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Abstract. In this paper, we show that there is a natural Lagrangian fibration structure
on the map Φ from the cotangent bundle of a del Pezzo surface X of degree 4 to C2.
Moreover, we describe explicitly all level surfaces of the above natural map Φ.

1. Introduction

Throughout this paper we will work over the field of complex numbers.
The cotangent bundle of a complex projective manifold carries a natural holomorphic

symplectic 2-form. The existence of a natural Lagrangian fibration structure of these non-
compact complex manifolds has not been studied very much.

There are two famous known examples in this direction, one is the Hitchin map [7]

h : T ∗X → C(r2−1)(g−1) where X is the moduli space SU s
C(r, d) of stable vector bundle of

rank r with a fixed determinant of degree d coprime to r over a smooth projective curve
C of genus g. This map has been used as a tool to derive results on the moduli spaces
themselves in [1]. The other example is a rational homogeneous space G/P where G is
a semisimple complex Lie group and P is a parabolic subgroup. The group G acts on
the cotangent bundle T ∗G/P as symplectic automorphisms. This induces the moment map

T ∗G/P → G∗ to the dual of the Lie algebra of G (cf. Section 1.4 of [CG]). Both examples

SU s
C(r, d) and G/P are Fano manifolds. This suggests that there may exist some interesting

Lagrangian fibration structure in the cotangent bundles of Fano manifolds. J-M. Hwang
[10] shows that the varieties of minimal rational tangents play an important role in the
symplectic geometry of the cotangent bundles of uniruled projective manifolds.

The current paper is motivated by the fundamental work of the moduli spaces of vector
bundles from the viewpoint of symplectic geometry of its cotangent bundle by Hitchin [7],
and by the result of J-M. Hwang and Ramanan in [12], where they studied the Hitchin
system and the Hitchin discriminant associated to the Hitchin map on the cotangent bundle
of SU s

C(r, d).
Our computational result directly shows that the cotangent bundle of a del Pezzo surface

X of degree 4 has also the Lagarangian fibration structure Φ : T ∗X → C2, and its level sur-
faces have some similar properties of the Hitchin discriminant in [12]. Similarly as Corollary
4.6 in [12], Φ−1(∆) is the closure of the union of rational curves in T ∗X where ∆ = {b ∈
C2 |Φ−1(b) is singular}. In the current paper, ∆ = {five lines through the origin in C2}.
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On the other hand, the positivity problem of the tangent bundle of a del Pezzo surface
S of degree d is completely answered recently in [15] and in [9]. If S is a del Pezzo surafce
of degree d then

• TS is big if and only if d ≥ 5.
• H0(S, SymmTS) = 0 for all m ≥ 1 if and only if d ≤ 3.

So the case of d = 4 arouses special interest to us.
Let X be a del Pezzo surface of degree 4. Then X is a complete intersection of two

hypersurfaces in P4 = P4
y1,...,y5

defined by homogeneous polynomials Q1 and Q2 of degree 2
in variables y1, . . . , y5 respectively. By a linear change of variables and multiplication by
C∗, we can assume that

(1.1) Q1 =
5∑
i=1

y2
i and Q2 =

5∑
i=1

aiy
2
i

for some distinct ai ∈ C. (cf. Theorem 8.6.2 in [5]).
From Theorem 5.1 in [6] and the proof of Theorem 6.1 in [15], there is an isomorphism

of graded rings:

(1.2)
∞⊕
m=0

H0(X, SymmTX) ' C[Q1, Q2].

In particular Q1 and Q2 form a basis of H0(X, Sym2TX).
Let

Φ : T ∗X → C2

be the natural morphism defined by the pair (Q1, Q2). For each e ∈ C2, the fiber Φ−1(e) ⊂
T ∗X will be called a level surface, and we will denote it by Se. From the isomorphism in
(1.2), we can see that Se ∼= Sλe for all λ ∈ C∗.

First of all, in this paper, we show the following theorem. The proof will be given in
Section 2.

Theorem 1.1. The morphism Φ : T ∗X → C2 is a Lagrangian fibration.

It means that the restriction ω|Se of the natural symplectic two form ω on T ∗X is zero.
Remark 2.8 also explains the relation between the Lagrangian fibration structure of the
Hitchin map for the case of g = 2 and the Lagrangian fibration structure of the cotangent
bundle of a del Pezzo surface X of degree 4.

Meanwhile, we let ζ := O(1) be the tautological line bundle on P(TX) so that π∗ζ =
TX where π : P(TX) → X be the projection. By the isomorphism H0(P(TX), 2ζ) '
H0(X, Sym2TX), the pencil {Qe}e∈P1 of quadric hypersurfaces in P4 induced by Q1 and Q2

gives the linear system |2ζ| in P(TX) defining a rational map φ̃ : P(TX) 99K P1.
It is well known that there are exactly 16 lines `1, . . . , `16 in P4 contained in X. The base

locus B of the linear system |2ζ| in P(TX) consists of the disjoint union of 16 sections `′i
of P(TX |`i) → `i which are associated to quotients TX |`i = OP1(2) ⊕ OP1(−1) � OP1(−1)
(p.12 in [9]); Since `′i · ζ = −1, we have `′i ⊂ B.

After the blow-up µB : BlBP(TX)→ P(TX) along the base locus B, we have a morphism

φ : BlBP(TX)→ P1,
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and the following commutative diagram of morphisms and rational maps:

BlBP(TX)
µB //

φ

""

P(TX)

π &&
φ̃

��

T ∗X
oo

Φ

��

Πzz
X

P1 C2oo

For each e ∈ P1, we let Ke be the fiber φ−1(e). In Lemma 3.5 we show that Ke is a double
cover of X if Qe is smooth. Due to the description of Section 2 in [6], for each x ∈ X, the
points in Ke over x correspond to lines in Qe ∩TxX through x where TxX ⊂ P4 denotes
the embedded projective tangent plane to X at x. So if Qe is smooth, the branch locus of
the double cover from Ke to X is the locus of points x such that Qe ∩ TxX is a double
line. The total dual VMRT theory (cf. [9]) also helps to give an explicit description of Ke,
especially when Ke is not irreducible. We will explain this description in Section 3.

Through an explicit description of Ke, we get the following theorem (a) for a general
e ∈ C2 and (b). Then by using the idea of the characteristic vector fields in [11], the proof
of Theorem 1.2(=Theorem 3.13) can be completed. The proof will be given in Section 3.

Theorem 1.2. Let b1, . . . ,b5 be the points in P1 such that Qbi are singular. For each
i = 1, . . . , 5, take one point bi in the fiber at bi of the quotient map C2 \ {0} → P1 and
let C · bi be the line in C2 through bi and the origin . We have the following description of
level surfaces of Φ : T ∗X → C2.

(a) For every e ∈ C2 \ ∪5
i=1C · bi, Se is S̄e \ {16 points} where S̄e is isomorphic to the

Jacobian variety of a curve Ce of genus two.
(b) For each i = 1, . . . , 5, we have the following description of Sbi.

(i) Sbi consists of two irreducible components Ai,1 and Ai,2.
(ii) Each Ai,j for j = 1, 2 is a ruled surface\{8 points} over an elliptic curve Ēi,j.

(iii) Ai,1 ∩ Ai,2 is an elliptic curve E ′bi.

(iv) In the fibration Ai,j → Ēi,j, E
′
bi

intersects two distinct points at each fiber.

We remark that X is isomorphic to the blow up of P2 at the five points which are the
images of b1, . . . ,b5 under the Veronese embedding (cf. [19]).

As a corollary, the map Φ is flat, and all elements of the linear system |2ζ| in P(TX) can
be also fully described.

Theorem 1.3. We have the following description of Ke for all e ∈ P1.

(a) For every e ∈ P1 \ {b1, . . . ,b5}, Ke is a K3 surface of degree 8 of Kummer type. It
has 16 (-2)-curves `e,i which are intersection of Ke with the exceptional divisor D
of the blow-up µB : BlBP(TX)→ P(TX).

