
Set λ ..= λ[τ ] > 1, let dτ be the eigenmetric on T for [τ ], and pick an edge e ⊂ T . Expanding
irreducibility implies the interval τk(e) contains at least three translates of e for some k ≥ 1.
By the intermediate value theorem, τk(p) = x · p for some x ∈ F and p ∈ e. Recall that
edges are open intervals; since the restriction of x−1 · τk to the edge e is an expanding
λk-homothetic embedding e → T (with respect to dτ ) that fixes p and has e in its image,
we can extend e to a line lp ⊂ T by iterating x−1 · τk. By construction, the restriction
of x−1 · τk to lp is a λk-homothety lp → lp with respect to the eigenmetric dτ for [τ ]; the
F-orbit [lp] is an eigenline of [τk] based at [p] (in F\T ). A stable T -lamination Λ+ for [τ ]
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is the closure of an eigenline of [τk] for some k ≥ 1. By ϕ-equivariance of τ , the restriction
of τ to l representing a leaf of a stable lamination Λ+ is a λ-homothetic embedding. In
fact, [τ ] maps eigenlines to eigenlines, and the image τ∗(Λ

+) ..= {[τ(l)] : [l] ∈ Λ+} is also a
stable lamination for [τ ].

As the transition matrix A[τ ] is irreducible, it is a block transitive permutation matrix,
and the “first return” matrix for each block is primitive, i.e. has a positive power. There is
a bijective correspondence between the stable laminations for [τ ] and the blocks of A[τ ]. In
particular, there are finitely many stable laminations for [τ ], these laminations are pairwise
disjoint, and τ∗ transitively permutes them [2, Lemma 1.2]. By finiteness, their union L+[τ ]
is a lamination and is called the system of stable laminations for [τ ].

II.2.1 Quasiperiodic lines

A line [l] in an F-forest is periodic if it is the axis for the conjugacy class of some loxodromic
element of F . A line [l] is quasiperiodic in an F-forest if any closed interval I in l has an
assigned number L(I) ≥ 0 such that any interval in l of length L(I) contains a translate of I;
periodic lines are quasiperiodic. If [l] is a quasiperiodic line, then any leaf of its closure Λ
is quasiperiodic and hence dense in Λ (exercise), i.e. Λ is minimal. If [l] is quasiperiodic
but not periodic, then no leaf of its closure Λ is isolated (exercise), i.e. Λ is also perfect.

Remark. When the F -action on a free splitting T is free, then our definition of quasiperiod-
icity is equivalent to [2, Definition 1.7]; however, our definition is weaker when the action
is not free.

Lemma II.1 (cf. [2, Proposition 1.8]). The eigenlines of [τk] are quasiperiodic but not
periodic for k ≥ 1. Thus the stable laminations for [τ ] are minimal and perfect.

Proof. There is a length L0 such that any interval in T of length L0 contains an edge.
Fix an F-orbit [I] of intervals in an eigenline [l] of [τk]. By construction, I is contained
in τkm(e) for some edge e in T and integer m ≥ 0. As the blocks in A[τk] are primitive,
there is an integer m′ ≥ 1 such that τkm

′
(e′) contains a translate of e for any edge e′ in l.

Altogether, any interval in l of length λ[τ ]k(m+m′)L0 contains a translate of I. This proves
quasiperiodicity.

Now assume, for a contradiction, that the eigenline [l] were periodic, i.e. l is an axis for
a T -loxodromic element x ∈ F . By construction, the F-orbit [l] is τk-invariant and hence
the cyclic subgroup ⟨x⟩ is [ψk]-invariant. So x is [ψ]-periodic as ψ is an automorphism;
yet x must [ψ]-grow exponentially since its axis is an eigenline and τ is expanding.

Fix an equivariant PL-map f : (T , d) → (Y, δ) and canonically embed R(Y, δ) into R(T )
via f∗ (Claim I.5). If a quasiperiodic line [l] ∈ R(T ) is in the subspace R(Y, δ) = im(f∗),
then so its closure Λ in R(T ) (exercise). Returning to limit forests, the equivariant metric
PL-map π : (T , dτ ) → (Yτ , d∞) restricts to an isometric embedding on the leaves of L+[τ ];
therefore, the stable lamination L+[τ ] is in R(Yτ , d∞) ⊂ R(T ).
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II.2.2 Characterizing loxodromics

Let (Yτ , d∞) be the limit forest for [τ ], h : (Yτ , d∞) → (Yτ , d∞) the unique ψ-equivariant
λ-homothety, and π : (T , dτ ) → (Yτ , d∞) the constructed equivariant metric PL-map. By
Lemma I.3, the map τ : (T , dτ ) → (T , dτ ) has a cancellation constant C ..= C[τ ]. Set
C ′ ..= C

λ−1 and denote the interval functions for T by [·, ·]. The sequence of equivariant

metric maps τm : (T , dτ ) → (T ψm, λ−mdτ ) have cancellation constants
∑m

i=1 λ
−iC ≤ C ′;

so their limit π has a cancellation constant C[π] ..= C ′.
Let P ⊂ Yτ be F-orbit representatives of points with nontrivial stabilizers. Define

the subgroup system G[Yτ ] ..=
⊔

p∈P Gp, where Gp
..= StabF (p) is the stabilizer in F

of p ∈ P . As the action on Yτ has trivial arc stabilizers, the system G[Yτ ] is malnormal:
each component is malnormal (as a subgroup of the appropriate component of F) and
conjugates of distinct components (in the same component of F) have trivial intersections.
The ψ-equivariance of homothety h implies G[Yτ ] is [ψ]-invariant. By Gaboriau–Levitt’s
index theory, the complexity of G[Yτ ] is strictly less than that of F [11, Theorem III.2]. In
particular, G[Yτ ] has finite type: P is finite, and each component Gp is finitely generated.
The restriction of ψ to G[Yτ ] determines a unique outer automorphism of the system.

We now characterize the elliptic/loxodromic elements in F in the limit forest (Yτ , d∞):

Proposition II.2 (cf. [2, Proposition 1.6]). Let ψ : F → F be an automorphism, τ : T → T
an expanding irreducible train track for ψ, and (Yτ , d∞) the limit forest for [τ ].

If x ∈ F is a T -loxodromic element, then the following statements are equivalent:

1. the element x is Yτ -loxodromic;

2. the element x [ψ]-grows exponentially rel. T : lim
m→∞

1
m log ∥ψm(x)∥T = log λ[τ ]; and

3. the T -axis for ψm(x) has an arbitrarily long leaf segment of L+[τ ] for m≫ 1.

The restriction of ψ to the [ψ]-invariant subgroup system G[Yτ ] of Yτ -point stabilizers has
constant growth rel. T : {∥ψm(x)∥T : m ≥ 0} is bounded for all x ∈ G[Yτ ].

Proof. Let λ ..= λ[τ ] > 1, C ..= C[τ ] a cancellation constant for τ : (T , dτ ) → (T , dτ ), and
C ′ ..= C

λ−1 a cancellation constant for π : (T , dτ ) → (Yτ , d∞). Fix a line l in T , and let
π : (T , dτ ) → (Yτ , d∞) be the constructed equivariant metric PL-map.

Case 1: d∞(π(p), π(q)) > 2C ′ + L for some k ≥ 0, p, q ∈ τk∗ (l), and L > 0. By def-
inition of d∞ (construction of π), dτ (τ

m(p), τm(q)) > λm(2C ′ + L) for m ≫ 1. Pick
m ≫ 1 and rm, sm ∈ [τm(p), τm(q)] so that dτ (τ

m(p), rm), dτ (sm, τ
m(q)) > λmC ′ and

dτ (rm, sm) > λmL. By bounded cancellation (for τm), the interval Im ..= [rm, sm] is dis-
joint from τm(τk∗ (l) \ [p, q]) in (T, dτ ). So Im is an interval in τm+k

∗ (l).
Let N ..= N(p, q) be the number of vertices in the interval (p, q). Then Im is covered

by N + 1 leaf segments (of L+[τ ]) as τ is a train track. By the pigeonhole principle, Im
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(and hence τm+k
∗ (l)) contains a leaf segment with dτ -length >

λmL
N+1 ; therefore, the line τ

n
∗ (l)

in T contains arbitrarily long leaf segments for m≫ 1.

Case 2: π(τm∗ (l)) has diameter ≤ 2C ′ for all m ≥ 0. We claim that any leaf segment in
the line τm∗ (l) (m ≥ 0) has dτ -length ≤ 2C ′. For the contrapositive, suppose some τm∗ (l)
has a leaf segment with dτ -length L > 2C ′. By the train track property and bounded
cancellation, τm+1

∗ (l) has a leaf segment with dτ -length ≥ λL − 2C > L. By induction,
π(τm+m′

∗ (l)) has diameter ≥ λm
′
(L− 2C ′) for m′ ≥ 0 and λm

′
(L− 2C ′) > 2C ′ for m′ ≫ 1.

We finally return to the proof of the proposition. Fix a T -loxodromic element x ∈ F
and let l ⊂ T be its axis; in particular, π(l) is x-invariant by equivariance of π. As τ is
λ-Lipschitz with respect to dτ , lim sup

m→∞
1
m log ∥ψm(x)∥dτ ≤ log λ.

Case–i: d∞(π(p), π(q)) > 2C ′ for some k ≥ 0 and p, q ∈ τk∗ (l). The line τm∗ (l), the axis
for ϕm(x) in T , contains an arbitrarily long leaf segment for m≫ 1 by the Case 1 analysis.
By bounded cancellation (for π), some nondegenerate interval I in [π(p), π(q)]∞ is disjoint
from π(τk∗ (l) \ [p, q]). Since τk∗ (l) is the axis for ψk(x), it contains disjoint translates [p, q],
ψk(x−n) · [p, q], ψk(xn) · [p, q] for some n ≫ 1. Then ψk(x−n) · I and ψk(xn) · I are
in distinct components of Yτ \ I and ψk(x) is Yτ -loxodromic. Since ∥ · ∥d∞ ≤ ∥ · ∥dτ and
∥ψ(·)∥d∞ = λ∥·∥d∞ , we get log λ ≤ lim inf

m→∞
1
m log ∥ψm(x)∥dτ and x is Yτ -loxodromic. Finally,

log λ = lim
m→∞

1
m log ∥ψm(x)∥T since dτ and the combinatorial metric on T are bilipschitz.

Case–ii: π(τm∗ (l)) has diameter ≤ 2C ′ for all m ≥ 0. Any leaf segment in τm∗ (l) (m ≥ 0)
have dτ -length ≤ 2C ′ by Case 2 analysis. Let N be the number of vertices in a fundamental
domain of x acting on l. By the train track property, the fundamental domain of τm∗ (l) is
covered by N + 1 leaf segments and ∥ψm(x)∥T ≤ K∥ψm(x)∥dτ ≤ 2C ′K(N + 1) for some
K ≥ 1 and all m ≥ 0. But x acts on Yτ by an isometry, and π(l) ⊂ Yτ is x-invariant; so x
must be Yτ -elliptic.

We now introduce the notion of factored forests. Suppose the stable laminations L+[τ ]
have components Λ+

i (1 ≤ i ≤ k). The F-orbits of edges in T can be partitioned into

blocks Bi indexed by the components Λ+
i ⊂ L+[τ ]. For p, q ∈ T , let d

(i)
τ be the dτ -length

of the intersection of the interval [p, q] and the subforest spanned by Bi; this defines an F-

invariant convex pseudometric d
(i)
τ on T . The metric dτ is a sum of the pseudometrics d

(i)
τ ,

denoted Σk
i=1d

(i)
τ ; we call Σk

i=1d
(i)
τ a factored F-invariant convex metric and (T ,Σk

i=1d
(i)
τ ) a

factored F-forest. This factored metric is special: the factors d
(i)
τ (1 ≤ i ≤ k) are pairwise

mutually singular: for i ̸= j, there are intervals (e.g. the leaf segments) with positive d
(i)
τ -

length and 0 d
(j)
τ -length — such factored pseudometrics will be denoted by ⊕k

i=1d
(i)
τ to

invoke the idea of independence in direct sums. The limit pseudometrics d
(i)
∞ are pairwise

mutually singular since π is surjective and isometric on leaf segments; thus d∞ = ⊕k
i=1d

(i)
∞ .

The next lemma is the cornerstone of our universality result:
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Lemma IV.3 (cf. [2, Lemma 3.4]). Let ψ : F → F be an automorphism, τ : T → T an
expanding irreducible train track for ψ with eigenmetric dτ , (Yτ , d∞) the limit forest for [τ ],
and λ ..= λ[τ ].

If (T , dτ ) → (Y, δ) is an equivariant PL-map and the k-component lamination L+[τ ]

is in R(Y, δ) ⊂ R(T ), then the sequence (Yψmk, λ−mkδ)m≥0 converges to (Yτ ,⊕k
i=1ci d

(i)
∞ ),

where d∞ = ⊕k
i=1 d

(i)
∞ and ci > 0.

Remark. Factored F-forests are needed for this lemma when k ≥ 2; moreover, the sequence
(Yψm, λ−mδ)m≥0 will not converge in general (but is asymptotically periodic) when k ≥ 2.
Convergence is in the subspace of translation distance functions in RF

≥0 with the product
topology.

We give the proof in Section IV.1. In particular, if τ ′ : T ′ → T ′ is another expanding
irreducible train track for ψ and F [T ′] = F [T ], then the limit forest for [τ ′] is equivariantly
homothetic to (Yτ , d∞) — set (Y, δ) ..= (T ′, dτ ′), apply the lemma, then observe that the
sequence (ci)

k
i=1 must be constant in this case. A minimal very small F-forest (Y, δ) is an

expanding forest for [ψ] like Yτ if it is nondegenerate and there is:

1. a ψ-equivariant expanding homothety (Y, δ) → (Y, δ); and

2. an equivariant PL-map (T , dτ ) → (Y, δ).

Corollary II.3. Let ψ : F → F be an automorphism, τ : T → T an expanding irreducible
train track for ψ, and (Yτ , d∞) the limit forest for [τ ]. Any expanding forests for [ψ] like Yτ

is uniquely equivariantly homothetic to (Yτ , d∞).

Proof. Let (Y, δ) be an expanding forest for [ψ] like Yτ , f : (T , dτ ) → (Y, δ) an equivariant
PL-map with cancellation constant C ..= C[f ], g : (Y, δ) → (Y, δ) the ψ-equivariant ex-
panding s-homothety, x ∈ F a Y-loxodromic element. By equivariance of f , the element x
is T -loxodromic with axis lx ⊂ T . Let [p0, x · p0] ⊂ lx be (the closure of) a fundamental
domain of x acting on lx. The interval [p0, x · p0] is a concatenation of N ≥ 1 leaf segments
(of L+[τ ]). Choose m ≫ 1 so that ∥ψm(x)∥δ = sm∥x∥δ > 2CN . Note that the action of
ψm(x) on its axis has a fundamental domain [pm, ψ

m(x) · pm] covered by N leaf segments
as τ is a train track. So δ(f(pm), f(ψm(x) · pm)) > 2CN and, by the pigeonhole principle,
[pm, ψ

m(x) · pm] contains a leaf segment [q, r] with δ(f(q), f(r)) > 2C.
Let l ⊃ [q, r] represent some leaf [l] ∈ L+[τ ]. Bounded cancellation implies the com-

ponents of l \ [q, r] have f -images with disjoint closures. By quasiperiodicity of [l] and
equivariance of f , both ends of l have unbounded f -images, i.e. [l] ∈ dom(f∗) = R(Y, δ)
(Corollary I.4, Claim I.5). Finally, the closure of [l] in R(T ), a component Λ+

i ⊂ L+[τ ],
is a subset of R(Y, δ) by quasiperiodicity of [l]. Note that the ψ-equivariant homothety g
induces a homeomorphism g∗ : R(Y, δ) → R(Y, δ) that is the restriction of the homeomor-
phism τ∗ : R(T ) → R(T ). So L+[τ ] ⊂ R(Y, δ) since τ∗ acts transitively on the k components
of L+[τ ]. Set λ ..= λ[τ ]; by Lemma IV.3, the sequence (Yψmk, λ−mkδ)m≥0 converges to the
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factored F-forest (Yτ ,⊕k
i=1ci d

(i)
∞ ) for some ci > 0. Yet (Y, δ) is equivariantly isometric to

(Yψ, s−1δ); thus s = λ, ci = ci+1 (i < k), (Y, δ) is equivariantly isometric to (Yτ , c1 d∞),
and the equivariant isometry is unique [6, Theorem 3.7].

II.2.3 Iterated turns

We have already shown how iterating an edge in T by the train track τ produces the system
of stable laminations L+[τ ]. Later, we will consider how L+[τ ] determines laminations in
(a free splitting of) the subgroup system G[Yτ ].

Let T ′ be a free splitting of F whose free factor system F [T ′] is trivial. Then there is
an equivariant PL-map f : (T ′, d′) → (T , dτ ). Let γ be a line in (Yτ , d∞), π∗(γ) its lift to
(T , dτ ), and f∗(π∗(γ)) its lift to (T ′, d′). Denote the ends of γ by εi (i = 1, 2). Let T ⊂ T
be the component containing π∗(γ), and T ′ ⊂ T ′, Yτ ⊂ Yτ , and F ⊂ F be the matching
components. Denote the first return maps of τ , h, and ψ on T , Yτ , and F by τ̃ , h̃, and φ
respectively. For the rest of the section, redefine λ to be the stretch factor of the expanding
homothety h̃.

Suppose ◦ is a point on the line γ with a nontrivial stabilizers G◦ ..= StabF (◦).
Let di (i = 1, 2) be the direction at ◦ containing εi. By Gaboriau–Levitt index theory,
h̃j(◦) = y · ◦ and h̃j(di) = ysi · di for some y ∈ F , si ∈ G◦, and minimal j ≥ 1. Since F
acts on Yτ with trivial arc stabilizers, the elements ys1, ys2 are unique and s−1

1 s2 ∈ G◦ is
independent of the chosen y ∈ F .

Set y0 ..= ϵ to be the trivial element and ym+1
..= φmj(ys1)ym for m ≥ 0. Let T ′(G)

be the characteristic convex subset of T ′ for a nontrivial subgroup G ≤ F . Since T ′ is
simplicial, the characteristic convex subset T ′(G) is closed, and we have the closest point
retraction T ′ → T ′(G); it extends uniquely to the ends-completions. Let q′i,m be the

closest point projection of f∗(π∗(h̃mj
∗ (εi))) to T ′(φmj(G◦)). Set τ◦ ..= (ys1)

−1 · τ̃ j and
h◦ ..= (ys1)

−1 · h̃j to be ψ◦-equivariant maps for an automorphism ψ◦ : F → F in the outer
class [φj ]. As h◦ fixes ◦, we get ψ◦(G◦) = G◦ and y−1

m · T ′(φmj(G◦)) is the characteristic
convex subset for ψm

◦ (G◦) = G◦. Thus qi,m ..= y−1
m ·q′i,m is in T ′(G◦) for i = 1, 2 and m ≥ 0.

The interval [q1,m, q2,m] in T ′(G◦), i.e. the closest point projection of f∗(π∗(hm◦ (γ))), is the
turn in f∗(π∗(hm◦ (γ))) about T ′(G◦).

