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DERIVED CHARACTER MAPS OF GROUP REPRESENTATIONS

YURI BEREST AND AJAY C. RAMADOSS

Abstract. In this paper, we construct and study derived character maps of finite-dimensional representa-
tions of ∞-groups. As models for ∞-groups we take homotopy simplicial groups, i.e. homotopy simplicial
Gop-algebras over the algebraic theory of groups (in the sense of [4]). We define cyclic, symmetric and rep-
resentation homology for ‘group algebras’ k[Γ] over such groups and construct canonical trace maps relating
these homology theories. In the case of one-dimensional representations, we show that our trace maps are
of topological origin: they are induced by natural maps of (iterated) loop spaces that are well studied in
homotopy theory. Using this topological interpretation, we deduce some algebraic results about representa-
tion homology: in particular, we prove that the symmetric homology of group algebras and one-dimensional
representation homology are naturally isomorphic, provided the base ring k is a field of characteristic zero.
We also study the behavior of the derived character maps of n-dimensional representations in the stable
limit as n → ∞, in which case we show that they ‘converge’ to become isomorphisms.

1. Introduction

If Γ is a finite group and k is a field of characteristic zero, every finite-dimensional k-linear representation
̺ : Γ → GLn(k) is semi-simple and determined (up to equivalence) by its character: the trace function
Trn : 〈g〉 7→ Trn[̺(g)] defined on the set 〈Γ〉 of conjugacy classes of elements of Γ. Moreover, for each n ≥ 0,
there are only finitely many equivalence classes of such representations. These well familiar facts from
representation theory of finite groups generalize to arbitrary groups by means of algebraic geometry. For
any discrete group Γ, the set of all n-dimensional representations of Γ can be naturally given the structure of
an affine algebraic variety (more precisely, an affine k-scheme) Repn(Γ) called the representation variety of Γ.
The equivalence classes of n-dimensional representations of Γ are classified by the orbits of the general linear
group GLn that acts algebraically on Repn(Γ) by conjugation. The classes of semi-simple representations
correspond to the closed orbits1 and are parametrized by the affine quotient scheme

Repn(Γ)//GLn(k) := SpecO[Repn(Γ)]
GLn

called the character variety of Γ. Now, the characters of representations assemble into a linear map

(1.1) Trn(Γ) : k〈Γ〉 → O[Repn(Γ)]
GLn

which is defined on the k-vector space k〈Γ〉 spanned by the conjugacy classes of elements of Γ. A well-
known theorem of C. Procesi [57] asserts that the characters of Γ, i.e. the images of the map (1.1), generate
O[Repn(Γ)]

GLn as a commutative k-algebra, and thus, by Nullstellensatz, detect the semi-simple representa-
tions of Γ when k is algebraically closed. In general, the equivariant geometry of Repn(Γ) is closely related
to representation theory of Γ, the geometric structure of GLn-orbits in Repn(Γ) determining the algebraic
structure of representations. Since the late 1980s this relation has been extensively studied and exploited in
many areas of mathematics, most notably in geometric group theory and low-dimensional topology (see, for
example, [47, 64]).

Derived algebraic geometry allows one to extend — and in some sense to complete — this beautiful
connection between representation theory and geometry. The classical representation scheme Repn(Γ) admits
a natural derived extension DRepn(Γ) called the derived representation scheme2 of Γ. In general, DRepn(Γ)
is represented by a simplicial commutative k-algebra O[DRepn(Γ)] whose homotopy groups πiO[DRepn(Γ)],

1At least when Γ is finitely generated.
2The first construction of this kind — the derived moduli space RLocG(X) of G-local systems over a pointed connected space

X — was introduced by Kapranov [40]. In recent years, several other constructions have been developed in various frameworks
of derived algebraic geometry (most notably, in the work of Toën, Vezzosi, Pridham and Pantev (see, e.g., [66, 56, 55, 54, 51, 50]).
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i ≥ 0, are (non-abelian) homological invariants of Γ (or rather its classifying space BΓ). Following [14, 13],
we set

(1.2) HR∗(Γ,GLn(k)) := π∗O[DRepn(Γ)]

and call (1.2) the n-dimensional representation homology of Γ. By definition, HR∗(Γ,GLn(k)) is a graded
commutative k-algebra, whose degree 0 part is canonically isomorphic to the coordinate ring of Repn(Γ):

(1.3) HR0(Γ,GLn(k)) ∼= O[Repn(Γ)] .

Apart from groups, representation homology can be also defined for various types of algebras (e.g., as-
sociative and Lie algebras, see [9, 10, 8, 7]) as well as for topological spaces (see [14, 13, 12]). What is
surprising perhaps is that, in the case of groups and spaces, there is a simple construction of representation
homology that does not require the use of derived algebraic geometry nor a heavy machinery of homotopical
algebra. This construction (discovered in [14]) plays a key role in the present paper: we will use it to define

representation homology for homotopy simplicial groups, which are simple models for ∞-groups, a more
general and (from the homotopy-theoretic point of view) more natural concept than that of a discrete or
simplicial group (see [4]).

Now, returning to the character map (1.1), we observe that its domain — the k-span k〈Γ〉 of the conjugacy
classes of elements of Γ — is isomorphic to the 0-th cyclic homology of the group algebra k[Γ]:

(1.4) HC0(k[Γ]) ∼= k〈Γ〉

With isomorphisms (1.3) and (1.4), we can therefore rewrite (1.1) in the form

(1.5) Trn(Γ) : HC0(k[Γ]) → HR0(Γ,GLn(k))
GLn

This suggests that there might exist a natural extension of the map (1.1) to higher cyclic homology with
values in higher representation homology of Γ:

(1.6) Trn(Γ)∗ : HC∗(k[Γ]) → HR∗(Γ,GLn(k))
GLn

We call (1.6) the derived character maps of n-dimensional representations of Γ, and our first goal in this
paper is to define and study these maps for an arbitrary homotopy simplicial group Γ.

In the case of associative algebras, the derived character maps were originally constructed in [9], using
non-abelian homological algebra. This construction was extended to Lie algebras in [8], where it was shown
— among other things — that derived character maps of Lie algebra representations are Koszul dual to
the classical Loday-Quillen-Tsygan maps [46, 67]. The case of groups that we study in this paper is special
for several reasons. First, as mentioned above, in this case the representation homology admits a simple
construction that is similar to Connes’ well-known construction of cyclic homology in terms of Tor-functors
on the cyclic category. We will show that behind this ‘similarity’ there is actually a connection: a simple
formula for the derived character maps (1.6) relating Tor-functors via classical homological algebra (see
Section 3.4 and, in particular, Definition 3.5).

Second, the cyclic homology of group algebras has a beautiful topological interpretation that goes back
to the work of Goodwillie, Burghelea, Fiedorowicz and others (see [44, Chap. 7]). Specifically, there is a
natural isomorphism

(1.7) HC∗(k[Γ]) ∼= H∗(ES
1 ×S1L(BΓ); k) ,

where the right-hand side is the S1-equivariant homology of the free loop space L(BΓ) := Map(S1, BΓ) of
the classifying space of Γ. In fact, (1.7) is just one on the list of several classical isomorphisms relating
algebraic homology theories associated with so-called crossed simplicial groups [28] to (stable) homotopy

A comparison of these constructions can be found in [12, Appendix]. The relation to our present work is briefly discussed in
the end of Section 3.2.
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theory:

HH∗(k[Γ]) ∼= H∗(L(BΓ); k) ,

HC∗(k[Γ]) ∼= H∗(ES
1 ×S1L(BΓ); k) ,

HS∗(k[Γ]) ∼= H∗(ΩΩ∞Σ∞(BΓ); k) ,(1.8)

HB∗(k[Γ]) ∼= H∗(Ω
2Σ(BΓ); k) ,

HO∗(k[Γ]) ∼= H∗(E(Z/2)+ ∧Z/2 ΩΩ∞Σ∞(BΓ); k) ,

where Ω, Σ and Ω∞Σ∞ denote the based loop, the (reduced) suspension, and the stable homotopy functors,
respectively. The first two of the above isomorphisms (for Hochschild and cyclic homology) are well known:
they were originally established in [30] and [20], and their proofs appear in Loday’s textbook [44] (see
also [45] for a nice self-contained exposition). The last three (for the symmetric HS∗, braided HB∗ and
hyperoctahedral HO∗ homologies) are less known: they were discovered by Fiedorowicz [27] in the early
1990s, but detailed proofs were published only recently (see [2] and [34]).

The second (and perhaps, the main) goal of this paper is to extend the above list of isomorphisms by adding
to it representation homology. To be precise, for any commutative ring k, let HR∗(k[Γ]) := HR∗(Γ,Gm(k))
denote the one-dimensional representation homology of Γ. We prove (see Theorem 4.1 and Lemma 4.1):

Theorem 1.1. For any homotopy simplicial group Γ, there is a natural isomorphism

(1.9) HR∗(k[Γ]) ∼= H∗(Ω SP∞(BΓ); k)

where SP∞(BΓ) denotes the classical Dold-Thom space of the classifying space of Γ .

Apart from the Hochschild and cyclic theories, most interesting on the list (1.8) is the symmetric homology

theory HS∗ introduced in [27] and studied in [2, 3]. Roughly speaking, HS∗ is defined3 in the same way as
HC∗, with Connes’ cyclic category ∆C replaced by the symmetric category ∆S, where the family of the
symmetric groups {Sop

n+1}n≥0 is used instead of the cyclic groups {Cn+1}n≥0. Now, the natural inclusions
of groups Cn+1 →֒ Sn+1 extend to a functor ι : ∆Cop →֒ ∆S, which, in turn, induces a natural map
HC∗(k[Γ])→ HS∗(k[Γ]) . It turns out that, with identifications (1.8), this last map is induced (on homology)
by a map of topological spaces

(1.10) CSBΓ : ES1 ×S1L(BΓ) → ΩΩ∞Σ∞(BΓ)

The map (1.10) is actually defined as a natural transformation CSX on the (homotopy) category of all pointed
spaces; it was originally constructed in the paper [21], and its relation to symmetric homology was noticed
in [27]. We will refer to (1.10) as the Carlsson-Cohen map for BΓ.

We can now state our second observation that provides a topological interpretation of the derived character
maps (1.6) for one-dimensional representations. To shorten notation we will write the maps (1.6) for n = 1
as

(1.11) Tr(Γ)∗ : HC∗(k[Γ]) → HR∗(k[Γ])

The next theorem encapsulates the main results of Section 4.3 (see Proposition 4.1 and Corollary 4.1),
Section 5.2 (see Proposition 5.1) and Section 5.3 (see Proposition 5.2).

Theorem 1.2. With isomorphisms (1.8) and (1.9), the derived character maps (1.11) are induced on ho-

mology by a natural map of topological spaces

(1.12) CRBΓ : ES1 ×S1L(BΓ) → ΩSP∞(BΓ)

The map (1.12) factors (as a homotopy natural transformation) through the Carlsson-Cohen map (1.10):

(1.13) ES1 ×S1L(BΓ)
CSBΓ−−−→ ΩΩ∞Σ∞(BΓ)

SRBΓ−−−→ ΩSP∞(BΓ)

where the induced map SR is the (looped once) canonical natural transformation Ω∞Σ∞ → SP∞ relating

stable homotopy to (reduced) singular homology of pointed spaces.

3See Sections 3.3 and 4.2 for precise definitions of HC∗(k[Γ]) and HS∗(k[Γ]) in the context of homotopy simplicial groups.
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Theorem 1.2 shows that, for any homotopy simplicial group Γ, the derived character map (1.11) factors
through symmetric homology, and the induced map

(1.14) SRBΓ,∗ : HS∗(k[Γ]) → HR∗(k[Γ])

is determined by a map of spaces that is well known in topology. Using topological results, we then conclude
(see Corollary 5.1 and Remark 5.1):

Corollary 1.1. If k is a field of characteristic 0, the map (1.14) is an isomorphism, at least when BΓ is a

simply connected space.

The results stated above are all concerned with derived characters of one-dimensional representations.
For higher dimensional representations (n > 1), the maps (1.6) are more complicated: in particular, they do
not seem to factor through HS∗(k[Γ]), and in general, the relation between symmetric homology and repre-
sentation homology remains mysterious. However, when n → ∞, things become more tractable. Assuming
that k is a field of characteristic 0, we can naturally pass to the projective limit:

HR∗(Γ, GL∞(k))GL∞ := lim
←−
n

HR∗(Γ, GLn(k))
GLn

and construct the stable character maps

(1.15) Tr∞(Γ)∗ : HC∗(k[Γ]) → HR∗(Γ, GL∞(k))GL∞ ,

where HC stands for the reduced cyclic homology. In this case, we have the following result, the proof of
which is parallel to [10] and outlined in the last section of the paper (see Theorem 6.1).

Theorem 1.3. Let Γ be a homotopy simplicial group such that BΓ is a simply connected space of finite

(rational) type. Then the stable character maps (1.15) induce an algebra isomorphism

(1.16) ΛTr∞(Γ)∗ : Λk[ HC∗(k[Γ])]
∼
−→ HR∗(Γ,GL∞)GL∞ ,

where Λk[ HC∗(k[Γ])] is the graded symmetric algebra generated by the reduced cyclic homology of k[Γ].

We close this Introduction by mentioning one application of stable character maps in derived Poisson
geometry. If Γ is a simplicial group model of a simply-connected closed manifold X of dimension d (so that

X ≃ BΓ), then, by (1.8), we can identify HC∗(k[Γ]) with the reduced S1-equivariant homology H̄S
1

∗ (L(X); k)
of the free loop space of X . Thanks to the work of Chas and Sullivan, the latter is known to carry the so-

called string topology Lie bracket, making the symmetric algebra Λk[ HC∗(k[Γ])] ∼= Λk[ H̄
S1

∗ (L(X); k) ] a
graded Poisson algebra. On the other hand, the representation homology ring HR∗(Γ,GL∞)GL∞ acquires a
(2− d)-shifted graded Poisson structure from the Poincaré duality pairing on (the cohomology of) X . As an
application of Theorem 1.3, we show that under the isomorphism (1.16), these two Poisson structures agree:
i.e., the map (1.16) is an isomorphism of graded Poisson algebras (see Corollary 6.1).

The paper is organized as follows. In Section 2, we review basic facts from abstract homotopy theory
concerning homotopy colimits. The new result proved in this section is Proposition 2.1, which we refer to
as ‘Shapiro Lemma for model categories’. This proposition provides a key step for proofs of main theorems
in Section 4 and may be of independent interest. In Section 3, after reviewing basic theory of homotopy
simplicial groups (Section 3.1), we define representation homology (Section 3.2), and cyclic homology (Sec-
tion 3.3) for such groups and construct the derived character maps relating the two (Section 3.4). In Section
4, we prove Theorem 1.1 (Section 4.1) and then, after defining symmetric homology for homotopy simplicial
groups (Section 4.2), we prove part of Theorem 1.2 (see Proposition 4.1 and Corollary 4.1 in Section 4.3).
The proof of Theorem 1.2 is completed in Section 6, where we study the maps (1.12) and (1.13) in topological
terms, using Goodwillie homotopy calculus and classical operads (see Proposition 5.1 and Proposition 5.2).
Finally, in Section 6, we describe the stabilization procedure for the derived character maps as n→∞ and
sketch the proofs of Theorem 1.3 and Corollary 6.1. Each of the six sections begins with a short introduction
that provides more details about its contents.

Acknowledgments. The work of the first author was partially supported by NSF grant DMS 1702372 and
the Simons Collaboration Grant 712995. The second author was partially supported by NSF grant DMS
1702323.
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2. Shapiro Lemma for Model Categories

In this section, we establish one general result in abstract homotopy theory related to homotopy colimits
that will provide a key step in the proof of our main Theorem 1.1. We call this result (Proposition 2.1)
‘Shapiro Lemma for model categories’ as it appears to be a non-abelian generalization (in the context of
model categories) of the classical Shapiro Lemma in homological algebra. We begin with a brief overview
of the theory of homotopy colimits. The standard reference for this material is the last two chapters of
Hirschhorn’s book [36] but many results that we mention are classical and go back to Bousfield-Kan [19]
and Quillen [59]. Our exposition is inspired by Cisinski’s beautiful paper [24] that treats homotopy colimits
axiomatically by the analogy with derived direct image functors in algebraic geometry (unlike [24], however,
we do not use the language of Grothendieck derivators). With exception of Proposition 2.1, which (to the
best of our knowledge) is new, all results in this section are known.

2.1. Notation and conventions. Throughout this section, M will denote a fixed model category which
we assume to be cofibrantly generated and having all small limits and colimits. Unless stated otherwise, A,
B, C, . . . will denote small categories that we will use to index diagrams inM. For a small category A, the
category of A-diagrams inM (i.e. all functors A →M) will be denotedMA. As usual, Cat will stand for
the category of all small categories with morphisms being arbitrary functors.