(b) For each i = 1, . . . , 5, we have the following description of Kbi.

(i) Kbi consists of two irreducible components C̆i,1 and C̆i,2.
(ii) For each j = 1, 2, we have a conic fibration πi,j : X → P1 with four singular

fibers such that C̆i,j is isomorphic to the blow-up of X at four distinct points
which are the singular points of the four singular fibers of πi,j.

(iii) C̆i,1 ∩ C̆i,2 is a smooth elliptic curve Ebi.
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(iv) In the fibration π̆i,j : C̆i,j → P1 given by the composition of the blow-up C̆i,j → X
in (ii) and the conic fibration πi,j, Ebi intersects two distinct points at each
smooth fiber, and one point at the exceptional curve of each singular fiber.

This theorem is proved by Lemma 3.10 and Corollary 3.15.

Acknowledgements. Both authors would like to thank Jun-Muk Hwang to explain us
the results of his papers and helpful comments, and would like to thank Arnaud Beauville
for his interest and useful comments.

2. Lagrangian fibration structure on the contangent bundle

In order to show Theorem 1.1, we first describe the members of H0(X, Sym2TX) in terms
of local parameters of T ∗X .

Notation 2.1. Consider P2 = P2
x0,x1,x2

which means that [x0, x1, x2] is a homogeneous

coordinate system of P2. Set x = x1

x0
and y = x2

x0
. Let U0 = A2

x,y ⊂ P2 be the affine open

subset defined by x0 6= 0. Take one H ∈ H0(U0, Sym2TP2). Then we can write H uniquely
as

(2.1) H = f(x, y)

(
∂

∂x

)2

+ g(x, y)

(
∂

∂y

)2

+ h(x, y)

(
∂

∂x

)(
∂

∂y

)
where

f(x, y) =
∑

i,j fi,jx
iyj, g(x, y) =

∑
i,j gi,jx

iyj, h(x, y) =
∑

i,j hi,jx
iyj ∈ C[x, y].

2.1. Description of H0(P2, Sym2TP2).

Lemma 2.2. In the situation of Notaion 2.1, H is in H0(P2, Sym2TP2) if and only if deg f ,
deg g, deg h ≤ 4, and the following 18 linear forms of the coefficients of H vanish:

h0,4, h1,3 − 2g0,4, h2,2 − 2g1,3, h3,1 − 2g2,2, h4,0 − 2g3,1, g4,0,

f0,3, f1,2 − h0,3, f2,1 + g0,3 − h1,2, f3,0 + g1,2 − h2,1, g2,1 − h3,0, g3,0,

f0,4, f1,3, f2,2 − g0,4, f3,1 − g1,3, f4,0 − g2,2, g3,1.

Proof. Assume that H ∈ H0(P2, Sym2TP2).
Let u = x0

x2
and v = x1

x2
. Then u and v form an affine coordinate system on the affine

open subset U2 = A2
u,v ⊂ P2 given by x2 6= 0. Since x = v

u
, y = 1

u
, u = 1

y
, v = x

y
, we have

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
=

1

y

∂

∂v
= u

∂

∂v

and
∂

∂y
=
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
= − 1

y2

∂

∂u
− x

y2

∂

∂v
= −u2 ∂

∂u
− uv ∂

∂v
.
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Therefore

H|U2 = f(
v

u
,

1

u
)u2

(
∂

∂v

)2

+ g(
v

u
,

1

u
)

(
u2 ∂

∂u
+ uv

∂

∂v

)
− h(

v

u
,

1

u
)

(
u3

(
∂

∂u

)(
∂

∂v

)
+ u2v

(
∂

∂v

)2
)

= g(
v

u
,

1

u
)u4

(
∂

∂u

)2

+

{
f(
v

u
,

1

u
)u2 + g(

v

u
,

1

u
)u2v2 − h(

v

u
,

1

u
)u2v

}(
∂

∂v

)2

+

{
2g(

v

u
,

1

u
)u3v − h(

v

u
,

1

u
)u3

}(
∂

∂u

)(
∂

∂v

)
Since H|U2 ∈ H0(U2, Sym2TP2), the coefficients of(

∂
∂u

)2
,
(
∂
∂v

)2
, and

(
∂
∂u

) (
∂
∂v

)
appearing in H|U2 above are holomorphic functions in u, v. Therefore

g(
v

u
,

1

u
)u4

which is the coefficient of
(
∂
∂u

)2
in H|U2 is holomorphic, and hence

gi,j = 0 for all i, j with i+ j ≥ 5

which means that deg g ≤ 4.
We have the following equalities:

2g(
v

u
,

1

u
)u3v − h(

v

u
,

1

u
)u3

= 2
∑

gi,j(
v

u
)i(

1

u
)ju3v −

∑
hi,j(

v

u
)i(

1

u
)ju3

= 2
∑

gi,ju
3−i−jvi+1 −

∑
hi,ju

3−i−jvi (∗)

From the same arguments as above, we can see that the coefficients of u−lvk for l > 0 and
k ≥ 0 in (∗) vanish which implies

hi,j = 0 for all i, j with i+ j ≥ 5

and

h0,4 = 0, h1,3 = 2g0,4, h2,2 = 2g1,3, h3,1 = 2g2,2, h4,0 = 2g3,1, g4,0 = 0.

We have the following equalities:

f(
v

u
,

1

u
)u2 + g(

v

u
,

1

u
)u2v2 − h(

v

u
,

1

u
)u2v

=
∑

fi,j(
v

u
)i(

1

u
)ju2 +

∑
gi,j(

v

u
)i(

1

u
)ju2v2 −

∑
hi,j(

v

u
)i(

1

u
)ju2v

=
∑

fi,ju
2−i−jvi +

∑
gi,ju

2−i−jvi+2 −
∑

hi,ju
2−i−jvi+1 (∗∗)

By the same reason as before, it follows that the coefficients of u−lvk with l > 0 and k ≥ 0
in (∗∗) vanish. This shows that
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fi,j = 0 for all i+ j ≥ 5

and

f0,3 = f1,2 − h0,3 = f2,1 + g0,3 − h1,2 = f3,0 + g1,2 − h2,1 = g2,1 − h3,0 = g3,0 = 0,

f0,4 = f1,3−h0.4 = f2,2+g0,4−h1,3 = f3,1+g1,3−h2,2 = f4,0+g2,2−h3,1 = g3,1−h4,0 = g4,0 = 0.

So we obtained all the 18 linear relations in our lemma.
Coversely if H satisfies the conditions in this lemma, then H is holomorphic on P2 \{(0 :

0 : 1)} and hence it can be holomorphically extended to all P2. �

Remark 2.3. The above 18 linear relations in Lemma 2.2 are independent and thus
h0(P2, Sym2TP2) = 27. The dimension can be also computed from the Euler sequence
of TP2 . From the exact sequence

0→ OP2 → OP2(1)⊕3 → TP2 → 0,

we have

0→ OP2(1)⊕3 → Sym2(OP2(1)⊕3)→ Sym2TP2 → 0.

We also remark that Lemma 2.2 is equivalent to the following statement: H ∈ H0(P2, Sym2TP2)
if and only if deg f, deg g, deg h ≤ 4, and

1

x2
f4(x, y) =

1

y2
g4(x, y)

f4(x, y) = x2(f4,0x
2 + f3,1xy + f2,2y

2) =
x2

y2
g4(x, y)

g4(x, y) = y2(g0,4y
2 + g1,3xy + g2,2x

2) =
y2

x2
f4(x, y)

h4(x, y) = xy(h1,3y
2 + h2,2xy + h3,1x

2y) =
2x

y
g4(x, y) =

2y

x
f4(x, y) =

y

x
f4(x, y) +

x

y
g4(x, y).

and

f3(x, y) = x(f3,0x
2 + f2,1xy + f1,2y

2)

g3(x, y) = y(g2,1x
2 + g1,2xy + g0,3y

2)

h3(x, y) = h3,0x
3 + h2,1x

2y + h1,2xy
2 + h0,3y

3

= g2,1x
3 + (f3,0 + g1,2)x2y + (f1,2 + g0,3)xy2 + f1,2y

3

=
y

x
f3(x, y) +

x

y
g3(x, y).