Since h◦(d1) = d1, the ends hm◦∗(ε1) (m ≥ 0) are in fact ends of d1. If h◦∗(ε1) = ε1,
then the sequence (q1,m)m≥0 is constant. Otherwise, the ends hm◦∗(ε1) are distinct for
m ≥ 0. Let γ1,m be the line in d1 determined by hm+1

◦∗ (ε1) and hm◦∗(ε1). As h◦ is an
expanding homothety, the distance d∞(◦, γ1,m) > 0 from ◦ to γ1,m grows exponentially
in m. So d∞(◦, γ1,M1) > 2C[π ◦ f ] for some minimal M1 ≥ 0, and the line f∗(π∗(γ1,m)) is
disjoint from T ′(G◦) for m ≥ M1 by bounded cancellation (see Figure 2). In particular,
the ends f∗(π∗(hm+1

◦∗ (ε1))) and f∗(π∗(hm◦∗(ε1))) have the same closest point projection
to T ′(G◦) and the sequence (q1,m)m≥M1 is constant.

Since h◦(d2) = s−1
1 s2 · d2, the ends f∗(π∗(hm+1

◦∗ (ε2))) and ψm
◦ (s−1

1 s2) · f∗(π∗(hm◦∗(ε2)))
have the same closest point projection to T ′(G◦) form≫ 1 by similar bounded cancellation
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Figure 2: For m ≥M1, the line f∗(π∗(γ1,m)) cannot intersect T ′(G◦).

reasoning, i.e. q2,m+1 = ψm
◦ (s−1

1 s2) · q2,m for some minimal M2 ≥ 0 and all m ≥M2.
Set M = max(M1,M2). The sequence [q1,M+m, q2,M+m]m≥0 of intervals is well-defined

for the line γ and point ◦ ∈ γ as M1 and M2 were chosen minimally. An iterated turn
over T ′(G◦) rel. ψ◦|G◦

is any such sequence of intervals. More generally, we define an
iterated turn over T rel. φ: pick arbitrary points pi ∈ T (i = 1, 2) and elements xi ∈ F ; set
pi,0 ..= pi and pi,m+1

..= φm(xi) · pi,m for m ≥ 0; the sequence [p1,m, p2,m]m≥0 is the iterated
turn denoted by (p1, p2 : x1, x2;φ)T . Any iterated turn (p1, p2 : x1, x2;φ)T translates to a
unique normal form (p1, p2 : ϵ, x

−1
1 x2; φ̃)T with φ̃ : y 7→ x−1

1 φ(y)x1.

We now characterize the growth of an iterated turn over T rel. φ:

Proposition II.4. Let ψ : F → F be an automorphism, τ : T → T an expanding irre-
ducible train track for ψ with eigenmetric dτ , and (Yτ , d∞) the limit forest for [τ ]. Choose
a nondegenerate component T ⊂ T , corresponding components F ⊂ F , Yτ ⊂ Yτ , and a
positive iterate ψk that preserves F . Let h̃ : (Yτ , d∞) → (Yτ , d∞) be the φ-equivariant λ-
homothety, where φ is in the outer automorphism [ψk

∣∣
F
] and λ ..= (λ[τ ])k. Finally, for

i = 1, 2, pick pi ∈ T and xi ∈ F .

The point pi,m ..= φ−1(xi) · · ·φ−m(xi) · pi in (Tφm, λ−mdτ ) converges to ⋆i in (Y τ , d∞)
as m→ ∞, where ⋆i is the unique fixed point of x−1

i · h̃ in the metric completion (Y τ , d∞);
concretely:

lim
m→∞

λ−mdτ (p1,m, p2,m) = d∞(⋆1, ⋆2).

If x−1
1 x2 fixes ⋆1, then ⋆1 = ⋆2 and the mth term [p1,m, p2,m] of the iterated turn

(p1, p2 : x1, x2;φ)T has dτ -length ≤ (m+1)A for some constant A ≥ 1. Otherwise, ⋆1 ̸= ⋆2
and the iterated turn has arbitrarily long leaf segments of L+[τ ].

The limit [⋆1, ⋆2] ⊂ Y τ of an iterated turn is independent of the points p1, p2 ∈ T . Thus
we introduce the notion of an algebraic iterated turn over F rel. φ, denoted (x1, x2;φ)F .

Proof. Let p1, p2 ∈ T , x1, x2 ∈ F , and π : (T , dτ ) → (Yτ , d∞) be the constructed equivariant
metric PL-map. For i = 1, 2, set pi,0 ..= pi and pi,m+1

..= φm(xi) · pi,m for m ≥ 0. Recall
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that T and Tφm are the same pretrees but with different actions; thus, in Tφm, we have
pi,m = φ−1(xi) · · ·φ−m(xi) ·pi for m ≥ 0. As π : (T, dτ ) → (Yτ , d∞) is an equivariant metric
PL-map, so is the composition

πm : (Tφm, λ−mdτ )
π−→ (Yτφ

m, λ−md∞)
h̃−m

−→ (Yτ , d∞).

The point pi in (T, dτ ) projects (via π) to π(pi) in (Yτ , d∞); the point pi,m in (Tφm, λ−mdτ )
projects (via πm) to

πm(pi,m) ..= h̃−m(π(pi,m))

= φ−1(xi) · · ·φ−m(xi) · h̃−m(π(pi)) ( pi,m, pi ∈ Tφm )

= (x−1
i · h̃)−m(π(pi)) ( pi ∈ T )

in (Yτ , d∞) form ≥ 1 — in the last line, x−1
i ·h̃ is a λ-homothety (Yτ , d∞) → (Yτ , d∞). Since

(x−1
i · h̃)−1 is contracting, the point πm(pi,m) converges (as m → ∞) to the unique fixed

point ⋆i of (x
−1
i · h̃)−1 (and x−1

i · h̃) in the metric completion (Y τ , d∞) by the contraction
mapping theorem; note that x−1

1 x2 · ⋆1 = ⋆1 if and only if ⋆1 = ⋆2. Thus the πm-projection
of the point pi,m in (Tφm, λ−mdτ ) converges (as m→ ∞) to ⋆i in (Y τ , d∞); in particular,

lim
m→∞

λ−md∞(π(p1,m), π(p2,m)) = lim
m→∞

d∞(πm(p1,m), πm(p2,m)) = d∞(⋆1, ⋆2).

Let τ̃ : T → T be the φ-equivariant translate of a component of τk. The interval
[p1,m, p2,m] ⊂ T , the mth term in (p1, p2 : x1, x2;φ)T , is covered by these 2m+ 1 intervals:

φm−1(x1) · · ·φ(x1) · [x1 · p1, τ̃(p1)], . . . , φm−1(x1) · [τ̃m−2(x1 · p1), τ̃m−1(p1)],

[τ̃m−1(x1 · p1), τ̃m(p1)], [τ̃
m(p1), τ̃

m(p2)], [τ̃
m(p2), τ̃

m−1(x2 · p2)],
φm−1(x2) · [τ̃m−1(p2), τ̃

m−2(x2 · p2)], . . . , φm−1(x2) · · ·φ(x2) · [τ̃(p2), x2 · p2].

Set D ..= max{dτ (xi · pi, τ̃(pi) : i = 1, 2} and D′ ..= D
λ−1 .

Recall that lim
m′→∞

λ−m′
dτ (τ̃

m′
(p1,m), τ̃m

′
(p2,m)) = d∞(π(p1,m), π(p2,m)). For m′ ≥ 0,

we get a similar covering of [p1,m+m′ , p2,m+m′ ] by 2m′ + 1 intervals with the “middle”
[τ̃m

′
(p1,m), τ̃m

′
(p2,m)]. Since τ̃ is λ-Lipschitz with respect to dτ , the sum of the dτ -lengths

of all intervals but the middle in this covering is ≤ λm
′
2D′. By the triangle inequality,

λ−(m+m′)
∣∣∣dτ (p1,m+m′ , p2,m+m′)− dτ (τ̃

m′
(p1,m), τ̃m

′
(p2,m))

∣∣∣ ≤ λ−m2D′.

Fix ϵ > 0; then λ−m2D′ < ϵ and |λ−md∞(π(p1,m), π(p2,m))− d∞(⋆1, ⋆2)| < ϵ for some
m≫ 1.
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Similarly,

λ−m
∣∣∣λ−m′

dτ (τ̃
m′
(p1,m), τ̃m

′
(p2,m))− d∞(π(p1,m), π(p2,m))

∣∣∣ < ϵ

and
∣∣∣λ−(m+m′)dτ (p1,m+m′ , p2,m+m′)− d∞(⋆1, ⋆2)

∣∣∣ < 3ϵ for m′ ≫ 1,

i.e. lim
m→∞

λ−mdτ (p1,m, p2,m) = d∞(⋆1, ⋆2).

Let N(u, v) be the number of vertices in an interval (u, v) ⊂ T ; set N to be the
maximum of N(p1, p2), N(x1 · p1, τ̃(p1)), and N(τ̃(p2), x2 · p2). As τ̃ is a train track, the
interval [p1,m, p2,m] is covered by (2m+ 1)(N + 1) leaf segments.

Suppose ⋆1 = ⋆2. We claim that any leaf segment (of L+[τ ]) in [p1,m, p2,m] has uniformly
(in m ≥ 0) bounded dτ -length — this implies [p1,m, p2,m] has dτ -length ≤ (2m+1)(N+1)B
for some bounding constant B ≥ 1. We mimic Case 2 from the proof of Proposition II.2.
For the contrapositive, suppose some term [p1,m, p2,m] has a leaf segment with dτ -length
L > 2(C[π]+D′). By the train track property, bounded cancellation, and interval covering,
[p1,m+m′ , p2,m+m′ ] has a leaf segment with dτ -length ≥ λm

′
(L − 2C[π] − 2D′) for m′ ≥ 0;

in (Tφm+m′
, λ−(m+m′)dτ ), [p1,m+m′ , p2,m+m′ ] has length ≥ λ−m(L − 2C[π] − 2D′). In the

limit (as m′ → ∞), d∞(⋆1, ⋆2) ≥ λ−m(L− 2C[π]− 2D′) > 0.
Suppose ⋆1 ̸= ⋆2. Set L ..= 1

2d∞(⋆1, ⋆2) > 0; then λ−mdτ (p1,m, p2,m) > L for some
m ≫ 1. By the pigeonhole principle, the interval [p1,m, p2,m] has a leaf segment with
dτ -length

λmL
(2m+1)(N+1) , which can be arbitrarily large (in m).

II.2.4 Nested iterated turns

The first part of the previous subsection explains how a line in (Yτ , d∞) determines algebraic
iterated turns over G[Yτ ]. We now give a similar discussion for an iterated turn over T ′.

Recall how f, T, T ′, Yτ , F, τ̃ , h̃, and φ were chosen and λ was redefined in the previous
subsection. Pick points p′1, p

′
2 ∈ T ′ and elements x1, x2 ∈ F . Set T ′

m
..= T ′φm, Tm ..= Tφm,

p′i,0
..= p′i, p

′
i,m

..= φ−1(xi) · · ·φ−m(xi) · p′i in T ′
m, and pi,m = f(p′i,m) for m ≥ 1 and

i = 1, 2. By Proposition II.4, the point pi,m in (Tm, λ
−mdτ ) converges (as m → ∞) to ⋆i,

the unique fixed point of x−1
i · h̃ in the metric completion (Y τ , d∞). The λ-homothety

hi ..= x−1
i · h̃ is φi-equivariant for some automorphism φi : F → F in the outer class [φ].

Set G1
..= StabF (⋆1).

Case–a: s ..= x−1
1 x2 ∈ G1. Suppose G1 is not trivial, and let ai,m be the closest point

projection of p′i,m to T ′(φm(G1)) for m ≥ 0. As h̃(⋆1) = x1 · ⋆1 and h̃ is φ-equivariant, we

get T ′(φm+1(G1)) = φm(x1) · T ′(φm(G1)), a1,m+1 = φm(x1) · a1,m, and

a2,m+1 = φm(x1)φ
m(s) · a2,m

= φm(x1) · · ·φ(x1)x1φm
1 (s) · · ·φm

1 (s)s · a2,0 for m ≥ 0.

Thus the closest point projection to T ′(φm(G1)) of the m
th term of the given iterated turn

(p′1, p
′
2 : x1, x2;φ)T ′ is a translate of the mth term in (a1,0, a2,0 : ϵ, s; φ1|G1

)T ′(G1), where
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m ≥ 0 and ϵ is the trivial element. Hence we have an algebraic iterated turn (ϵ, s; φ1|G1
)G1

that is well-defined for the algebraic iterated turn (x1, x2;φ)F .

Figure 3: The two figures illustrating certain closest point projections are the same.

Case–b: ⋆1 ̸= ⋆2. Suppose G1 is not trivial — the argument is symmetric if StabF (⋆2) is
not trivial — and let d be the direction at ⋆1 containing ⋆2. By Gaboriau–Levitt index the-
ory, hj1(d) = t · d for some t ∈ G1 and minimal j ≥ 1. For m≫ 1, πm(p2,m) = h−m

2 (π(p2))
is in the direction d since h−m

2 (π(p2)) → ⋆2 in (Y τ , d∞). For m≫ 1 and m′ ≥ 0, the inter-
val [p2,m+m′j , τ̃

m′j(p2,m)] in (Tm+m′j , λ
−m−m′jdτ ) is disjoint from Tm+m′j(G1) by bounded

cancellation (see Figure 3, top); or equivalently, the interval [p2,m+m′j , τ̃
m′j(p2,m)] in Tm is

disjoint from Tm(φm′j(G1)). In fact, the λ−mdτ -distance in Tm from [p2,m+m′j , τ̃
m′j(p2,m)]

to Tm(φm′j(G1)) can be arbitrarily large for m′ ≫ 1.
Set z0 ..= ϵ and zm′+1

..= φm′
(x1)zm′ . Let b′i,m′ (i = 1, 2) be the closest point projection

of p′i,m+m′j to T
′
m(φm′j(G1)) = zm′j ·T ′

m(G1) and set bi,m′ ..= z−1
m′j ·b

′
i,m′ in T ′

m(G1). Following

the definitions, z−1
m′j ·p

′
1,m+m′j = p′1,m in T ′

m and z−1
m′j · τ̃

m′j = τm
′j

1 in Tm, where τ1 ..= x−1
1 · τ̃ ;

in particular, b1,m′ = b1,0 for m′ ≥ 0. Since hj1(d) = t · d, bounded cancellation implies the

λ−mdτ -distance in Tm from [τ
(m′+1)j
1 (p2,m), φm′j

1 (t) · τm
′j

1 (p2,m)] to Tm(G1) is arbitrarily
large for m′ ≫ 1 (see Figure 3, bottom).

So [z−1
(m′+1)j ·p2,m+(m′+1)j , φ

m′j
1 (t)z−1

m′j ·p2,m+m′j ] is arbitrarily far from Tm(G1) by tran-
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sitivity. By bounded cancellation, [z−1
(m′+1)j · p

′
2,m+(m′+1)j , φ

m′j
1 (t)z−1

m′j · p
′
2,m+m′j ] is disjoint

from T ′
m(G1) for m

′ ≫ 1, i.e. b2,m′+1 = φm′j
1 (t) · b2,m′ for m′ ≫ 1. Thus, for some M ′ ≫ 1,

the sequence [b1,M ′+m′ , b2,M ′+m′ ]m′≥0 is an iterated turn over T ′
m(G1) rel. φj

1|G1 , denoted

(b1,M ′ , b2,M ′ : ϵ, t;φj
1|G1)T ′

m(G1). The corresponding algebraic iterated turn (ϵ, t;φj
1|G1)G1 is

well-defined for (x1, x2;φ)F .

Now suppose ◦ ∈ (⋆1, ⋆2) has a nontrivial stabilizer G◦ ..= StabF (◦). Let di (i = 1, 2) be
the direction at ◦ containing ⋆i. By index theory again, h l

1(◦) = x · ◦ and h l
1(di) = xsi · di

for some x ∈ F , si ∈ G◦, and minimal l ≥ 1. Since F acts on Yτ with trivial arc stabilizers,
the elements xs1, xs2 are unique and s−1

1 s2 ∈ G◦ is independent of the chosen x ∈ F .
For m ≫ 1, πm(pi,m) is in the direction di since πm(pi,m) → ⋆i. A variation of the
bounded cancellation argument used in the preceding paragraphs proves the following. For
m,m′ ≫ 1, the interval [pi,m+m′l, τ̃

m′l(pi,m)] in (Tm, λ
−mdτ ) is far from Tm(φm′l(G◦)).

Set y0 ..= ϵ, ym′+1
..= φm′

◦ (x)ym′ , τ◦ ..= x−1 · τ l
1 , and h◦

..= x−1 · h l
1 to be φ◦-equivariant

maps for an automorphism φ◦ : F → F in the outer class [φj
1]. Let c

′
i,m′ ∈ T ′

m(φm′l(G◦)) be

the closest point projection of p′i,m+m′l and set c′′i,m′
..= z−1

m′l · c
′
i,m′ ∈ T ′

m(φm′l
1 (G◦)). Then

ci,m′ ..= y−1
m′ · c′′i,m′ ∈ T ′

m(G◦) is the closest point projection of y−1
m′ z

−1
m′l · p

′
i,m+m′l. Since

h◦(di) = si · di, the interval [τm
′+1

◦ (pi,m), φm′
◦ (si) · τm

′
◦ (pi,m)] is arbitrarily far from Tm(G◦)

for m′ ≫ 1. By transitivity, [y−1
m′+1z

−1
(m′+1)l · pi,m+(m′+1)l, φ

m′
◦ (si)y

−1
m′ z

−1
m′ · pi,m+m′l] is arbi-

trarily far from Tm(G◦). As before, [y−1
m′+1z

−1
(m′+1)l · p

′
i,m+(m′+1)l, φ

m′
◦ (si)y

−1
m′ z

−1
m′ · p′i,m+m′l]

is disjoint from T ′
m(G◦) for m′ ≫ 1, i.e. ci,m′+1 = φm′

◦ (si) · ci,m′ for m′ ≫ 1. Thus, for
some M ′′ ≫ 1, the sequence [c1,M ′′+m′ , c2,M ′′+m′ ]m′≥0 is an iterated turn over T ′

m(G◦)
rel. φ◦|G◦

: (c1,M ′′ , c2,M ′′ : s1, s2; φ◦|G◦
)T ′

m(G◦). It is a “translate” of the normalized iter-

ated turn: (c1,M ′′ , c2,M ′′ : ϵ, s−1
1 s2; φ◦|G◦

)T ′
m(G◦). The corresponding algebraic iterated turn

(ϵ, s−1
1 s2; φ◦|G◦

)G◦ is well-defined for (x1, x2;φ)F and ◦ ∈ (⋆1, ⋆2).

II.3 Coordinate-free laminations

We have only defined the stable laminations for an expanding irreducible train track [τ ]
representing [ψ]. The free splitting T of F can be seen as a coordinate system, and we need
a coordinate-free definition of stable laminations that applies to all outer automorphisms.