2.2. Homotopy colimits. For any small categoryA, the categoryMA has a projective (aka Bousfield-Kan)
model structure inherited fromM: the weak equivalences and fibrations are defined in this model structure
objectwise, while the cofibrations are determined by the Lifting Axiom of model categories (specifically, as
morphisms having the left lifting property with respect to fibrations which are also weak equivalences in
MA). Since M is cofibrantly generated, such a model structure on MA always exists and is cofibrantly
generated (see [36, Theorem 11.6.1]).

Any functor f : A → B (a morphism in Cat) defines the pullback functor on the diagram categories
f∗ : MB → MA , which is obtained by restricting diagrams B → M along f . This pullback functor
preserves objectwise weak equivalences and fibrations and — since M has small colimits – admits a left
adjoint:

(2.1) f! :M
A ⇄MB : f∗

defined on a diagram X : A → M as the left Kan extension f!(X) := Lanf (X) of X along f . Thus, the
functors (2.1) form a Quillen pair between the model categoriesMA andMB. Then, by Quillen’s Adjunction
Theorem (see [36, 8.5.8]), they admit total (left and right) derived functors

(2.2) Lf! : Ho(M
A) ⇄ Ho(MB) : f∗

that form an adjunction between the homotopy categories of diagrams induced by (2.1).
The derived pushforward functor Lf! is called the homotopy left Kan extension along f . It is a gener-

alization of the classical homotopy colimit functor hocolimA : Ho(MA) → Ho(M) that corresponds to the
trivial map A → ∗ , where “∗” denotes the one-point category (the terminal object in Cat). In this last
case, we will use the classical notation writing hocolimA(X) instead of L(A → ∗)!(X) for X : A →M. We
summarize the main properties of this construction in the following theorem.

Theorem 2.1 (see [24]). Let M be a model category with all small limits and colimits.

(1) 2-Functoriality: The pullback functors f∗ fit together to give a strict, weakly product-preserving 2-

functor Catop → CAT that takes a small category A ∈ Cat to the homotopy category Ho(MA). By adjunc-

tion, this implies, in particular, the existence of natural weak equivalences

(2.3) L(fg)! ≃ Lf!Lg!

for any composable morphisms f and g in Cat.

(2) Reflexivity: For any A ∈ Cat, the functor i∗ : Ho(MA) → Ho(MAδ

) corresponding to the inclusion

of the underlying discrete subcategory Aδ ⊂ A is conservative, i.e. reflects the weak equivalences in MAδ

.
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(3) Base change: For any f : A → B and any object b ∈ B, the 2-commutativity of the fibre square

f ↓ b
π✲ A

⇐

∗

p

❄ b✲ B

f

❄

induces a change-of-base natural transformation that is a natural weak equivalence:

Lp! π
∗ ∼
→ b∗ Lf!

For a diagram X : A →M, this simply says that

(2.4) Lf!X(b) ≃ hocolimf↓b(π
∗X) .

Remark 2.1. In terminology of [24] (cf. Def. 1.6, pp. 205-206), the properties (1)-(3) of Theorem 2.1 can
be summarized by saying that the 2-functor Ho(M−) : Catop → CAT is a weak left derivator (un dérivateur

faible à gauche) associated to the model categoryM.

The properties of homotopy colimits listed in Theorem 2.1 are essentially formal. The next result —
called the Cofinality Theorem — gives a deeper property of homotopy-theoretic nature that is very useful
in computations. To state this result we recall that a functor f : A → B is right homotopy cofinal if its
comma-category b ↓ f under each object b ∈ B is (weakly) contractible, i.e. B(b ↓ f) ≃ pt . As an example,
we point out that every right adjoint functor is right homotopy cofinal: indeed, if f : A → B admits a
left adjoint, say g : B → A, then each comma-category b ↓ f has an initial object (namely, (b, ηb), where
ηb : b→ fg(b) is the unit of the adjunction evaluated at b ∈ B), hence b ↓ f is contractible for any b ∈ B.

Theorem 2.2 (Cofinality Theorem). If f : A → B is right homotopy cofinal, then the natural map

hocolimA(f
∗X)

∼
→ hocolimB(X)

is a weak equivalence for any diagram X : B →M.

For the proof of Theorem 2.2 we refer to [36, Theorem 19.6.7]. As an application, we prove one simple
lemma that we will need for our computations. Given a functor f : A → B , we recall that its fibre category

f−1(b) over an object b ∈ B is the subcategory of A consisting of all objects a ∈ A such that f(a) = b and
all morphisms ϕ ∈ HomA(a, a

′) such that f(ϕ) = Idb. Note that the fibre inclusion functor i : f−1(b) →֒ A
factors through the comma-category f ↓ b over b:

(2.5)

f−1(b) ⊂
i✲ A

f ↓ b

j

❄ π

✲

defining the ‘comparison’ functor

(2.6) j : f−1(b)→ f ↓ b a 7→ (a, f(a) = b
Id
→ b)

Recall that a functor f : A → B is precofibred if (2.6) has a left adjoint for every object b ∈ B (see [58, §1]).

Lemma 2.1. If f : A → B is precofibred, then

(Lf!X)(b) ≃ hocolimf−1(b) (i
∗X)

for any diagram X : A →M.
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Proof. By assumption, the inclusion functor j : f−1(b) → f ↓ b is right adjoint, hence right homotopy
cofinal. By the base change formula (2.4) and Cofinality Theorem 2.2, we conclude

(Lf!X)(b) ≃ hocolimf↓b(π
∗X)

≃ hocolimf−1(b)(j
∗π∗X)

= hocolimf−1(b)((πj)
∗X)

= hocolimf−1(b)(i
∗X)

where the last identification follows from (2.5). �

In practice, precofibred functors arise from the so-called Grothendieck construction (see [65]). Given a
functor F : C → Cat (i.e., a strict diagram of small catgories), its Grothendieck construction is defined to
be the small category C∫F with Ob(C∫F ) := {(c, x) : c ∈ C, x ∈ F (c)} and morphism sets

(2.7) HomC
∫
F ((c, x), (c

′, x′)) := {(ϕ, f) : ϕ ∈ HomC(c, c
′), f ∈ HomF (c′)(F (ϕ)x, x

′)} .

The composition in C
∫
F is given by (ϕ, f)◦ (ϕ′, f ′) = (ϕϕ′, f F (ϕ)f ′) . The category C

∫
F comes equipped

with a natural (forgetful) functor

p : C∫F → C , (c, x) 7→ c

which is precofibred (in fact, cofibred) over C. Notice that p−1(c) = F (c) for any object c ∈ C. Hence, by
Lemma 2.1, for any functor X : C

∫
F →M ,

(2.8) (Lp!X)(c) ≃ hocolimF (c)[X(c)] ,

where X(c) := i∗cX is the restriction of X to F (c) via the inclusion functor

ic : F (c)→ C∫F , x 7→ (c, x) , (x
f
→ x′) 7→ (Idc, f) .

Note that, by 2-functoriality of homotopy Kan extensions (see (2.3)), (2.8) implies the weak equivalence

(2.9) hocolimC∫F (X) ≃ hocolimc∈C(hocolimF (c)X(c))

which is known as Thomason’s formula for homotopy colimits over C
∫
F (see [23, Theorem 26.8]).

An important special case arises when we apply the Grothendieck construction to a set-valued functor
F : C → Set , regarding sets as discrete categories (i.e. by embedding Set →֒ Cat). In this case, the
category C

∫
F is usually denoted CF and called the category of elements of F as its object set Ob(CF ) can

be identified with
∐

c∈C F (c) (we will still write the objects of CF as pairs (c, x), where c ∈ C and x ∈ F (c)).
The Hom-sets in CF are given by HomCF

((c, x), (c′, x′)) = {ϕ ∈ HomC(c, c
′) : F (ϕ)x = x′} (cf. (2.7)). If we

takeM = sSet to be the category of simplicial sets (equipped with standard Quillen model structure) and
apply Thomason’s formula (2.9) to the trivial diagram X : CF → ∗ inM, then for any functor F : C → Set ,
we get

(2.10) hocolimC(F ) ∼= N∗(CF )

where N∗(CF ) denotes the simplicial nerve of the category CF . Formula (2.10) is known as the Bousfield-Kan

construction for homotopy colimits in sSet (see [19]).

2.3. Homotopy coends. Homotopy coends are special kinds of homotopy colimits defined for bifunctors,
i.e. the diagrams of the form Cop × C → M. There is a broader range of techniques for manipulating with
such homotopy colimits, which makes them more accessible for computations. The homotopy coends are
defined in terms of the so-called factorization category F(C) introduced by Quillen [59]. It can be described
as the category of elements of the bifunctor Hom : Cop × C → Set of the given category C:

(2.11) F(C) := (Cop × C)∫ Hom .
7



We will be actually dealing with the opposite category F(C)op which can be explicitly described as follows:
the objects of F(C)op are the morphisms {ϕ : c→ d} in C, and the Hom-sets are commutative squares

(2.12)

d ✛β
d′

c

ϕ
✻

α✲ c′

ϕ′

✻

i.e., HomF(C)op(ϕ, ϕ
′) consists of the pairs of morphisms (α, β) in C such that ϕ = βϕ′α, with compositions

defined in the obvious way. Note that F(C)op 6≃ F(Cop) in general. Now, there are two natural functors

(2.13) sop : F(C)op → C , (c
ϕ
→ d) 7→ c

(2.14) top : F(C)op → Cop , (c
ϕ
→ d) 7→ d

called the (opposite) source and target functors, respectively. We have

Lemma 2.2 (Quillen). The functors (2.13) and (2.14) are both right homotopy cofinal.

Proof. Since F(C) is defined by Grothendieck construction (2.11), the canonical (forgetful) functor

s× t : F(C)→ Cop × C

is precofibred. It follows (cf. [59, Example, p. 94]) that both s : F(C) → Cop and t : F(C) → C are
precofibred. Hence the inclusions s−1(c) →֒ s ↓ c and t−1(d) →֒ t ↓ d induce weak equivalences of classifying
spaces

(2.15) B(s−1(c)) ≃ B(s ↓ c) , B(t−1(d)) ≃ B(t ↓ d) .

On the other hand, by inspection, s−1(c) = c ↓ C and t−1(d) = (C ↓ d)op are the slice and coslice categories
respectively. Since both c ↓ C and (C ↓ d)op have initial objects, they are contractible for all c, d ∈ C. To
complete the proof it remains to note that (c ↓ sop) = (s ↓ c)op and (d ↓ top) = (t ↓ d)op, where sop and top

are the functors (2.13) and (2.14). Hence

B(c ↓ sop) = B(s ↓ c)op ≃ B(s ↓ c) ≃ B(s−1(c)) ≃ pt

and similarly B(d ↓ top) ≃ pt. This shows that sop and top are right homotopy cofinal. �

In view of Lemma 2.2, the Cofinality Theorem gives two natural weak equivalences

(2.16) s∗ : hocolimF(C)op(s
∗Y )

∼
→ hocolimC(Y )

(2.17) t∗ : hocolimF(C)op(t
∗X)

∼
→ hocolimCop(X)

for any diagrams X : Cop → M and Y : C → M. These equivalences can be used to express arbitrary
homotopy colimits over C and Cop as homotopy coends which we introduce next. Set

πop := top × sop : F(C)op → Cop × C

and for a bifunctor D : Cop × C →M, define its homotopy coend by

(2.18)

∫ c∈C

L

D(c, c) := hocolimF(C)op(π
∗D) ,

where π∗D := D ◦πop : F(C)op →M. This is indeed the (left) derived functor of the classical coend functor
which is usually denoted

(2.19)

∫ c∈C

D(c, c) := colimF(C)op(π
∗D) .
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The notation (2.18) is very convenient as it suggests the analogy with (definite) integrals in Calculus. For
example, for a bifunctor D : (A × B)e → M defined on a product of two small categories (A × B)e :=
Aop × Bop ×A× B there is a natural weak equivalence

∫ (a,b)∈A×B

L

D(a, b; a, b) ≃

∫ a∈A

L

∫ b∈B

L

D(a, b; a, b)

which is analogous to the classical Fubini Theorem in Calculus (and thus called the Fubini Theorem for
homotopy coends). Another useful formula that we will need is

(2.20)

∫ c∈C

L

LF [D(c, c)] ≃ LF

[
∫ c∈C

L

D(c, c)

]

where F is a left Quillen functor between model categories. This formula is a consequence of a more general
(well-known) result that the derived functors of left Quillen functors preserve homotopy colimits (for a short
proof, see e.g. [70, Proposition 3.15]).

We are now in a position to state the main result of this section.

Proposition 2.1 (Shapiro Lemma for model categories). Let M be a model category, C a small category,

and F : C → Set any set-valued functor on C. Then, for any contravariant diagram X : Cop →M,

(2.21) hocolimCop

F
(p∗X) ≃

∫ c∈C

L

X(c)⊗ F (c)

where CF is the category of elements of F , and “⊗” denotes the natural (tensor) action4 of Set on M.

For the proof of Proposition 2.1, we need the following observation.

Lemma 2.3. For any set-valued functor F : C → Set, the functor F(p)op : F(CF )op → F(C)op induced by

the canonical projection p : CF → C is precofibred.

Proof. The proof is by direct verification. To simplify the notation we set f := F(p)op and describe first
the fibre category f−1(ϕ) for (ϕ : c → d) ∈ F(C)op. The objects of f−1(ϕ) are the morphisms in CF of the

form (c, x)
ϕ
−→ (d, y) such that y = F (ϕ)(x). We will write the object (c, x)

ϕ
−→ (d, F (ϕ)(x)) of F(CF )op as

(ϕ, x). Thus,

Ob(f−1(ϕ)) = {(ϕ, x) : x ∈ F (c)} .

Further, the morphisms (ϕ, x)→ (ϕ, y) in f−1(ϕ) are precisely the morphisms in F(CF )op, i.e., commutative
diagrams of the form

(d, F (ϕ)(x)) ✛β (d, F (ϕ)(y))

(c, x)

ϕ
✻

α ✲ (c, y)

ϕ
✻

mapped to the identity by f . This last condition implies that α = Idc and β = Idd. Hence,

Homf−1(ϕ)

(
(ϕ, x), (ϕ, y)

)
=

{

{Id} if x = y

∅ otherwise
.

Hence, f−1(ϕ) ∼= F (c), where the set F (c) is viewed as a discrete category.
Next, for (ϕ : c→ d) ∈ F(C)op, we have

Ob(f ↓ ϕ) = {[ψ : k → l, z, α, β] : (ψ, z) ∈ F(CF )
op, (α, β) ∈ HomF(C)op(ψ, ϕ)} .

4That is, ⊗ is the bifunctor M× Set → M defined by A⊗ S =
∐

S
A, where

∐
S
A is the coproduct of copies of A indexed

by the elements of S.
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The morphisms [ψ, z, α, β]→ [ψ′, z′, α′, β′] in f ↓ ϕ are the commutative diagrams in CF of the form

(l, F (ψ)(z)) ✛δ (l′, F (ψ′)(z′))

(k, z)

ψ
✻

γ ✲ (k′, z′)

ψ′
✻

such that the diagram

l ✛
δ

l′

d

β′ ✲
β

✛

k

ψ

✻

γ ✲

ϕ
✻

k′

ψ′

✻

c

α′

✛
α ✲

commutes in C. Hence, a morphism [ψ, z, α, β] → [ϕ, x, Idc, Idd] in f ↓ ϕ is a commutative diagram of the
form

(l, F (ψ)(z)) ✛
β

(d, F (ϕ)(x))

(k, z)

ψ
✻

α ✲ (c, x)

ϕ
✻

Such a diagram exists if and only if x = F (α)(z), in which case it is unique. Hence,

Homf↓ϕ([ψ, z, α, β], [ϕ, x, Idc, Idd]) =

{

{(α, β)} if x = F (α)(z)

∅ otherwise .

Here, (α, β) is viewed as a morphism (ψ, z)→ (ϕ, x) in F(CF )op rather then F(C)op.
Next, consider the assignment

Φ : f ↓ ϕ→ f−1(ϕ) , [ψ, z, α, β] 7→ (ϕ, F (α)(z)) .

If (γ, δ) : (ψ, z)→ (ψ′, z′) is a morphism in f ↓ ϕ, then z′ = F (γ)(z) and α′ ◦ γ = α. Hence, letting Φ map
(γ, δ) to the identity on (ϕ, F (α)(z)) makes Φ a functor. We then note that

Homf−1(ϕ)(Φ([ψ, z, α, β]), (ϕ, x)) = Homf−1(ϕ)((ϕ, F (α)(z)), (ϕ, x)) =

{

{Id} if x = F (α)(z)

∅ otherwise
.