2.2. Description of H0(X, Sym2TX). Let µp : Y = BlpP2 → P2 = P2
x0,x1,x2

be the blow-up
at p = (1 : a : b). Then

H0(Y, Sym2TY ) ⊂ H0(P2, Sym2TP2)

Take H ∈ H0(P2, Sym2TP2). For the affine open subset U0 ⊂ P2 defined by x0 6= 0, write
H|U0 as in Notaion 2.1 so that it satisfies the properties in Lemma 2.2.
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Lemma 2.4. The above H is in H0(Y, Sym2TY ) if and only if

f(a, b) = g(a, b) = h(a, b) = gx(a, b) = fy(a, b) = 0

and

gy(a, b)− hx(a, b) = fx(a, b)− hy(a, b) = 0.

Proof. For simplicity we only prove that if p = (1 : 0 : 0), then H ∈ H0(Y, Sym2TY ) if and
only if

f0,0 = g0,0 = h0,0 = g1,0 = f0,1 = g0,1 − h1,0 = f1,0 − h0,1 = 0

The proof for the general case can be done by the same argument.
Let E be the exceptional divisor of µp. Let U0 ⊂ P2 = P2

x0,x1,x2
be the affine open

neighborhood of p defined by x0 6= 0. Consider x = x1

x0
and y = x1

x0
as an affine coordinate

system on U0 = A2
x,y ⊂ P2 so that p = (0, 0). Then µ−1

p (U0) ⊂ A2
x,y × P1

z0,z1
is defined by

xz1 = yz0. Let W ⊂ µ−1
p (U0) be the open subset given by z0 6= 0. Set w = z1

z0
and r = x.

Then y = xw, W = A2
r,w, and E ∩W is defined by r = 0 in W .

From the relations

∂

∂x
=
∂r

∂x

∂

∂r
+
∂w

∂x

∂

∂w
=

∂

∂r
− y

x2

∂

∂w
=

∂

∂r
− w

r

∂

∂w
,

and
∂

∂y
=
∂r

∂y

∂

∂r
+
∂w

∂y

∂

∂w
=

1

r

∂

∂w

it follows that

H|W\E = f(r, rw)

(
∂

∂r
− w

r

∂

∂w

)2

+ g(r, rw)

(
1

r

∂

∂w

)2

+ h(r, rw)

(
∂

∂x
− w

r

∂

∂w

)(
1

r

∂

∂w

)
= f(r, rw)

(
∂

∂r

)2

+

{
f(r, rw)

w2

r2
+ g(r, rw)

1

r2
− h(r, rw)

w

r2

}(
∂

∂w

)2

+

{
−2f(r, rw)

w

r
+ h(r, rw)

1

r

}(
∂

∂r

)(
∂

∂w

)
The coefficient of

(
∂
∂w

)2
in H|W\E satisfies the following equalities:

f(r, xw)
w2

x2
+ g(r, rw)

1

r2
− h(r, rw)

w

r2

=
∑

fi,jr
i(rw)j

w2

r2
+
∑

gi,jr
i(rw)j

1

r2
−
∑

hi,jr
i(rw)j

w

r2

=
∑

fi,jr
i+j−2wj+2 +

∑
gi,jr

i+j−2wj −
∑

hi,jr
i+j−2wj+1

Therefore if H|W\E holomorphically extends to W ,

f0,0 = g0,0 = h0,0 = 0 and g1,0 = g0,1 − h1,0 = f1,0 − h0,1 = f0,1 = 0
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because E ∩W is defined by r = 0 in W .
Similarly, from the following equalities

− 2f(r, rw)
w

r
+ h(r, rw)

1

r

= −2
∑

fi,jr
i(rw)j

w

r
+
∑

hi,jr
i(rw)j

1

r

= −2
∑

fi,jr
i+j−1wj+1 +

∑
hi,jr

i+j−1wj

it follows that if H|W\E holomorphically extends to W then f0,0 = h0,0 = 0.
Let W ′ ⊂ µ−1

p (U) be the open subset defined by z1 6= 0. Let w = z0
z1

. Then x = yw and

W ′ = A2
y,w. Using the following relations

∂

∂x
=
∂w

∂x

∂

∂w
+
∂y

∂x

∂

∂y
=

1

y

∂

∂w
,

and
∂

∂y
=
∂w

∂y

∂

∂w
+
∂y

∂y

∂

∂y
= − x

y2

∂

∂w
+

∂

∂y
= −w

y

∂

∂w
+

∂

∂y
,

we have

H|W ′\E = f(yw, y)

(
1

y

∂

∂w

)2

+ g(yw, y)

(
−w
y

∂

∂w
+

∂

∂y

)2

+ h(yw, y)

(
1

y

∂

∂w

)(
−w
y

∂

∂w
+

∂

∂y

)
=

{
f(yw, y)

1

y2
+ g(yw, y)

w2

y2
− h(yw, y)

w

y2

}(
∂

∂w

)2

+ g(yw, y)

(
∂

∂y

)2

+

{
−2g(yw, y)

w

y
+ h(yw, y)

1

y

}(
∂

∂y

)(
∂

∂w

)
.

The coefficient of
(
∂
∂w

)2
in H|W ′\E satisfies the following equalities:

f(yw, y)
1

y2
+ g(yw, y)

w2

y2
− h(yw, y)

w

y2

=
∑

fi,j(yw)iyj
1

y2

∑
gi,j(yw)iyj

w2

y2
−
∑

hi,j(yw)iyj
w

y2

=
∑

fi,jy
i+j−2wi +

∑
i,j

gi,jy
i+j−2wi+2 −

∑
hi,jy

i+j−2wi+1

and thus if H|W ′\E holomorphically extends to W ′ then

f0,0 = g0,0 = h0,0 = 0 and f0,1 = f1,0 − h0,1 = g0,1 − h1,0 = g1.0 = 0.

�

Lemma 2.5. Let p1, . . . , p5 be five distinct points in P2 in general position, i.e., no three
of them lie in a line. Then we can choose a homogeneous coordinate system on P2 so that
p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), p4 = (1 : 1 : −1) or (1 : 1 : −1/2), and
p5 = (1 : a : b) for some a, b ∈ C.
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Proof. Clearly we can choose a homogeneous coordinate system x0, x1, x2 on P2 so that

p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1) and p4 = (1 : 1 : −1).

Assume that p5 = (0 : 1 : b). Set

M =

x y z
0 x+ y 0
0 0 x+ z

 .
Let us change the homogeneous coordinate system x0, x1, x2 by the linear transform on P2

given by a matrix of the from M above such that

y + bz = x+ y = −b(x+ z) 6= 0.

In this new coordinates, we have

p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), p5 = (1 : 1 : −1)

and

p4 = (x+ y − z : x+ y : −(x+ z)).

Assume that x+ y − z = 0. Then

x+ y − z = bz − (b2 + b)z − z = −(b2 + b+ 1)z = 0.

Since z 6= 0 we have

b2 + b+ 1 = 0.

Let us change the initial homogeneous coordinate system x0, x1, x2 on P2 by a matrix of
the form M above such that

y + bz = x+ y = −2b(x+ z) 6= 0.

In this new coordinates, we have

p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), p5 = (1 : 1 : −1/2)

and

p4 = (x+ y − z : x+ y : −(x+ z)).

Then

x+ y − z = bz − (2b2 + 3b)z − z = −(2b2 + 2b+ 1)z 6= 0

because b2 + b+ 1 = 0 and z 6= 0. We get our lemma. �
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2.3. Tangents of Lagrangian fibration. Let µ : X = Blp1,...,p5P2 → P2 be the blow up
at five points p1, . . . , p5 ∈ P2 in general position. Let Ei ⊂ X be the exceptional curve over
pi.