Fix a proper free factor system Z of F and consider the set scv(F ,Z) of all free
splittings T ′ of F with F [T ′] = Z, i.e. an element of F is T ′-elliptic if and only if it
is conjugate to an element of Z; this set with some natural partial order is the spine
of relative outer space [7]. For any pair of free splittings T1, T2 ∈ scv(F ,Z), there are
changes of coordinates, equivariant PL-maps T1 ⇄ T2. We saw in the discussion following
Claim I.5 that a change of coordinates f : T1 → T2 induces a canonical homeomorphism
f∗ : R(T1) → R(T2) on the space of lines. Denote the canonical homeomorphism class of
R(T1) ∼= R(T2) by R(F ,Z). If Z is the trivial free factor system of F , then we denoted the
canonical homeomorphism class by R(F) instead.
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Fix an automorphism ψ : F → F and a [ψ]-invariant proper free factor system Z. Let
ψ∗ : R(F ,Z) → R(F ,Z) be the canonical induced homeomorphism on the space of lines:
f∗ ◦ g1∗ = g2∗ ◦ f∗ for any T1, T2 ∈ scv(F ,Z), equivariant PL-map f : T1 → T2, and ψ-
equivariant PL-maps gi : Ti → Ti (i = 1, 2). A line [l] ∈ R(F ,Z) weakly ψ∗-limits to a
lamination Λ ⊂ R(F ,Z) if the sequence (ψn

∗ [l])n≥0 weakly limits to Λ.
A coordinate-free definition of stable laminations boils down to characterizing the lines

of a stable T -lamination for [τ ] in a way that is independent of coordinates. For the rest
of the section, assume there is an equivariant PL-map (T , d) → (Y, δ) and consider the
canonical embedding R(Y, δ) ⊂ R(T ). Note that a lamination Λ ⊂ R(Y, δ) is contained in
a canonical lamination L ⊂ R(T ): set L to be the closure of Λ in R(T ).

Claim (cf. [2, Lemma 1.9(2)]). A line is quasiperiodic in R(Y, δ) if it is quasiperiodic
in R(T ). (exercise)

So quasiperiodicity is a well-defined property for a line in R(F ,Z); moreover, the induced
homeomorphism ψ∗ : R(F ,Z) → R(F ,Z) preserves quasiperiodicity for any automorphism
ψ : F → F that preserves Z (up to conjugacy).

Suppose there is an expanding irreducible train track τ : T → T for ψ with F [T ] = Z.
Recall that the eigenlines of [τk] (for some k ≥ 1) are constructed by iterating an expanding
edge; more precisely, an eigenline [l] of [τk] is the union

⋃
n≥1 τ

kn(F ·e) for some edge e ⊂ l.

The leaf segments τkn(e) determine a neighbourhood basis for [l] in the space of lines.
For a line [l] ∈ R(F ,Z), a subset U ⊂ R(F ,Z) is a ψk

∗ -attracting neighbourhood of [l]
if ψk

∗ (U) ⊂ U and {ψkn
∗ (U) : n ≥ 1} is a neighbourhood basis for [l] in the space of

lines. A stable lamination for [ψ] rel. Z is the closure of a quasiperiodic line in R(F ,Z)
with a ψk

∗ -attracting neighbourhood for some k ≥ 1. Note that the homeomorphism
ψ∗ : R(F ,Z) → R(F ,Z) permutes the stable laminations for [ψ] rel. Z and, by Lemma II.1,
each stable T -lamination for [τ ] is identified with some stable lamination for [ψ] rel. Z.
Let L+

Z [ψ] be the union of stable laminations for [ψ] rel. Z.

Lemma II.5 (cf. [2, Lemma 1.12]). Let ψ : F → F be an automorphism, τ : T → T an
expanding irreducible train track for ψ, and Z ..= F [T ]. The stable laminations L+[τ ]
for [τ ] are identified with the stable laminations L+

Z [ψ] for [ψ] rel. Z.

So L+
Z [ψ] is a lamination system whose finitely many components are the stable laminations

for [ψ] rel. Z, and these are transitively permuted by ψ∗ : R(F ,Z) → R(F ,Z).

Sketch of proof. Suppose a quasiperiodic line [l] in T has a τk∗ -attracting neighbourhood U
for some k ≥ 1. This forces any T -loxodromic conjugacy class [x] with axis in U to have
a translation distance that (eventually) grows under forward [ψk]-iteration. In particular,
the conjugacy class [x] is Yτ -loxodromic, and the line [l], a weak ψk

∗ -limit of the T -axis
for [x], is a leaf in L+[τ ] by Proposition II.2.

The stable laminations L+
Z [ψ] are in the subspace R(Yτ , d∞) ⊂ R(F ,Z).

29



II.4 Constructing limit forests (2)

This chapter has thus far focused on automorphims with expanding irreducible train tracks.
For the rest of the chapter, we extend our focus to all automorphisms.

Fix an automorphism ψ : F → F , set F1
..= F , ψ1

..= ψ, and let Z be a [ψ1]-invariant
proper free factor system. By Theorem I.1, there is an irreducible train track τ1 : T1 → T1
for ψ1. By ψ1-equivariance of τ1, the nontrivial vertex stabilizers of T1 determine a [ψ1]-
invariant proper free factor system F2

..= F [T1]. The restriction of ψ1 to F2 determines a
unique outer class of automorphisms ψ2 : F2 → F2. We can repeatedly apply Theorem I.1
to ψi+1 (i ≥ 1) as long as λ[τi] = 1 and Fi+1

..= F [Ti] contains a noncyclic component.
Bass-Serre theory implies this process must stop; we end up with a maximal sequence
(τi)

n
i=1 of irreducible train tracks with λ[τi] = 1 for 1 ≤ i < n — such a maximal sequence

is called a descending sequence of irreducible train tracks for [ψ] rel. Z.
This leads to our working definition of growth type: [ψ] is polynomially growing rel. Z

if and only if λ[τn] = 1 [22, Proposition III.1]. For automorphisms that are polynomially
growing rel. Z, define the limit forest to be degenerate.

Suppose [ψ] is exponentially growing rel. Z and (τi : Ti → Ti)ni=1 is a descending se-
quence of irreducible train tracks for [ψ] rel. Z. Sections II.1–II.2 already cover the case
n = 1, so we may assume n > 1 for the rest of the chapter. Set λ ..= λ[τn] > 1, T ◦

n
..= Tn,

τ◦n
..= τn, and d◦n the eigenmetric on T ◦

n for τ◦n. For 1 ≤ i < n, we inductively form an
equivariant simplicial blow-up T ◦

i of Ti rel. T ◦
i+1: the vertices with nontrivial stabilizers

are equivariantly replaced by copies of corresponding components of T ◦
i+1 and arbitrary

vertices in T ◦
i+1 are chosen as attaching points for the edges of Ti. Let τ◦i : T ◦

i → T ◦
i be

the topological representative for ψi induced by τi and τ
◦
i+1. As τi is a simplicial automor-

phism, we can make τ◦i a λ-Lipschitz map by assigning the same large enough length to
the edges of Ti in the blow-up T ◦

i when extending the metric d◦i+1 on T ◦
i+1 to a metric d◦i

on T ◦
i . The topological representative τ◦ ..= τ◦i on T ◦ ..= T ◦

1 is an equivariant blow-up of
the descending sequence (τi)

n
i=1. Set d

◦ ..= d◦1 and identify (T ◦
i , d

◦
i ) with the characteristic

subforest of (T ◦, d◦) for Fi. We will abuse terminology and refer to d◦ as the eigenmetric as
well. Translates of edges in T ◦ coming from Ti form the ith stratum of T ◦: the nth stratum
is exponential while the rest are (relatively) polynomial.

As in Section II.1, the maps τ◦m : (T ◦, d◦) → (T ◦ψm, λ−md◦) converge (as m→ ∞) to
an equivariant metric surjection π◦ : (T ◦, d◦) → (Y, δ). The map τ◦ induces a ψ-equivariant
λ-homothety h : (Y, δ) → (Y, δ) and π◦ semiconjugates τ◦ to h. By restricting to T ◦

i ,
we have also constructed an equivariant metric surjection π◦i : (T ◦

i , d
◦) → (Yi, δ) and ψi-

equivariant λ-homothety hi on (Yi, δ) for 2 ≤ i ≤ n.
The Fn-forest (Yn, δ) is the limit forest for [τ◦n]; so it is a nondegenerate minimal Fn-

forest with trivial arc stabilizers. For induction, assume (Yi, δ) is a nondegenerate minimal
Fi-forest with trivial arc stabilizers for 2 ≤ i ≤ n. Equivariantly collapse T ◦

2 in (T ◦, d◦) to
get the F-forest (T1, d1). Form ≥ 0, the metric free splitting (T ◦ψm, λ−md◦) is an equivari-
ant metric blow-up of (T1ψm, λ−md1) rel. (T ◦

2 ψ
m
2 , λ

−md◦). Since τ1 : (T1, d1) → (T1ψ, d1) is
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an equivariant isometry, the limit (Y, δ) is equivariantly isometric to an equivariant metric
blow-up of (T1, d1) rel. (Y2, δ) whose top stratum (edges coming from T1) have then been
equivariantly collapsed, also known as a graph of actions (with degenerate skeleton) —more
details are given in the next subsection. Thus (Y, δ) is a nondegenerate minimal F-forest
with trivial arc stabilizers. See [22, Theorem IV.1] for a direct construction of (Y, δ) as a
graph of actions. This sketches the general case of Proposition I.2. The F-forest (Y, δ) is
the limit forest for [τi]

n
i=1.

II.4.1 Decomposing limit forests

We now give a hierarchical decomposition of the limit forest (Y, δ) and its space of lines.
Choose an iterate [τk

′
1 ] that fixes all F-orbits of branches in T1. Pick an edge e in T1

and one of its endpoints p. Replace ψk′ with an automorphism in its outer class [ψk′ ] if
necessary and assume τk

′
1 fixes p and e. Identify (T ◦ψmk′ , λ−mk′d◦) with an equivariant

metric blow-up of (T1, λ−mk′d1) rel. (T ◦
2 ψ

mk′
2 , λ−mk′d◦) for m ≥ 0, then let pm ∈ T ◦

2 ψ
mk′
2

be the attaching point of e to T ◦
2 ψ

mk′
2 corresponding to the endpoint p. Since τk

′
1 fixes e

and p, we get pm = p0 for m ≥ 1. As in the first part of the proof for Proposition II.4, the
sequence (pm)m≥0 converges to the unique fixed point ⋆ of hk

′
2 in the metric completion

(Y2, δ). So, in the description of (Y, δ) as a graph of actions, the edge e is collapsed and
identified with ⋆. Thus the closure Ŷ2 of Y2 in (Y, δ) is the union of Y2 with the F2-orbits
of attaching points ⋆ as the pair (e, p) ranges over the F-orbit representatives e of edges
and their endpoints p. For the same reasons, we inductively get a similar description of
the closure Ŷi+1 of Yi+1 in (Yi, δ) for 2 ≤ i < n.

Remark. Constructing (Y, δ) directly by iterating τ◦ allows us to lift metric properties
of (Y, δ) to dynamical properties of τ◦ through the semiconjugacy π◦ ◦ τ◦ = h ◦ π◦; this
viewpoint is used in the Section II.5. On the other hand, constructing (Y, δ) directly as
we did in [22, Theorem IV.1] (and sketched in this subsection) gives us a nice structural
description of intervals in the limit forest. This is explained in the next subsection and will
be a key component of Chapter III!

For 1 < i ≤ n, any two translates of T ◦
i ⊂ T ◦ by elements of F either coincide

or are disjoint by construction. This induces a canonical closed embedding of R(Fi,Z)
into R(F ,Z) (exercise). Similarly, any two intersecting translates of Yi ⊂ Y by elements
of F either coincide or have degenerate intersection. This also induces a canonical closed
embedding R(Yi, δ) ⊂ R(Y, δ). Finally, the constructed equivariant metric map π◦ induces
a canonical embedding of the topological pair (R(Y, δ),R(Yi, δ)) into (R(F ,Z),R(Fi,Z)).

II.4.2 Intervals in limit forests

Here is an inductive description of intervals in the limit forest (Y, δ) in terms of the limit
forest for [τ◦n]. For 1 ≤ i ≤ n, the characteristic subforest (Yi, δ) of (Y, δ) for Fi is the limit
forest for [τj ]

n
j=i. For 1 < i ≤ n, let Ŷi be the closure of Yi in (Yi−1, δ).
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It follows from the blow-up (and collapse) description of Yi−1 that its closed intervals
are finite concatenations of closed intervals in translates of Ŷi. As shown in the previous
subsection, the Fi-orbits [p] of points in Ŷi \ Yi are fixed by the extension of hk

′
i to Ŷi

for some k′ ≥ 1. As p /∈ Yi, it has exactly one direction dp in Ŷi. This direction’s Fi-
orbit [dp] is also fixed (setwise) by the expanding homothety hk

′
i , and dp determines a

singular eigenray ρp ⊂ Ŷi of [hk
′

i ] based at p. For any point q ∈ Yi, the closed interval

[p, q] ⊂ Ŷi is a concatenation of an initial segment of the singular eigenray ρp and a closed
interval in Yi; therefore, closed intervals in Yi−1 are finite concatenations of translates of
closed intervals in Yi and initial segments of singular eigenrays of [hk

′
i ] for some k′ ≥ 1.

Let L+
Z [ψn] = L+[τn] be the k-component stable laminations for [τ◦n] = [τn] and ⊕k

j=1δj
the factored Fn-invariant convex metric on Yn indexed by components Λ+

j ⊂ L+
Z [ψn]. By

the inductive description of intervals in Y and the fact hkn is a λk-homothety with respect to
each factor δj , we get: δj equivariantly extends to Y; δ = ⊕k

j=1δj is a factored F-invariant

convex metric on Y; and hk is a λk-homothety with respect to each factor δj .

The lamination L+
Z [ψn] ⊂ R(Yn, δ) can be seen as a (Y, δ)-lamination since R(Yn, δ)

is a closed subspace of R(Y, δ). Note that closed edges of Tn = T ◦
n are leaf segments

(of L+
Z [ψn]); thus any closed interval in T ◦

n is a finite concatenation of leaf segments. As
the equivariant PL-map π◦n : (T ◦

n , d
◦) → (Yn, δ) is surjective and isometric on leaf segments,

we get:

Lemma II.6. Let τn : Tn → Tn be an expanding irreducible train track and (Yn, δ) its limit
forest. Any closed interval in Yn is a finite concatenation of leaf segments of L+[τn].

This lemma no longer holds when n ≥ 2 and we consider closed intervals in Ŷn. To
account for this, let nth level leaf blocks in Y be leaf segments. By the lemma, any interval
of Yn is a finite concatenation of nth level leaf blocks.

Inductively define the (i− 1)st level leaf blocks in Y (1 < i ≤ n) to be the ith level leaf

blocks or (translates of) closed intervals in singular eigenrays ρ ⊂ Ŷi of [hi]-iterates. By
the earlier description of intervals and induction hypothesis, any interval of Yi−1 is a finite
concatenation of (i− 1)st level leaf blocks. The 1st level leaf blocks are simply leaf blocks
of L+

Z [ψn]. Altogether, we have a generalization of Lemma II.6 in terms of leaf blocks:

Lemma II.7. Let (τi : Ti → Ti)ni=1 be a descending sequence of irreducible train tracks for
an automorphism ψ : F → F and (Y, δ) the corresponding limit forest. Any closed interval
in Y is a finite concatenation of leaf blocks of L+

Z [ψn], where Z ..= F [Tn].

II.5 Stable laminations (2)

Fix an automorphism ψ : F → F with an invariant proper free factor system Z ′. Let
(τi : Ti → Ti)ni=1 be a descending sequence of irreducible train tracks rel. Z ′ with λ[τn] > 1,
(Y, δ) be the limit forest for [τi]

n
i=1, T ◦ an equivariant blow-up of free splittings (Ti)ni=1 with
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eigenmetric d◦, and Z ..= F [T ◦]. The characteristic convex subsets of T ◦ for Fn
..= F [Tn−1]

are identified with the free splitting Tn.

Claim II.8. The stable laminations L+
Z [ψn] for [ψn] in R(Fn,Z) are identified with the

stable laminations L+
Z [ψ] for [ψ] in R(F ,Z).

Note that L+
Z [ψ] = L+

Z [ψn] is in the subspace R(Yn, δ) ⊂ R(Y, δ) ⊂ R(F ,Z).

Sketch of proof. Since λ[τi] = 1 for i < n, no quasiperiodic line in R(F ,Fn) has a ψk
∗ -

attracting neighbourhood for any k ≥ 1. Thus any stable lamination for [ψ] in R(F ,Z) is
contained in R(Fn,Z) and corresponds to a stable lamination for [ψn].

We generalize Proposition II.4 by characterizing limits of iterated turns over T ◦:

Theorem II.9. Let ψ : F → F be an automorphism with an invariant proper free fac-
tor system Z ′, (τi : Ti → Ti)ni=1 a descending sequence of irreducible train tracks rel. Z ′

with λ[τn] > 1, (Y, δ) the limit forest for [τi]
n
i=1, and T ◦ an equivariant blow-up of free

splittings (Ti)ni=1 with eigenmetric d◦. Choose a nondegenerate component T ◦ ⊂ T ◦, cor-
responding components F ⊂ F , Y ⊂ Y, and a positive iterate ψk that preserves F . Let
h̃ : (Y, δ) → (Y, δ) be the φ-equivariant λ-homothety, where φ is in the outer class [ψk

∣∣
F
]

and λ ..= (λ[τn])
k. Finally, for ι = 1, 2, pick pι ∈ T ◦ and xι ∈ F .

The point pι,m ..= φ−1(xι) · · ·φ−m(xι) · pι in (T ◦φm, λ−md◦) converges to ⋆ι in (Y , δ)
as m→ ∞, where ⋆ι is the unique fixed point of x−1

ι · h̃ in the metric completion (Y , δ).
If x−1

1 x2 fixes ⋆1, then ⋆1 = ⋆2 and the term [p1,m, p2,m] (m ≥ 0) of the iterated turn
(p1, p2 : x1, x2;φ)T ◦ has d◦-length ≤ α(m) for some (degree n) polynomial α. Otherwise,
⋆1 ̸= ⋆2 and the iterated turn weakly limits to a component of L+

Z [ψ], where Z ..= F [T ◦].

An iterated turn [p1,m, p2,m]m≥0 weakly limits to a component Λ+ ⊂ L+
Z [ψ] if the term

[p1,m, p2,m] contains a leaf segment of Λ+ with arbitrarily large d◦-length as m→ ∞.

Sketch of proof. Let τ̃◦ : (T ◦, d◦) → (T ◦, d◦) be the φ-equivariant λ-Lipschitz topological
representative induced by the irreducible train tracks (τi)

n
i=1 and π◦ : (T ◦, d◦) → (Y, δ) the

equivariant metric map constructed using τ̃◦-iteration. Even though π◦ may fail to be a
PL-map, it still has a cancellation constant C[π◦] ≥ 0 as a limit of equivariant metric maps
with uniformly bounded cancellation constants. The proof of the first part is the same as
in Proposition II.4 using π◦, τ̃◦, and the φ-equivariant λ-homothety h̃.

The interval [p1,m, p2,m] ⊂ T ◦, a term in the sequence (p1, p2 : x1, x2;φ)T ◦ , is covered
by certain 2m+1 intervals as in the proof of Proposition II.4. Since τ̃◦ is induced by a de-
scending sequence (τi)

n
i=1 of irreducible train tracks, the intervals [τ̃◦(l−1)(x1 · p1), τ̃◦l(p1)],

[τ◦l(p1), τ̃
◦l(p2)], and [τ̃◦l(p2), τ̃

◦(l−1)(x2 · p2)] are covered by α(l) polynomial strata edges
and leaf segments (of L+

Z [ψ]) for some degree (n − 1) polynomial α. So the interval
[p1,m, p2,m] is covered by α(m) +

∑m
l=1 2α(l) polynomial strata edges and leaf segments

(of L+
Z [ψ]). Note that α(m) +

∑m
l=1 2α(l) ≤ β(m) for some degree n polynomial β.
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Assume ⋆1 = ⋆2, where ⋆ι is the unique fixed point of h̃ι ..= x−1
ι · h̃ in metric completion

(Y , δ) for ι = 1, 2. The proof given in Proposition II.4 implies there is a uniform bound on
the d◦-length of leaf segments in [p1,m, p2,m]. Consequently, the d◦-length of [p1,m, p2,m] is
≤ β(m)B for some constant B ≥ 1.