Hence, there is a natural bijection

Homf−1(ϕ)(Φ([ψ, z, α, β]), (ϕ, x)) ∼= Homf↓ϕ([ψ, z, α, β], [ϕ, x, Idc, Idd]) ,

showing that Φ is left adjoint to the canonical inclusion

f−1(ϕ) →֒ f ↓ ϕ , (ϕ, x) 7→ [ϕ, x, Idc, Idd] .

This shows that f is precofibred, as desired. �

Proof of Proposition 2.1. By formula (2.17) (applied to the category CF ), there is a natural weak equivalence

t∗ : hocolimF(CF )op(t
∗p∗X)

∼
−→ hocolimCop

F
(p∗X)

where

t∗p∗X : F(CF )
op top
−−→ CopF

pop

−−→ Cop
X
−→ M .

10



On the other hand, by definition (2.18),

∫ c∈C

L

X(c)⊗ F (c) = hocolimF(C)op [π
∗(X ⊗ F )]

where

π∗(X ⊗ F ) : F(C)op
πop

−−→ Cop × C
X×F
−−−→ M× Set

⊗
−→ M .

To prove the desired proposition we thus need to show that

(2.22) hocolimF(CF )op(t
∗p∗X) ≃ hocolimF(C)op [π

∗(X ⊗ F )]

By Theorem 2.1(1) (see (2.3)), it suffices to show that there is an weak equivalence of F(C)op-diagrams

(2.23) Lf!(t
∗p∗X) ≃ π∗(X ⊗ F ) ,

where f : F(CF )op → F(C)op is the functor induced by the canonical projection p : CF → C . Thanks to
Lemma 2.3, we can use Lemma 2.1 to evaluate the homotopy Kan extension in (2.23) in terms of homotopy
colimits over fibre categeories. Specifically, for any ϕ ∈ F(C)op, we have

Lf!(t
∗p∗X)(ϕ) ≃ hocolimf−1(ϕ)(i

∗t∗p∗X)

where i : f−1(ϕ) →֒ F(CF )op. In the proof of Lemma 2.3, we have described the fibre category f−1(ϕ):
namely, f−1(ϕ) is isomorphic to the discrete category F (c) for any (ϕ : c → d) ∈ F(C)op. Now, since
both sides of (2.21) are invariant under weak equivalences inMCop

, we may assume that X is an objectwise
cofibrant diagram inM. Then, since i∗t∗p∗X = i∗f∗t∗X = (fi)∗t∗X = t∗X(ϕ) = X(d) , we have

hocolimf−1(ϕ)(i
∗t∗p∗X) ≃

∐

F (c)

X(d)

which is precisely the value of π∗(X⊗F ) at ϕ. Thus, Lf!(t
∗p∗X)ϕ ≃ π∗(X⊗F ))ϕ inM for all ϕ ∈ F(C)op.

By Theorem 2.1(2), this implies (2.23). Summing up, we have constructed the pullback-pushforward diagram

hocolimF(CF )op(t
∗p∗X)

hocolimCop
F
(p∗X)

t∗

✛
hocolimF(C)op [π

∗(X ⊗ F )]

Lf!

✲

each arrow in which is a weak equivalence. This shows that the objects in both sides of (2.21) are weakly
equivalent inM as claimed by the proposition. �

In the special case, if we take M = Ch(Modk) to be the category of chain complexes of k-modules
equipped with standard projective model structure (see [37, 2.3.11]), Proposition 2.1 implies the following
classical result in homological algebra.

Lemma 2.4 (Shapiro Lemma). Let k be a commutative ring, C a small category, and Modk(Cop) the

(abelian) category of Cop-diagrams of k-modules. Then, for any X ∈ Modk(C) and any set-valued functor

F : C → Set, there is a natural isomorphism

TorCF

∗ (p∗X, k) ∼= TorC∗(X, k[F ])

where k[F ] : C
F
−→ Set

k[– ]
−−−→ Modk is the k-linear functor generated by F .

Lemma 2.4 appears in [44, Appendix C.12], where it is proved in the special case X = k the trivial module
(the constant Cop-diagram valued at k); in the general form, it is stated, for example, in [25].
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3. Representation and Cyclic Homology of Homotopy Simplicial Groups

In this section, we define representation homology of groups with coefficients in a commutative Hopf
algebra H, following the approach of [13, 14]. Taking H = O(G), where G is an affine algebraic group, we
then construct the derived character maps for G-representations of Γ. In the case when G = GLn, these
maps specialize to the character maps (1.6) announced in the Introduction. We will work with homotopy

simplicial groups (in the sense of Badzioch [4]), which is a more general and flexible setting than that of
the usual (strict) simplicial groups used in [13, 14]. In Section 3.1, we define the classifying spaces for
such groups, and in Section 3.3, the cyclic bar construction and cyclic homology, both of which may be of
independent interest. We begin by reviewing the main results of [4] specializing to the algebraic theory of
(discrete) groups.

3.1. Homotopy simplicial groups. Let G denote the small category whose objects 〈n〉 are the finitely gen-
erated free groups Fn = F〈x1, x2, . . . , xn〉, one for each n ≥ 0 (with convention that 〈0〉 is the trivial group),
and the morphisms are arbitrary group homomorphisms. Every discrete group Γ defines a contravariant func-
tor Γ : Gop → Set, 〈n〉 7→ Γn, which is simply the restriction of the Yoneda functor Hom(–,Γ) : Grop → Set
to G ⊂ Gr. More generally, every simplicial group Γ ∈ sGr (i.e. a simplicial object in Gr) defines a functor

(3.1) Γ : Gop → sSet , 〈n〉 7→ Γn ,

where Γn denotes the product of n copies of the underlying simplicial set of Γ in the category sSet. The
functors (3.1) can be characterized by the property of being product-preserving. To make it precise, observe
that the category G carries a (strict) monoidal structure ∐ : G × G → G given by the coproduct (free
product) of free groups: 〈n〉 ∐ 〈m〉 = 〈n +m〉. The opposite category G

op is thus equipped with the dual
monoidal structure which we simply denote by Π : Gop × G

op → G
op. Every object 〈n〉o ∈ G

op comes
equipped with n natural projections:

(3.2) pn,k : 〈n〉o → 〈1〉o , 1 6 k 6 n ,

that correspond to the canonical inclusions in,k : 〈1〉 →֒ 〈n〉, x1 7→ xk, in G. We say that a functor
F : Gop → sSet is product-preserving if the maps induced by (3.2)

(3.3) F(pn) :=
n∏

k=1

F(pn,k) : F〈n〉 → (F〈1〉)n

are isomorphisms in sSet for all n > 0. It is easy to show that assigning to a simplicial group Γ ∈ sGr the
functor (3.1) defines an equivalence of categories

(3.4) sGr
∼
−→ sSetG

op

⊗

where sSetG
op

⊗ denotes the full subcategory of product-preserving functors in the diagram category sSetG
op

.

We will use (3.4) to identify sGr = sSetG
op

⊗ , thus regarding the simplicial groups as functors of the form
(3.1). Now, the homotopy simplicial groups are obtained by replacing the assumption that the maps (3.3)
are isomorphisms in sSet with that of being weak equivalences, which is a more natural condition from the
point of view of homotopy theory. Precisely,

Definition 3.1 (Badzioch [4]). A homotopy simplicial group is a functor F : G
op → sSet that is weakly

product-preserving in the sense that the maps (3.3) are weak equivalences in sSet for all n > 0 (with
convention that F〈0〉 ≃ pt).

The category of homotopy simplicial groups (i.e. the full subcategory of all weakly product-preserving

functors in sSetG
op

) does not carry any model structure as it is not closed under colimits. Instead, as

suggested in [4], one can put a new model structure on the diagram category sSetG
op

in which the homotopy
simplicial groups are exhibited as fibrant objects (cf. [4, Proposition 5.5]). We call this model structure the

Badzioch model structure and denote it by sGrh. To be precise, sGrh is defined by localizing (i.e. taking the
12



left Boufield localization of) the standard projective model structure on sSetG
op

with respect to the collection
of maps S = {in : ∐nk=1HomG(–, 〈1〉)→ HomG(–, 〈n〉)}n≥0 induced by the inclusions in,k : 〈1〉 → 〈n〉:

sGrh := LS(sSet
G

op

) .

By definition, the underlying category of sGrh is that of sSetG
op

but the class of weak equivalences in sGrh

— called S-local weak equivalences — is larger: it includes the set S in addition to all (objectwise) weak

equivalences of diagrams in sSetG
op

. There is a canonical localization functor LS : sSetG
op

→ sGrh that takes
a diagram Γ ∈ sSetG

op

to its functorial fibrant replacement in the model structure sGrh. In this way, one

can make any diagram in sSetG
op

a homotopy simplicial group. On the other hand, the model category of
(strict) simplicial groups sGr is related to sGrh by a Quillen adjunction:

(3.5) K : sGrh ⇄ sGr : J

which is obtained by localizing (at S) the Quillen adjunction K : sSetG
op

⇄ sGr : J between sGr and

the model category of all diagrams sSetG
op

. In particular, the right adjoint functor in (3.5) is given by
the inclusion J(Γ) = Γ (see (3.1)), while the left adjoint — called the Badzioch rigidification functor — is
described explicitly in Lemma 3.1 below. Now, the main result of [4] reads:

Theorem 3.1 (Badzioch). The adjunction (3.5) is a Quillen equivalence.

Remark 3.1. Theorem 3.1 was proved in [4] (see loc. cit., Theorem 6.4) for an arbitrary one-sorted algebraic
theory (not only the theory of groups). It was extended to all multi-sorted theories in [17], and further to
limit theories and to diagrams in model categories other than sSet in [61].

Next, recall that there is a classical adjunction — called the Kan loop group construction [39] — that
relates the model category sGr of (strict) simplicial groups to that of (reduced) simplicial sets:

(3.6) G : sSet0 ⇄ sGr : W̄

The left adjoint G is called the Kan loop group functor, and the right adjoint W̄ is the classifying complex

functor on simplicial groups. The properties of these functors are well known and discussed in detail, for
example, in [29, Chapter V] (see also [14, Section 2.2]). Here, we mention only two important facts: first,
the pair (3.6) is a Quillen equivalence, both G and W̄ being homotopy invariant functors (see [29, V.6.4]).
Second, for any reduced simplicial set X , there is a weak homotopy equivalence (see [29, V.5.11])

(3.7) |G(X)| ≃ Ω|X |

where Ω|X | is the (Moore) based loop space of the geometric realization of X . The equivalence (3.7) clarifies
the topological meaning of the Kan loop group functor G (and justifies its name). Combining now Badzioch’s
Theorem 3.1 with Kan’s construction, we get natural equivalences of homotopy categories

(3.8) Ho(sGrh)
LK
−−→ Ho(sGr)

W̄
−→ Ho(sSet0)

|– |
−−→ Ho(Top0,∗)

induced by the above indicated functors. This leads us to the following definition.

Definition 3.2. For a homotopy simplicial group Γ ∈ sGrh, we define its classifying space BΓ by

(3.9) BΓ := |W̄LK(Γ)|

where LK : Ho(sGrh)→ Ho(sGr) is the derived rigidification functor (see (3.11)).

Note that if Γ is a (strict) simplicial group, i.e. Γ = J(Γ) , then BΓ ∼= |W̄Γ|, since LK ◦ J ∼= Id. Thus the
above definition is a natural extension of Kan’s definition of classifying spaces for simplicial groups (which
is, in turn, an extension of the classical definition of BΓ for ordinary discrete groups).

We conclude this section by giving a simple formula for the Badzioch rigidification functor that did not
seem to appear explicitly in [4].
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Lemma 3.1. The functor K : sGrh → sGr in (3.5) is given by the coend

(3.10) K(Γ) =

∫ 〈n〉∈G

Γ〈n〉 ⊗ F〈n〉 ,

where F : G →֒ Gr →֒ sGr, 〈n〉 7→ Fn, is the canonical inclusion functor, and ⊗ : sSet × sGr → sGr is the

standard simplicial tensor action on the category of simplicial groups.

It follows from Lemma 3.1 that the derived functor LK can be written as the homotopy coend

(3.11) LK(Γ) =

∫ 〈n〉∈G

L

Γ〈n〉 ⊗ F〈n〉 .

For the proof of Lemma 3.1 and formula (3.11) (in the general setting of [4]) we refer to our forthcoming
paper [11].

3.2. Representation homology. Let k be a commutative ring. Recall that, for a small category C, we
denote by Modk(C) and Modk(Cop) the categories of all covariant and contravariant functors from C to Modk,
respectively. It is well known that these are abelian categories with sufficiently many projective and injective
objects. Recall also (see, e.g., [44, Appendix C.10]) that there is a natural bi-additive functor

–⊗C,k – : Modk(C
op)×Modk(C)→ Modk

called the functor tensor product. Explicitly, forM : C → Modk and N : Cop → Modk, it is defined by

(3.12) N ⊗C,kM :=
[ ⊕

c∈C

N (c) ⊗kM(c)
]
/R

where R is the k-submodule spanned by elements of the form N (ϕ)x ⊗ y − x ⊗M(ϕ)y for all x ∈ N (c′),
y ∈M(c) and ϕ ∈ HomC(c, c

′). The functor (3.12) is right exact (with respect to each argument), preserves
sums, and is left balanced. Its classical (left) derived functors with respect to each argument are canonically

isomorphic and their common value is denoted by TorC∗(N ,M). More generally, we can extend the bifunctor
(3.12) to chain complexes of C-modules, i.e. the categories Ch(Modk(Cop)) and Ch(Modk(C)), and define

(3.13) TorC∗(N ,M) := H∗(N ⊗
L

C,kM)

for any N ∈ Ch(Modk(Cop)) andM ∈ Ch(Modk(C)). Note that N ⊗L

C,kM is an object in the (unbounded)

derived category D(k) = D(Modk) of k-modules, and (3.13) is just the usual hyper-Tor functor on chain
complexes. Next, observe that there is a natural functor

(3.14) sSetC
op k[– ]
−−−→ sModk(C

op)
N
→֒ Ch(Modk(C

op))

transforming the Cop-diagrams in sSet (simplicial presheaves on C) to chain complexes over Modk(Cop). Here
N stands for the classical Dold-Kan normalization functor that identifies simplicial objects in Modk(Cop)
with non-negatively graded chain complexes in Ch(Modk(Cop)). Abusing notation, we will write the functor
(3.14) simply as k[ – ] .

We are now in a position to define representation homology of homotopy simplicial groups with coefficients
in commutative Hopf algebras. We recall the well-known fact (see, e.g., [60, Proposition 14.1.6]) that every
such algebra H defines a covariant functor (a left G-module) by the rule

(3.15) H : G→ Modk , 〈n〉 7→ H⊗n .

In particular if G is an affine algebraic group (e.g., G = GLn(k)) with coordinate ring H = O(G), then
(3.15) can be written in the form 〈n〉 7→ O[RepG(〈n〉)] which makes the functoriality clear.

Definition 3.3. The representation homology of a homotopy simplicial group Γ ∈ sGrh with coefficients in
H is defined by

HR∗(Γ,H) := TorG∗ (k[Γ],H) .

In the special case when G is an affine algebraic group over k and H = O(G), we simply write HR∗(Γ, G)
instead of HR∗(Γ,O(G)) .

The next lemma shows that the above definition agrees with the Badzioch model structure on sGrh.
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Lemma 3.2. If two homotopy simplicial groups Γ and Γ′ are weakly equivalent in sGrh, then

(3.16) HR∗(Γ,H) ∼= HR∗(Γ
′,H)

for any commutative Hopf algebra H.

Proof. By [4, Proposition 5.6], if two homotopy simplicial groups Γ and Γ′ are S-locally weakly equivalent,

then their underlying diagrams are, in fact, weakly equivalent in sSetG
op

. It therefore suffices to show that
(3.16) holds for any objectwise weak equivalent diagrams Γ,Γ′ : Gop → sSet. To this end, observe that the
linearization functor

(3.17) k[ – ] : sSetG
op

→ sModk(G
op)

is left Quillen with respect to the projective model structures (its right adjoint is the forgetful functor). Since

the weak equivalences in sSetG
op

are defined objectwise and the model structure on sSet is cofibrant, being left

Quillen, the functor (3.17) is actually homotopy invariant: i.e., it maps weakly equivalent objects in sSetG
op

to
weakly equivalent objects in sModk(G

op), which, in turn, are transformed by the normalization functor N to

quasi-isomorphic complexes in Ch(Modk(G
op)). Thus if Γ ≃ Γ′ in sSetG

op

, then k[Γ]⊗L

G,kH ≃ k[Γ′]⊗L

G,kH
in D(k), which implies (3.16). �

Remark 3.2. The result of Lemma 3.2 does not extend to arbitrary objects in sGrh, since the functor (3.17)
does not preserve S-local weak equivalences in general. The latter can be seen easily by looking at (3.17)

evaluated at representable simplicial presheaves in sSetG
op

.