Take any two independent sections H,G ∈ H0(X, Sym2TX). Then we can consider H
and G as regular funtions on T ∗X so that they define a morphism

Φ : T ∗X → C2, q 7→ (H(q), G(q)).

We recall that for each e ∈ C2, the fiber Se = Φ−1(e) is called a level surface.
By Lemma 2.5, we can choose a homogeneous coordinate system x0, x1, x2 on P2 so that

p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), p4 = (1 : α : β) , and p5 = (1 : a : b)

for some a, b ∈ C, and (α, β) = (1,−1) or (1,−1/2).
Let U0 ⊂ P2 = P2

x0,x1,x2
be the affine open subset defined by x0 6= 0. Set x = x1

x0
, y = x2

x0
,

u = ∂
∂x

and v = ∂
∂y

. Let U := Π−1(µ−1(U0) \ ∪5
i=1Ei). Here Π : T ∗X → X is the projection

morphism. We can consider the restrictions H|U and G|U as members in C[x, y, u, v].

Let us consider the canonical symplectic two form ω on T ∗X : ω|U can be expressed as

ω|U = dx ∧ du+ dy ∧ dv.

Lemma 2.6. Take e ∈ C2 and q ∈ Se ∩ U . If dimTqSe = 2 and

Hy(q)Gv(q)−Hv(q)Gy(q) +Hx(q)Gu(q)−Hu(q)Gx(q) = 0

then ω|TqSe = 0. (Here Hx(q) = ∂H
∂x

(q), Hy(q) = ∂H
∂y

(q), and so on.)

Proof. We remark that the tangent space Tq(Se) ⊂ Tq(T
∗
X) is defined by

dqH = Hx(q)dqx+Hy(q)dqy +Hu(q)dqu+Hv(q)dqv = 0 and(2.2)

dqG = Gx(q)dqx+Gy(q)dqy +Gu(q)dqu+Gv(q)dqv = 0.(2.3)

Assume that dimTqSe = 2 and

Hy(q)Gv(q)−Hv(q)Gy(q) +Hx(q)Gu(q)−Hu(q)Gx(q) = 0.

Then

A := −Hu(q)
∂

∂x
|q −Hv(q)

∂

∂y
|q +Hx(q)

∂

∂u
|q +Hy(q)

∂

∂v
|q

and

B := Gu(q)
∂

∂x
|q +Gv(q)

∂

∂y
|q −Gx(q)

∂

∂u
|q −Gy(q)

∂

∂v
|q

are tangent vectors in Tq(Se) because they satisfy the two equations (2.2) and (2.3). Since
dimTq(Se) = 2, they also form a basis of Tq(Se). By our assumption we have

ω(A,B) = Hy(q)Gv(q)−Hv(q)Gy(q) +Hx(q)Gu(q)−Hu(q)Gx(q) = 0

which implies that ω|Tq(Se) = 0. �

Proposition 2.7. For all q ∈ Ssme ∩U we have ω|Tq(Se) = 0. Here Ssme denotes the smooth
locus of Se.

Proof. By Lemma 2.6 it is enough to show that for all q ∈ Ssme ∩ U ,

Hy(q)Gv(q)−Hv(q)Gy(q) +Hx(q)Gu(q)−Hu(q)Gx(q) = 0.
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Let us write H|U and G|U as in Notation 2.1 so that

H|U = H(x, y, u, v) = f(x, y)u2 + g(x, y)v2 + h(x, y)uv ∈ C[x, y, u, v]

and
G|U = G(x, y, u, v) = c(x, y)u2 + d(x, y)v2 + e(x, y)uv ∈ C[x, y, u, v]

where
f(x, y) =

∑
i+j≤4

fi,jx
iyj, g =

∑
i+j≤4

gi,jx
iyj, h =

∑
i+j≤4

hi,jx
iyj

and
c(x, y) =

∑
i+j≤4

ci,jx
iyj, d =

∑
i+j≤4

di,jx
iyj, e =

∑
i+j≤4

ei,jx
iyj

are polynomials in variables x and y satisfying the conditions in Lemmas 2.2 and 2.4.
Set

R : = Gv(x, y, u, v)Hy(x, y, u, v)−Hv(x, y, u, v)Gy(x, y, u, v)

+Hx(x, y, u, v)Gu(x, y, u, v)−Hu(x, y, u, v)Gx(x, y, u, v).

Then R is a member of the polynomial ring

P := C[fi,j, gi,j, hi,j, ci,j, di,j, ei,j, x, y, u, v, a, b | i+ j ≤ 4].

Let I be the ideal of P generated by following polynomials given by the conditions in
Lemmas 2.2 and 2.4.

h0,4, h1,3 − 2g0,4, h2,2 − 2g1,3, h3,1 − 2g2,2, h4,0 − 2g3,1, g4,0,

f0,3, f1,2 − h0,3, f2,1 + g0,3 − h1,2, f3,0 + g1,2 − h2,1, g2,1 − h3,0, g3,0,

f0,4, f1,3, f2,2 − g0,4, f3,1 − g1,3, f4,0 − g2,2, g3,1,

e0,4, e1,3 − 2d0,4, e2,2 − 2d1,3, e3,1 − 2d2,2, e4,0 − 2d3,1, d4,0,

c0,3, c1,2 − e0,3, c2,1 + d0,3 − e1,2, c3,0 + d1,2 − e2,1, d2,1 − e3,0, d3,0,

c0,4, c1,3, c2,2 − d0,4, c3,1 − d1,3, c4,0 − d2,2, d3,1,

f(0, 0), g(0, 0), h(0, 0), gx(0, 0), fy(0, 0), gy(0, 0)− hx(0, 0), fx(0, 0)− hy(0, 0),

f(1, 0), g(1, 0), h(1, 0), gx(1, 0), fy(1, 0), gy(1, 0)− hx(1, 0), fx(1, 0)− hy(1, 0),

f(0, 1), g(0, 1), h(0, 1), gx(0, 1), fy(0, 1), gy(0, 1)− hx(0, 1), fx(0, 1)− hy(0, 1),

f(α, β), g(α, β), h(α, β), gx(α, β), fy(α, β), gy(α, β)− hx(α, β), fx(α, β)− hy(α, β),

f(a, b), g(a, b), h(a, b), gx(a, b), fy(a, b), gy(a, b)− hx(a, b), fx(a, b)− hy(a, b), and

c(0, 0), d(0, 0), e(0, 0), dx(0, 0), cy(0, 0), dy(0, 0)− ex(0, 0), cx(0, 0)− ey(0, 0),

c(1, 0), d(1, 0), e(1, 0), dx(1, 0), cy(1, 0), dy(1, 0)− ex(1, 0), cx(1, 0)− ey(1, 0),

c(0, 1), d(0, 1), e(0, 1), dx(0, 1), cy(0, 1), dy(0, 1)− ex(0, 1), cx(0, 1)− ey(0, 1),

c(α, β), d(α, β), e(α, β), dx(α, β), cy(α, β), dy(α, β)− ex(α, β), cx(α, β)− ey(α, β),

c(a, b), d(a, b), e(a, b), dx(a, b), cy(a, b), dy(a, b)− ex(a, b), cx(a, b)− ey(a, b).

For the proof it is enough to show the following claim.
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Claim: If we fix a and b so that p5 = (1 : a : b) 6= pi for all i = 1, . . . , 4, then R vanishes
if H and G satisfy the relations in Lemmas 2.2 and 2.4.