Assume ⋆1 ̸= ⋆2. Set L ..= 1
2δ(⋆1, ⋆2) > 0; then δ(h̃−m

1 (π◦(p1)), h̃
−m
2 (π◦(p2))) > L and

d◦(p1,m, p2,m) > λmL for m ≫ 1. The contribution of polynomial strata to the d◦-length
of [p1,m, p2,m] is at most β(m)B′ for some constant B′ ≥ 1; the exponential stratum edges
intersecting the interval are covered by β(m) leaf segments. By the pigeonhole principle,
the interval [p1,m, p2,m], a term in the iterated turn (p1, p2 : x1, x2;φ)T ◦ , has a leaf segment

of d◦-length ≥ λmL−β(m)B′

β(m) ≫ 1. Quasiperiodicity implies the iterated turn weakly limits

to a component of L+
Z [ψ].

Remark. The argument given in Subsection II.2.4 applies in this general context involving
a descending sequence of irreducible train tracks; it describes how an iterated turn over F
determines (nested) iterated turns over G[Y].

As in Proposition II.2, we can characterize the elements in F that are Y-loxodromic:

Theorem II.10. Let ψ : F → F be an automorphism with an invariant proper free fac-
tor system Z ′, (τi : Ti → Ti)ni=1 a descending sequence of irreducible train tracks rel. Z ′

with λ ..= λ[τn] > 1, (Y, δ) the limit forest for [τi]
n
i=1, T ◦ an equivariant blow-up of free

splittings (Ti)ni=1, and Z ..= F [T ◦].
If x ∈ F is a T ◦-loxodromic element, then the following statements are equivalent:

1. the element x is Y-loxodromic;

2. the element x [ψ]-grows exponentially rel. Z with rate λ; and

3. the axis for the conjugacy class [x] in R(F ,Z) weakly ψ∗-limits to L+
Z [ψ].

The restriction of ψ to the [ψ]-invariant subgroup system G[Y] of Y-point stabilizers is
polynomially growing rel. Z with degree < n.

Sketch of proof. Set λ ..= λ[τn], F1
..= F , and Fi+1

..= F [Ti] for 1 ≤ i < n. Under
the canonical embedding R(Fi,Z) ⊂ R(F ,Z), we identify the stable laminations L+

Z [ψ]
and L+

Z [ψi]. Let T ◦ be an equivariant blow-up of free splittings (Ti)ni=1 and T ◦
i ⊂ T ◦

the characteristic convex subsets for Fi. Suppose x ∈ F1 is a T ◦-loxodromic element.
The equivalence between Conditions 1–3 is given by Proposition II.2 if x is conjugate to an
element of Fn. Assume n ≥ 2 and, up to conjugacy, x ∈ Fi is Ti-loxodromic for some i < n.

Recall that τ◦ : (T ◦, d◦) → (T ◦, d◦) is a ψ-equivariant λ-Lipschitz topological repre-
sentative induced by the irreducible train tracks (τi)

n
i=1 and π◦ : (T ◦, d◦) → (Y, δ) is the

constructed equivariant metric map. In particular, lim sup
m→∞

1
m log ∥ψm(x)∥d◦ ≤ log λ.

Suppose [τk
′

i ] (for some k′ ≥ 1) fixes all Fi-orbits of vertices and edges in Ti. Let
l◦ ⊂ T ◦

i be the axis for x ∈ Fi. The axis l◦ projects to the axis l of x in Ti; write l
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as a biinfinite concatenation of edges · · · e−1 · e0 · e1 · · · and identify ej ⊂ Ti with its lift
to T ◦

i . For m ≥ 0 and any integer j, let wj,m be the closed interval in T ◦
i between (lifts

of) τmi (ej) and τ
m
i (ej+1); in fact, wj,m is in a component of Fi · T ◦

i+1 ⊂ T ◦
i . Since [τ

k′
i ] fixes

the Fi-orbits [e], [e′] and the vertex of Ti between them, the sequence (wj,mk′+r)m≥0, up
to translation, is an iterated turn over T ◦

i+1 rel. ψk′
i+1 for 0 ≤ r < k′; by Theorem II.9, the

iterated turn limits to an interval w∗
j,r in a translate of a component of Ŷi+1 ⊂ Yi.

The intervals wj,m, wj+1,m are always in distinct components of Fi · T ◦
i+1; therefore, the

limit intervals w∗
j,r, w

∗
j+1,r have degenerate intersection. By the equivariance of the limits,

the union l∗ ..=
⋃

j w
∗
j,0 is an x-invariant arc. If some limit interval w∗

j,0 is not degenerate,
then x is Yi-loxodromic and l∗ is its Yi-axis; otherwise, l∗ is degenerate and x is Yi-elliptic.

Case 1: x is Yi-loxodromic, i.e. some limit interval w∗
j,0 is not degenerate. By Theorem II.9,

the iterated turn (wj,mk′)m≥0 over T ◦
i+1 rel. ψ

k′
i+1 weakly limits to a component of L+

Z [ψi+1].

So [l◦] ∈ R(F ,Z) weakly ψk′
∗ -limits to a component of L+

Z [ψ]. Finally, [l
◦] weakly ψ∗-limits

to L+
Z [ψ] since ψ∗ acts transitively on the components of L+

Z [ψ]. As π◦ is an equivariant
metric map, ∥ · ∥δ ≤ ∥ · ∥d◦ and log λ ≤ lim inf

m→∞
1
m log ∥ψm(x)∥d◦ .

Case 2: x is Yi-elliptic, i.e. each limit interval w∗
j,0 is degenerate. By Theorem II.9, the

interval wj,mk has d◦-length is bounded above by some degree (n − i) polynomial (in m).
Thus ∥ψmk(x)∥d◦ is bounded above by a degree (n − i) polynomial. By ψ-equivariance
of the homothety hi, the elements ψ(x), . . . , ψk−1(x) are Yi-elliptic as well. The same
argument implies ∥ψm(x)∥d◦ is bounded above by a degree (n− i) polynomial.

We conclude the chapter by stating the extension of Lemma IV.3 to all limit forests:

Lemma IV.5. Let ψ : F → F be an automorphism, Z ′ a [ψ]-invariant proper free factor
system, (τi : Ti → Ti)ni=1 a descending sequence of irreducible train tracks for [ψ] rel. Z ′ with
λ ..= λ[τn] > 1, (Y, δ) the limit forest for [τi]

n
i=1, (Y ′, δ′) a minimal F-forest with trivial arc

stabilizers, and Z ..= F [Tn].
If Z is Y ′-elliptic and the k-component lamination L+

Z [ψ] is in R(Y ′, δ′) ⊂ R(F ,Z),
then the limit of (Y ′ψmk, λ−mkδ′)m≥0 is (Y,⊕k

j=1cj δj), where δ = ⊕k
j=1 δj and cj > 0.

Again, we postpone the proof to Section IV.2. If (τ ′i)
n′
i=1 is another descending sequence

for [ψ] with F [T ′
n′ ] = Z, then its limit forest (Y ′, δ′) is equivariantly homothetic to (Y, δ);

therefore, (Y, δ) is the limit forest for [ψ] rel. Z (up to rescaling of δ). A nondegenerate
minimal very small F-forest (Y ′, δ′) is an expanding forest for [ψ] rel. Z if:

1. the F-forest (Y ′ψ, δ′) is equivariantly isometric to (Y ′, sδ′) for some s > 1; and

2. the free factor system Z is Y ′-elliptic.

Corollary II.11. Let ψ : F → F be an automorphism and (τi : Ti → Ti)ni=1 a descending
sequence of irreducible train tracks for [ψ] with λ[τn] > 1. Any expanding forests for [ψ]
rel. F [Tn] is the limit forest for [ψ] rel. F [Tn].
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We will end the paper with a complete generalization of this corollary (Theorem V.3).

Sketch of proof. Let (Y ′, δ′) be an expanding forest for [ψ] rel. Z ..= F [Tn] and x ∈ F a
Y ′-loxodromic element. The proof is essentially the proof of Corollary II.3 with two main
changes. First, choosem≫ 1 so that ∥ψm(x)∥δ′ > α(m)(2C[f ]+B′) for some polynomial α
and constant B′ ≥ 1 determined by x; therefore, a fundamental domain of ψm(x) acting
on its axis has a leaf segment [q, r] with δ′(f(q), f(r)) > 2C[f ] by the pigeonhole principle.
For the second change, we need (Y ′, δ′) to have trivial arc stabilizers in order to conclude
the proof by invoking Lemma IV.5 instead of Lemma IV.3.

The minimal very small F-forest (Y ′, δ′) has finitely many orbits of branch points [11];
it decomposes as some graph of actions whose skeleton is not degenerate in the forest if
and only if the forest does not have dense orbits [18]. Any ψ-equivariant homothety must
be an isometry if the skeleton were not degenerate. Since (Y ′, δ′) admits a ψ-equivariant
expanding s-homothety, the skeleton must be degenerate and the forest has dense orbit.
Very small F-forests with dense orbits have trivial arc stabilizers [19, Lemma 4.2].

For a nondegenerate minimal F-forest (Y ′, δ′), the projective stabilizer Stab[Y ′, δ′] is
the subgroup of automorphisms φ : F → F for which ∥φ(·)∥δ′ = sφ∥ · ∥δ′ for some sφ > 0.
The function SF: Stab[Y ′, δ′] → R>0 that maps φ 7→ sφ is a homomorphism called the
stretch factor homomorphism — R>0 is considered multiplicatively.

Corollary II.12. Let SF: Stab[Y ′, δ′] → R>0 be the stretch factor homomorphism for
some nondegenerate minimal very small F-forest (Y ′, δ′). The image of SF is cyclic.

Proof. Suppose SF(ψ) > 1 for some ψ ∈ Stab[Y ′, δ′]. Then ψ is exponentially growing since
any Y ′-loxodromic element [ψ]-grows exponentialy with rate at least SF(ψ). Set F1

..= F ,
ψ1

..= ψ, and let (Y1, δ1) be the limit forest for [ψ1] rel. some [ψ1]-invariant proper free
factor system F2. If F2 is not Y ′-elliptic, then the restrictions ψ2 of ψ1 to F2 are in the
projective stabilizer of the nondegenerate characteristic subforest of (Y ′, δ′) for F2 and have
the same stretch factor SF(ψ).

By repeatedly considering limit forests and taking restrictions, we may assume some
free factor system Fn is not Y ′-elliptic while a nested proper free factor system Fn+1 is for
some n ≥ 1. Then the characteristic subforest of (Y ′, δ′) for the free factor system Fn is
an expanding forest for [ψn] rel. Fn+1. By Corollary II.11, this subforest is equivariantly
homothetic to the limit forest (Yn, δn) for [ψn] rel. Fn+1. In particular, SF(ψ) is the
exponential growth rate for [ψn] rel. Fn+1 and is bounded away from 1 by a uniform
constant that depends only on F . Thus the image of SF is discrete, and discrete subgroups
of R>0 are cyclic.
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III Main constructions

The limit forest produced by our proof of Proposition I.2 is universal for an outer auto-
morphism and some choice of an invariant proper free factor system (Corollary II.11). Our
goal is to remove the latter dependence on an invariant proper free factor system.

III.1 Assembling limit hierarchies

This section first summarizes the main result of the paper’s prequel [22]. The general
strategy follows closely the construction of limit forests sketched in Section II.4.

Fix an exponentially growing automorphism ψ : F → F and set G1
..= F , ψ1

..= ψ. By
our proof of Proposition I.2, there is a nondegenerate limit forest (Y1, δ1) for [ψ1] rel. Z1

(some proper free factor system of G1) and a unique ψ1-equivariant expanding λ1-homothety
h1 : (Y1, δ1) → (Y1, δ1). Thus Y1-loxodromic elements in F [ψ]-grow exponentially rel. Z1

with rate λ1. By Gaboriau–Levitt index theory and ψ1-equivariance of τ1, the nontrivial
point stabilizers of Y1 determine a [ψ1]-invariant malnormal subgroup system G2

..= G[Y1]
with strictly lower complexity than G1. The restriction of ψ1 to G2 determines a unique
outer class of automorphisms ψ2 : G2 → G2.

We can repeatedly apply Proposition I.2 to ψi+1 (i ≥ 1) as long as ψi+1 is exponentially
growing. This inductive invokation of Proposition I.2 eventually stops since the complexity
of Gi is a strictly decreasing (in i) positive integer. In the end, we have a maximal sequence
(Yi, δi)

n
i=1 of nondegenerate limit forests for [ψi] rel. Zi each with a unique ψi-equivariant

expanding λi-homothety hi on (Yi, di) — such a maximal sequence of limit forests is a
descending sequence of limit forests for [ψ]. By construction, an element x ∈ F has a
conjugate in Gn+1 if and only if x [ψ]-grows polynomially!

In Section II.4, the blow-ups of free splittings (Ti)ni=1 were arbitary and done inductively
upwards (i.e. started with i = n). We then used a limiting argument to produce the final
limit forest (Y, δ). For this section, the blow-ups of limit forests (Yi, δi)

n
i=1 will not be

arbitrary but will make use of the expanding homotheties (hi)
n
i=1; moreover, it will be done

inductively downwards (i.e. starts with i = 1) to produce an F-pseudoforest (T , (δi)ni=1).
Set (X (1), δ1) ..= (Y1, δ1) and g(1) ..= h1. For 1 < i ≤ n, we inductively construct

the equivariant pseudoforest blow-up (X (i), (δj)
i
j=1) of the F-pseudoforest (X (i−1), (δj)

i−1
j=1)

rel. the Gi-forest (Yi, δi) and expanding homotheties g(i−1) and hi. Here is a sketch:
Let (Y i, δi) be the metric completion and h̄i the extension to the metric completion.

For 1 ≤ j < i, assume that (Yj , δj) is equivariantly isometric to the associated Gj-forest for
the Gj-invariant convex pseudometric δj restricted to X (i−1)(Gj), the characteristic convex
subsets of X (i−1) for Gj . Since the hierarchy (δj)

i−1
j=1 has full support, (X (i−1)(Gi−1), δi−1)

is equivariantly isometric to (Yi−1, δi−1) and the nontrivial point stabilizers of X (i−1) are
conjugates in F of Gi-components. The points of X (i−1) with nontrivial stabilizers are
replaced by corresponding copies of Y i-components; this produces a unique set system X̂ (i)

with an F-action that is the equivariant set blow-up of X (i−1) rel. Y i: it comes with an
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equivariant injection ιi : Y i → X̂ (i) and an equivariant surjection κi : X̂ (i) → X (i−1) that is a
bijection on the complement X̂ (i) \F · ιi(Y i). Consequently, there is a unique ψ-equivariant
induced permutation g(i) : X̂ (i) → X̂ (i) induced by g(i−1) and h̄i — κi semiconjugates ĝ(i)

to g(i−1) while ιi conjugates h̄i to the restriction g(i)
∣∣
ιi(Yi)

.

There are plenty of equivariant interval functions [·, ·](i) on X̂ (i) compatible with X (i−1)

and Yi — compatibility means the injection ιi and surjection κi map intervals to intervals.
Some compatible F-pretrees (X̂ (i), [·, ·](i)) are real [22, Proposition IV.3] and they naturally
inherit an F-invariant hierarchy (δ̂j)

i
j=1 with full support: (δ̂j)

i−1
j=1 is the pullback κ

∗
i (δj)

i−1
j=1

and δ̂i is the pushforward ιi∗δi extended equivariantly to the orbit F · ιi(Y i); moreover, for
1 ≤ j ≤ i, (Yj , δj) is equivariantly isometric to the associated Gj-forest for the Gj-invariant

convex pseudometric δ̂j restricted to X̂ (i)(Gj).

Claim ([22, Theorem IV.4]). Since h̄i is expanding, the permutation g(i) is a pretree-

automorphism for a unique real compatible F-pretree (X̂ (i), [·, ·](i)g ).

Remark. This is the main technical result of [22]. Its proof uses Gaboriau–Levitt’s index
inequality and the contraction mapping theorem.

We now fix the interval function [·, ·](i)g but omit it for brevity. By construction, the

F-pseudoforest (X̂ (i), (δ̂j)
i
j=1) has trivial arc stabilizers and g

(i) is an expanding homothety

with respect to (δ̂j)
i
j=1. Finally, let X (i) ⊂ X̂ (i) be the characteristic convex subsets for F

and (δj)
i
j=1 the restriction of the hierarchy (δ̂j)

i
j=1 to X (i), then replace the maps ιi, κi,

and g(i) with their restrictions to X (i); so (X (i), (δj)
i
j=1) is a minimal F-pseudoforest.

At the nth iteration, we have a minimal F-pseudoforest (T , (δi)ni=1)
..= (X (n), (δi)

n
i=1)

with trivial arc stabilizers, unique for the descending sequence (Yi, δi)
n
i=1; the ψ-equivariant

pretree-automorphism h ..= g(n) on (T , (δi)ni=1) is a (λi)
n
i=1-homothety, where λi > 1 is the

scaling factor for the homothety hi; lastly, an element x ∈ F is T -elliptic if and only if x
has a conjugate in Gn+1. The real F-pretrees T are the limit pretrees for (Yi)

n
i=1 and the

F-pseudoforest (T , (δi)ni=1) is the limit pseudoforest for (Yi, δi)
n
i=1. To summarize,

Theorem III.1 (cf. [22, Theorem III.3]). Let ψ : F → F be an automorphism. Then there
is:

1. a minimal F-pseudoforest (T , (δi)ni=1) with trivial arc stabilizers;

2. a ψ-equivariant expanding homothety h : (T , (δi)ni=1) → (T , (δi)ni=1); and

3. an element x ∈ F is T -loxodromic if and only if x [ψ]-grows exponentially.

The real pretrees T are degenerate if and only if [ψ] is exponentially growing.

Without metrics, there is not much one can do to compare limit pretrees. On the
other hand, we do not expect limit pseudoforests to be well-defined (even up to homo-
thety) for a given outer automorphism — this would be equivalent to the existence of a
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canonical descending sequence of limit forests. The new idea is to pick a limit pseudofor-
est (T , (δi)ni=1) and normalize its hierarchy (δi)

n
i=1 using the attracting laminations for [ψ].

For the normalized hierarchy, the associated top level forest will be universal; in particular,
it is independent of any choices made in its construction.

III.2 Attracting laminations

Fix an exponentially growing automorphism ψ : F → F with a descending sequence
(Yi, δi)

n
i=1 of limit forests. Let G1 = F , Gi+1 = G[Yi], and [ψi] be the restriction of [ψ]

to Gi for i ≥ 1. Each limit forest (Yi, δi) has matching stable laminations L+
Zi
[ψi] for [ψi]

rel. Zi, where Zi is a [ψi]-invariant proper free factor system of Gi. By Claim I.5, R(Gi,Zi)
is canonically identified with a subspace of R(Gi) via a lifting map. As Gi+1 is a malnormal
subgroup system of Gi, the space of lines R(Gi+1) is canonically identified with a closed
subspace of R(Gi) (exercise). By transitivity, R(Gn) ⊂ R(Gn−1) ⊂ · · · ⊂ R(G0) = R(F).

Consider this chain of canonical embeddings: R(Gi,Zi) ⊂ R(Gi) ⊂ R(F). Quasiperi-
odicity is not preserved by the first embedding but a weaker form of it is. A line [l]
is birecurrent in an F-forest if any closed interval I ⊂ l has infinitely many translates
contained in both ends of l; quasiperiodic lines are birecurrent.