An important consequence of Lemma 3.2 is that the representation homology of a homotopy simplicial
group Γ depends only on the homotopy type of its classifying space BΓ (Definition 3.2). In fact, we have

(3.18) HR∗(Γ,H) ∼= HR∗(BΓ,H)

where the ‘HR’ in the right-hand side stands for representation homology of topological spaces as defined in
[14], using a (non-abelian) derived representation functor (see loc. cit., Definition 3.1). Indeed, by Badzioch’s
results (cf. [4, Theorem 3.1]), every homotopy simplicial group Γ is weakly equivalent to a strict one, say
Γ′; hence

(3.19) BΓ ≃ BΓ′ ≃ W̄Γ′ .

On the other hand, by [14, Theorem 4.2], HR∗(Γ
′,H) ∼= HR∗(W̄Γ′,H) , which together with (3.19) and the

isomorphism (3.16) of Lemma 3.2 implies (3.18).
We conclude this section by briefly explaining how our approach (Definition 3.3) relates to derived algebraic

geometry (DAG). For a model of DAG, we will take the simplicial presheaf model developed in [66]. Given

a homotopy simplicial group Γ ∈ sGrh and an affine algebraic group (scheme) G over k with coordinate
algebra H = O(G), we introduce the derived representation scheme of Γ in G:

(3.20) DRepG(Γ) := RSpec (k[Γ]⊗L

G O(G)) .

Here ‘RSpec ’ denotes the Toën-Vezzosi derived Yoneda functor that assigns to a (homotopy) simplicial
commutative algebra A — a derived ring in terminology of [66] — the simplicial presheaf (prestack)

RSpec(A) : dAffop
k := sCommk → sSet , B 7→ Map(QA, B) ,

where QA is a cofibrant replacement of A and ‘Map’ is the simplicial mapping space (function complex) in
sCommk. The prestack RSpec(A) satisfies the descent condition for étale hypercoverings and hence defines
a derived stack (which is a derived affine scheme in the sense of [66]). On the other hand, for any pointed
space (simplicial set) X , we can define the pointed mapping stack Map∗(X,BG) to be the homotopy fibre
of the canonical map in the (homotopy) category of derived stacks:

(3.21) Map∗(X,BG) := hofib [Map(X,BG) → BG] ,

where Map(X,BG) stands for the (unpointed) derived mapping stack defined in [66, 2.2.6.2]. This last
mapping stack is a basic object of derived algebraic geometry that plays an important role in applications
(see, e.g., [51]). Now, its relation to representation homology is clarified by the following
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Proposition 3.1 (see [12]). There is a (weak) equivalence of derived stacks

DRepG(Γ) ≃ Map∗(BΓ, BG)

For a detailed proof of Proposition 3.1 and more explanations we refer to [12, Appendix A.1].

3.3. Cyclic homology. We now define cyclic homology for homotopy simplicial groups. To this end, we
will associate to each Γ ∈ sGrh a cyclic module k[BcycΓ] that generalizes the classical cyclic bar construction
C∗(k[Γ]) when Γ is an ordinary discrete group.

Let ∆ denote the standard (co)simplicial category whose objects are finite ordered sets [n] = {0 < 1 <
· · · < n} and morphisms are (nonstrictly) order preserving maps. The category ∆ is generated by two
families of maps din : [n − 1] → [n] (0 6 i 6 n, n > 1) and sjn : [n + 1] → [n] (0 6 j 6 n, n > 0), called
the (co)face and (co)degeneracy maps respectively. These maps satisfy the standard (co)simplicial relations
listed, for example, in [44, Appendix B.3]. Connes’ cyclic category ∆C is a natural extension of ∆ that
has the same objects and is generated by the morphisms of ∆ and the cyclic maps τn : [n] → [n], n > 0,
satisfying τn+1

n = Id (see [44, 6.11]). In fact, ∆C can be characterized by the two properties:

(Cyc1) For each n > 0, Aut∆C([n]) ∼= Cn+1 , where Cn+1 = Z/(n+ 1)Z ,
(Cyc2) Any morphism f : [n]→ [m] in ∆C can be factored uniquely as f = g ◦ϕ, where g ∈ Hom∆([n], [m])

and ϕ ∈ Aut∆C([n]) ,

These properties show that ∆C is a crossed simplicial category associated to the family of cyclic groups
{Cn+1}n>0 (see [44, 6.3.0]).

Now, if Γ is an ordinary discrete group, there is a natural functor

(3.22) Bcyc
∗ Γ : ∆Cop → Set

called the cyclic bar construction of Γ that has the property that k[Bcyc
∗ Γ] ∼= C∗(k[Γ]), where C∗(k[Γ]) is

the standard cyclic module associated to k[Γ] as an associative k-algebra. Explicitly, the functor (3.22) is
defined by (see [44, 7.3.10])

di(g0, . . . , gn) =

{

(g0, . . . , gi−1, gigi+1, . . . , gn) 0 6 i < n

(gng0, g1, . . . , gn−1) i = n

sj(g0, . . . , gn) = (g0, . . . , gj, 1, gj+1, . . . , gn)

tn(g0, . . . , gn) = (gn, g0, g1, . . . , gn−1)

where (g0, . . . , gn) ∈ Γn+1. Clearly, Γ 7→ Bcyc
∗ Γ gives a functor Bcyc

∗ : Gr → Set∆C
op

. If we identify

Gr = SetG
op

⊗ as in (3.1), then it turns out that Bcyc
∗ coincides with the pull-back functor for a certain natural

map Ψcyc : ∆C → G in Cat. Specifically,

(3.23) Ψcyc : ∆C → G

is defined on objects by
Ψcyc([n]) := 〈n+ 1〉 = F〈x0, . . . , xn〉

and on morphisms by the following formulas

(3.24)

Ψcyc(d
i
n) : 〈n〉 −→ 〈n+ 1〉 , (x0, x1, . . . , xn−1) 7→

{

(x0, . . . , xi−1, xixi+1, . . . , xn) , 0 ≤ i < n

(xnx0, x1, . . . , xn−1) , i = n

Ψcyc(s
j
n) : 〈n+ 2〉 −→ 〈n+ 1〉 , (x0, . . . , xn+1) 7→ (x0, . . . , xj , 1, xj+1, . . . , xn) ,

Ψcyc(τn) : 〈n+ 1〉 −→ 〈n+ 1〉 , (x0, x1, . . . , xn) 7→ (xn, x0, x1, . . . , xn−1) .

where (x0, x1, . . . , xn) is an ordered sequence of generators of the free group F〈x0, . . . , xn〉.

Lemma 3.3. For any discrete group Γ there is a natural isomorphism of cyclic sets

BcycΓ ∼= Ψ∗
cyc(Γ)

where Γ : Gop → Set is the functor corresponding to Γ under the identification (3.1).

Proof. Straightforward. �
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Remark 3.3. The functor (3.23) was defined in [16] on a slightly larger – the so-called epicyclic – category
∆Ψ, which is an extension of ∆C describing the Adams operations on cyclic modules.

Lemma 3.3 motivates the following definition.

Definition 3.4. For a homotopy simplicial group Γ ∈ sGrh, we define its cyclic bar construction by

(3.25) BcycΓ := Ψ∗
cyc(Γ) : ∆Cop → sSet

and its cyclic homology by

(3.26) HC∗(k[Γ]) := Tor∆C
op

∗ (k, k[Bcyc Γ]) ∼= Tor∆C∗ (k[Bcyc Γ], k)

The same argument as in (the proof of) Lemma 3.2 shows that HC∗(k[Γ]) depends only on the homotopy

type of Γ in the Badzioch model category sGrh, and hence, on the homotopy type of its classifying space
BΓ. In view of Lemma 3.3, the above definition of HC∗(k[Γ]) for Γ an ordinary discrete group coincides
with the classical (Connes’) definition of cyclic homology of group algebras (see [44, 6.2.8]).

3.4. Derived character maps. Next, we will construct a family of natural transformations relating the
cyclic homology to representation homology of a homotopy simplicial group Γ. In the special case when
H = O(GLn), this family contains a distinguished element determined by the usual trace Trn that gives the
derived character map (1.6) announced in the Introduction. With our current definitions of representation
and cyclic homology the construction is actually very simple. It is based on two lemmas. The first one is a
standard result of homological algebra that simply exhibits the naturality of derived tensor products (3.13).

Lemma 3.4. Let f : A → B be a functor between small categories. For any complexes N ∈ Ch(Modk Bop)
and M ∈ Ch(Modk B), there is a natural map f∗N ⊗L

A,k f
∗M→ N ⊗L

B,kM in the derived category D(k)
of k-modules that induces

f∗ : TorA∗ (f
∗N , f∗M) → TorB∗ (N ,M)

To apply this lemma in our situation we recall that every commutative Hopf k-algebra H defines the
covariant functor H : G → Modk by formula (3.15). Restricting this functor via the morphism (3.23) gives
rise to a cocyclic k-module that we denote

BcycH := Ψ∗
cyc(H) : ∆C → Modk

On the other hand, by Definition 3.4, Ψ∗
cyc(k[Γ]) = k[Bcyc(Γ)] for any homotopy simplicial group Γ. Thus,

by Lemma 3.4, the functor Ψcyc induces a canonical map

(3.27) Ψ∗
cyc : Tor∆C∗ (k[Bcyc Γ], BcycH) → TorG∗ (k[Γ], H)

The target of this map is precisely HR∗(Γ,H) (see Definition 3.3), while the domain differs from HC∗(k[Γ])
in the second argument of ‘Tor’ (cf. Definition 3.4). To connect the two Tor’s we will use the following
lemma which we state in the language of affine algebraic groups.

Lemma 3.5. Let G be an affine algebraic group defined over k, and let O(G) be its coordinate algebra.

There is a natural isomorphism

(3.28) HomModk(∆C)(k, Bcyc[O(G)]) ∼= O(G)
G

where O(G)G denotes the invariant subalgebra of O(G) under the adjoint G-action.

Proof. For m ≥ 0, denote by πm : [0] → [m] the composition of maps d0m d
0
m−1 . . . d

0
1 in ∆C. It follows

from (3.24) that Ψcyc(πm) : 〈1〉 → 〈m+1〉 is the homomorphism of groups taking the generator x of F〈x〉 to
the product of generators x0x1 . . . xm in F〈x0, . . . , xm〉. The corresponding map [BcycO(G)](πm) : O(G) →
O(G)⊗(m+1) can thus be identified with the the m-fold coproduct in O(G):

(3.29) ∆
(m)
G : O(G)→ O(Gm+1) , P 7→

[
(g0, g1, . . . , gm) 7→ P (g0 g1 . . . gm)

]
.

Now, it is easy to check that, for a fixed P ∈ O(G)G, the maps ∆
(m)
G (P ) : k → O(Gm+1) taking 1 ∈ k

to ∆
(m)
G (P ) assemble to a morphism of cocylic modules ∆G(P ) : k → Bcyc[O(G)] , the commutativity
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with cyclic operators τm being a consequence of the G-invariance of P . We claim that the assignment
P 7→ ∆G(P ) defines a k-linear isomorphism

(3.30) ∆G : O(G)G
∼
−→ HomModk(∆C)(k, Bcyc[O(G)]) .

The inverse of (3.30) can be constructed as follows. Let ϕ ∈ HomModk(∆C)(k, Bcyc[O(G)]). Note that,

for all [m] ∈ ∆C, its components ϕ[m] : k → O(G)
⊗(m+1) ∼= O(Gm+1) are k-linear maps. Define Tϕ :=

ϕ[0](1) ∈ O(G), where 1 ∈ k. Since ϕ is a natural transformation,

ϕ[m](1) = {[BcycO(G)](πm)}(ϕ[0](1)) = {[BcycO(G)](πm)}(Tϕ) = ∆m(Tϕ) ,

where ∆m is defined in (3.29). Similarly, applying Bcyc[O(G)] to the cyclic operators τm in ∆C, we have

ϕ[m](1) = {[BcycO(G)](τm)}(ϕ[m](1)) ,

from which it follows that Tϕ(g0 . . . gm) = Tϕ(gmg0 . . . gm−1) for all g0, . . . , gm ∈ G. This is equivalent to
the assertion that Tϕ ∈ O(G)G. Thus T defines a k-linear map

HomModk(∆C)(k, Bcyc[O(G)])→ O(G)
G , ϕ 7→ Tϕ .

It is clear from its construction that the above map is the inverse of (3.30). �

We can now make the following definition.

Definition 3.5. Let Γ ∈ sGrh be a homotopy simplicial group. For an affine algebraic group G and an
AdG-invariant polynomial P ∈ O(G)G, we define the derived G-character map of Γ associated to P by

(3.31) χG,P (Γ)∗ : HC∗(k[Γ])
(∆GP )∗
−−−−−→ Tor∆C∗ (k[Bcyc Γ], Bcyc[O(G)])

Ψ∗

cyc

−−−→ HR∗(Γ, G) ,

where (∆GP )∗ is a linear map induced by the map of cocyclic modules ∆GP : k → Bcyc[O(G)] (see (3.29)
and (3.30)), and Ψ∗

cyc is the map (3.27) defined for H = O(G).

Explicitly, if we choose a projective resolution Q
∼
−→ k[Γ] of k[Γ] in the (abelian) category Modk(G

op),

applying the functor Ψ∗
cyc gives a projective resolution Ψ∗

cycQ
∼
−→ k[Bcyc Γ] of the cyclic module k[Bcyc Γ]

in Modk(∆C
op). The map (3.31) is then induced by a map of chain complexes

(3.32) χG,P (Γ)∗ : (Ψ∗
cycQ)⊗∆C k → Q ⊗G O(G)

which, in turn, is induced by the following map (see (3.12))

(3.33)
⊕

[m]∈∆C

Q〈m+ 1〉 →
⊕

〈n〉∈G

Q〈n〉 ⊗ O(G)⊗n , vm+1 7→ vm+1 ⊗∆
(m)
G (P ) ,

where vm+1 ∈ Q〈m+ 1〉 and ∆
(m)
G (P ) ∈ O(G)⊗(m+1) is defined by (3.29).

In the special case when G = GLn(k) and P = Trn ∈ O(GLn) is the usual trace function on (n × n)-
matrices, we denote the map (3.31) by

(3.34) Trn(Γ)∗ : HC∗(k[Γ]) → HR∗(Γ,GLn(k)) ,

and call it the derived character map of n-dimensional representations of Γ. In the rest of the paper,
we will study the maps Trn(Γ)∗ in two extreme cases: n = 1 and n = ∞ . In the first case, we will
give a topological realization of Tr(Γ)∗ := Tr1(Γ)∗ by showing that this map is induced on homology by a
natural map of topological spaces; in the second case, we will show that Tr∞(Γ)∗ := lim

←−
Trn(Γ)∗ extends

to an isomorphism between the graded symmetric algebra generated by HC∗(k[Γ]) and the GL∞-invariant
subalgebra of the stable representation homology HR∗(Γ,GL∞(k)). We close this section with a general
remark linking the above construction to earlier work.

Remark 3.4. If Γ is an ordinary discrete or (strict) simplicial group, then k[Γ] is naturally a simplicial
associative k-algebra. By (a monoidal version of) the classical Dold-Kan correspondence (see [62]), we can
therefore view k[Γ] as a differential-graded (DG) associative k-algebra. For such algebras (defined over a
field k of characteristic 0), the derived character maps of n-dimensional representations were constructed in
[9]. One can show that these maps agree with (3.34) in the case of group algebras, although the comparison
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is not entirely trivial as the methods used in [9] and the present paper are quite different. We will address
this question in our forthcoming paper [11] in a greater generality.

4. Topological Realization of Derived Character Maps

In this and next sections, we will prove our main results (Theorem 1.1 and Theorem 1.2) stated in the
Introduction. Here we will construct the required spaces and maps simplicially: in terms of homotopy
colimits of small diagrams of simplicial sets and associated natural maps. Then, in the next section, we will
reproduce these maps in topological terms, using Goodwillie homotopy calculus and topological operads.
The connection between the two approaches seems instructive and deserves a further investigation.