By using Magma calculator, we can show that

(a− 1)abR, (a− 1)(b+ 1)aR, (a− 1)abR, (b− β)abR, and (1−β
α a+ b− 1))bR

are members in I.
Assume that a 6= 0 and b 6= 0. Since p5 6= p4, we have a 6= 1 or b 6= β which implies that

the claim because (a− 1)abR, (b− β)abR ∈ I.
Assume that a 6= 0 and b = 0. Then a 6= 1 since p5 6= p2. This implies the claim because

(a− 1)(b+ 1)aR ∈ I.
Assume that a = 0. Since p5 6= p1, p3, we can see that b 6= 0, 1. So we get the claim

because (1−β
α
a+ b− 1)bR ∈ I. �

Proof of Theorem 1.1. Let X be a del Pezzo surface of degree 4. By Lemma 2.5, we
may assume that X is the blow-up of P2

x0,x1,x2
at five distinct points p1 = (1 : 0 : 0),

p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), p4 = (1 : α : β), and p5 = (1 : a : b) for some a, b ∈ C,
and (α, β) = (1,−1) or (1,−1/2). Since the restriction Π|Se : Se → X is surjective for all
e ∈ C2, Ssme ∩ U forms a dense open subset of Ssme . From this and Proposition 2.7 we get
the theorem. �

Remark 2.8. The question on the relation between the Lagrangian fibration structure
of the Hitchin map for the case of g = 2 and the Lagrangian fibration structure of the
cotangent bundle of a del Pezzo surface X of degree 4 was raised by Beaville and Brambila-
Paz when the second named author gave a talk at the the conference for Fabrizio Catanese’s
70th birthday. Let Z = SU s

C(2, 1) where C is a smooth projective curve of genus 2. By
the Hitchin map hZ : T ∗Z → C3 = H0(C, 2KC),

∞⊕
m=0

H0(Z, SymmTZ) ' C[F1, F2, F3]

where Fi ∈ H0(Z, Sym2TZ). This is an isomorphism of graded rings. It is well known that
Z is a complete intersection of two smooth quadrics Q̄1 and Q̄2 in P5. More precisely,
if a genus two curve C is defined by six Weierstrass points λi for i = 1, . . . , 6 then Z is
isomorphic to the complete intersection of two quadrics (cf. [16], [17], [3])

Q̄1 =
6∑
i=1

X2
i = 0, Q̄2 =

6∑
i=1

λiX
2
i = 0.

The above question is whether we can find a Z such that each fiber Φ−1(e) of the
Lagrangian fibration of a del Pezzo surface X can be embedded naturally into each fiber
of the Hitchin map hZ : T ∗Z → C3 = H0(C, 2KC) with X = Z ∩H where H is a hyperplane
in P5.
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There is a natural identification of the pencil P1
Q of quadrics induced by Q̄1 and Q̄2 with

P(H0(C,KC)). Also from Theorem 5.1 in [6], there is an also isomorphism of graded rings:

∞⊕
m=0

H0(Z, Symm[Ω1
Z(1)]) ' C[Q̄1, Q̄2].

Then the preimage h−1
Z (W ) of the Hitchin map of the image of a natural embedding

W := Sym2H0(C,KC) in C3 = H0(C, 2KC) is the locus of singular spectral curves. This
identification is explained in detail in the thesis of Sarbeswar Pal [18]. Also recently, Hitchin
[8] studies explicitly the Hitchin map hZ : T ∗Z → C3 = H0(C, 2KC).

Then the question is whether the restriction of this h−1
Z (W ) over X, which is the inter-

section of Z with some hyperplane section H, is the cotangent bundle of X. Since we have
a natural identification between

∞⊕
m=0

H0(Z ∩H, Symm[Ω1
Z∩H(1)]) ' C[Q̄1 ∩H, Q̄2 ∩H] and

∞⊕
m=0

H0(Z, Symm[Ω1
Z(1)]) ' C[Q̄1, Q̄2],

and due to the description of an irreducible component of a general fiber of the locus of
singular spectral curves (Theorem 1.3 in [11]), if the question is true then a general fiber
of the locus of singular spectral curves seems to be isomorphic either a P1 bundle or an
elliptic fiber bundle over Se (up to étale cover) in Theorem 1.2. We cannot answer on this
question now because there is no enough study on the hZ : T ∗Z → C3 = H0(C, 2KC). We
leave it for the future study.

3. Level surfaces in the Lagrangian fibration

We use the same notations as in the introduction. Let X be a del Pezzo surface of degree
4. Let Q1 and Q2 be two quadratic forms in variables y1, . . . , y5 defining X ⊂ P4 = P4

y1,...,y5

such that detQ1 = 1. We define the characteristic polynomial P (t) := det(tQ1−Q2), then
it satisfies

P (t) =
5∏
i=1

(t− θi)

where all θi ∈ C are distinct.
We have a pencil of quadric hypersurfaces in P4:

ψ : Q = {Qe}e∈P1
e1,e2
→ P1

e1,e2
= P1

such that its fiber at e = (e1 : e2) ∈ P1
e1,e2

corresponds to the quadric hypersurface Qe in

P4 defined by e2Q1 − e1Q2 = 0.
For each i = 1, . . . , 5, set ai = (1 : θi) ∈ P1

e1,e2
. Then Qe is singular exactly only when

e = ai for some i.
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Lemma 3.1 ([19]). X is isomorphic to the blow-up of P2 at the images pi ∈ P2 of ai ∈ P1
e1,e2

under the Veronese embedding P1 ↪→ P2, and is isomorphic to the subscheme of P4
y1,...,y5

defined by

(3.1)
5∑
i=1

P ′(θi)
−1y2

i =
5∑
i=1

P ′(θi)
−1θiy

2
i = 0.

3.1. Surfaces in the linear system |2ζ| in P(TX). Let us consider X as the blow-up of
P2 at p1, . . . , p5 ∈ P2 in Lemma 3.1 and denote by µ : X → P2 the blow-up morphism.

3.1.1. Description of lines in X. Let Ei be the exceptional curve on X over pi and C the
proper transform of the unique conic in P2 through all p1, . . . , p5. For each 1 ≤ i 6= j ≤ 5,
let `i,j ⊂ X be the proper transform of the line in P2 connecting pi and pj. Then C, {Ei}i
and {`i,j}i,j are exactly the 16 lines `1, . . . , `16 in X in the introduction. We denote by C ′,
E ′i and `′i,j ⊂ P(TX) the sections of the respective lines associated quotients of the form:
TX |P1 = OP1(2)⊕OP1(−1)� OP1(−1).

3.1.2. Linear system |2ζ|. As seen in the introduction, the pencil {Qe}e∈P1
e1,e2

of quadric

hypersurfaces induced by Q1 and Q2 gives the linear system |2ζ| in P(TX). Let `′i be 16
sections of P(TX |`i) → `i which are associated to quotients TX |`i = OP1(2) ⊕ OP1(−1) �
OP1(−1). Let B be the base locus of the linear system |2ζ| in P(TX). Using ζ · `′i = −1 and
the description of Section 2 in [6] we can show that B is supported on the disjoint union
of 16 sections `′i so that B =

∑16
i=1 ai`

′
i for some integers ai ≥ 1. Using the Grothendieck

relation

ζ2 + π∗KX · ζ + +π∗c2(TX) = 0

we can calculate ζ3 = −4. Therefore

(2ζ)2 · ζ =
16∑
i=1

ai`
′
i · ζ = −

16∑
i=1

ai = −16

which implies that ai = 1 for all i.
Let

µB : BlBP(TX)→ P(TX)

be the bolow-up along B. We have a smooth member Kg of |2ζ| (see Corollary 2.4 in [4]).
The exact sequence on normal bundles

0→ N`′i/Kg
= O`′i(−2)→ N`′i/P(TX) → NKg/P(TX)|`′i = O`′i(−2)→ 0

shows that N`′i/P(TX)
∼= OP1(−2) ⊕ OP1(−2) because Ext1(OP1(−2),OP1(−2)) = 0. Thus

the exceptional divisor over `′i of the blow-up µB is isomorphic to P(OP1(−2)⊕OP1(−2)) ∼=
P1×P1. This implies that, after blow-up, the rational map φ̃ : P(TX) 99K P1

e1,e2
induced by

the morphism Φ : T ∗X → C2
e1,e2

defined by the pair (Q1, Q2) can extended to a morphism

φ : BlBP(TX)→ P1
e1,e2

= P1

which is a family of members of |2ζ|. We often consider each fiber Ke = φ−1(e) as a
subscheme of P(TX).