An attracting lamination for [ψ] in R(F) is the closure of a birecurrent line in R(F) with

a ψk
∗ -attracting neighbourhood for some k ≥ 1. The set of all attracting laminations for [ψ]

is canonical as it is defined using canonical constructs: R(F) and the homeomorphism
ψ∗ : R(F) → R(F). Note that ψ∗ permutes the attracting laminations for [ψ].

Remark. This definition is from [3, Definition 3.1.5]. Shortly, we will define topmost at-
tracting laminations as done in [3, Section 6].

Lemma III.2 (cf. [3, Lemma 3.1.4]). Let f : (T , d) → (Y, δ) be an equivariant PL-map.
A line is birecurrent in R(Y, δ) if and only if it is birecurrent in R(T ). (exercise)

So leaves of L+
Zi
[ψi] are birecurrent in R(Gi) and hence R(F); moreover, a ψk

i∗-attracting

neighbourhood of a line in R(Gi,Zi) will lift to a ψk
∗ -attracting neighbourhood of the same

line in R(F). (exercise) Thus the closure in R(F) of a stable lamination for [ψi] rel. Zi,
i.e. a component of L+

Zi
[ψi], is an attracting lamination for [ψ].

Lemma III.3 (cf. [3, Lemma 3.1.10]). Let ψ : F → F be an exponentially growing auto-
morphism with a descending sequence (Yi, δi)

n
i=1 of limit forests. The components of stable

laminations L+
Zi
[ψi] (1 ≤ i ≤ n) determine all the attracting laminations for [ψ].

Sketch of proof. Suppose that [l] ∈ R(F) is a birecurrent line with a ψk
∗ -attracting neigh-

bourhood for some k ≥ 1. If Gn+1 ̸= ∅, then either it consists of only cyclic components
or the restriction of ψn to Gn+1 is polynomially growing. Either way, Gn+1 cannot support
an attracting lamination of ψn. Let i ≤ n be the maximal index for which R(Gi) ⊂ R(F)
contains [l]. Birecurrence in R(F) and Lemma III.2 imply [l] is birecurrent in R(Gi,Zi)
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with a ψk
i∗-attracting neighbourhood for some k ≥ 1. Following the proof of Claim II.8, as-

sume some descending chain (Fi,j)
ni
j=2 of proper free factor systems of Fi,1

..= Gi was used

to construct (Yi, δi); then any birecurrent line in R(Gi,Zi) with a ψk
i∗-attracting neigh-

bourhood is in R(Fi,ni ,Zi). The proof of Lemma II.5 (with “birecurrence” in place of
“quasiperiodicity”) implies [l] ∈ L+

Zi
[ψi].

The finite set of all attracting laminations for [ψ] is canonical (by definition) and par-
tially ordered by inclusion; an attracting lamination for [ψ] is topmost if it is maximal in

this partial order. By Lemma II.5, ψi∗ transitively permutes the components of L+
Zi
[ψi];

so the closure in R(F) of L+
Zi
[ψi] ⊂ R(Gi,Zi) is a ψ∗-orbit L+

i [ψ] of attracting laminations
for [ψ]. The goal is to normalize any limit pseudoforest (T , (di)ni=1) so that the levels are
related to the partial order of the attracting laminations.

The next proposition is a repackaging of Theorem II.10 in the language of this chapter:

Proposition III.4. Let ψ : F → F be an exponentially growing automorphism with a limit
pseudoforest (T , (δi)ni=1).

For a nontrivial element x ∈ F , the following statements are equivalent:

1. the element x is T -loxodromic;

2. the element x [ψ]-grows exponentially; and

3. the axis for x in R(F) weakly ψ∗-limits to an attracting lamination.

Proof. The equivalence between Conditions 1–2 is part of Theorem III.1. Suppose x ∈ F
is T -loxodromic and the limit pseudoforest (T , (δi)ni=1) is constructed from the descending
sequence of limit forests (Yi, δi) for 1 ≤ i ≤ n. By construction, the element x is conjugate
to a Yi-loxodromic element y ∈ Gi for some i ≤ n; in particular, x and y have the same
axis in R(Gi) ⊂ R(F). The axis for y in R(Gi,Zi) ⊂ R(Gi) weakly ψi∗-limits to the stable
laminations L+

Zi
[ψi] ⊂ R(Gi,Zi) by Theorem II.10; therefore, the shared axis for y and x

in R(F) weakly ψ∗-limits to the attracting laminations for [ψ] determined by L+
Zi
[ψi],

i.e. the closure of L+
Zi
[ψi] in R(F).

Conversely, suppose x ∈ F is T -elliptic. Then x is must be conjugate to a Yn-elliptic
element y ∈ Gn. If y is conjugate to an element of Zi, then the shared axis for y and x
in the closed subspace R(Zi) ⊂ R(F) cannot weakly ψ∗-limit to the attracting lamination
for [ψ] determined by a component of L+

Zi
[ψi] — such an attracting lamination contains

lines not in R(Zi). If y is not conjugate to an element of Zi, then the axis for y in R(Gi,Zi)
does not weakly ψi∗-limit to L+

Zi
[ψi] by Theorem II.10; therefore, the shared axis for y

and x in R(F) cannot weakly ψ∗-limit to the attracting lamination for [ψ] determined by a
component of L+

Zi
[ψi]. By Lemma III.3, we have exhausted all possibilities when 1 ≤ i ≤ n,

and the axis for x in R(F) cannot weakly ψ∗-limit to an attracting lamination for [ψ].

40



III.3 Pseudolaminations

Fix an exponentially growing automorphism ψ : F → F with a descending sequence
(Yi, δi)

n
i=1 of limit forests, and let (T , (δi)ni=1) be the limit pseudoforest for (Yi, δi)

n
i=1.

Recall that G1 = F , Gi+1 = G[Yi], and [ψi] is the restriction of [ψ] to Gi for i ≥ 1. For
1 ≤ i ≤ n, the stable laminations L+

Zi
[ψi] are contained in R(Yi, δi) ⊂ R(Gi,Zi), where Zi

is some [ψi]-invariant proper free factor system of Gi.
Let Ti ⊂ T be the characteristic convex subsets for Gi. By construction of (T , (δi)ni=1), δi

restricts to a Gi-invariant convex pseudometric on Ti whose associated Gi-forest can be
equivariantly identified with (Yi, δi). Fix such an identification, and let κi : Ti → Yi denote
the natural equivariant collapse map. The stable laminations L+

Zi
[ψi] are in R(Yi, δi);

their leaves have unique lifts (via κi) to Ti ⊂ T ; we call these pseudoleaves of L+
T [ψi]. A

pseudoleaf segment of L+
T [ψi] is a closed interval in a (representative of a) pseudoleaf with

nondegenerate κi-image in Yi.
Remarkably, the pseudoleaf segments detect weak ψ∗-limits of elements in attracting

laminations. Let L+
i [ψ] be the attracting laminations for [ψ] determined by L+

Zi
[ψi], i.e. the

closure in R(F) of the stable laminations L+
Zi
[ψi].

Proposition III.5. Let ψ : F → F be an exponentially growing automorphism with a
limit pseudoforest (T , (δi)ni=1). For 1 ≤ j ≤ n and T -loxodromic x ∈ F , the axis for x
in T contains a pseudoleaf segment of L+

T [ψj ] if and only if the axis for x in R(F) weakly
ψ∗-limits to the attracting laminations L+

j [ψ].

Proof. Let (T , (δi)ni=1) be the limit pseudoforest for the descending sequence (Yi, δi)
n
i=1

of limit forests for [ψ]. For i ≤ n, pick a descending sequence (τi,j)
ni
j=1 of irreducible

train tracks for [ψi] rel. Zi; we can assume τi+1,j is defined on a free splitting of Zi for
some j < ni+1 since [ψi+1] is polynomially growing rel. Zi (Theorem II.10). The train
tracks (τi,j)

ni
j=1 induce a ψi-equivariant λi-Lipschitz PL-map τ◦i : (T ◦

i , d
◦
i ) → (T ◦

i , d
◦
i ). Fix a

metric free splitting (T ⋆, d⋆) of F that is the metric blow-up of (T ◦
1 , d

◦
1), (T ◦

i+1(Zi), d
◦
i+1) for

i < n, and some metric free splitting (T ◦
n+1, d

◦
n+1) of Zn whose free factor system F [T ◦

n+1] is
trivial. As the Gi-orbit of T ◦

i (Zi−1) is τ
◦
i -invariant, the maps (τ◦i )

n
i=1 induce a ψ-equivariant

PL-map τ⋆ on (T ⋆, d⋆).
Let x ∈ F be a T -loxodromic element. By construction, the element x is conjugate to

a Yi-loxodromic yi ∈ Gi for some i ≤ n; let l◦i be the T ◦
i -axis for yi. If j = i, then the

equivalence in the proposition’s statement follows from Theorem II.10. For the rest of the
proof, we prove the equivalence when j > i. As we are going to invoke the same argument
in the next proof, we mostly forget that l◦i is a T ◦

i -axis for a Yi-loxodromic element and
only use the fact [l◦i ] ∈ R(Yi, δi), i.e. l

◦
i projects to a line γi in (Yi, δi).

Suppose the T -axis for x contains a pseudoleaf segment of L+
T [ψj ] for some j > i.

Then the T -axis for yi contains a pseudoleaf segment σj of L+
T [ψj ] and κi(σj) is a point

◦i ∈ γi with nontrivial point stabilizer G◦i
..= StabGi(◦i). In Subsection II.2.3, we de-

scribe how the line γi in (Yi, δi) and point ◦i ∈ γi determine an algebraic iterated turn
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(ϵ, s−1
i+1,1si+1,2;φi+1)Gi+1 . Any iterated turn (βi+1,m)m≥0 over T ◦

i+1 realizing this algebraic

iterated turn limits to an interval [⋆i+1,1, ⋆i+1,2] in the metric completion (Y i+1, δi+1) by
Theorem II.9, and [⋆i+1,1, ⋆i+1,2] contains κi+1(σj).

If j = i+1, then [⋆i+1,1, ⋆i+1,2] ⊃ κi+1(σi+1) is not degenerate and (βi+1,m)m≥0 weakly
limits to a component of L+

Zi+1
[ψi+1] by Theorem II.9. Otherwise, for k ≥ i + 1, as-

sume κk(σj) is a point ◦k in the interval [⋆k,1, ⋆k,2] ⊂ Yk corresponding to the algebraic
iterated turn (ϵ, s−1

k,1sk,2;φk)Gk
, where ◦k has nontrivial stabilizer G◦k . By the discussion in

Subsection II.2.4 (and remark after Theorem II.9), the algebraic iterated turn over Gk and
point ◦k in [⋆k,1, ⋆k,2] determine an algebraic iterated turn (ϵ, s−1

k+1,1sk+1,2;φk+1)Gk+1
that

limits to [⋆k+1,1, ⋆k+1,2] ⊂ Yj ; morevoer, [⋆k+1,1, ⋆k+1,2] contains κk+1(σj). By induction,
[⋆j,1, ⋆j,2] contains κj(σj). Since κj(σj) is not degenerate, any realization (βj,m)m≥0 over T ◦

j

of the algebraic iterated turn (ϵ, s−1
j,1sj,2;φj)Gj weakly limits to a component of L+

Zj
[ψj ] by

Theorem II.9.
In either case (j ≥ i + 1), any realization over T ⋆ of (ϵ, s−1

j,1sj,2;φj)Gj weakly limits to

(the closure in R(F) of) a component of L+
Zj
[ψj ] (bounded cancellation). If j > i+ 1, any

realization over T ⋆ of (ϵ, s−1
i+1,1si+1,2;φi+1)Gi+1 weakly limits to a component of L+

Zj
[ψj ] by

transitivity. Hence the shared axis for yi and x in R(F) weakly ψ∗-limits to a component
of L+

Zj
[ψj ]. As ψj∗ : R(Gj ,Zj) → R(Gj ,Zj) acts transitively on the components of L+

Zj
[ψj ],

the axis for x in R(F) weakly ψ∗-limits to L+
j [ψ], the closure in R(F) of L+

Zj
[ψj ].

Conversely, suppose the axis [l⋆] for yi (and x) in R(F) weakly ψ∗-limits to L+
j [ψ] for

some j > i. Using (T ⋆, d⋆)-coordinates, the axis τ⋆m∗ (l⋆) contains arbitrarily d◦j -long leaf

segments of L+
j [ψ] for m ≫ 1. So τ⋆M∗ (l⋆) has a L+

j [ψ]-leaf segment I⋆ ⊂ T ⋆(Zj−1) with

d◦j -length L > C ′ ..= 2C[τ⋆]
λj−1 for M ≫ 1. As τ◦j is a train track on leaves of L+

Zj
[ψj ], τ

⋆m
∗ (l⋆)

has a L+
j [ψ]-leaf segment surviving from I⋆ with d◦j -length > λM−m

j (L− C ′) for m ≥M .
Let ρi : (T ⋆(Gi), d

⋆) → (T ◦
i , d

◦
i ) be an arbitrary equivariant PL-map. The ρi-image of

I⋆ ⊂ τ⋆M∗ (l⋆) is a vertex v ∈ τ◦Mi∗ (l◦i ) with nontrivial stabilizer. Since a nondegenerate part

of I⋆ survives in ψm
∗ (l⋆) for all m ≥ M , we have τ

◦(m−M)
i (v) ∈ τ◦mi∗ (l◦i ) for all m ≥ M

and h−M
i (π◦i (v)) ∈ γi has a nontrivial stabilizer Gv

..= StabGi(h
−M
i (π◦i (v))), where hi is

the ψi-equivariant λi-homothety on (Yi, δi). As before, the line γi, point h
−M
i (π◦i (v)) ∈ γi,

and equivariant PL-maps ρi+1, . . . , ρj determine nested iterated turns over T ◦
i+1, . . . , T ◦

j

limiting to intervals in Y i+1, . . . , Yj . By the computation in the previous paragraph
and quasiperiodicity of stable laminations, the last iterated turn over T ◦

j weakly limits to

a component of L+
Zj
[ψj ]. So the corresponding interval [⋆j,1, ⋆j,2] ⊂ Yj is not degenerate

(Theorem II.9) and the T -axis for yi has an intersection with Tj whose κj-image is [⋆j,1, ⋆j,2].
By the description of intervals in Yj , [⋆j,1, ⋆j,2] contains a leaf segment of π◦j∗(L

+
Zj
[ψj ]);

therefore, the T -axes of yi and x contain pseudoleaf segments of L+
T [ψj ].

In fact, the containment relation on pseudoleaf segments detects the partial order on
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the set of attracting laminations:

Claim III.6. For 1 ≤ i, j ≤ n, a pseudoleaf segment of L+
T [ψi] contains a pseudoleaf

segment of L+
T [ψj ] if and only if L+

i [ψ] contains L+
j [ψ].

We only sketch the proof as it is almost identical to the proof of Proposition III.5.

Sketch of proof. There’s nothing to show if i = j. Without loss of generality, assume i < j;
certainly, L+

j [ψ] does not contain L+
i [ψ] and no pseudoleaf segment of L+

T [ψj ] can contain

a pseudoleaf segment of L+
T [ψi]. Let [l

◦
i ] be an eigenline in (T ◦

i , d
◦
i ) of [τ

◦k
i ] for some k ≥ 1,

and l⋆ be the lift of l◦i to (T ⋆, d⋆). The projection γi (of l
◦
i ) is a line in (Yi, δi), and we

denote by li ⊂ Ti its lift via κi to a pseudoleaf of L+
T [ψi].

Suppose the pseudoleaf li of L+
T [ψi] contains a pseudoleaf segment σj of L+

T [ψj ]. Then
κi(σj) is a point ◦i ∈ γi with nontrivial point stabilizer G◦i . By the same argument as in
the previous proof, the line l⋆ in R(F) weakly ψ∗-limits to L+

j [ψ]. Note that ψk
∗ [l

⋆] = [l⋆]

in R(F) as [l◦i ] is an eigenline for [τ◦ki ]; moreover, L+
i [ψ] consists of the closures in R(F)

of [l⋆], . . . , ψk−1
∗ [l⋆] since L+

i [ψ] is a ψ∗-orbit of attracting laminations. So L+
i [ψ] ⊃ L+

j [ψ].

Conversely, suppose L+
i [ψ] ⊃ L+

j [ψ]. As L+
i [ψ] and L+

j [ψ] are ψ∗-orbits of attracting

laminations, the line l⋆ contains arbitrarily d◦j -long leaf segments of L+
j [ψ]. By the same

argument as in the previous proof, the pseudoleaf li, and hence some pseudoleaf segment
of L+

T [ψi], contains a pseudoleaf segment of L+
T [ψj ].

III.4 Topmost forests

Fix an exponentially growing automorphism ψ : F → F with a descending sequence
(Yi, δi)

n
i=1 of limit forests, and let (T , (δi)ni=1) be the limit pseudoforest for (Yi, δi)

n
i=1. Each

limit forest (Yi, δi) has stable laminations L+
Zi
[ψi] for [ψi] rel. Zi. Let L+

T [ψi] be the lifts to T
of leaves in L+

Zi
[ψi], L+

i [ψ] the closure in R(F) of L+
Zi
[ψi], and {Atop

j [ψi]}kij=1 the subset of

{L+
j [ψ]}nj=i consisting of all topmost attracting laminations for [ψi]. So Atop

j [ψi] = L+
ι(i,j)[ψ]

for some subsequence (ι(i, j))kij=1 of (j)nj=i with ι(i, 1) = i, and (ι(i, j))kij=2 is a subsequence

of (ι(i+ 1, j))
ki+1

j=1 if ki ≥ 2.
For i ≥ 1, we say the Gi-invariant hierarchy (δj)

n
j=i on the characteristic convex subsets

Ti ⊂ T for Gi normalizes to a factored Gi-invariant convex pseudometric Σki
j=1δι(i,j) if

the Gι(i,j)-invariant convex pseudometric δι(i,j) can be extended to a Gi-invariant convex
pseudometric, also denoted δι(i,j), on Ti. The F-invariant hierarchy (δi)

n
i=1 normalizes to δ1

if (and only if) k1 = 1.
We may assume k1 ≥ 2 and the G2-invariant hierarchy (δi)

n
i=2 normalizes to ⊕k2

j=1δι(2,j).

Let T̂2 be the κ1-preimage of the characteristic convex subsets Y1(G2). Suppose F1,1
..= F ,

. . . , F1,m are the proper free factor systems of F used to construct (Y1, δ1) and let T1,1,

. . . , T1,m be their corresponding characteristic convex subsets in T . By Lemma II.6, every
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closed interval in the characteristic convex subsets Y1(F1,m) is a finite concatenation of
leaf segments of L+

Z1
[ψ1]. Thus every closed interval in T1,m is a finite concatenation of

pseudoleaf segments of L+
T [ψ1] and closed intervals in F1,m · T̂2.

Fix j ∈ {2, . . . , k1}. Since L+
1 [ψ] does not contain L+

ι(1,j)[ψ], Claim III.6 implies the

intersection of any pseudoleaf segment of L+
T [ψ1] with T̂2 has 0 diameter with respect to

the convex pseudometric δι(1,j); we say that L+
Z1
[ψ1] and δι(1,j) are independent. So the

intersection of any closed interval in T1,m with F1,m · T̂2 has finitely many components that

are translates of closed intervals in T̂2 with positive δι(1,j)-diameter. Thus δι(1,j) can be ex-
tended to an F1,m-invariant convex pseudometric on T1,m that is mutually singular with δ1.
By our inductive description of intervals in Y1 (Lemma II.7), the convex pseudometric δι(1,j)
extends equivariantly to T as λι(1,j) > 1.