4.1. The space XΓ. Recall that G denotes the skeleton of the category of finitely generated free groups.
There is a natural abelianization functor

(4.1) Z : G→ Set , 〈n〉 7→ Z
n ,

that takes the free group 〈n〉 = Fn to (the underlying set of) its abelianization 〈n〉ab = Zn. As in Section 2,
we can form the category of elements of (4.1), using the Grothendieck construction:

(4.2) GZ := G∫ Z

The objects of GZ are given explicitly by

Ob(GZ) = {(〈n〉; k1, . . . , kn)) : 〈n〉 ∈ G , (k1, . . . , kn) ∈ Z
n}

and the morphism sets are

HomGZ
((〈n〉; k1, . . . , kn), (〈m〉; l1, . . . , lm)) = {ϕ ∈ HomG(〈n〉, 〈m〉) : ϕab(k1, . . . , kn) = (l1, . . . , lm)}

Note that the abelianized map ϕab : Zn → Zm above is represented by an integral (m × n)-matrix, ϕab ∈
Mm×n(Z), and its action on n-tuples of integers is simply given by matrix multiplication. The category (4.2)
comes together with the canonical (forgetful) functor

(4.3) p : GZ → G , (〈n〉; k1, . . . , kn) 7→ 〈n〉 .

Given a homotopy simplicial group Γ : Gop → sSet, we now define

(4.4) XΓ := | hocolimG
op

Z

(p∗Γ) | ,

where p∗ is the pullback functor sSetG
op

→ sSetG
op

Z associated to (4.3). The relation of the space (4.4) to
representation homology becomes clear from the following observation.

Lemma 4.1. For any Γ and any commutative ring k, there is a natural isomorphism

(4.5) H∗(XΓ, k) ∼= HR∗(Γ,Gm(k))

Proof. We have the sequence of natural isomorphisms

H∗(XΓ, k) ∼= Tor
G

op

Z

∗ (k, k[p∗Γ]) ∼= TorGZ

∗ (k[p∗Γ], k) = TorGZ

∗ (p∗k[Γ], k) ∼= TorG∗ (k[Γ], k[Z]) ,

where the first two are standard (see, e.g., [44, Appendix C.10]) and the last one follows from the classical
Shapiro Lemma (see Lemma 2.4). To complete the proof it remains to note that k[Z] can be identified with
O[Gm(k)] as a commutative Hopf algebra. �

As in the Introduction, we shorten notation for one-dimensional representation homology, writing

(4.6) HR∗(k[Γ]) := HR∗(Γ,Gm(k)) .

Our next goal is to identify the homotopy type of the space XΓ in terms of the classifying space of Γ. The
following theorem is one of the main results of the present paper.

Theorem 4.1. For any homotopy simplicial group Γ, there is a weak equivalence in Top∗ :

(4.7) XΓ ≃ ΩSP∞(BΓ)

where BΓ is the classifying space of Γ (see Definition 3.2).
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Before proving this theorem, we recall a few basic facts about the Dold-Thom space and related construc-
tions (see, e.g., [35, Chap. 4.K]). For any pointed connected CW complex X , the Dold-Thom space SP∞(X)
is defined as the infinite symmetric product: namely,

(4.8) SP∞(X) = lim
−→
n

SPn(X)

where SPn(X) := Xn/Sn with Sn acting on Xn the natural way (by permuting the factors). The maps
SPn(X)→ SPn+1(X) along which the inductive limit (4.8) is taken are induced by the natural inclusion

Xn →֒ Xn+1 , (x1, . . . , xn) 7→ (x1, . . . , xn, ∗) ,

where ‘∗’ stands for the basepoint of X . The Dold-Thom Theorem asserts that, for all i ≥ 1, there are
isomorphisms of abelian groups

πi[SP
∞(X)] ∼= Hi(X,Z) ,

that are natural in pointed connected CW complexes X . In fact, this classical theorem provides a topological
realization for the Hurewicz homomorphisms in the sense that the natural map of spaces

(4.9) X = SP1(X) →֒ SP∞(X)

induces the homomorphisms of groups: πi(X)→ Hi(X,Z) for all i > 1.
Now, let FX denote the homotopy fibre of the inclusion map (4.9) so that we have a homotopy fibration

sequence

(4.10) FX → X → SP∞(X) .

There is an alternative way to obtain this fibration sequence, using Kan’s simplicial group model G(X) of
the space5 X . Namely (see, e.g., [5, Section 7]), (4.10) arises from the short exact sequence of simplicial
groups

(4.11) 1→ G2(X)→ G(X)→ A(X)→ 1

by applying the classifying space functor B = |W̄ (–)| . Here G2(X) := [G(X),G(X)] denotes the commu-
tator subgroup of the Kan loop group G(X) and A(X) its abelianization:

(4.12) A(X) := (GX)ab := G(X)/G2(X)

Thus, we have SP∞(X) ≃ BA(X) = |W̄A(X)| , which, by Kan’s Theorem (see (3.7)), implies

(4.13) ΩSP∞(X) ≃ Ω |W̄A(X)| ≃ |GW̄A(X)| ≃ |A(X)| .

Note that for any reduced simplicial set X , A(X) ∼= Z̃[X ] is just the reduced free simplicial abelian group
generated by X . After these preliminary remarks we can proceed with

Proof of Theorem 4.1. As a first step we apply Proposition 2.1 to express the homotopy colimit (4.4) as a
homotopy coend:

(4.14) hocolimG
op

Z

(p∗Γ) ≃

∫ 〈n〉∈G

L

Γ〈n〉 × Z
n

Next, observe that the bifunctor

(4.15) Γ× Z : G
op ×G → sSet , (〈n〉, 〈m〉) 7→ Γ〈n〉 × Z

m ,

that appears in the homotopy coend (4.14) can be factored as

G
op ×G

Γ⊗ F
−−−−→ sGr

(– )ab
−−−−→ sAb

forget
−−−→ sSet

where the first arrow is precisely the bifunctor Γ⊗ F that appears in formula (3.10) of Lemma 3.1, expressing
the rigidification functor K. This last bifunctor takes an object (〈n〉, 〈m〉) ∈ G

op×G to the simplicial group
∐Γ〈n〉 Fm , which is given, in each simplicial degree, by a free product of copies of the free group Fm indexed

5Abusing notation, we will identify a pointed connected space X with a reduced simplicial set that represents X, i.e.
X = |X|.
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by the components of the simplicial set Γ〈n〉. Hence Γ ⊗ F is an objectwise cofibrant diagram in sGr, and
therefore

(4.16) L(Γ ⊗ F)ab ≃ (Γ ⊗ F)ab ∼= Γ× Z ,

where L( – )ab stands for the (left) derived functor of the abelianization functor ( – )ab : sGr→ sAb. Since
the abelianization functor is left Quillen, its derived functor commutes with homotopy coends (see (2.20)).
Hence, combining (3.11) with (4.16), we get

(4.17) L[LK(Γ)]ab ≃

∫ 〈n〉∈G

L

L(Γ〈n〉 ⊗ F〈n〉)ab ≃

∫ 〈n〉∈G

L

(Γ〈n〉 ⊗ F〈n〉)ab ≃

∫ 〈n〉∈G

L

Γ〈n〉 × Z
n

On the other hand, L[LK(Γ)]ab ≃ [GW̄LK(Γ)]ab = A(W̄LK(Γ)), hence, by (4.13), we have

(4.18) |L[LK(Γ)]ab | ≃ |A(W̄LK(Γ)) | ≃ ΩSP∞(BΓ)

Combining now (4.14), (4.17) and (4.18), we get the desired equivalence XΓ ≃ ΩSP∞(BΓ) . �

Note that Theorem 4.1 combined with Lemma 4.1 implies Theorem 1.1 stated in the Introduction.

4.2. Symmetric homology. In Section 3.3, we defined cyclic homology of homotopy simplicial groups by
associating to each Γ ∈ sGrh a cyclic bar construction BcycΓ : ∆Cop → sSet (see Definition 3.4). In this
section, we introduce an analogue of this construction for symmetric groups. Recall that the symmetric

crossed simplicial category ∆S is defined to be an extension of ∆ that has the same objects as ∆ (and ∆C)
with morphisms characterized by the two properties (cf. [44, 6.1.4]):

(Sym1) For each n > 0, Aut∆S([n]) ∼= Sop
n+1 , where Sn+1 is the (n+ 1)-th symmetric group.

(Sym2) Any morphism f : [n] → [m] in ∆S can be factored uniquely as the composite f = g ◦ σ with
g ∈ Hom∆([n], [m]) and σ ∈ Aut∆S([n]) ∼= Sop

n+1.

There is an inclusion functor (a morphism in Cat):

(4.19) ι : ∆Cop ∼
→ ∆C →֒ ∆S ,

where the first arrow is an isomorphism of categories (called Connes’ duality) and the second one is induced
by the natural inclusion of groups Cn+1 →֒ Sn+1(cf. [44, 6.1.11]). Explicitly, the functor (4.19) is given on
objects by ι([n]) = [n] and on generators by the following formulas

(4.20)

ι(dni ) =

{

sin−1 , 0 ≤ i < n

s0n−1 ◦ (n, 0, 1, . . . , n− 1) , i = n

ι(snj ) = dj+1
n+1

ι(tn) = (n, 0, 1, . . . , n− 1)

where dni : [n]→ [n− 1], snj : [n]→ [n+ 1] and tn : [n]→ [n] denote the generators of ∆Cop dual (opposite)

to the generators din, s
j
n and τn of ∆C, respectively.

Lemma 4.2. The functor Ψop
cyc : ∆C

op → G
op defined by (3.23), (3.24) extends through ι, giving a commu-

tative diagram of small categories

(4.21)

∆Cop
Ψop

cyc✲ G
op

∆S

ι

❄

∩

Ψsym

✲

Proof. In order to construct the functor Ψsym it is convenient to use the following notation for morphisms

in ∆S (cf. [2, Section 1.1]). Any morphism f : [n]
σ
−→ [n]

g
−→ [m] in ∆S can be written uniquely as a ‘tensor

product’ of m+ 1 noncommutative monomials X0, X1, . . . , Xm in n+ 1 formal variables {x0, x1, . . . , xn}:

(4.22) f = X0 ⊗X1 ⊗ . . .⊗Xm
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where each Xi is the product xi1xi2 . . . xir of r = |f−1(i)| variables whose indices ik occur in the fibre f−1(i)
and that are ordered in the same way as numbers in {σ(0), . . . , σ(n)}, i.e. σ(i1) < σ(i2) < . . . < σ(ir). For
example, if f : [4] → [3] is given by the composition g ◦ σ in ∆S, where g ∈ Hom∆([4], [3]) is defined by
g(0) = g(1) = 0, g(2) = g(3) = 1 and g(4) = 3 and σ ∈ Aut∆S([4]) = Sop

5 is the permutation

σ =

(
0 1 2 3 4
1 0 4 2 3

)

then f is represented by x1x0⊗x3x4⊗ 1⊗x2 . The composition of morphisms f1 ◦ f2 is defined by a natural
substitution rule: for example, if f1 : [3]→ [3] and f2 : [4]→ [3] in ∆S are represented by

f1 = 1⊗ x0 ⊗ 1⊗ x3x2x1 , f2 = x2x1 ⊗ x4 ⊗ 1⊗ x0x3 ,

then f1 ◦ f2 : [4]→ [3] can be computed as

f1 ◦ f2 = (1⊗X0 ⊗ 1⊗X3X2X1) ◦ (x2x1
︸︷︷︸

X0

⊗ x4
︸︷︷︸

X1

⊗ 1
︸︷︷︸

X2

⊗ x0x3
︸︷︷︸

X3

)

= 1⊗ x2x1 ⊗ 1⊗ (x0x3) · 1 · (x4) = 1⊗ x2x1 ⊗ 1⊗ x0x3x4

With this notation, we define the functor

(4.23) Ψsym : ∆S → G
op

on objects by

Ψsym([n]) = 〈n+ 1〉

and on morphisms by the following formula: if f ∈ Hom∆S([n], [m]) is represeented by

f = (xi1 . . . xir )⊗ · · · ⊗ (xk1 . . . xks) ,

then

(4.24) Ψsym(f) : 〈m+ 1〉 → 〈n+ 1〉 , X0 7→ xi1 . . . xir , . . . , Xm 7→ xk1 . . . xks ,

where 〈m+1〉 = F〈X0, . . . , Xm〉 and 〈n+1〉 = F〈x0, . . . , xn〉. Note that the maps (4.20) can be rewritten in
this tensor notation as

ι(dni ) =

{

x0 ⊗ . . .⊗ xi−1 ⊗ xixi+1 ⊗ xi+2 ⊗ . . .⊗ xn , 0 ≤ i < n

xnx0 ⊗ x1 ⊗ . . .⊗ xn−1 , i = n

ι(snj ) = x0 ⊗ . . .⊗ xj ⊗ 1⊗ xj+1 ⊗ . . .⊗ xn

ι(τn) = xn ⊗ x0 ⊗ x1 ⊗ . . .⊗ xn−1

The commutativity of (4.21) can now be checked by a trivial calculation that we leave to the reader. �

Having in hand the functor Ψsym : ∆S → G
op , we can now define a symmetric bar construction in the

same way as we defined the cyclic bar construction in Definition 3.4.

Definition 4.1. For a homotopy simplicial group Γ ∈ sGrh, its symmetric bar construction is the functor

(4.25) BsymΓ := Ψ∗
symΓ : ∆S → sSet

ans its symmetric homology is defined by

(4.26) HS∗(k[Γ]) := Tor∆S∗ (k, k[BsymΓ]) .

Remark 4.1. The same argument as (in the proof of) Lemma 3.2 shows that HS∗(k[Γ]) depends only on

the homotopy type of Γ in sGrh and hence on the homotopy type of the space BΓ.

Remark 4.2. For Γ an ordinary discrete group, the definition (4.25) agrees with Fiedorowicz’s original
definition of the symmetric bar construction (see [27] and also [2]). In this case, formula (4.26) defines the
symmetric homology of the group algebra k[Γ]. Note that, unlike BcycΓ (see (3.25)), the functor BsymΓ :
∆S → sSet is covariant on ∆S (which we emphasize by writing “sym” as a subscript).
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Remark 4.3. To study symmetric homology it is often convenient to work with the augmented symmetric
category ∆S+ which is defined by adding to ∆S the initial object [−1] and morphisms [−1] → [n], one for
each n > −1 (see [2]). It is easy to see that the map Ψsym defined in Lemma 4.2 extends to ∆S+:

(4.27) Ψsym,+ : ∆S+ → G
op

by letting Ψsym,+([−1]) := 〈0〉. Now, the category ∆S+ is isomorphic to the category of so-called finite

associative sets, F(as), introduced in [52] (see also [60, Section 15.4] for a detailed discussion) . The latter
is known to be a permutative category (PROP) that describes the associative unital algebras (see [53]
and also [60]). It opposite category F(as)op describes the coassociative counital coalgebras. If we identify
∆S+ = F(as) , the restriction functor Ψ∗

sym,+ : Modk(G) → Modk[F(as)op] associated to the opposite
of (4.27) takes commutative Hopf algebras viewed as functors (3.15) on G to the underlying coassociative
coalgebras viewed as functors on F(as)op. In other words, the morphism Ψop

sym,+ is isomorphic to a morphism
of PROPs: F(as)op → G that “forgets” the algebra structure on commutative Hopf algebras.

4.3. Symmetric homology vs representation homology. Recall that in Section 3.4, we constructed
the derived character map Tr(Γ)∗ relating the cylic homology of Γ to its (one-dimensional) representation
homology:

(4.28) Tr(Γ)∗ : HC∗(k[Γ])→ HR∗(k[Γ])

On the other hand, as a consequence of Lemma 4.2, we have a restriction map

(4.29) ι∗ : HC∗(k[Γ]) = Tor∆C
op

∗ (k, k[BcycΓ]) → Tor∆S∗ (k, k[BsymΓ]) = HS∗(k[Γ]) .

induced by the isomorphism of cyclic spaces

(4.30) BcycΓ ∼= ι∗BsymΓ

The next proposition shows that the derived character map (4.28) factors through (4.29), thus relating
representation homology to symmetric homology.