LAGRANGIAN FIBRATION STRUCTURE ON THE COTANGENT BUNDLE 15

For each e ∈ P1
e1,e2

, we let
πe : Ke → X

be the restriction of the composition π ◦ µB : BlBP(TX)→ P(TX)→ X.

Lemma 3.2. For each point x in X, π−1
e (x) consists of two points with multiplicity except

only when Qe is singular and x is one of the intersection points of some two lines in X.
In this exceptional case, π−1

e (x) is isomorphic to P1.

Proof. LetQ be a smooth quadric hypersurface in P4 such thatX = Qe∩Q. The description
of Section 2 in [6] says that each fiber π−1

e (x) parametrizes lines in Qe ∩ TxX through x,
where TxX ⊂ P4 denotes the embedded projective tangent plane to X at x. So we only
need to show the next claim.

Claim: For a point x in X, TxX ∩Qe = TxX if and only if Qe is singular and x is the
intersection point of some two lines in X.

Assume that TxX ∩Qe = TxX. Then TxX ⊂ Qe. Since any smooth quadric hypersur-
face in P4 contains no plane in P4, Qe is singular so that it is a cone over a quadric surface
in P3. We also have equalities TxX ∩ X = TxX ∩ Qe ∩ Q = TxX ∩ Q as a set, which
implies that TxX ∩X is a union of some two lines in X and x is the intersection point of
them.

Conversely, assume that Qe is singular and x ∈ X is the intersection point of some two
lines `ι1 and `ι2 in X. Then the intersection Qe∩TxX contains `ι1 , `ι2 and some other line
in the ruling of the cone structure on Qe which implies that Qe ∩TxX = TxX. �

3.1.3. Conic fibration on X. Let RatCurvesn(X) be the normalized space of rational curves
onX (see [14]). For each i = 1, . . . , 5, letKi,1 be the irreducible component of RatCurvesn(X)
containing the proper transform of a general line in P2 through pi, and let Ki,2 be that
containing the proper transform of a general conic in P2 through {p1, . . . , p5} \ {pi}. There
is a conic fibration

πi,j : X → P1

whose general fiber is a member of Ki,j. The conic fibration πi,j : X → P1 has four singular
fibers. For each k ∈ {1, . . . , 5} \ {i}, there is a singular fiber of πi,1 which is the union of
`k,i and Ek. Three of the four singular fibers of πi,2 are the unions of two lines of the forms
`ι1,ι2 and `ι3,ι4 with {ι1, ι2, ι3, ι4} = {1, . . . , 5} \ {i}, and the last one is the union of C and
Ei. We note that the union of singular fibers of πi,1 and πi,2 is exactly the union of 16 lines
`1, . . . , `16 in X.

3.1.4. Fibration on Total dual VMRT. Let C̆i,j be the total dual VMRT associated to Ki,j.
We refer to the paper [9] for the total dual VMRT. Let L be the class of µ∗OP2(1). By
Corollary 2.13 in [9], we have

[C̆i,1] = ζ − π∗L+ π∗[E1] + · · ·+ π∗[E5]− 2π∗[Ei], and

[C̆i,2] = ζ + π∗L− π∗[E1]− · · · − π∗[E5] + 2π∗[Ei]

and thus

(3.2) [C̆i,1] + [C̆i,2] = 2ζ.

This shows that there are 5 points b1, . . . ,b5 in P1
e1,e2

such that Kbi = C̆i,1 ∪ C̆i,2.
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Lemma 3.3. The 5 points bi ∈ P1
e1,e2

are the same as the 5 points ai ∈ P1
e1,e2

after
reordering.

Proof. We only need to show that each Qbi is singular. Suppose not. Then by Lemma 3.2,

C̆i,1 and C̆i,2 are isomorphic to X. Clearly at least one of C̆i,1 and C̆i,2 contains some `′k.

Assume that C̆i,1 contains some `′k. Let F be a general fiber of πi,1 : X → P1. Then
F ·ζ|C̆i,1 = 0 and `′k ·ζ|C̆i,1 = −1. Since F is a conic and `k is a line in X, we have [F ] = 2[`′k]

in C̆i,1, a contradiction. �

We have a fibration π̆i,j : C̆i,j → P1 of curves on C̆i,j given by the composition

π̆i,j := πi,j ◦ π|C̆i,j : C̆i,j → X → P1.

Lemma 3.4. The restriction π|C̆i,j : C̆i,j → X of π : P(TX) → X is the blow-up of

four points of X which are the singular points of the singular fibers of the conic fibration
πi,j : X → P1. Moreover the proper transform in C̆i,j of a line `k in a singular fiber of πi,j
is equal to `′k.

Proof. Let us assume that a singular fiber of πi,1 : X → P1 consists of two lines `ι1 and
`ι2 meeting at x. Then by Lemmas 3.2 and 3.3 the preimge π−1

bi
(x) of πbi : Kbi → X

is isomorphic to P1. Since πbi |C̆i,1 = π|C̆i,1 and πbi |C̆i,2 = π|C̆i,2 give isomorphisms in the

outside of singular fibers of πi,1 and πi,2 respectively, the fiber π−1
bi

(x) is contained in C̆i,1.
This shows the first statement in our lemma.

The fiber of π̆i,1 : C̆i,1 → X → P1 over the singular fiber `ι1 ∪ `ι2 of πi,1 consists of the

proper transforms ˆ̀
ι1 and ˆ̀

ι2 of `ι1 and `ι2 respectively, and 2` where ` is the exceptional
curve over x. Clearly ` is a fiber of π : P(X) → X and hence ` · ζ|C̆i,1 = 1. From this and

(fiber of π̆i,1) · ζ|C̆i,1 = 0, it follows that ˆ̀
ι1 · ζ|C̆i,1 = −1 and ˆ̀

ι2 · ζ|C̆i,1 = −1. This implies

that ˆ̀
ι1 = `′ι1 and ˆ̀

ι2 = `′ι2 . We are done. �

We know that the five Kbi are reducible. Next lemma shows that there is no other
reducible Ke.

Lemma 3.5. For any e ∈ P1\{b1, . . . ,b5}, Ke is irreducible and the morphism πe : Ke →
X is a double cover, i.e., a finite morphism of degree 2.

Proof. Since Qe is smooth, Lemma 3.2 says that the morphism πe is a finite morphism
of degree 2. If Ke is reducible, then it is a union of two irreducible components which
are isomorphic to X. We have a contradiction by the same reason as in the proof of
Lemma 3.3. �

For each e ∈ P1 \ {b1, . . . ,b5}, let De ⊂ X be the branch curve of the double covering
πe : Ke → X (see Lemma 3.5); the branch curve De is the locus of points x such that
Qe ∩TxX is a double line.

3.1.5. General Ke. For a general e ∈ P1
e1,e2
\ {b1, . . . ,b5}, Ke is a K3 surface of degree 8

of Kummer type; Since KP(TX) = −2ζ, KKe = OKe . So the branch curve De ⊂ X of the
double covering πe = π|Ke : Ke → X is in |OX(2)| because −KX = OX(1) where OX(1) is
a hyperplane section of X in P4. Therefore De is a nonsingular curve of genus 5 with degree
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8 in P4, and tangent to all 16 lines `i in X. And the lifts `′i ⊂ P(TX) of the 16 lines `i in
X as in the introduction are (−2)-curves `e,i in Ke ⊂ BlBP(TX). These 16 (-2)-curves `e,i
are the intersection of Ke with the exceptional divisor D of µB : BlBP(TX) → P(TX). By
the blow-down µ : X → P2, De goes to a plane sextic curve with five cusps at {p1, . . . , p5}.

By the above explanation, we obtain the following lemma.