As j was arbitrary, the F-invariant hierarchy (δi)
n
i=1 normalizes to the factored convex

pseudometric ⊕k
j=1δι(j), where k

..= k1 and ι(j) ..= ι(1, j). Let (Y,⊕k
j=1δι(j)) be the associ-

ated factored F-forest. The real F-pretrees Y are minimal and have trivial arc stabilizers
since the pseudometric ⊕k

j=1δι(j) on T is convex. The ψ-equivariant (λi)
n
i=1-homothety h

induces a ψ-equivariant ⊕k
j=1λι(j)-dilation on (Y,⊕k

j=1δι(j)): a λι(j)-homothety with respect

to each factor δι(j). By Proposition III.5, a nontrivial element of F is δι(j)-loxodromic if

and only if its axis in R(F) weakly ψ∗-limits to Atop
j [ψ1] — here, δι(j)-loxodromic means

the element acts loxodromically on the associated F-forest for δι(j). The factored F-forest

(Y,⊕k
j=1δι(j)) is the complete topmost limit forest for (Yi, δi)

n
i=1. Given any subset of the

ψ∗-orbits of topmost attracting laminations for [ψ], then one may consider the associated
factored F-forest for the sum of corresponding pseudometrics:

Theorem III.7. Let ψ : F → F be an automorphism and {Atop
j [ψ]}kj=1 a (possibly empty)

subset of ψ∗-orbits of topmost attracting laminations for [ψ].
Then there is:

1. a minimal factored F-forest (Y,⊕k
j=1δj) with trivial arc stabilizers;

2. a unique ψ-equivariant expanding dilation f : (Y,⊕k
j=1δj) → (Y,⊕k

j=1δj); and

3. for 1 ≤ j ≤ k, a nontrivial element x ∈ F is δj-loxodromic if and only if its axis
in R(F) weakly ψ∗-limits to Atop

j [ψ].

Fix some index ι(j) ̸= 1, and let X1,m be the associated F1,m-forest for δ1⊕δι(j) on T1,m.

Two lines in (X1,m, δ1 ⊕ δι(j)) representing leaves in L+
Z1
[ψ] overlap if they have a nonde-

generate intersection; overlapping generates an equivalence relation and each overlapping
class is identified with its union in X1,m. Let supp[ψ1;Z1] denote the subgroup system

corresponding to the (setwise) stabilizers of overlapping classes L+
Z1

— this subgroup sys-

tem, called the lower-support of L+
Z1
[ψ1], is [ψ]-invariant. The system supp[ψ1;Z1] is not

empty as there are Y1-loxodromic elements whose axis in Y∗
1 is contained in L+

Z1
. Note the
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number of components in supp[ψ1;Z1] is at most the number of components in L+
Z1
[ψ1].

Let (X̂1,m(G2), δι(j)) be the closure in (X1,m, δ1⊕δι(j)) of the characteristic subforest for G2.
By Lemma II.6 again, intervals in X1(F1,n1) are finite concatenations of leaf segments of

L+
Z1
[ψ1] and closed intervals in X̂1,m(G2).

The overlapping classes L+
Z1

and the F1,m-orbits of components of X̂1,m(G2) form an
F1,m-invariant transverse covering of X1,m (see [14, Definition 4.6]). Let S ′ be a simplicial
F1,m-pretree: vertices (“component-vertices”) in equivariant bijective correspondence with
the components of the transverse covering (overlapping classes L+

Z1
and translates of com-

ponents of X̂1,m(G2)); for each point in X1,m contained in exactly two components of the
transverse covering, there is an edge between the corresponding component-vertices; for
each point contained in more than two components, there is a new vertex (”intersection-
vertex”) and an edge connecting it to each relevant component-vertex. By the blow-up
construction, translates of components of X̂1,m(G2) either coincide or are disjoint. In par-
ticular, each intersection-vertex v ∈ S ′ with a nontrivial stabilizer is adjacent to a unique
vertex w ∈ S ′ corresponding to a component of F1,m · X̂1,m(G2) and the stabilizer of v
fixes w; therefore, we can collapse all such edges [v, w] to form a simplicial F1,m-pretree S
whose intersection-vertices have trivial stabilizers.

The F1,m-forest (X1,m, δ1⊕δι(j)) is a graph of actions with skeleton S and the nondegen-
erate “vertex trees” are the components of the transverse covering [14, Lemma 4.7]. As the
ψ1,m-equivariant expanding dilation on (X1,m, δ1 ⊕ δι(j)) permutes the overlapping classes

(and components of F1,m ·X̂1,m(G2)), it induces a ψ1,m-equivariant simplicial automorphism
σ : S → S that preserves the “type” of a vertex.

Let T ⋄
1 be an equivariant blow-up of (T1,j)m−1

j=1 , S, and X1,m(G2). When the metric δι(j)
is extended appropriately to T ⋄

1 , the simplicial automorphisms (τ1,j)
m−1
j=1 , σ, and the homo-

thety f2 on X1,m(G2) induce a ψ-equivariant λι(j)-Lipschitz map τ⋄ : (T ⋄
1 , δ

⋄
ι(j)) → (T ⋄

1 , δ
⋄
ι(j))

that linearly extends f2. Using τ
⋄-iteration, we define the limit forest (X1, δι(j)) for [τi]

n−1
i=1 ,

σ, and f2. Like the previous convergence criteria, the proof of the following lemma is
postponed to Section IV.3.

Lemma IV.7. Let ψ : F → F be an automorphism, (τi : Ti → Ti)ni=1 a descending sequence
of irreducible train tracks for [ψ], Z ..= F [Tn], G the nontrivial point stabilizer system for
the limit forest for [ψ] rel. Z, [ψG ] the [ψ]-restriction to G, (YG , δ) a minimal G-forest with
trivial arc stabilizers such that L+

Z [ψ] and δ are independent, hG : (YG , δ) → (YG , δ) a ψG-
equivariant λ-homothety, S a minimal simplicial F [Tn−1]-forest that is the skeleton for the
graph of actions for L+

Z [ψ] and δ, σ : S → S the corresponding simplicial automorphism,
and (X , δ) the limit forest for [τi]

n−1
i=1 , σ, and hG.

If (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers, the characteristic subforest
of (Y ′, δ′) for G is equivariantly isometric to (YG , δ), and the lower-support supp[ψ;Z] of

L+
Z [ψ] is Y ′-elliptic, then the limit of (Y ′ψm, λ−mδ′)m≥0 is (X , δ).

Fix a subset {Atop
j [ψ]}kj=1 of ψ∗-orbits of topmost attracting laminations for [ψ]; a
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topmost forest for [ψ] is a factored F-forest satisfying the conclusion of Theorem III.7 with
respect to this subset. Lemma IV.7 is enough to prove the universality of topmost forests:

Theorem III.8. Let ψ : F → F be an automorphism and {Atop
j [ψ]}kj=1 a (possibly empty)

subset of ψ∗-orbits of topmost attracting laminations for [ψ]. Any topmost forest for [ψ]
with respect to the given subset has a unique equivariant dilation to any corresponding
topmost limit forest for [ψ].

Thus the factored F-forest (Y,⊕k
j=1δι(j)) is the complete topmost forest for [ψ] (up to

rescaling of the factors). We omit the proof since we are about to prove something stronger
in the next section (see Theorem III.11).

Suppose (T , (δi)ni=1) and (T ′, (δi)
n′
i=1) are two limit pseudoforests for [ψ]. Then n = n′

as they are exactly the number of ψ∗-orbits of attracting laminations for [ψ]. Using Theo-
rem III.7, the hierarchies can be inductively normalized to (⊕ki

j=1δi,j)
d
i=1 and (⊕ki

j=1δ
′
i,j)

d
i=1

respectively, where d is the length of the longest chain in the partial order of attracting
laminations for [ψ] and δi,j , δ

′
i,j are indexed by the same ψ∗-orbit Ai,j [ψ] of attracting

laminations. By inductively invoking Theorem III.8 and uniqueness of the blow-up con-
struction, the normalized pseudoforests (T , (⊕ki

j=1δi,j)
d
i=1) and (T ′, (⊕ki

j=1δ
′
i,j)

d
i=1) are in

the same equivariant dilation class and invariants of this class are invariants of [ψ]! In
particular, T and T ′ are equivariantly pretree-isomorphic.

Corollary III.9. Any two limit pretrees for an automorphism ψ : F → F are equivariantly
pretree-isomorphic.

We can now define more invariants of an attracting lamination: let A be an attracting
lamination for [ψ], A[ψ] its ψ∗-orbit, and (δi,j , λi,j) the corresponding pair of pseudometric

and stretch factor in the normalized pseudoforest (T , (⊕ki
j=1δi,j)

d
i=1); then λ(A) ..= λi,j is

a well-defined stretch factor for A. Now let A be topmost, {Bi′,j′} be the whole subset

of ψ∗-orbits of attracting laminations not contained in A[ψ], and (TA, (⊕
k′i
j′=1δ

′
i′,j′)

d′
i′=1)

the associated normalized pseudoforest. Then the upper-support of A[ψ] is the subgroup
system of point stabilizers suppA[ψ] ..= G[TA]. Unlike the lower-support, the upper-support
is always a malnormal subgroup system of finite type. Note that components of the lower-
support are conjugate into components of the upper-support.

III.5 Dominating forests

Fix an exponentially growing automorphism ψ : F → F . Let A ⊂ R(F) be an attracting
lamination for [ψ] and λ(A) its stretch factor. We say A is dominating if λ(A) > λ(A′)
whenever A′ is an attracting lamination for [ψ] containing A and A′ ̸= A; topmost attract-
ing laminations are vacuously dominating. We will extend Theorem III.7 to dominating
attracting laminations by mimicking the reasoning in the previous section, focusing only
on the changes needed for dominating attracting laminations.
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Let (Yi, δi)
n
i=1 be a descending sequence of limit forests for [ψ], (L+

i [ψ])
n
i=1 the cor-

responding sequence of ψ∗-orbits of attracting laminations for [ψ], (T , (δi)ni=1) the limit

pseudoforest for (Yi, δi)
n
i=1, and {Adom

j [ψi]}kij=1 the subset of {L+
j [ψ]}nj=i consisting of all

dominating attracting laminations for [ψi] — recall that Yi are Gi-pretrees and [ψi] is the
restriction of [ψ] to Gi. As before, Adom

j [ψi] = L+
ι(i,j)[ψ] for some subsequence (ι(i, j))kij=1

of (j)nj=i with ι(i, 1) = i.
Suppose k1 ≥ 2 and the G2-invariant hierarchy (δi)

n
i=2 normalizes to the factored G2-

invariant convex pseudometric Σk2
j=1δι(2,j) on the characteristic convex subsets T2 ⊂ T

for G2. Fix some j ∈ {2, . . . , k1}. The previous section discusses how to equivariantly
extend δι(1,j) to T when L+

1 [ψ] does not contain L+
ι(1,j)[ψ]. Assume for the rest of this section

that L+
ι(1,j)[ψ] ⊂ L+

1 [ψ]; thus λ1 < λι(1,j) as L+
ι(1,j)[ψ] is dominating. Let (Y∗, (δ1, δι(1,j)))

be the associated F-pseudoforest for the F-invariant 2-level hierarchy (δ1, δι(1,j)) and h∗

the ψ-equivariant pretree-automorphism on Y∗ induced by h : T → T .

Let τ1 : (Γ1, d1) → (Γ1, d1) be the λ1-Lipschitz topological representative for ψ used to
construct (Y1, δ1) through iteration. Pick an equivariant blow-up Γ◦ of Γ1 rel. Y∗(Z) ⊂ Y∗,
the characteristic convex subsets for the proper free factor system Z ..= F [Γ1]. Since Z
is δ1-elliptic, δι(1,j) is a metric on Y∗(Z). The blow-up inherits an F-invariant 2-level
hierarchy (d1, δι(1,j)) with full support. As Γ1 is simplicial, this hierarchy extends to a
factored F-invariant convex metric d1 ⊕ δι(1,j) on Γ◦.

Let [ψZ ] be the restriction of [ψ] to Z and h∗Z the ψZ -equivariant “restriction” of h∗

to (Y∗(Z), δι(1,j)). For a parameter c > 0, the topological representative τ1 induces a
ψ-equivariant map τ◦c on Γ◦ that extends h∗Z and is linear with respect to (c d1) ⊕ δι(1,j)
on edges from Γ1. If c ≫ 1, then τ◦c is λι(1,j)-Lipschitz with respect to (c d1) ⊕ δι(1,j)
since λ1 < λι(1,j). Through τ◦c -iteration, we define a limit forest (Y, δι(1,j)) for τ1 and h∗Z
whose characteristic subforest for Z is identified with (Y∗(Z), δι(1,j)) — up to equivariant
isometry, this limit forest is independent of the parameter c; moreover, there is an induced
ψ-equivariant λ-homothety h on (Y, δι(1,j)) that restricts to h∗Z on Y∗(Z).

We now refine this construction of a limit forest. For n ≥ 1, set d◦n
..= λ−n

1 d1⊕λ−n
ι(1,j)δι(1,j)

and τ◦ ..= τ◦1 . The map τ◦ : (Γ◦, d◦0) → (Γ◦ψ, d◦1) is equivariant and (1 +D)-Lipschitz for
someD ≥ 0. In fact, τ◦ : (Γ◦, d◦n) → (Γ◦ψ, d◦n+1) is (1+Dr

n)-Lipschitz, where r ..= λ1λ
−1
ι(1,j).

Set pn ..=
∏n−1

i=0 (1 + Dri); then τ◦n : (Γ◦, d◦0) → (Γ◦ψn, p−1
n d◦n) is equivariant and metric;

moreover, the pullback of p−1
n d◦n to Γ◦ along τ◦n converges to an F-invariant pseudometric

on Γ◦ as n → ∞. Since |r| < 1, the sequence (pn)
∞
n=1 converges and the pullback of d◦n

to Γ◦ along τ◦n converges to a factored F-invariant pseudometric δ◦1 + δ◦ι(1,j) on Γ◦. Let

(Γ∗, δ◦1 + δ◦ι(1,j)) be the associated factored F-forest for this factored pseudometric on Γ◦

— as L+
ι(1,j)[ψ] ⊂ L+

1 [ψ], one can show that δ◦1 and δ◦ι(1,j) are not mutually singular and

δ◦ι(1,j) is actually a metric on Γ∗. By construction, the characteristic subforest for Z in

(Γ∗, δ◦1+δ
◦
ι(1,j)) is equivariantly isometric to (Y∗(Z), δι(1,j)). Similarly, the F-forest (Y1, δ1)

is equivariantly isometric to the associated metric space for the pseudometric δ◦1 on Γ∗
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or Γ◦ (Corollary II.11).

Lemma IV.9. Let ψ : F → F be an automorphism, Z a [ψ]-invariant proper free factor
system, (YZ , δ) a minimal Z-forest with trivial arc stabilizers, (τi : Ti → Ti)ni=1 a descending
sequence of irreducible train tracks for [ψ] with F [Tn] = Z, hZ : (YZ , δ) → (YZ , δ) a ψZ-
equivariant λ-homothety, and (Y, δ) the limit forest for [τi]

n
i=1 and hZ , where λ > λ[τn]

and [ψZ ] is the [ψ]-restriction to Z.
If (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers and the characteristic subfor-

est of (Y ′, δ′) for Z is equivariantly isometric to (YZ , δ), then the limit of (Y ′ψm, λ−mδ′)m≥0

is (Y, δ).

Again, the proof is postponed to Section IV.4. Since the restriction of [ψ] to G1 is poly-
nomially growing rel. Z, Lemma IV.9 implies the characteristic subforests (Y∗(G1), δι(1,j))
and (Γ∗(G1), δ

◦
ι(1,j)) for G1 are equivariantly isometric. By uniqueness of the blow-up con-

struction, Γ∗ is equivariantly pretree-isomorphic to Y∗; through this pretree-isomorphism,
we can identify δ◦ι(1,j) with an extension of δι(1,j) to an F-invariant convex pseudometric

(in fact, metric) on Y∗. Finally, we can lift δι(1,j) to an F-invariant convex pseudometric
on T since T is an equivariant blow-up of Y∗.

As j was arbitrary, the F-invariant hierarchy (δi)
n
i=1 normalizes to the factored F-

invariant convex pseudometric Σk
j=1δι(j), where k

..= k1 and ι(j) ..= ι(1, j). We call the asso-

ciated factored F-forest (Y,Σk
j=1δι(j)) the complete dominating limit forest for (Yi, δi)

n
i=1.

This proves the existence part of our main theorem:

Theorem III.10. Let ψ : F → F be an automorphism and {Adom
j [ψ]}kj=1 a (possibly

empty) subset of ψ∗-orbits of dominating attracting laminations for [ψ].
Then there is:

1. a minimal factored F-forest (Y,Σk
j=1δj) with trivial arc stabilizers;

2. a unique ψ-equivariant expanding dilation f : (Y,Σk
j=1δj) → (Y,Σk

j=1δj); and

3. for 1 ≤ j ≤ k, a nontrivial element x ∈ F is δj-loxodromic if and only if its axis
in R(F) weakly ψ∗-limits to Adom

j [ψ].

Fix a subset {Adom
j [ψ]}kj=1 of ψ∗-orbits of dominating attracting laminations for [ψ];

a dominating forest for [ψ] is a factored F-forest satisfying the conclusion of the previous
theorem with respect to this subset. Finally, we prove universality:

Theorem III.11. Let ψ : F → F be an automorphism and {Adom
j [ψ]}kj=1 a (possibly

empty) subset of ψ∗-orbits of dominating attracting laminations for [ψ]. Any dominating
forest for [ψ] with respect to the given subset has a unique equivariant dilation to any
corresponding dominating limit forest for [ψ].
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Proof. Let (Yi, δi)
n
i=1 be a descending sequence of limit forests for [ψ], L+

Zi
[ψi] ⊂ R(Gi,Zi)

the stable laminations for (Yi, δi), L+
i [ψ] the closure of L+

Zi
[ψi] in R(F), {L+

ι(j)[ψ]}
k
j=1 a

subset of ψ∗-orbits of dominating attracting laminations, (Y∗,Σk
j=1δι(j)) the correspond-

ing dominating limit forest for (Yi, δi)
n
i=1, and (Y ′,Σk

j=1δ
′
j) a corresponding dominating

forest for [ψ]. Turn the factored metrics into hierarchies, and consider the pseudoforests
(Y∗, (δι(j))

k
j=1) and (Y ′, (δ′j)

k
j=1). By Theorem III.10(3), δι(1) and δ

′
1 have the same maximal

elliptic subgroup system G.
For induction, assume the G-pseudoforests (Y∗(G), (δι(j))kj=2) and (Y ′(G), (δ′j)kj=2) are

equivariantly homothetic. By uniqueness of the blow-up construction, it is enough to show
that the associated F-forests for δι(1) and δ

′
1 (on Y∗ and Y ′ respectively) are equivariantly

homothetic. So we may assume k = 1 for the rest of the proof. If ι(1) = 1, then (Y∗, δι(1))
and (Y ′, δ′1) are equivariantly homothetic by Lemma IV.5. Otherwise, ι(1) > 1 and, for
induction on complexity, we assume (Y∗(G2), δι(1)) and (Y ′(G2), δ

′
1) are equivariantly ho-

mothetic. Either: 1) L+
ι(1)[ψ] ⊂ L+

1 [ψ] and λ1 < λι(1) since L+
ι(1)[ψ] is dominating; or 2) the

lower-support supp[ψ1;Z1] of L+
Z1
[ψ1] is elliptic in Y∗ and Y ′ by Theorem III.10(3). The

F-forests (Y∗, δι(1)) and (Y ′, δ′1) are equivariantly homothetic by Lemmas IV.9 and IV.7
respectively, and we are done.