Proposition 4.1. For any homotopy simplicial group Γ ∈ sGrh, there is a natural map

(4.31) Ψ̃∗
sym : HS∗(k[Γ]) → HR∗(k[Γ])

such that

(4.32)

HC∗(k[Γ])
Tr(Γ)∗✲ HR∗(k[Γ])

HS∗(k[Γ])
Ψ̃∗

sym

✲
ι∗ ✲

Proof. As our notation suggests, the map (4.31) is actually induced by a morphism Ψ̃sym in Cat. We

construct Ψ̃sym by lifting the functor Ψsym of Lemma 4.2 to the (opposite) category of elements of the
abelianization functor (4.1):

(4.33)

G
op
Z

∆Cop ι✲ ∆S
Ψsym✲

Ψ̃sym ✲

G
op

pop

❄

The existence of such a lifting is a consequence of the following observation. Consider the composition of
functors

(4.34) ∆Sop
Ψop

sym✲ G
(–)ab✲ Ab

that takes an object [n] ∈ ∆S to the abelian group Zn+1. If we represent a morphism f : [n] → [m] in ∆S
using the tensor notation (4.22), then Ψop

sym(f)ab : Zm+1 → Zn+1, the value of (4.34) on f , is represented by
an integral (n+ 1)× (m+ 1)-matrix whose rows are indexed by 0 6 i 6 n and columns by 0 6 j 6 m, and
the j-th column consists entirely of 0’s and 1’s, with the 1’s occurring in positions indicated by the elements

23



of f−1(j). For example, if f : [4] → [3] in ∆S is represented by the product x1x0 ⊗ x3x4 ⊗ 1 ⊗ x2, then
Ψop

sym(f)ab : Z4 → Z5 is given by

Ψop
sym(f)ab =









1 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 1 0 0









.

Observe that for any morphism f in ∆S the matrix Ψop
sym(f)ab thus defined has exactly one nonzero entry

in each row and that entry is 1. Hence Ψop
sym(f)ab maps the vector (1, 1, . . . , 1)t ∈ Zm+1 to the vector

(1, 1, . . . , 1)t ∈ Z
n+1. This shows that there is a well-defined functor

(4.35) Ψ̃sym : ∆S → G
op
Z
, [n] 7→ (〈n+ 1〉; 1, 1, . . . , 1) ,

that makes the diagram (4.33) commutative. It follows from (4.33) that

k[BsymΓ] = Ψ∗
sym(k[Γ]) = Ψ̃∗

sym(k[p
∗Γ])

Hence, by Lemma 3.4, the functor (4.35) induces a natural map

(4.36) HS∗(k[Γ]) = Tor∆S∗ (k, k[BsymΓ])
Ψ̃∗

sym

−−−→ Tor
G

op

Z

∗ (k, k[p∗Γ]) .

We claim that if the target of the map (4.36) is identified with the representation homology of k[Γ] via the
Shapiro Isomorphism (see Lemma 2.4), then the required factorization property (4.32) holds. To verify this

we fix a projective resolution Q
∼
−→ k[Γ] of k[Γ] in Modk(G

op). Then p∗(Q)
∼
−→ p∗k[Γ] = k[p∗Γ] gives a

projective resolution of k[p∗Γ] in Modk(G
op
Z
), and the Shapiro Isomorphism

TorGZ

∗ (k[p∗Γ], k)
∼
−→ TorG∗ (k[Γ], p!(k))

is induced by the composition

p∗(Q)⊗GZ
k

Id⊗εk−−−−→ p∗(Q)⊗GZ
p∗p!(k)

p∗

−→ Q⊗G p!(k)

where the first map is given by the adjunction unit ε : Id→ p∗p! and the second is the restriction map via
p. Explicitly, using the definition (3.12) of functor tensor products, we can represent the above composite
map as

(4.37)
⊕

(〈n〉; k1,...,kn)∈GZ

Q〈n〉 →
⊕

〈n〉∈G

Q〈n〉 ⊗ k[Zn] , (vn)(〈n〉; k1,...,kn)∈GZ
7→ (vn ⊗ (k1, . . . , kn))〈n〉∈G

where vn ∈ Q〈n〉 and the subscripts denote the indices of the corresponding components of direct sums.
Now, using the same resolution Q, we can write explicitly the composition of maps (4.29) and (4.36):

Ψ∗
cyc(Q)⊗∆C k

ι∗
−→ Ψ∗

sym(Q)⊗∆Sop k
Ψ̃∗

sym

−−−→ p∗(Q)⊗GZ
k

At the level of chain complexes, this last composition is induced by the map

(4.38)
⊕

[m]∈∆C

Q〈m+ 1〉 →
⊕

[m]∈∆Sop

Q〈m+ 1〉 →
⊕

(〈n〉;k1,...kn)∈GZ

Q〈n〉

that takes (vm+1)[m]∈∆C 7→ (vm+1)[m]∈∆Sop 7→ (vm+1)(〈m+1〉; 1,1,...,1)∈GZ
. Combining (4.37) and (4.38), we

see that the resulting map
⊕

[m]∈∆C

Q〈m+ 1〉 →
⊕

〈n〉∈G

Q〈n〉 ⊗ k[Zn] , (vm+1)[m]∈∆C 7→ (vm+1 ⊗ (1, 1, . . . , 1))〈m+1〉∈G

coincides exactly with the map (3.33) representing the derived character χGL1,Tr1(Γ)∗ = Tr(Γ)∗. This finishes
the proof of the proposition. �
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Remark 4.4. The proof of Proposition 4.1 shows that, apart from (4.35), any functor of the form

(4.39) Ψ̃(m)
sym : ∆S → G

op
Z
, [n] 7→ (〈n+ 1〉; m,m, . . . ,m) ,

where m ∈ Z is a fixed integer, satisfies the lifting property (4.33). It is easy to see that there are no other

solutions to this lifting problem. Among (4.39) the functor Ψ̃
(0)
sym corresponding to m = 0 is the only one

that factors through G
op: Ψ̃

(0)
sym = sop ◦Ψsym, where s : G →֒ GZ is the ‘zero’ section of p.

Next, we observe that the linear maps factoring Tr(Γ)∗ in (4.32) arise (on homology) from the natural
maps of topological spaces induced by the functors (4.19) and (4.35) (cf. Lemma 4.1):

(4.40) |hocolim∆Cop (BcycΓ)|
ι∗
−→ |hocolim∆S (BsymΓ)|

Ψ̃∗

sym

−−−→ |hocolimG
op

Z

(p∗Γ)|

(Here, abusing notation, we denote these topological maps by the same symbols as the corresponding linear
maps.) By Theorem 4.1, we know that

(4.41) |hocolimG
op

Z

(p∗Γ)| ≃ ΩSP∞(BΓ)

On the other hand, by theorems of Goodwillie (see [44, Theorem 7.2.4]) and Fiedorowicz [27] (see [2, Section
5.3]),

|hocolim∆Cop(BcycΓ)| ≃ ES1 ×S1 L(BΓ) ,(4.42)

|hocolim∆S(BsymΓ)| ≃ ΩΩ∞Σ∞(BΓ) ,(4.43)

where L(BΓ) := Map(S1, BΓ) and Ω∞Σ∞(BΓ) := hocolimn→∞ ΩnΣn(BΓ) denote the free loop space and
the infinite loop space of BΓ, respectively. Combining (4.40) with equivalences (4.41), (4.42) and (4.43), we
can thus refine the result of Proposition 4.1 as follows:

Corollary 4.1. The derived character map

Tr(Γ)∗ : HC∗(k[Γ])
ι∗
−→ HS∗(k[Γ])

Ψ̃∗

sym

−−−→ HR∗(k[Γ])

is induced on homology by a natural map of topological spaces in Ho(Top∗):

(4.44) ES1 ×S1 L(BΓ)
CSBΓ−−−→ ΩΩ∞Σ∞(BΓ)

SRBΓ−−−→ ΩSP∞(BΓ)

In the next section, we will describe the maps CS and SR in topological terms in two ways: using the
classical ‘little cubes’ operads and the Goodwillie calculus of homotopy functors.

4.4. Generalization to monoids. All results of this section generalize naturally to (simplicial) monoids.
We briefly outline this generalization as we will need it in Section 5.3. Instead of G, we start with the
category M ⊂Mon whose objects are finitely generated free monoids6 〈n〉, one for each n ≥ 0. In this case,
the abelianization functor reads

N : M→ Set , 〈n〉 7→ N
n

where N is the set of natural numbers, i.e. the underlying set of the free abelian monoid of rank one. The
associated category of elements MN := M∫ N has an explicit description similar to that of GZ: its objects
are (〈n〉; k1, . . . , kn)), where 〈n〉 is the free monoid on n generators and (k1, . . . , kn) ∈ Nn. Any simplicial
monoidM gives a functor M : Mop → sSet that restricts to M

op
N

via the canonical projection p : MN →M.
The analogue (generalization) of Theorem 4.1 says:

Proposition 4.2. For any simplicial monoid M , there is a weak equivalence in Top∗:

(4.45) |hocolimM
op

N

(p∗M)| ≃ ΩSP∞(BM) ,

where BM is the classifying space of M .

6Abusing notation, we will use the same symbols to denote the objects of M and G.
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Proof. The same argument as in the proof of Theorem 4.1 — based on Proposition 2.1 — shows

hocolimM
op

N

(p∗M) ≃ L(M)ab

where L(− )ab denotes the derived abelianization functor on simplicial monoids. To compute this last func-

tor, instead of Kan loop group, we will use the 2-sided (simplicial) bar resolution (5.22): B∗(C1, C1,M)
∼
−→M

in sSet∗, where C1 is the monad associated to the (simplicial analogue of) little 1-cube operad (see (5.24)).
Since (C1(X))ab = C0(X), we have

|L(M)ab| ≃ |B∗(C1, C1,M)ab| ≃ |B∗(C0, C1,M)| ≃ ΩSP∞(BM) ,

where the last equivalence is a result of Lemma 5.1 below (see (5.27)). �

The relation between monoids and groups is determined by the canonical (group completion) functor l :

M→ G. This last functor extends naturally to a functor l̃ : MN → GZ, and the maps Ψsym : ∆S → G
op and

Ψ̃sym : ∆S → G
op
Z

defined by (4.23) and (4.35) factor through l and l̃ respectively, giving the commutative
diagram

(4.46)

M
op
N

l̃✲ G
op
Z

∆Cop ι✲ ∆S
Ψsym✲

Ψ̃sym ✲

M
op

p

❄
l✲ G

op

p

❄

As a consequence of Proposition 4.2, we get

Corollary 4.2. For any homotopy simplicial group Γ ∈ sGrh, there is a weak equivalence

|hocolimM
op

N

(p∗l∗Γ)| ≃ ΩSP∞(BΓ)

Proof. Apply Proposition 4.2 to the simplicial group LK(Γ) viewed as a simplicial monoid. �

Remark 4.5. Corollary 4.2 can be also deduced from Theorem 4.1 if we notice that the natural map

hocolimM
op

N

(p∗l∗Γ)
∼
−→ hocolimG

op

Z

(p∗Γ)

is a weak equivalence for any Γ. This last fact follows from Theorem 2.2, the assumptions of which hold
thanks to the known properties of the group completion functor (cf. [14, Lemma 3.2]).

5. Topological character maps via Goodwillie calculus and operads

In this section, we will describe the maps CS and SR explicitly in topological terms, using Goodwillie
calculus and classical operads. The latter approach is based on ideas of Fiedorowicz [27] that were developed
by Ault in [2]. The former is inspired by results of Biedermann and Dwyer that appeared in [18]. The
interpretation in terms of Goodwillie derivatives leads to a natural nonlinear (polynomial) generalization of
topological character maps that deserves a further study (see Section 5.4).

5.1. Goodwillie homotopy calculus. Goodwillie calculus provides a universal approximation (“Taylor
decomposition”) of basic homotopy functors that arise in topology in terms of polynomial functors. This
method — introduced by T. Goodwillie in the series of papers [31, 32, 33] — has been studied extensively
in recent years and has found many interesting applications (see, e.g., the survey papers [1] and [42]).

Recall that by a homotopy functor we mean a functor on topological spaces that preserves weak homotopy
equivalences. A homotopy functor F : Top∗ → Top∗ is called n-excisive (or polynomial of degree ≤ n) if it
takes any strongly coCartesian (n+ 1)-dimensional cubical diagram in Top∗ to a Cartesian diagram (cf. [1,
Definition 1.1.2]). For n = 0, this simply means that F is homotopically constant: i.e. F (X) ≃ F (∗) for
any X ∈ Top∗. For n = 1, this is the usual Mayer-Vietoris property: a functor F is 1-excisive if and only
if it maps homotopy pushout squares to homotopy pullback squares in Top∗ (see [1, Example 1.1.4]). For
n > 1, F enjoys a higher dimensional version of the Mayer-Vietoris property that reduces to the usual one
inductively in n.

The main construction of Goodwillie calculus can be described as follows (cf. [33, Theorem 1.8]).
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Theorem 5.1 (Goodwillie). For any homotopy functor F : Top∗ → Top∗ on pointed spaces, there exists a

natural tower of functors (fibrations) under F :

(5.1)

...

P2F (X)

p3
❄

P1F (X)

p2
❄

F (X)
δ0✲

δ2

✲

δ1 ✲

P0F (X)

p1
❄

satisfying the following properties: for all n ≥ 0,

(1) PnF : Top∗ → Top∗ is an n-excisive functor,

(2) δn : F → PnF is the universal weak natural transformation to an n-excisive functor.

The last property needs an explanation. By a weak natural transformation δ : F → P one means a

pair (‘zig-zag’) of natural transformations F
δ′
−→ G

δ′′
←− P , where δ′′ is a natural weak equivalence, i.e.

δ′′X : G(X)
∼
←− P (X) is a weak homotopy equivalence for all spaces X ∈ Top∗. Note that if F and P are

homotopy functors, a weak natural transformation δ : F → P induces a well-defined natural tranformation
between the corresponding functors on the homotopy category Ho(Top∗). Property (2) of Theorem 5.1
then says that the weak natural transformation δn : F → PnF is homotopically initial among all natural
transformations from F to n-excisive functors.

Given a homotopy functor F : Top∗ → Top∗, we define its n-th layer to be the homotopy fibre

(5.2) DnF (X) := hofib{PnF (X)
pn
−→ Pn−1F (X)}

where pn is the canonical projection at the n-th stage of the Goodwillie tower (5.1). A remarkable fact
discovered in [33] (see [1, Example 1.2.4]) is that, all layers of a homotopy functor F are naturally infinite
loop spaces. More precisely, for each n > 0, there is a spectrum ∂nF equipped with a (näıve) action of the
symmetric group Sn such that

(5.3) DnF (X) ≃ Ω∞(∂nF ∧ (Σ∞X)∧n)hSn
,

where (Σ∞, Ω∞) are the suspension spectrum and the infinite loop space functors, respectively. The spec-
trum ∂nF is called the n-th Goodwillie derivative of F (at the basepoint ∗).

5.2. The map CS. Recall that, by Corollary 4.1, the derived character map Tr(Γ)∗ is induced by the
composition of natural maps in Ho(Top∗):

(5.4) ES1 ×S1 L(X)
CSX−−→ ΩΩ∞Σ∞(X)

SRX−−→ ΩSP∞(X)

where X = BΓ. Since the classifying space functor on homotopy simplicial groups induces an equivalence
Ho(sGrh) ∼= Ho(Top0,∗) , the maps (5.4) are defined on (the homotopy types of) all pointed connected spaces.
To analyze these maps we introduce the notation:

Θ(X) := ES1 ×S1 L(X) = ES1 ×S1 Map(S1, X)

and define Θ̄ : Top∗ → Top∗ by

(5.5) Θ̄(X) := Θ(X)/Θ(∗) ∼= ES1 ×S1 L(X)/BS1 ∼= ES1
+ ∧S1 L(X)

Note that (5.5) is a reduced homotopy functor, so that P0Θ̄(X) ≃ Θ̄(∗) = {∗} and P1Θ̄(X) ∼= D1Θ̄(X) for
any space X ∈ Top∗ (see (5.2)).
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The next proposition shows that the natural transformation CS in (5.4), relating cyclic to symmetric
homology, essentially coincides with the first Goodwillie layer of the functor (5.5). We deduce this from
results of Carlsson and Cohen [21] by elaborating on a remark of Fiedorowicz [27].

Proposition 5.1. The map CS in (5.4) is represented by

ES1 ×S1 L(X)
CSX ✲ ΩΩ∞Σ∞(X)

∣
∣
∣

∣
∣
∣

Θ(X)
can ✲✲ Θ̄(X)

δ1,X✲ D1Θ̄(X)

≀
❄

where the right vertical arrow is a natural weak equivalence and δ1 is the 1-st layer of the functor (5.5).

Proof. As noticed in [27, Remark 1.4]), the map CSX factors in the homotopy category as

(5.6) ES1 ×S1 L(X)
can
−−→ ES1

+ ∧S1 L(X)
fX
−−→ ΩΩ∞Σ∞(X)

where fX is a certain natural map constructed in [21]. We review the construction of fX and compare it to
a well-known general formula for the first Goodwillie layer of a reduced homotopy functor.