Lemma 3.6. For a general e ∈ P1
e1,e2
\ {b1, . . . ,b5}, Ke is a K3 surface of degree 8 of

Kummer type. It has 16 (-2)-curves `e,i which are intersection of Ke with the exceptional
divisor D of the blow-up µB : BlBP(TX)→ P(TX).

Remark 3.7. We know

χtop(BlBP(TX)) = χtop(P(TX)) + 32 = χtop(X) · 2 + 32 = 48.

Since χtop(K3 surface) = 24 and χtop(Kbi) = 24 for all i = 1, . . . , 5, χtop(Ke) = 24 for
a general e ∈ P1

e1,e2
and {b1, . . . ,b5} ⊂ P1

e1,e2
. This seems to imply that for every e ∈

P1
e1,e2
\ {b1, . . . ,b5}, Ke is a K3 surface of degree 8 of Kummer type. In Corollary 3.15, we

prove that this is true by considering on the Lagragian fibration of the map T ∗X → C2
e1,e2

.

Remark 3.8. By the result by Skorobogatov (Theorem 3.1 in [19]), we have more explicit
description of Ke for a general e ∈ P1

e1,e2
\ {b1, . . . ,b5}. There exists an embedding

Ke ⊂ P5
y1,...,y6

so that it is defined by

6∑
i=1

Q′(θi)
−1y2

i =
6∑
i=1

Q′(θi)
−1θiy

2
i =

6∑
i=1

Q′(θi)
−1θ2

i y
2
i = 0

where θ1, . . . , θ5 are the same θis in Lemma 3.1, θ6 is determined by Ke, and

Q(t) :=
6∏
i=1

(t− θi).

Furthermore the restriction of the projection map

P5
y1,...,y6

99K P4
y1,...,y5

, (y1 : · · · : y6) 7→ (y1 : . . . : y5)

gives a double cover πe : Ke → X branched on a degree 8 curve De in X defined by

5∑
i=1

Q′(θi)
−1y2

i =
5∑
i=1

Q′(θi)
−1θiy

2
i =

5∑
i=1

Q′(θi)
−1θ2

i y
2
i = 0.

3.1.6. Reducible Ke. WhenKe goes toKbi = C̆i,1∪C̆i,2, the branch curveDe of πe : Ke → X
goes to 2Ebi where Ebi is an elliptic curve which is a hyperplane section of X in P4. The
image of Ebi of the blow-up µ : X → P2 is a cubic curve in P2 tangent to the line `i,k at pk
for each k ∈ {1, . . . , 5} \ {i}. For each i, this cubic plane curve is uniquely determined by
this property.

We can observe that Ebi is the closure of the locus of x in X such that some two conics
in X which are members of Ki,1 and Ki,2 respectively tangentially intersect at x.

Lemma 3.9. Ebi meet smooth fibers of πi,j : X → P1 at two distinct points, and the
singular fibers of it at the singular points.
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Proof. Given a smooth conic curve in P2 through four points {p1, . . . , p5} \ {pi}, there are
two distinct lines in P2 through the point pi which are tangent lines of the given conic
curve. When this smooth conic specializes to a singular conic in X, the above two distinct
lines in P2 goes to the unique double line in P2 through pi and the singular point of that
singular conic curve. This shows our lemma for πi,2. The proof for the fibers of πi,1 can be
done in a similar method. �

From Lemma 3.9, it follows that the restriction πi,j|Ebi
: Ebi → P1 is a double cover

branched at the four singular values of πi,j : X → P1.

The intersection curve between two components C̆i,1 and C̆i,2 is the proper transform of

Ebi of the blow-up π|C̆i,j : C̆i,j → X. We will denote it by the same notation Ebi . By

Lemma 3.9, Ebi intersects two distinct points at each smooth fiber of π̆i,j : C̆i,j → P1, and
one point with multiplicity two at the exceptional curve of singular fibers of it; We note
that the multiplicity of this exceptional curve is two in a singular fiber.

?

X

P1

π5,1

`1,5 `2,5 `3,5 `4,5

E1 E2 E3 E4

?
π5,2

`1,2 `1,3 `1,4 C

`3,4 `2,4 `2,3 E5

?
πb5

?

`′1,5 `′2,5 `′3,5 `′4,5

E′1 E′2 E′3 E′4

?

`′1,2 `′2,3 `′1,4 C′

`′3,4 `′2,4 `′2,3 E′5

C̆5,1 C̆5,2Kb5 ∪

Ebi
Ebi

π|C̆5,1 π|C̆5,2

π̆5,1

��

π̆5,2

��

So we obtain the following lemma.

Lemma 3.10. For each i = 1, . . . , 5, we have the following description of Kbi.

(i) Kbi consists two irreducible components C̆i,1 and C̆i,2.

(ii) Each C̆i,j for j = 1, 2 is isomorphic to the blow-up of four distinct points of X.
These four points are singular points of the four singular fibers of the conic fibrartion
πi,j : X → P1.

(iii) C̆i,1 ∩ C̆i,2 is a smooth elliptic curve Ebi.

(iv) In the fibration π̆i,j : C̆i,j → P1, Ebi intersects two distinct points at each smooth
fiber, and one point at the exceptional curve of each singular fiber.
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3.2. Description of level surfaces Se. From now on, we want to describe level surfaces
Se. As seen in the introduction, Se is defined by Φ−1(e) where

Φ : T ∗X → C2
e1,e2

= C2

is the morphism defined by (Q1, Q2). Here we consider Qi as sections in H0(X, Sym2TX).
Let

Πe : Se → X

be the restriction of Π : T ∗X → X. Take e 6= 0 ∈ C2
e1,e2

and denote by e ∈ P1 the image

point of e under the quotient map C2
e1,e2
\ {0} → P1

e1,e2
. There is a morphism

τe : Se → Ke

induced by the quotient map T ∗X 99K P(TX). So we have the following commutative
diagram:

Se Ke

X
Πe

τe

πe

Since there is a graded ring isomorphism:
∞⊕
m=0

H0(X, SymmTX) ' C[Q1, Q2],

Sλe ∼= Se for all λ ∈ C∗. We have the following diagram of maps.

BlBP(TX) //

φ

��

P(TX)

π &&

φ̃

��

T ∗X
oo

Φ

��

ΠyyX

P1
e1,e2

C2
e1,e2

oo

Ke

∩

`′i
∩

`i

∪

Ke

∩

`e,i
∩

Se
∩

τe
oo'

'

e
�ooe

Lemma 3.11. For every e ∈ C2
e1,e2
\ {(0)}, there is an involution ı on Se acting freely and

the morphism τe : Se → Ke factors through the quotient map S → S/ı, i.e.,

τe : Se → Se/ι ↪→ Ke

so that Se/ı = Ke \ ∪16
i=1`e,i

Proof. For each e = (e1, e2) and each point in X, there is an open neighborhood U ∼= C2
x,y

of that point such that Se|Π−1(U) ⊂ Π−1(U) ∼= C4
x,y,u,v is locally defined by equations

Q1 = f(x, y)u2 + g(x, y)v2 + h(x, y)uv = e1 and

Q2 = c(x, y)u2 + d(x, y)v2 + e(x, y)uv = e2.
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Here Q1 = H and Q2 = G in the notations in Section 2.3. So for a general point in X,
there are four points in the preimage of the map Πe : Se → X. And there is a natural
involution ı : (x, y, u, v) 7→ (x, y,−u,−v) acting freely on Se.