Thus the factored F-forest (Y,Σk
j=1δι(j)) is the complete dominating forest for [ψ].
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IV Convergence criteria

This chapter adapts then extends Section 7 of Levitt–Lustig’s paper [19]; they, in turn,
gave complete details for the proof sketched by Bestvina–Feighn–Handel in [2, Lemma 3.4].

IV.1 Proof of Lemma IV.3

Fix an automorphism ψ : F → F with an expanding irreducible train track τ : T → T .
Let λ ..= λ[τ ], (Yτ , d∞) be the limit forest for [τ ], π : (T , dτ ) → (Yτ , d∞) the constructed
equivariant metric PL-map, L+[τ ] ⊂ R(T ) the stable lamination for [τ ], and k ≥ 1 the
number of components of L+[τ ]. Suppose f : (T , dτ ) → (Y, δ) is an equivariant PL-map
and L+[τ ] is in the canonically embedded subspace R(Y, δ) ⊂ R(T ).

Claim IV.1 (cf. [19, Lemma 7.1]). There is a sequence c(f) of positive constants ci indexed
by the components Λ+

i ⊂ L+[τ ] such that

lim
m→∞

λ−mkδ(f(τmk(p)), f(τmk(q))) = ci d∞(π(p), π(q))

for any leaf segment [p, q] of Λ+
i .

Any two equivariant PL-maps f, g : (T , dτ ) → (Y, δ) are a bounded δ-distance apart, and
c(f) = c(g). So we can define c(Y, δ) ..= c(f); note that c(Y, s δ) = s c(Y, δ) for s > 0.
Without loss of generality, rescale the metric δ so that f is an equivariant metric PL-map.

Proof. Let νR ..= νR[τ ] (resp. νL ..= νL[τ ]) be the unique positive right (resp. left) eigen-
vector for the irreducible transition matrix A ..= A[τ ] whose sum of entries is 1 (resp. dot
product ⟨νL, νR⟩ = k). Suppose [p, q] is a leaf segment (of a component Λ+

i ⊂ L+[τ ])
with endpoints at vertices of T and let v ..= v[p, q] be the vector counting the occurrences
of [e] in [p, q]: [e] is an F-orbit of edges in T ; the entries of v = (ve) are indexed by the
F-orbits [e]; and ve is the number of translates of e in [p, q]. The train track property gives
us v(m) ..= v[τm(p), τm(q)] = Amv. Then, as [p, q] is a leaf segment, the positive entries
of v(mk) are indexed in the same block Bi = B(Λ+

i ) for all m ≥ 0. By Perron’s theorem,
if [e] is in the block Bi, then

lim
m→∞

v
(mk)
e

λmk⟨νL, v⟩
= νRe .

For small ϵ > 0, fix mϵ ≫ 1 such that δe(mϵ) ..= δ(f(τmϵk(pe)), f(τ
mϵk(qe))) > ϵ−1C[f ]

for every edge e = [pe, qe] in T — we need the assumption L+[τ ] ⊂ R(Y, δ) for this. The

interval [τ (mϵ+m)k(p), τ (mϵ+m)k(q)] is a union of v
(mk)
e -many translates of τmϵk(e), as [e]

ranges over all the orbits of edges in T . In Y, we get∑
[e]⊂T

v(mk)
e (δe(mϵ)− 2C[f ]) ≤ δ(f(τ (mϵ+m)k(p)), f(τ (mϵ+m)k(q))) ≤

∑
[e]⊂T

v(mk)
e δe(mϵ).
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Divide by λ(mϵ+m)kd∞(π(p), π(q)) = λ(mϵ+m)k⟨νL, v⟩, and let m→ ∞:

(1− 2ϵ)
∑
[e]∈Bi

νRe
δe(mϵ)

λmϵk
≤ lim inf

m→∞

δ(f(τmk(p)), f(τmk(q)))

λmkd∞(π(p), π(q))

≤ lim sup
m→∞

δ(f(τmk(p)), f(τmk(q)))

λmkd∞(π(p), π(q))
≤

∑
[e]∈Bi

νRe
δe(mϵ)

λmϵk

Since f is a metric map, we have λ−mϵkδe(mϵ) ≤ νLe . So the lim inf and lim sup above are
real, equal, and depend only on the block Bi for Λ

+
i .

If ϵ is small, then ϵ−1C[f ] > 2C[f ] + L for some L > 0; by bounded cancellation,

ci ..= lim
m→∞

δ(f(τmk(p)), f(τmk(q)))

λmkd∞(π(p), π(q))
≥ lim

m→∞

∥v(mk)∥1L
λ(mϵ+m)k⟨νL, v⟩

≥ νRe L

λmϵk
> 0,

where ∥v(m)∥1 is the sum of the entries in v(m) and [e] is in the same block as [p, q].

We now relax the restriction that [p, q] is an edge-path, i.e. p, q need not be vertices. For
m ≥ 0, let [p̄m, q̄m] be the shortest edge-path containing [τmk(p), τmk(q)]; for m,m′ ≥ 0,

δ(f(τmk(p̄m′)), f(τmk(q̄m′)))− λmk2

λmk(d∞(π(p̄m′), π(q̄m′)) + 2)
≤ δ(f(τ (m+m′)k(p)), f(τ (m+m′)k(q)))

λ(m+m′)kd∞(π(p), π(q))

≤ δ(f(τmk(p̄m′)), f(τmk(q̄m′))) + λmk2

λmk(d∞(π(p̄m′), π(q̄m′))− 2)
.

Both upper and lower bounds converge to ci as m
′,m → ∞: [p̄m′ , q̄m′ ] is a leaf segment

with endpoints at vertices of T , so

lim
m′→∞

lim
m→∞

δ(f(τmk(p̄m′)), f(τmk(q̄m′)))∓ λmk2

λmk(d∞(π(p̄m′), π(q̄m′))± 2)

= lim
m′→∞

ci d∞(π(p̄m′), π(q̄m′))∓ 2

d∞(π(p̄m′), π(q̄m′))± 2
= ci.

The next step is extending the claim to all intervals [p, q] ⊂ T . Set (ci)
k
i=1

..= c(Y, δ)
and let d∞ = ⊕k

i=1d
(i)
∞ be the factorization indexed by the components Λ+

i ⊂ L+[τ ]. For
convenience, replace ψ with its iterate ψk, τ with τk, and λ with λk.

Claim IV.2 (cf. [19, Lemma 7.2]). For any p1, p2 ∈ T ,

lim
m→∞

λ−mδ(f(τm(p1)), f(τ
m(p2))) =

k∑
i=1

ci d
(i)
∞ (π(p1), π(p2)).
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Proof. Let [p1, p2] be an interval in T and N(p1, p2) the number of vertices in (p1, p2).
Suppose π(p1) = π(p2), i.e. d∞(π(p1), π(p2)) = 0. Since f is a metric map, we get

0 ≤ λ−mδ(f(τm(p1)), f(τ
m(p2))) ≤ λ−mdτ (τ

m(p1), τ
m(p2)),

and the limit of the middle term (asm→ ∞) is 0. So we may assume d∞(π(p1), π(p2)) > 0.
For a given m′ ≥ 0, let [τm

′
(p1), τ

m′
(p2)] be a concatenation of N ′ + 1 leaf segments

[qj , qj+1]
N ′
j=0 (of Λ+

i(j) ⊂ L+[τ ]) for some nonegative N ′ ≤ N(p1, p2) and i(j) ∈ {1, . . . , k},
where q0 = τm

′
(p1) and qN ′+1 = τm

′
(p2). Then, by Claim IV.1,

lim sup
m→∞

δ(f(τm+m′
(p1)), f(τ

m+m′
(p2)))

λm
≤ lim

m→∞

N ′∑
j=0

δ(f(τm(qj)), f(τ
m(qj+1)))

λm

=
N ′∑
j=0

ci(j)d∞(π(qj), π(qj+1)) =
k∑

i=1

cid
(i)
τ (τm

′
(p1), τ

m′
(p2)),

where the last equality comes from d∞(π(qj), π(qj+1)) = d
(i(j))
τ (qj , qj+1) since [qj , qj+1] is

a leaf segment. Divide by λm
′
, let m′ → ∞, and invoke the definition of d

(i)
∞ to get

lim sup
m+m′→∞

δ(f(τm+m′
(p1)), f(τ

m+m′
(p2)))

λm+m′ ≤
k∑

i=1

cid
(i)
∞ (π(p1), π(p2)).

Using bounded cancellation, we get a lower bound:

δ(f(τm+m′
(p1)), f(τ

m+m′
(p2))) ≥

N ′∑
j=0

δ(f(τm(qj)), f(τ
m(qj+1)))− 2N ′C[f ],

which, after dividing by λm+m′
and letting m→ ∞ then m′ → ∞, leads to

lim inf
m+m′→∞

δ(f(τm+m′
(p1)), f(τ

m+m′
(p2)))

λm+m′ ≥
k∑

i=1

cid
(i)
∞ (π(p1), π(p2)).

Like in our construction of limit forests (Section II.1), let δ∗m be the pullback of λ−mδ via
f ◦ τm for m ≥ 0. Then δ∗m is an F-invariant pseudometric on T whose associated metric
space is equivariantly isometric to (Yψm, λ−mδ). By Claim IV.2, the (pointwise) limit

lim
m→∞

δ∗m is the pullback of ⊕k
i=1ci d

(i)
∞ via π. In other words, the sequence (Yψm, λ−mδ)m≥0

converges to (Yτ ,⊕k
i=1ci d

(i)
∞ ) and we are done:

Lemma IV.3 (cf. [2, Lemma 3.4]). Let ψ : F → F be an automorphism, τ : T → T an
expanding irreducible train track for ψ, (Yτ , d∞) the limit forest for [τ ], and λ ..= λ[τ ].

If (T , dτ ) → (Y, δ) is an equivariant PL-map and the k-component lamination L+[τ ]

is in R(Y, δ) ⊂ R(T ), then the sequence (Yψmk, λ−mkδ)m≥0 converges to (Yτ ,⊕k
i=1ci d

(i)
∞ ),

where d∞ = ⊕k
i=1 d

(i)
∞ and ci > 0.
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IV.2 Proof of Lemma IV.5

Fix an automorphism ψ : F → F with an invariant proper free factor system Z ′ and a
descending sequence of irreducible train tracks (τi : Ti → Ti)ni=1 rel. Z ′ with λ ..= λ[τn] > 1.
Let L+

Z [ψ] ⊂ R(F ,Z) be the k-component stable laminations for [ψ] rel. Z ..= F [T ◦], T ◦ an
equivariant blow-up of the free splittings (Ti)ni=1, τ

◦ : T ◦ → T ◦ a topological representative
for [ψ] induced by [τi]

n
i=1, d

◦ an F-invariant convex metric on T ◦ that extends dn on Tn
such that τ◦ is λ-Lipschitz on (T ◦, d◦), and π◦ : (T ◦, d◦) → (Y, δ) the equivariant metric
map to a limit forest constructed using τ◦-iteration. We denote by dn again the F-invariant
convex pseudometric on T ◦ that extends dn on Tn. Recall that the components Λ+

j ⊂ L+
Z [ψ]

index the factorizations dn = ⊕k
j=1d

(j)
n and δ = ⊕k

j=1δj . For convenience, set F1
..= F and

Fi+1
..= F [Ti], then replace ψ with ψk, τ◦ with τ◦k, and λ with λk.

Suppose (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers, Z is Y ′-elliptic,
and L+

Z [ψ] is in R(Y ′, δ′) ⊂ R(F ,Z). Let (Y ′
n, δ

′) be the characteristic subforest of (Y ′, δ′)
for Fn and fn : (Tn, dn) → (Y ′

n, δ
′) an equivariant PL-map. Extend fn to an equivariant

PL-map f : (T ◦, d◦) → (Y ′, δ′). By Claim IV.1, we can set (cj)
k
j=1

..= c(Y ′
n, δ

′) > 0.

Claim IV.4. For any p1, p2 ∈ T ◦,

lim
m→∞

λ−mδ′(f(τ◦m(p1)), f(τ
◦m(p2))) =

k∑
j=1

cj δj(π
◦(p1), π

◦(p2)).

Proof. Let [p1, p2] be an interval in T ◦ and assume δ(π◦(p1), π
◦(p2)) > 0 without loss

of generality. Given Claim IV.2, we may assume n ≥ 2. For m′ ≥ 0, the interval
[τ◦m

′
(p1), τ

◦m′
(p2)] is a concatenation of α(m′) segments that are in F · Tn or edges from

Ti (i > 1), where α(m′) is bounded by a polynomial inm′ of degree ≤ n−2. SetM to be the

length of the longest edge from Ti (i > 1) in (T ◦, d◦). For m′ ≫ 0, let [qm′,l, qm′,l+1]
N(m′)
l=0

be the nondegenerate (F · Tn)-segments. As τ◦ and f are λ- and L-Lipschitz respectively,

δ′(f(τ◦(m+m′)(p1)), f(τ
◦(m+m′)(p2))

≤
N(m′)∑
l=0

δ′(fn(τ
m
n (qm′,l)), fn(τ

m
n (qm′,l+1))) + α(m′)λmLM.

Divide by λm+m′
, let m→ ∞ then m′ → ∞, and invoke Claim IV.2 and definition of δj :

lim sup
m+m′→∞

δ′(f(τ◦(m+m′)(p1)), f(τ
◦m+m′

(p2)))

λm+m′

≤ lim
m′→∞

N(m′)∑
l=0

k∑
j=1

cjδj(π
◦(qm′,l), π

◦(qm′,l+1))

λm′

≤ lim
m′→∞

k∑
j=1

cjd
(j)
n (τ◦m

′
(p1), τ

◦m′
(p2))

λm′ =
k∑

j=1

cjδj(π
◦(p1), π

◦(p2)),
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using the fact π◦ is a metric map. The intervals [π◦(qm′,l), π
◦(qm′,l+1)] contribute at least

λm
′
δj(π

◦(p1), π
◦(p2))− α(m′) (M + 2C[π◦])

to the δj-length of [π◦(τ◦m
′
(p1)), π

◦(τ◦m
′
(p2))]. As before, bounded cancellation gives us:

δ′(f(τ◦(m+m′)(p1)), f(τ
◦(m+m′)(p2)))

≥
N(m′)∑
l=0

δ′(fn(τ
m
n (qm′,l)), fn(τ

m
n (qm′,l+1)))− 2α(m′)C[f ].

Divide by λm+m′
and let m→ ∞ then m′ → ∞ yields:

lim inf
m+m′→∞

δ′(f(τ◦(m+m′)(p1)), f(τ
◦m+m′

(p2)))

λm+m′

≥ lim
m′→∞

k∑
j=1

cj

N(m′)∑
l=0

δj(π
◦(qm′,l), π

◦(qm′,l+1))

λm′ ≥
k∑

j=1

cjδj(π
◦(p1), π

◦(p2)),

where the last inequality comes from the contribution inequality above.

The rest of the argument is the same as in the previous section. Let δ∗m be pullback of
λ−mδ′ via f ◦ τ◦m for m ≥ 0. By Claim IV.4, the limit lim

m→∞
δ∗m is the pullback of ⊕k

j=1cj δj

via π◦ and we are done:

Lemma IV.5. Let ψ : F → F be an automorphism, Z ′ a [ψ]-invariant proper free factor
system, (τi : Ti → Ti)ni=1 a descending sequence of irreducible train tracks for [ψ] rel. Z ′ with
λ ..= λ[τn] > 1, (Y, δ) the limit forest for [τi]

n
i=1, (Y ′, δ′) a minimal F-forest with trivial arc

stabilizers, and Z ..= F [Tn].
If Z is Y ′-elliptic and the k-component lamination L+

Z [ψ] is in R(Y ′, δ′) ⊂ R(F ,Z),
then the limit of (Y ′ψmk, λ−mkδ′)m≥0 is (Y,⊕k

j=1cj δj), where δ = ⊕k
j=1 δj and cj > 0.

IV.3 Sketch of Lemma IV.7

Fix an automorphism ψ : F → F . Let (τi : Ti → Ti)ni=1 be a descending sequence of
irreducible train tracks for [ψ], Z ..= F [Tn], L+

Z [ψ] the stable lamination for [ψ] in R(F ,Z),
(Y1, δ1) the limit forest for [ψ] rel. Z, G ..= G[Y1], [ψG ] the restriction of [ψ] to G, (YG , δ)
a minimal G-forest with trivial arc stabilizers, and hG : (YG , δ) → (YG , δ) a ψG-equivariant
λ-homothety. Construct the equivariant psuedoforest blow-up (Y∗

1 , (δ1, δ)) of (Y1, δ1) rel.
(YG , δ) and expanding homotheties representing [ψ] and [ψG ]. For this section, we will
assume assume L+

Z [ψ] and δ are independent: the pseudoleaf segments for L+
Z [ψ] in Y∗

1 have
0 δ-diameter intersections with YG . Set Fn

..= F [Tn−1] and [ψn] to be the restriction of [ψ]
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to Fn; the characteristic convex subset Y∗
1 (Fn) ⊂ Y∗

1 has a graph of actions decomposition

with vertex forests ŶG and the overlapping classes for L+
Z [ψ].

Let the minimal simplicial Fn-forest S be the skeleton for the graph of actions for L+
Z [ψ]

and δ. By construction, there is a ψn-equivariant simplicial automorphism σ : S → S. The
lower-support supp[ψ;Z] of L+

Z [ψ] is given by stabilizers of vertices in S corresponding
to overlapping classes. Construct the equivariant blow-up T ⋄ of (Ti), S, and YG ; then
extend the metric δ to an F-invariant convex metric d⊕ δ on T ⋄ so that the ψ-equivariant
map τ⋄c : (T ⋄, (c d) ⊕ δ) → (T ⋄, (c d) ⊕ δ) induced by [τi]

n−1
i=1 , σ and linearly extending hG

is λ-Lipschitz for any parameter c ≫ 1. Let d⋄c
..= (c d) ⊕ δ; for c ≫ 1, construct us-

ing τ⋄c -iteration an equivariant metric surjection π⋄c : (T ⋄, d⋄c) → (X , δ) that extends the
identification of (YG , δ) and semiconjugates τ⋄c to a ψ-equivariant λ-homothety on (X , δ).

Suppose (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers and whose character-
istic subforest for G is equivariantly isometric to (YG , δ). So if we also assume supp[ψ;Z]
is Y ′-elliptic, then there is an equivariant map fc : (T ⋄, d⋄c) → (Y ′, δ′) that linearly extends
the identification of (YG , δ); this is necessarily a Lipschitz map. Pick any free splitting T
of F with trivial F [T ]. Then any equivariant PL-map T → T ⋄ is surjective (by minimal-
ity) and composes with fc to give (up to an equivariant homotopy rel. the vertices) an
equivariant PL-map with a cancellation constant. So fc must have a cancellation constant.
The proof of the next claim is a variation of Claim IV.4’s proof:

Claim IV.6. For any p1, p2 ∈ T ⋄,

lim
m→∞

λ−mδ′(fc(τ
⋄m
c (p1)), fc(τ

⋄m
c (p2))) = δ(π⋄c (p1), π

⋄
c (p2)).