First, we recall a standard stabilization construction due to Waldhausen [68]. For a pointed space X ,
denote by CX = X ∧ I and ΣX = X ∧ S1 the reduced cone and the reduced suspension of X , respectively.
The latter can be obtained by glueing two copies of the former along a common base which is identified with
X : this yields the natural pushout square in Top∗

(5.7)

X ✲ CX

CX
❄

j1
✲ ΣX

j0
❄

Applying the given functor F to (5.7) and taking the homotopy pullback along the maps j0 and j1 induces
a natural map

(5.8) F (X)→ hocolim [F (CX) −→ F (ΣX)←− F (CX) ]

Since the functor F is homotopic and reduced, we have F (CX) ≃ F (∗) ≃ {∗} , which implies that the
homotopy colimit in (5.8) is equivalent to ΩF (ΣX). In this way, we get a natural map s : F (X)→ ΩF (ΣX).
This last map can be iterated any number of times:

(5.9) sn : F (X) → ΩnF (ΣnX) , n ≥ 0 ,

and eventually stabilized, defining the map

(5.10) s∞ : F (X) → lim
−→
n

ΩnF (ΣnX) = Ω∞FΣ∞(X)

In particular, (5.10) exists for our functor F = Θ̄, see (5.5).
Next, for each n > 0, define ΣnX → Θ̄Σn(ΣX) to be the composition of the following natural maps

ΣnX
ε
→ ΩΣ(ΣnX) = Ω(Σn+1X) →֒ L(Σn+1X) ≃ ES1 × L(Σn+1X) ։ ES1

+ ∧S1 L(Σn+1X) = Θ̄Σn(ΣX) ,

where ε : Id → ΩΣ is the adjunction unit of (Σ,Ω). Looping n times then yields an inductive system of
maps

(5.11) in : ΩnΣnX → ΩnΘ̄Σn(ΣX) , ∀n ≥ 0 ,

which, by [21, Lemma 4.1], induce in the limit a homotopy equivalence

(5.12) i∞ : Ω∞Σ∞X
∼
−→ Ω∞Θ̄Σ∞(ΣX)
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Finally, we note the following canonical identifications

Ω∞Θ̄Σ∞(X) := lim
−→
n

ΩnΘ̄Σn(X) = lim
−→
n

Ωn+1Θ̄Σn+1(X) =

= lim
−→
n

Ω[ΩnΘ̄Σn(ΣX)] ∼= Ω lim
−→
n

[ΩnΘ̄Σn(ΣX)] = ΩΩ∞Θ̄Σ∞(ΣX)(5.13)

The Carlsson-Cohen map fX that appears in (5.6) can now be represented by the zig-zag of natural trans-
formations

(5.14) Θ̄(X)
s∞−−→ Ω∞Θ̄Σ∞(X)

(5.13)
∼= ΩΩ∞Θ̄Σ∞(ΣX)

Ωi∞←−−− ΩΩ∞Σ∞(X) ,

where the leftmost arrow is the Waldhausen stabilization map (5.10) for Θ̄ and the rightmost arrow is a
natural weak equivalence induced by (5.12). To complete the proof it remains to note that P1(F ) ≃ Ω∞FΣ∞

for any reduced homotopy functor F , and the universal natural transformation δ1 : F → P1F = D1F
coincides (up to homotopy) with the stabilization map (5.10) (see, e.g. [42, Example 5.3]). �

5.3. The map SR. We now turn to the second map SRX in (5.4) that relates symmetric homology to
representation homology. In this section, we construct this map topologically by a method similar to that
of Proposition 5.1; its relation to Goodwillie calculus will be discussed in Section 5.4. Our starting point
is the well-known fact that the Dold-Thom functor SP∞ : Top∗ → Top∗ factors through the category of
abelian topological monoids: in fact, SP∞(X) is the free abelian topological monoid generated by the space
X (see, e.g., [49]). This implies that SP∞ is a linear (i.e., 1-excisive) functor. The latter can be seen
directly as follows. Consider the natural maps (5.9) for the functor F = SP∞ constructed in the proof of
Proposition 5.1:

(5.15) sn : SP∞(X) → ΩnSP∞Σn(X) , n ≥ 0 ,

The maps (5.15) are all weak equivalences, which follows immediately from the commutative diagrams

πi SP
∞(X)

πi(sn)✲ πi Ω
nSP∞Σn(X)

H̃i(X)

≀
❄

∼ ✲ H̃i+n(Σ
nX)

≀
❄

where the vertical arrows are isomorphisms by the Dold-Thom Theorem. Thus, in the limit, we get

(5.16) s∞ : SP∞(X)
∼
−→ Ω∞ SP∞ Σ∞(X) ,

showing that SP∞ ≃ P1(SP
∞) ≃ D1(SP

∞) , whence the linearity of SP∞.
On the other hand, for all n ≥ 0, we have canonical maps ΣnX → SP∞(ΣnX) inducing the Hurewicz

homomorphisms, see (4.9)). Applying loop functors to these maps yield an inductive system of maps

(5.17) in : ΩnΣn(X) → ΩnSP∞Σn(X) , n ≥ 0 ,

which in the limit, induces

(5.18) i∞ : Ω∞Σ∞(X) → Ω∞SP∞Σ∞(X)

Unlike the analogous map (5.12) for the functor Θ̄, (5.18) is not a weak equivalence in general. Nevertheless,
looping it once and combining with (5.16), we get the pair of natural transformations

(5.19) ΩΩ∞Σ∞(X)
Ωi∞−−−→ ΩΩ∞SP∞Σ∞(X)

Ωs∞←−−− ΩSP∞(X)

where the rightmost one is a natural weak equivalence. Our goal is to prove the following analogue of
Proposition 5.1.

Proposition 5.2. The map SR is represented by the weak natural transformation (5.19). Thus, in the

homotopy category, SRX is equivalent to the map

(5.20) (Ωs∞)−1 (Ωi∞) : ΩΩ∞Σ∞(X) → ΩSP∞(X)
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which is the (looped once) canonical natural transformation relating stable homotopy to (reduced) singular

homology of pointed spaces.

To prove this proposition we will reinterpret the map (5.20) in terms of (topological) operads. The
standard reference for the background material that we need is [48] (for a brief introduction, see also [60,
Chapter 12]). Recall that an operad C in Top∗ is a collection of pointed spaces {C(j)}j≥0 with C(0) := {∗}
such that each C(j) carries a right Sj-action and there are composition laws C(k) × C(j1) × . . . × C(jk) →
C(j1 + . . . + jk) satisfying natural associativity and unitality conditions. If C is an operad, a C-space is
a pointed space X equipped with an action of C, which is given by a sequence of Sj-equivariant maps
θj : C(j) × Xj → X , with θ0 : C(0) →֒ X being the basepoint inclusion, that satisfy associativity and
unitality conditions compatible with those of C. Every operad C determines a monad C on Top∗ (i.e., a
monoid with respect to ‘◦’ in the category of endofunctors Top∗ → Top∗) in such a way that the notion
of a C-space is equivalent to that of C-algebra. Explicitly, given an operad C, the corresponding monad
C : Top∗ → Top∗ is defined by

(5.21) C(X) :=
∐

j≥0

(
C(j)×Sj

Xj
)
/ ∼

where the equivalence relation is of the form

(c, x1, . . . , xi−1, ∗, xi+1, . . . , xj) ∼ (σi(c), x1, . . . , xi−1, xi+1, . . . , xj)

for certain natural maps σi : C(j) → C(j − 1) (see [48, Construction 2.4]). A C-algebra is then defined
to be a space A ∈ Top∗ with an action map ξ : C(A) → A satisfying natural associativity and unitality
conditions. Opposite to the notion of a C-algebra is that of a C-functor, which a functor F on Top∗ equipped
a morphism F ◦C → F defining a right action of C on F . Associated to a triple (F, C, A), there is a two-sided

bar construction B(F, C, A) defined as the geometric realization of a simplicial space B∗(F, C, A) ∈ sTop∗
with components

(5.22) Bn(F, C, A) := FCn(A) , n ≥ 0 ,

where the faces di : Bn → Bn−1 and degeneracies sj : Bn → Bn+1 are determined by the structure maps of
A and F (see [48, Construction 9.6]).

Now, our main examples will be the so-called little cubes operads {C0, C1, C2, . . .} originally introduced by
Boardman and Vogt (see [48, Section 4]). The C0 and C1 are discrete operads7 defined by C0(j) := {∗} and
C1(j) := Sj for all j ≥ 0, with Sj-action being trivial in the former case and induced by multiplication in Sj
in the latter. A C0-space is just an abelian monoid in Top∗, and the monad associated to C0 is precisely the
Dold-Thom functor:

(5.23) C0(X) ∼= SP∞(X)

A C1-space is just a monoid in Top∗ (i.e., an associative H-space with 1), and the monad associated to C1
yields the classical James functor:

(5.24) C1(X) ∼= J(X)

where J(X) = (∐n≥0X
n)/∼ is the free topological monoid generated by X . For n ≥ 2, the operad Cn is

not discrete: for j ≥ 1, the space Cn(j) can be represented by the j-tuples of ‘little n-cubes’ (i.e. linear
embeddings In →֒ In with parallel axes and disjoint interiors) with natural (permutation) Sj-action. Thus,
for n ≥ 2, each Cn(j) is homotopy equivalent to confj(R

n), the configuration space of unordered j-tuples
of points in Rn equipped with canonical free Sj-action. Natural inclusions of cubes I

n →֒ In+1 induce the
embeddings of spaces Cn(j) →֒ Cn+1(j), and hence the maps of operads Cn →֒ Cn+1 for all n ≥ 2. This
allows one to define the operad C∞ := lim

−→n
Cn. Since πi[Cn(j)] ∼= πi[confj(R

n)] = 0 for i ≤ n − 2, each

component C∞(j) of C∞ is contractible, and as the Sj-action on C∞(j) (induced from Cn(j)) is free, C∞ is

7These operads are denoted in [48] by N and M, respectively.
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an E∞-operad. Finally, we recall May’s Approximation Theorem (see [48, Theorem 2.7]) that asserts that
the natural map of monads αn : Cn(X)→ CnΩ

nΣn(X)→ ΩnΣn(X) gives a homotopy equivalence

(5.25) Cn(X) ≃ ΩnΣn(X) , ∀n = 1, 2, . . . ,∞ ,

whenever X is connected.
We can now state the following result which is probably well known to experts.

Lemma 5.1 (cf. [27]). For any topological monoid M , there are natural homotopy equivalences

B(C∞, C1, M) ≃ ΩΩ∞Σ∞(BM) ,(5.26)

B(C0, C1, M) ≃ ΩSP∞(BM) ,(5.27)

and the map (5.20) for X = BM is equivalent to the map

(5.28) B(C∞, C1, M) → B(C0, C1, M)

induced by the canonical (unique) morphism of operads C∞ → C0 .

Proof. The equivalence (5.26) was originally proved by Fiedorowicz (see [27, Proposition 1.7] and also [2,
Lemma 39]); the proof of (5.27) is similar. We describe these equivalences in both cases. First,

B(C∞, C1, M) ≃ B(Ω∞Σ∞, C1, M) ≃

B(ΩΩ∞Σ∞Σ, C1, M) ≃ ΩΩ∞Σ∞B(Σ, C1, M) ≃ ΩΩ∞Σ∞(BM) ,

where the first equivalence is induced by (5.25), the second is obvious, the third is a formal property of the
bar construction (see [48, Lemma 9.7]), and the last one follows from a theorem of Fiedorowicz (see [26,
Corollary 9.7]) that yields B(Σ, C1, M) ≃ BM for any topological monoid M . Similarly,

B(C0, C1, M) ∼= B(SP∞, C1, M) ≃ B(Ω SP∞Σ, C1, M) ≃ ΩSP∞B(Σ, C1, M) ≃ ΩSP∞(BM) ,

where the first identification follows from (5.23), the second is induced by the equivalence (5.15), which
is a consequence of the Dold-Theorem, the third follows from [48, Lemma 9.7], and the last one is [26,
Corollary 9.7]. The last statement of the lemma is now deduced by comparing the above equivalences with
the construction of the map (5.20) given in the beginning of Section 5.3. �

Proof of Proposition 5.2. For any topological monoid M , consider the following diagram of spaces

(5.29)

|hocolim∆S+
(BsymM)|

f∞✲ B(C∞, C1,M)
(5.26)✲ ΩΩ∞Σ∞(BM)

|hocolimM
op

N

(p∗M)|

Ψ̃∗

sym

❄
f0✲ B(C0, C1,M)

can
❄

(5.27)✲ ΩSP∞(BM)

(5.20)
❄

In this diagram all horizontal maps are natural weak equivalences: f∞ is the equivalence constructed by
Fiedorowicz in [27] (see [2, Theorem 38]), f0 is the equivalence (4.45) of Proposition 4.2, and (5.26), (5.27)

are the equivalences described in Lemma 5.1. The map Ψ̃∗
sym is induced by the functor Ψ̃sym defined in

(4.46). To prove the proposition we need to show that the diagram (5.29) commutes. By Lemma 5.1, we
already know that the rightmost square of (5.29) commutes; thus it suffices to prove the commutativity of
the leftmost square. For this, we shall describe the maps f∞ and f0 explicitly.

The map f∞ is explicitly constructed in the proof of [2, Lemma 36]. As in loc. cit., we letN : Top∗ → Top∗
denote the functor defined as the coend

N (X) :=

∫ [n]∈∆S+

N([n] ↓ ∆S+)×BsymJ(X)[n] .

By [2, Lemma 36], there is an equivalence of functors Θ : N ≃ C∞, inducing an equivalence of bar con-
structions B(N , C1,M) ≃ B(C∞, C1,M). The identification |hocolim∆S+

(BsymM)| ≃ B(N , C1,M) by [48,
Lemma 9.7] then yields f∞.
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The map f0 can be constructed in a similar way. Let P : Top∗ → Top∗ denote the functor

P(X) :=

∫ (〈n〉;k1,...,kn)∈M
op

N

N((〈n〉; k1, . . . , kn) ↓M
op
N
)× p∗J(X)(〈n〉; k1, . . . , kn) .

Identifying J(X)(〈n〉) = HomMon(〈n〉, J(X)) and recalling that C0(X) = SP∞(X) is the abelianization of
J(X), we note that the map
∐

N((〈n〉; k1, . . . , kn) ↓M
op
N
)× p∗J(X)(〈n〉; k1, . . . , kn)→ C0(X) = SP∞(X) , y × ϕ 7→ ϕab(k1, . . . , kn)

descends to the coend to yield a natural equivalence

Λ : P(X) ≃ C0(X) ,

which, in turn, yields an equivalence of bar constructions B(P , C1,M) ≃ B(C0, C1,M). Composing this with
the identification |hocolimM

op

N

(p∗M)| ≃ B(P , C1,M) by [48, Lemma9.7] yields the map f0.

It can be easily verified that the following diagram commutes.

N
Θ✲ C∞

P

Ψ̃∗

sym

❄
Λ✲ C0

can

❄

It follows that the first square in the diagram (5.29) commutes. Finally, we note that in the case when

M = Γ, a simplicial group the map Ψ̃∗
sym in the diagram (5.29) may be identified with the corresponding

map in (4.40) by Corollary 4.2 (also see Remark 4.5). This completes the proof ofthe desired proposition. �

Corollary 5.1. Let Γ be a (homotopy) simplicial group such that X = BΓ has homotopy type of a simply-

connected CW complex, which is of (locally) finite rational type. If k is a field of characteristic zero, then

the map SRX induces an isomorphism

HS∗(k[Γ]) ∼= HR∗(k[Γ]) .

Proof. As mentioned above, the natural map i∞ : Ω∞Σ∞(X) → SP∞(X) (defined by composing (5.18)
with the inverse of (5.16) in Ho(Top∗)) is not an equivalence in general. However, it is known that for any
connected CW complex X , this map induces an isomorphism of cohomology rings

(5.30) i∗∞ : H∗(SP∞(X), k)
∼
−→ H∗(Ω∞Σ∞(X), k)

provided the coefficients are taken in a field k of characteristic zero (see, e.g., [22, Section 7.3]). Now,
under our assumption on X , both SP∞(X) and Ω∞Σ∞(X) are simply-connected spaces of finite ratio-
nal type. Hence, there is a natural (‘Cotor’) spectral sequence with E2-term E∗,∗

2 (Z) = Ext∗H∗(Z, k)(k, k)

that converges to H∗(ΩZ, k) for any simply-connected space Z (see, e.g., [22, Section 5.5, (5.13)]). By

naturality, the map (5.30) induces an isomorhism E∗,∗
2 (Ω∞Σ∞X)

∼
−→ E∗,∗

2 (SP∞X) of such spectral se-
quences for Z = Ω∞Σ∞(X) and Z = SP∞(X). This last isomorphism is compatible with the map Ωi∞ :
H∗(ΩΩ∞Σ∞(X), k) → H∗(Ω SP∞(X), k) which, by Proposition 5.2, coincides with SRX : HS∗(k[Γ]) →
HR∗(k[Γ]) for X = BΓ. Thus, by Comaprison Theorem for spectral sequences (see [69, Theorem 5.2.12]),
we conclude that SRX is an isomorphism. �

Remark 5.1. We expect that the result of Corollary 5.1 holds for any homotopy simplicial group Γ, including
the usual (discrete) groups, for which BΓ is a K(1,Γ)-space, i.e. certainly not simply connected.