Sketch of proof. For m′ ≥ 0, the interval [τ◦m
′

c (p1), τ
◦m′
c (p2)] is a concatenation of α(m′)

segments that are in the orbit of YG or edges from Ti (i ≥ 1), where α(m′) is bounded
by a polynomial in m′ of degree ≤ n − 1. With an almost identical argument, invoke the
definition of π◦c to conclude

lim
m+m′→∞

δ′(fc(τ
◦(m+m′)
c (p1)), fc(τ

◦m+m′
c (p2)))

λm+m′ = δ(π◦c (p1), π
◦
c (p2)).

The set-up is simpler as τ◦c (resp. fc) is a λ-homothety (resp. isometry) on (YZ , δ).

As in the previous section, we have proven the following:

Lemma IV.7. Let ψ : F → F be an automorphism, (τi : Ti → Ti)ni=1 a descending sequence
of irreducible train tracks for [ψ], Z ..= F [Tn], G the nontrivial point stabilizer system for
the limit forest for [ψ] rel. Z, [ψG ] the [ψ]-restriction to G, (YG , δ) a minimal G-forest with
trivial arc stabilizers such that L+

Z [ψ] and δ are independent, hG : (YG , δ) → (YG , δ) a ψG-
equivariant λ-homothety, S a minimal simplicial F [Tn−1]-forest that is the skeleton for the
graph of actions for L+

Z [ψ] and δ, σ : S → S the corresponding simplicial automorphism,
and (X , δ) the limit forest for [τi]

n−1
i=1 , σ, and hG.
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If (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers, the characteristic subforest
of (Y ′, δ′) for G is equivariantly isometric to (YG , δ), and the lower-support supp[ψ;Z] of

L+
Z [ψ] is Y ′-elliptic, then the limit of (Y ′ψm, λ−mδ′)m≥0 is (X , δ).

IV.4 Sketch of Lemma IV.9

Fix an automorphism ψ : F → F with an invariant proper free factor system Z and a
minimal Z-forest (YZ , δ) with trivial arc stabilizers. Let (τi : Ti → Ti)ni=1 be a descending
sequence of irreducible train tracks for [ψ] with F [Tn] = Z, dn the eigenmetric on Tn
for [τn], and hZ : (YZ , δ) → (YZ , δ) a ψZ -equivariant λ-homothety, where λ > λ[τn] and
[ψZ ] is the [ψ]-restriction to Z. Set F1

..= F and Fi+1
..= F [Ti].

Choose an arbitrary equivariant iterated blow-up T ∗ of (Ti)ni=1 and let τ∗ : T ∗ → T ∗ be
the ψ-equivariant topological representative induced by (τi)

n
i=1. Extend the metric dn on Tn

to an F-invariant convex metric d∗ on T ∗ so that τ∗ : (T ∗, d∗) → (T ∗, d∗) is λ[τn]-Lipschitz.
Finally, choose an arbitrary equivariant metric blow-up (T ◦, d∗⊕ δ) of (T ∗, d∗) rel. (YZ , δ).
For a parameter c > 0, the topological representative τ∗ induces a ψ-equivariant map τ◦c
on T ◦ that linearly extends the λ-homothety hZ with respect to the metric d◦c

..= (c d∗)⊕δ.
As λ > λ[τn], the map τ◦c is λ-Lipschitz with respect to d◦c for c ≫ 1. Let (Y, δ) be the
limit forest for [τ◦c ] and π

◦
c : (T ◦, d◦c) → (Y, δ) the equivariant metric surjection constructed

through τ◦-iteration.
Suppose (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers and whose character-

istic subforest for Z is equivariantly isometric to (YZ , δ). Let fc : (T ◦, d◦c) → (Y ′, δ′) be an
equivariant map that linearly extends the identification of (YZ , δ).

Claim IV.8. For any p1, p2 ∈ T ◦,

lim
m→∞

λ−mδ′(fc(τ
◦m
c (p1)), fc(τ

◦m
c (p2))) = δ(π◦c (p1), π

◦
c (p2)).

Sketch of proof. For m′ ≥ 0, the interval [τ◦m
′

c (p1), τ
◦m′
c (p2)] is a concatenation of β(m′)

segments that are in the orbit of YZ or edges from Ti (i ≥ 1), where β(m′) has exponential
growth rate λ[τn] < λ. Proceed just as in the proof of Claim IV.6.

Altogether, we have proven the following:

Lemma IV.9. Let ψ : F → F be an automorphism, Z a [ψ]-invariant proper free factor
system, (YZ , δ) a minimal Z-forest with trivial arc stabilizers, (τi : Ti → Ti)ni=1 a descending
sequence of irreducible train tracks for [ψ] with F [Tn] = Z, hZ : (YZ , δ) → (YZ , δ) a ψZ-
equivariant λ-homothety, and (Y, δ) the limit forest for [τi]

n
i=1 and hZ , where λ > λ[τn]

and [ψZ ] is the [ψ]-restriction to Z.
If (Y ′, δ′) is a minimal F-forest with trivial arc stabilizers and the characteristic subfor-

est of (Y ′, δ′) for Z is equivariantly isometric to (YZ , δ), then the limit of (Y ′ψm, λ−mδ′)m≥0

is (Y, δ).
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V Expanding forests

We finally characterize the expanding forests for an automorphism ψ : F → F , i.e. min-
imal very small F-forests that admit ψ-equivariant expanding homotheties. By the last
paragraph in the proof of Corollary II.11, expanding forests have trivial arc stabilizers. We
start with a criterion of nonconvergence that complements Lemmas IV.7 and IV.9.

V.1 Nonconvergence criterion

Fix an automorphism ψ : F → F with an invariant proper free factor system Z and a
minimal Z-forest (YZ , δ) with trivial arc stabilizers. Let τ : T → T be an expanding
irreducible train track for [ψ] with F [T ] = Z, dτ the eigenmetric on T for [τ ], L+

Z [ψ]
the stable lamination for [ψ] in R(F ,Z), (Yτ , d∞) the limit forest for [ψ] rel. Z, and
hZ : (YZ , δ) → (YZ , δ) a ψZ -equivariant λ-homothety, where 1 < λ ≤ λ[τ ] and [ψZ ] is the
restriction of [ψ] to Z.

Set G ..= G[Yτ ], and denote the restriction of [ψ] to G by [ψG ]. Since [ψG ] is polynomially
growing rel. Z, we can equivariantly include (YZ , δ) in a minimal G-forest (YG , δ) with
trivial arc stabilizers and extend hZ to a ψG-equivariant λ-homothety hG : (YG , δ) → (YG , δ).
Construct the equivariant psuedoforest blow-up (Y∗, (d∞, δ)) of (Yτ , d∞) rel. (YG , δ) and
the expanding homotheties representing [ψ] and [ψG ]. Finally, suppose L+

Z [ψ] and δ are
dependent, i.e. the pseudoleaf segments for L+

Z [ψ] in Y∗ have some positive δ-diameter
intersections with YG . We are essentially in the case not covered by Lemmas IV.7 and IV.9.

Choose an iterate [τk] that maps all F-orbits of branches in T to [τk]-fixed orbits. Pick
a branch e+ in T ; suppose its basepoint p ∈ T is a vertex with a nontrivial stabilizer.
Without loss of generality, assume τk(e+) = e+. Use the contraction mapping theorem to
decide how to equivariantly attach τk(e+) to F · YZ ; then equivariantly attach e+ to the
same point. Now suppose the basepoint p has a trivial stabilizer but τk(p) has a nontrivial
one. Then there are finitely many directions e+1 , . . . , e

+
l at p. We have described how to

attach their images τk(e1), . . . , τ
k(el) to the F-orbit of YZ ; let Cp ⊂ F · YZ be the convex

hull of these attaching points. Equivariantly replace p ∈ T with a copy of (Cp, λ
−kδ) and

attach e+j to the copy of the attaching point for its τk-image. Finally, if τk(p) has a trivial

stabilizer, then there is nothing to do. As [e+] ranges over all F-orbits of branches in T ,
this defines a preferred equivariant metric blow-up (T ◦, dτ ⊕ δ) of (T , dτ ) rel. (YZ , δ). The
train track τ induces a ψ-equivariant map τ◦ : (T ◦, dτ ⊕ δ) → (T ◦, dτ ⊕ δ) that linearly
extends the homothety hZ . The preferred construction guarantees τ◦ is a train track in a
sense: τ◦m is injective on the edges from T for all m ≥ 1.

Suppose (Y, δ) is a minimal F-forest with trivial arc stabilizers and whose characteristic
subforest for Z is equivariantly isometric to (YZ , δ).

Claim V.1. For some element x in F , λ−m∥ψm(x)∥δ → ∞ as m→ ∞.

Sketch of proof. A long leaf segment in T contains at least three (unoriented) translates
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xi ·e (1 ≤ i ≤ 3) of an edge e. So x ..= x−1
i xi+1 is T -loxodromic for some i (mod 3). Choose

a fundamental domain [p, q] of x acting on its axis that is a leaf segment with endpoints
at vertices. Set d◦ ..= dτ ⊕ δ, and let f : (T ◦, d◦) → (Y, δ) an equivariant map that linearly
extends the identification of (YZ , δ).

The assumption that L+
Z [ψ] and δ were dependent implies the τ◦-image of some edge e

from T has a nondegenerate intersection with F ·YZ . Fix m
′ ≫ 1 so that, for some L > 0,

τ◦m
′
(e) ∩ F · YZ has a component with δ-length ≥ 2C[f ] + L for all edges from T . For

m ≥ 0, let β(m) be the number of edges from T in [τ◦m(p), τ◦m(q)]; note that β(m) grows
exponentially in m with rate λ[τ ] — the growth of [ψ] rel. Z. By the train track property
of τ◦ and bounded cancellation for f , λ−m∥ψm+m′

(x)∥δ ≥
∑m

i=0 β(i)λ
−iL tends to infinity

as m→ ∞ since λ ≤ λ[τ ].

Thus there is no ψ-equivariant homothety of (Y, δ):

Lemma V.2. Let ψ : F → F be an automorphism, τ : T → T an expanding irreducible
train track for [ψ], Z ..= F [T ], and (Y, δ) an expanding forest for [ψ] with stretch factor λ.
If L+

Z [ψ] and δ are dependent, then λ > λ[τ ].

V.2 Expanding is dominating

Fix an automorphism ψ : F → F and an expanding forest (Y, δ) for [ψ]. Our remaining
goal is to generalize Corollary II.11: (Y, δ) must be some dominating forest for [ψ].

Let τ : T → T be an expanding irreducible train track for [ψ], Z ..= F [T ], L+
Z [ψ] the

stable lamination for [ψ] in R(F ,Z), (Yτ , d∞) the limit forest for [ψ] rel. Z, and G ..= G[Yτ ].
For induction, assume the characteristic subforest of (Y, δ) for G is equivariantly iso-

metric to the dominating forest for the restriction [ψG ] (of [ψ] to G) with respect to some
orbits {Adom

i [ψG ]}ki=1 with the same stretch factor λ > 1; denote the subforest by (YG , δ).
Suppose L+

Z [ψ] and δ are dependent. By Lemma V.2, λ > λ[τ ] and each Adom
i [ψG ] is actu-

ally a ψ∗-orbitAdom
i [ψ] of dominating attracting laminations for [ψ]. By Lemma IV.9, (Y, δ)

is equivariantly isometric to the dominating forest for [ψ] with respect to {Adom
i [ψ]}ki=1.

We may now assume L+
Z [ψ] and δ are independent. So Adom

i [ψG ] is a ψ∗-orbit Adom
i [ψ]

of dominating attracting laminations for [ψ]. Let Adom
0 [ψ] ⊂ R(F) be the closure of L+

Z [ψ]
and (Y∗, d∞⊕δ) the unique equivariant metric blow-up of (Yτ , d∞) rel. (YG , δ) that admits
a ψ-equivariant expanding dilation. By construction, the blow-up is equivariantly isometric
to the dominating forest for [ψ] with respect to {Adom

i [ψ]}ki=0. Recall that independence

of L+
Z [ψ] and δ implies Y∗ is a graph of actions with vertex forests coming from ŶG and

overlapping classes for L+
Z [ψ] — these are G- and supp[ψ;Z]-forests respectively; let S be

the skeleton for this graph of actions.
If the lower-support supp[ψ;Z] is Y-elliptic, then (Y, δ) is equivariantly isometric to the

associated F-forest for δ on Y by Lemma IV.7; in particular, (Y, δ) is equivariantly isometric
to the dominating forest for [ψ] with respect to {Adom

i [ψ]}ki=1. Otherwise, supp[ψ;Z] is not
Y-elliptic. Let T ′ ⊂ T be the characteristic convex subset for the upper-support suppL+[ψ]
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of L+[ψ] (defined at the end of Section III.4) and [ψ′] the restriction of [ψ] to the upper-
support. Independence of L+

Z [ψ] and δ implies Z ′ ..= F [T ′] is Y-elliptic. So the charac-
teristic subforests of (Y, δ) and (Yτ , d∞) for the upper-support suppL+[ψ] are expanding
forests for [ψ′] rel. Z ′; by Corollary II.11, they are equivariantly homothetic and λ[τ ] = λ.
Thus the characteristic subforests of (Y, δ) and (Yτ , c d∞) for supp[ψ;Z] are equivariantly
isometric for some c > 0. A minor modification of Lemma IV.7 implies (Y, δ) is equiv-
ariantly isometric to (Y∗, c d∞ ⊕ δ) — details are left to the reader; therefore, (Y, δ) is
equivariantly isometric to the dominating forest for [ψ] with respect to {Adom

i [ψ]}ki=0.

Generally, [ψ] has a descending sequence of irreducible train tracks (τi : Ti → Ti)ni=1. If
(Y, δ) is degenerate, then there is nothing to show. Otherwise, the ψ-expanding homothety
on (Y, δ) implies λ[τn] > 1. Set F1

..= F and Fi+1
..= F [Ti]. The preceding discussion

proves that the characteristic subforest of (Y, δ) for Fn is equivariantly isometric to some
dominating forest for the restriction [ψn]. Lemma IV.9 implies (Y, δ) is equivariantly
isometric to some dominating forest for [ψ]. Conversely, it follows from Theorem III.10(2)
that the dominating forest for [ψ] with respect to a subset of ψ∗-orbits of dominating
attracting laminations with the same stretch factor is an expanding forest for [ψ]:

Theorem V.3. An F-forest (Y, δ) is an expanding forest for an automorphism ψ : F → F
if and only if it is equivariantly isometric to the dominating forest for [ψ] with respect to a
subset of ψ∗-orbits of dominating attracting laminations with the same stretch factor.

A Recognizing and centralizing atoroidal automorphisms

For a given outer automorphism, restrict it to point stabilizers of a complete topmost
tree and inductively construct the descending sequence of complete topmost forests. The
blow-up construction applied to this descending sequence produces the universal topmost
pseudotree (whose underlying pretree is the limit pretree). For an application of this
universal construction, we prove a recognition theorem for atoroidal outer automorphisms.

Corollary A.1. If [ϕ] and [ψ] are atoroidal outer automorphisms of F with the same
universal topmost pseudotree, and the pseudotree admits a ϕψ−1-equivariant isometry fixing
each orbit of branches, then [ϕ] = [ψ].

The hypothesis is akin to assuming two pseudo-Anosov mapping classes have the same
stable measured foliation, stretch factor, and action on singular leaves.

Proof. Let (T, (⊕ki
j=1δi,j)

n
i=1) be the universal topmost pseudotree for [ϕ], [ψ] and denoted

by ι the ϕψ−1-equivariant isometry on (T, (⊕ki
j=1δi,j)

n
i=1) that fixes each orbit of branches.

Choose ϕ′ ∈ [ϕ] such that the ϕ′ψ−1-equivariant isometry ι′ on (T, (⊕ki
j=1δi,j)

n
i=1) fixes a

branch point. The F -action on the limit pretree T is free since [ϕ] is atoroidal. Adapting
Kapovich–Lustig’s Proposition 4.1 in [17] to pseudotrees, we conclude ι′ fixes all points
of T , i.e. ι′ is the identity map on T and ϕ′ = ψ; therefore, [ϕ] = [ψ].
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We call this a recognition theorem because it lists a set of dynamical invariants (univer-
sal topmost pseudotree, stretch factors of the factored pseudometrics, and action on orbits
of branches) that determine an atoroidal outer automorphism. Feighn–Handel’s recogni-
tion theorem [9, Theorem 5.3] gives related dynamical invariants (attracting laminations,
their stretch factors, non-repelling fixed points at infinity, and twist coordinates) that de-
termine a forward rotationless outer automorphisms; their theorem can also be extended
to all atoroidal outer automorphisms as in our corollary.

A minor change introducing twist coordinates extends our corollary (or Feighn–Handel’s
recognition theorem) to outer automorphisms whose limit pretrees have cyclic point sta-
bilizers. With more care, the corollary should generalize to outer automorphisms whose
restrictions to the point stabilizers of limit pretrees is linearly growing — linearly growing
automorphisms have canonical representatives [5]. Generalizing to all outer automorphisms
would require having canonical nondegenerate representatives for all polynomially growing
automorphisms.

Corollary A.2. If ϕ : F → F is an atoroidal automorphism, then the centralizer of [ϕ] in
the outer automorphism group Out(F ) is virtually a free abelian group with rank at most
the number of [ϕ]-orbits of attracting laminations for [ϕ].

Feighn–Handel do not explicitly state this corollary, but it follows from [8, Lemma 5.5].
Bestvina–Feighn–Handel previously proved that centralizers of fully irreducible outer au-
tomorphisms are virtually cyclic [2, Theorem 2.14]. In the first version of this paper, we
claimed Corollary A.2 as a new result, and a referee told us the corollary follows from
Feighn–Handel’s work on CT maps. Our new proof uses the universal topmost pseudotree.

Proof. Let (T, (⊕ki
j=1δi,j)

n
i=1) be the universal topmost pseudotree for [ϕ], C[ϕ] the cen-

tralizer for [ϕ] in Out(F ), and k ..=
∑n

i=1 ki. Replace C[ϕ] with a finite index subgroup
and assume it acts trivially on the attracting laminations for [ϕ]. If [ϕ′] ∈ C[ϕ], then the
universal pseudotree supports a ϕ′-equivariant dilation by uniqueness of the pseudotree
for [ϕ]. Thus we can define a group homomorphism ℓ : C[ϕ] → Rk

>0 that maps [ϕ′] to
(λ′i,j : 1 ≤ i ≤ n, 1 ≤ j ≤ ki). The image of C[ϕ] under each coordinate projection ℓi,j of ℓ
is a cyclic subgroup of R>0 by Corollary II.12.

By index theory, we can replace C[ϕ] with a finite index subgroup again and assume it
fixes the orbits of branches in T . As the F -action on T is free, the kernel ker(ℓ) is trivial
— see Proposition 4.2 in [17]. So C[ϕ] is free abelian with rank ≤ k.

Again, the corollary can be adapted to work for outer automorphisms whose limit
pretrees have cyclic point stabilizers. Yassine Guerch recently gave another proof of this
more general statement using different methods [13, Theorem 5.3]. With more care, our
work or Feighn–Handel’s can combine with Andrew–Martino’s paper [1, Theorem 1.5] to
characterize the centralizer of an outer automorphism whose restriction to point stabilizers
of limit pretrees is linearly growing.
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We think it is open whether arbitrary centralizers are finitely generated. For a complete
description of arbitrary centralizers, one needs canonical nondegenerate representatives for
polynomially growing automorphisms. Presumably, a polynomially growing automorphism
of degree d ≥ 2 has a canonical fixed free splitting whose loxodromics are exactly the
elements that grow with degree d.
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