5.4. Polynomial extensions. There is a natural way to describe and generalize the map SR via Goodwillie
calculus. As we have seen above, the Dold-Thom functor SP∞ is 1-excisive, hence there is a canonical (up
to homotopy) natural transformation β1 : P1(Id) → SP∞, where P1(Id) = D1(Id) is the 1-st layer of the
functor Id. The latter is known to be the stable homotopy functor P1(Id) ≃ Ω∞Σ∞ and β1 ≃ i∞. Thus
SR ≃ Ωβ1 . It turns out that the map β1 can be extended naturally to higher layers — and in fact, to
the entire Goodwillie tower of the functor Id. This is based on results of the paper [18] that compares the
Goodwillie tower of the identity with the lower central series of the Kan loop group.
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Recall that, for any connected space X , we can identify SP∞(X) ≃ B[A(X)], where A(X) := G(X)ab
is the abelianization of the Kan loop group G(X) of (a reduced simplicial set representing) X , see (4.13).
Now, instead of just abelianization, consider the lower central series of G(X):

. . . → G(X)/Gn+1(X) → G(X)/Gn(X) → . . . → G(X)/G2(X) = A(X)

where Gn(X) are the simplicial subgroups of G(X) defined inductively by

G1(X) := G(X) and Gn+1(X) := [G(X),Gn(X)] , n ≥ 1 .

It is shown in [18] that the functor X 7→ B[G(X)/Gn+1(X)] is n-excisive for each n ≥ 1, and there exists a
canonical (up to homotopy) morphism of towers

(5.31)

. . . ✲ Pn(Id)(X) ✲ Pn−1(Id)(X) ✲ . . . ✲ P1(Id)(X)

. . .

. . . ✲ B[G(X)/Gn+1(X)]

βn

❄
✲ B[G(X)/Gn(X)]

βn−1

❄
✲ . . . ✲ B[A(X)]

β1

❄

where the rightmost vertical arrow is precisely the map β1 : P1(Id)→ SP∞. This morphism induces natural
maps on the layers of the Goodwillie tower

(5.32) βn : Dn(Id)(X) → B[Gn(X)/Gn+1(X)] , n ≥ 1 .

that we can describe in explicit terms. First of all, by a theorem of B. Johnson [38] (cf. [1, Example 1.2.5]),
all Goodwillie derivatives of the identity functor are known: for n ≥ 1, the spectrum ∂n(Id) is equivalent to
a wedge of (n − 1)! copies of the (1 − n)-sphere spectrum S1−n = Σ1−n(S0). Hence, by formula (5.3), we
have

(5.33) Dn(Id)(X) ≃ Ω∞

(
∨

(n−1)!

Σ1−n (Σ∞X)∧n
)

hSn

On the other hand, the Kan simplicial group G(X) is (degreewise) free for any X . Hence, by classic PBW
Theorem (see, e.g., [63, I.4.3]), for all n ≥ 1, there are natural isomorphisms of simplicial abelian groups

(5.34) Gn(X)/Gn+1(X) ∼= Lien[A(X)] ,

where Lien denotes (the simplicial extension of) the degree n graded component of the free graded Lie
algebra functor Lie∗(A) =

⊕

n≥1 Lien(A) on abelian groups A. Thus, with identifications (5.33) and (5.34),
the morphism of towers (5.31) (looped once) induces on layers natural maps

(5.35) SR
(n)
X : ΩΩ∞

(
∨

(n−1)!

Σ1−n (Σ∞X)∧n
)

hSn

→ |Lien(AX) | , n ≥ 1 .

These maps can be viewed as nonlinear (polynomial) extensions of the map (5.2). In fact, for n = 1,

SR
(1)
X : ΩΩ∞Σ∞(X) → |A(X)| ≃ ΩSP∞(X)

while for n = 2, (5.35) becomes

SR
(2)
X : ΩΩ∞Σ−1(Σ∞X ∧ Σ∞X)hZ2

→ |Lie2(AX) |

since the action of Z2 on the spectrum ∂2(Id) ≃ S−1 is known to be trivial (see [1, Example 1.2.5]).

6. Stable character maps and derived Poisson brackets

In this section, we study the behavior of the derived character maps (1.6) in the limit as n → ∞. We
show that, on simply connected spaces, these maps stabilize, inducing an isomorphism between the graded
symmetric algebra generated by the S1-equivariant homology of the free loop space of X = BΓ and the
invariant part of the representation homology in the projective limit lim

←−
HR∗(Γ,GLn)

GLn . This result is a

topological counterpart of a stabilization theorem proved for representation homology of algebras in [10].
In case when X represents a closed manifold, so that its S1-equivariant homology carries the Chas-Sullivan
bracket, we show that the stable character map is an isomorphism of Lie algebras, where the Lie bracket on
representation homology is induced by a natural derived Poisson structure on the Quillen model of X .
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6.1. Stabilization of derived character maps. For this section, let k be a field of characteristic 0.
The (homotopy) group homomorphism Γ → {1} (resp., {1} → Γ) induces a morphism of cyclic modules
k[Bcyc] Γ→ k[Bcyc {1}] = k (resp., k = k[Bcyc {1}]→ k[Bcyc Γ]). In this way, the trivial cyclic module k is
a direct summand of k[Bcyc Γ] yielding a direct sum decomposition

k[Bcyc Γ] ∼= k ⊕ k[Bcyc Γ] .

The reduced cyclic homology HC∗(k[Γ]) is defined by

HC∗(k[Γ]) := Tor∆C∗ (k[Bcyc Γ], k) ,

so that

HC∗(k[Γ]) ∼= HC∗(k)⊕HC∗(k[Γ]) .

On the other hand, the homomorphism of group schemes GLn →֒ GLn+1 (given by padding with 1 on the
bottom right corner) induces a morphism of commutative Hopf algebras O(GLn+1)→ O(GLn), and hence, a
morphism of left G-modules O(GLn+1)→ O(GLn). This induces a morphism on representation homologies

(6.1) µn+1,n : HR∗(Γ,GLn+1) = TorG∗ (k[Γ],O(GLn+1))→ HR∗(Γ,GLn) = TorG∗ (k[Γ],O(GLn)) .

It is not difficult to verify that (6.1) restricts to a morphism on the invariant part of the representation
homologies

(6.2) µn+1,n : HR∗(Γ,GLn+1)
GLn+1 → HR∗(Γ,GLn)

GLn .

Lemma 6.1. The following diagram commutes for all n :

HC∗(k[Γ])
Trn+1(Γ)✲ HR∗(Γ,GLn+1)

GLn+1

HR∗(Γ,GLn)
GLn

µn+1,n

❄Trn(Γ) ✲

Proof. Since any homotopy simplicial group is weakly equivalent to a cofibrant strict simplicial group, we
may assume without loss of generality that Γ is a cofibrant strict simplicial group. Continuing to denote the
map k[Γ]⊗∆C k → k[Γ]⊗GO(GLn) induced by ∆GLn

tr by Trn(Γ), we then need to verify that the following
diagram commutes

(6.3)

k[Γ]⊗∆C k
Trn+1(Γ)✲ k[Γ]⊗G O(GLn+1)

k[Γ]⊗G O(GLn)

µn+1,n

❄Trn(Γ) ✲

By (the proof of) [41, Theorem 4.1], Trn(Γm) is induced (in each simplicial degree m) by the composite map

Γm
ρn✲ GLn(O[Repn(Γm)]) ⊂✲ Mn(O[Repn(Γm)])

Tr✲ O[Repn(Γm)] ∼= k[Γm]⊗G O(GLn) ,

where ρn denotes the universal n-dimensional representation. A similar argument shows that the following
diagram commutes:

Γm
ρn+1 ✲ GLn+1(O[Repn+1(Γm)])

GLn(O[Repn(Γm)])

ρn
❄

⊂ ✲ GLn+1(O[Repn(Γm)])

µn+1,n

❄

Here, the lower horizontal arrow is given by padding by ‘1’ on the bottom right. It follows that

Trn(Γm)(〈γ〉 − 1) = µn+1,n ◦ Trn+1(〈γ〉 − 1)

for every conjugacy class 〈γ〉 in Γm. This shows commutativity of the diagram (6.3) in every simplicial
degree, proving the desired lemma. �
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By Lemma 6.1, the family of maps {Trn(Γ)}n>1 yields a k-linear map

(6.4) Tr∞(Γ) : HC∗(k[Γ])→ HR∗(Γ,GL∞)GL∞ := lim
←−
n

HR∗(Γ,GLn)
GLn ,

where the inverse limit is taken along the maps (6.2). The map Tr∞(Γ), which we call the stable character

map, induces a morphism of graded commutative k-algebras

(6.5) ΛTr∞(Γ) : Λk[HC∗(k[Γ])]→ HR∗(Γ,GL∞)GL∞ .

Next, recall that a simplicial group Γ is said to be a simplicial group model of a pointed, connected
topological space X if Γ maps to X under (3.8), i.e. |W̄ (Γ)| is weakly equivalent to X . In this case, it is
well known that

(6.6) HC∗(k[Γ]) ∼= HS
1

∗ (LX ; k)

where LX is the free loop space of X , and the representation homology HR∗(Γ, G), which is an invariant of
(the homotopy type of) X by Lemma 3.2 is denoted by HR∗(X,G). The isomorphism (6.6) restricts to an
isomorphism of graded k-modules

(6.7) HC∗(k[Γ]) ∼= H
S1

∗ (LX ; k) .

Here, H
S1

∗ (LX ; k) stands for the reduced S1-equivariant homology of LX , i.e.

H
S1

∗ (LX ; k) := Ker[π∗ : HS
1

∗ (LX)→ HS
1

∗ (pt) ] .

The map π∗ is induced on S1-equivariant homology by the map LX → pt. The derived character map
Trn(X) := Trn(Γ) is thus morphism of graded k-vector spaces

(6.8) Trn(X) : H
S1

∗ (LX ; k)→ HR∗(X,GLn)
GLn ,

and the stable character map becomes

(6.9) Tr∞(X) : H
S1

∗ (LX ; k)→ HR∗(X,GL∞)GL∞ .

The following theorem is the main result of this section.

Theorem 6.1. Let X be a simply connected space of finite (rational) type. The stable character map (6.9)
induces an isomorphism of graded commutative algebras

ΛTr∞(X) : Λk[ H
S1

∗ (LX ; k)]
∼
−→ HR∗(X,GL∞)GL∞ .

If, moreover, X is a simply connected manifold of dimension d then H
S1

∗ (LX ; k) is equipped with the
Chas-Sullivan bracket (also called string topology bracket), a graded Lie bracket of (homological) degree
2 − d. This Lie bracket arises out of a derived Poisson structure (in the sense on [15, Sec. 3.1]) on an
algebra weakly equivalent to k[Γ]. On the other hand, the representation homologies HR∗(X,GLn)

GLn are
equipped with graded, ((2 − d)-shifted) Poisson structures arising from the Poincaré duality pairing on the
cohomology of X . Passing to the inverse limit, one obtains a graded ((2 − d)-shifted) Poisson structure on
HR∗(X,GL∞)GL∞ . As an application of Theorem 6.1, we obtain the following corollary which allows us to
express the Chas-Sullivan bracket in terms of a graded Poisson bracket.

Corollary 6.1. The map

ΛTr∞(X) : Λk[ H
S1

∗ (LX ; k) ]
∼
−→ HR∗(X,GL∞)GL∞

is an isomorphism of graded (2 − d)-shifted Poisson algebras.
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6.2. Proofs of Theorem 6.1 and Corollary 6.1. The shortest way to prove Theorem 6.1 and Corollary
6.1 is to apply the results of the paper [10] that deals with stabilization of representation homology and
derived character maps for (augmented) associative algebras. These results being applicable in our case
follows from Remark 3.4. In what follows we outline key steps and necessary modifications of the arguments
of [10], leaving details for interested readers.

Sketch of proof of Theorem 6.1. Let LX denote a (cofibrant) Quillen model ofX . Since X is of finite rational
type, LX may be chosen to be semi-free, and finitely generated in each homological degree. By Remark 3.4,
if suffices to prove the assertions of this theorem working with ULX instead of k[Γ]. Further, since X is
simply connected, the generators of LX are in positive homological degree. Theorem 6.1 follows from (a
minor modification of the proof of) [10, Theorem 7.8]. Indeed, since R = ULX is freely generated by finitely
many generators in each homological degree, and since all its generators are in positive homological degree,
the arguments of [10, Section 7.4] go through to show that for each k > 0, the map

(6.10) µ̃n+1,n : RGL,6k
n+1 → RGL,6k

n

is an isomorphism for n sufficiently large (i.e., for all n > N(k) for some N(k) which possibly depends on
k). Here RGL

n is the representation DG algebra as in [10, formula (2.10)], whose homology is isomorphic to
HR∗(R, n)

GLn ∼= HR∗(X,GLn)
GLn and RGL,6k

n stands for the (brutal) truncation of RGL
n to homological

degrees 6 k. The map (6.10) is defined as in [10, Section 4] (where it is denoted by µn+1,n). On homologies,
(6.10) induces the map µn+1,n : HR∗(X,GLn+1)

GLn+1 → HR∗(X,GLn)
GLn . As in the proof of [10, Theorem

7.8] (see also Proposition 7.5 of [10], which is the crux thereof), it then follows that the map

ΛTr∞(X) : Λk[H
S1

∗ (LX ; k)]→ H∗[R
GL
∞ ]

is an isomorphism of graded commutative algebras where RGL
∞ = lim←−nR

GL
n . The desired verification is thus

complete once we check that H∗[R
GL
∞ ] ∼= lim

←−n
H∗[R

GL
n ]. By (6.10), the inverse system {RGL

n } is Mittag-Leffler.

(6.10) further implies that for each k, the inverse system {Hk+1(R
GL
n )} stabilizes, i.e. becomes constant for

large n, and is thus Mittag-Leffler. It follows that lim1
nHk+1(R

GL
n ) = 0. That H∗[R

GL
∞ ] ∼= lim

←−n
H∗[R

GL
n ], as

desired, then follows from [69, Theorem 3.5.8]. This outlines the proof of Theorem 6.1. �

Sketch of proof of Corollary 6.1. Moreover (see [15, Section 4.2] for example), LX may be chosen so that its
universal enveloping algebra ULX is equipped with a derived Poisson structure inducing the Chas-Sullivan

bracket on its (reduced) cyclic homology (which is isomorphic to H
S1

∗ (LX ; k)). More precisely, LX may
be chosen to be Koszul dual to the (graded linear dual of) the Lambrechts-Stanley model of X (see [43]),
which is equipped with a cyclic pairing. Now, if Γ is a simplicial group model of X , then k[Γ] is weakly
equivalent to ULX . By Remark 3.4, if suffices to prove the assertions of this theorem working with ULX
instead of k[Γ]. In this setting, it follows immediately from [15, Theorem 5.1] (also see [6, Theorem 2] and
loc. cit., Theorem 3.1) that the cyclic pairing on (the graded linear dual of) the Lambrechts-Stanley model
of X yields a graded ((2−d)-shifted) Poisson structure on HR∗(X,GLn)

GLn such that the derived character

map Trn : H
S1

∗ (LX ; k) → HR∗(X,GLn)
GLn is a homomorphism of graded Lie algebras. Moreover, the

maps µn+1,n : HR∗(ULX , n+ 1)GLn+1 → HR∗(ULX , n)
GLn are easily seen to be homomorphisms of graded

Poisson algebras in the setting of [15, Section 5]. Hence, HR∗(X,GL∞)GL ∼= HR∗(ULX ,∞)GL acquires

the structure of a graded Poisson algebra. It follows that Tr∞(X) : H
S1

∗ (LX ; k) → HR∗(X,GL∞)GL∞ is a

homomorphism of grade Lie algebras, which implies that ΛTr∞(X) : Λk[H
S1

∗ (LX ; k)]→ HR∗(X,GL∞)GL∞

is a homomorphism of graded Poisson algebras, where the Poisson structure in the left-hand side is obtained
by extending the Chas-Sullivan bracket using the Leibniz rule. That it is an isomorphism of graded Poisson
algebras then follows from Theorem 6.1. �
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