Let t = u
v
. Then given (x, y), the solution of the equation

e2(ft2 + g + ht) = e1(ct2 + d+ et)

gives a fiber of the map πe : Ke → X and a fiber of the map Se/ı → X. Therefore
Se/ı ↪→ Ke. Since the base locus of the linear system |2ζ| consists exactly of 16 sections `′i
which are `e,i in Ke, we have Se/ı = Ke \ ∪16

i=1`e,i. �

3.2.1. General Se. Take general e ∈ C2
e1,e2

so that Se is smooth. The preimage π−1
e (`i) of

`i ⊂ X splits into two curves in Ke, one is (−2)-curves `e,i and the the other is a conic,

denoted by ˜̀
e,i, cut by a trope (Remark 8.6.9 in [5]). Let K̄e be a Kummer quartic surface

with 16 nodes obtained by contracting 16 (-2)-curves `e,i in Ke. It is well known that
K̄e has a double cover S̄e which is an abelian surface. We note that S̄e does not contain
any rational curve because it is an abelian surface. The level surface Se for a general e is
S̄e \ {16 points} where these 16 points are the preimage of 16 nodes of the double cover
S̄e → K̄e. Next figure shows these situations.

Se
∼= //

2:1
��

τe

))

S̄e \ {16 points} �
� //

��

S̄e

2:1
��

Se/ı = Ke \ ∪i`e,i �
� // Ke

`e,i 7→node
//

πe
��

K̄e

X

`e,i ∪ ˜̀
e,i_
��
`i

16 points_

��
16 nodes

Kummer quartic surface

Abelian surface

Remark 3.12. Take ē 6= bi ∈ P1
e1,e2

. Let Cē be the smooth curve of genus 2 with 6

Weierstrass points over b1, . . . ,b5, ē ∈ P1
e1,e2

under the hyperelliptic involution Cē → P1
e1,e2

.
If Ke is smooth then Se can be embedded into the Jacobian variety Jē of Cē for some ē so
that Jē \ Se consists of 16 disjoint points. It is not clear to us that ē = e.

3.2.2. Reducible Se. For each i, we take one point bi ∈ C2
e1,e2

over bi under the quotient

map C2
e1,e2
\ {0} → P1

e1,e2
. We recall that Sbi

∼= Sλbi for all λ ∈ C∗. Now let us describe Sbi
by using the explicit description of Kbi in Lemma 3.10. Let Ai,j be the preimage τ−1

bi
(C̆i,j)

so that Sbi = Ai,1 ∪ Ai,2. The restriction τi,j = τbi |Ai,j : Ai,j → C̆i,j is a finite morphism of

degree 2 whose image is equal to C̆i,j \ ∪16
k=1`e,k. We remark that each C̆i,j contains only 8

(-2) curves and the multiplicity of the exceptional curves of π|C̆i,j : C̆i,j → X is two in the

singular fiber of π̆i,j : C̆i,j → P1.
We have a fibration

Πi,j : Ai,j → Ēi,j
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over an elliptic curve Ēi,j, and a double cover σi,j : Ēi,j → P1 branched on four singular
values of π̆i,j and making the following commutative diagram:

Ai,j C̆i,j

Ēi,j P1

τi,j

Πi,j π̆i,j

2:1

σi,j

The preimage E ′bi = τ−1
i,j (Ebi) ⊂ Ai,j intersect two distinct points on each fiber of Πi,j.

Every fiber of Πi,j is either P1 or P1 \ {two points}, and there are four fibers which are
P1 \ {two points}. The restriction of τi,j to a fiber of Πi,j of the form P1 \ {two points}
gives a degree 2 morphism to the exceptional curve in a singular fiber of πi,j.

Therefore Sbi has two components Ai,1 and Ai,2, both are ruled surface\{8 points} over
an elliptic curve. The intersecting curve between Ai,1 and Ai,2 is the elliptic curve E ′bi .

· · · · · · · · ·· · ·
◦

◦

◦

◦

◦

◦

◦

◦

Ēi,j

Πi,j

P1

π̆i,j

P1P1 P1P1 P1 P14-singular fibers4 - P1 \ {2 points}

Sbi = Ai,1 ∪Ai,2

Ai,j

Kbi = C̆i,1 ∪ C̆i,2

C̆i,j−→
τi,j

−→
τbi

2 : 1

−→
2 : 1

σi,j

E′bi Ebi ◦
◦

τi,j |P1\{2 points}

→
2:1

Now we are ready to prove Theorem 1.2.

Theorem 3.13. We have the following description of level surfaces of the map Φ : T ∗X →
C2
e1,e2

.

(a) For every e ∈ C2
e1,e2
\∪5

i=1C · bi, Se is S̄e \{16 points} where S̄e is isomorphic to the

Jacobian variety of a curve of genus two. Here, C · bi is the line in C2
e1,e2

through
bi and the origin 0.

(b) For each i = 1, . . . , 5, we have the following description of Sbi.
(i) Sbi consists two irreducible components Ai,1 and Ai,2.

(ii) Each Ai,j is a ruled surface\{8 points} over an elliptic curve Ēi,j.
(iii) Ai,1 ∩ Ai,2 is an elliptic curve E ′bi.
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(iv) In the fibration Ai,j → Ēi,j, E
′
bi

intersects two distinct points at each fiber.

Proof. By the above argument, we prove (a) for a general Se and (b). So it is enough
to prove that every Se satisfies (a). If Se has non-isolated singularities then Ke has also
non-isolated singularities. But we know that Ke has at most isolated singularities if e does
not belong to {b1, . . . ,b5}; Since the corresponding quadric Qe is smooth, we have Ke is
irreducible and πe : Ke → X is a double cover (see Lemma 3.5) which implies that Ke has
at worst isolated singularities.

Therefore Se has at worst isolated singularities. We also note that Se is isomorphic to Sλe
for all λ ∈ C∗, so Se is a general singular fiber. Then by using the idea of the characteristic
vector fields in [11], Se should be smooth by the following reason.

Suppose q is an isolated singularity of Se. Let S = ∪λ∈C∗Sλe, which is called a vertical
surface in [11]. Let z be a local coordinate in a neighborhood of Φ(Se) in Φ(S) = C∗ and
consider the Hamiltonian vector fields

νı := ıω(Φ∗dz)

by identification ıω : T ∗M → TM where M = T ∗X via using the natural symplectic 2-form ω.
Since Φ is a Lagrangian fibration, these vector fields are tangent to Se. So we have a flow
of singularities in Se coming from the singularity q. Therefore Se cannot have an isolated
singularity.

It also implies that Ke in P(TX) corresponding to Se is also smooth on Ke\∪16
i=1`e,i = Se/ι

because ι acts freely on Se. Furthermore we can check that Ke is smooth along each `e,i
which implies that Ke is smooth. �

By the above theorem, we get the following corollaries.

Corollary 3.14. The map Φ : T ∗X → C2
e1,e2

is flat.

Proof. Clearly, T ∗X is irreducible and C2
e1,e2

is reduced. Then by using our description of

level surfaces and Lemma 10.48 in [13], the map Φ : T ∗X\Φ−1(0)→ C2
e1,e2
\{0} is flat because

because Φ is essentially of finite type, pure dimensional, and its fibers are geometrically
reduced. So it is enough to check Φ is flat over {0}.

We recall the following diagram of maps.

BlBP(TX) //

φ

��

P(TX)

π &&

φ̃

��

T ∗X
oo

Φ

��

ΠyyX

P1
e1,e2

C2
e1,e2

oo

`′i
∩

`i

∪

S0

∩

Since φ̃ is defined outside ∪16
i=1`

′
i, S0 = Φ−1(0) is contained in the union of the zero

section of the map Φ and the preimage of ∪16
i `
′
i of the quotient map T ∗X 99K P(TX). This

implies that S0 has dimension two.
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For any smooth affine curve R ⊂ C2
e1,e2

through 0, S0 is not an associated point of

Φ−1(R). This implies that the flatness of the map Φ. �

In the proof of Theorem 3.13 it is proved that Ke is smooth for all e ∈ P1
e1,e2
\{b1, . . . ,b5}.

From this and Lemma 3.6 we get the following corollary.

Corollary 3.15. For every e ∈ P1
e1,e2
\ {b1, . . . ,b5}, Ke is a K3 surface of degree 8 of

Kummer type. It has 16 (-2)-curves `e,i which are intersection of Ke with the exceptional
divisor D of µB : BlBP(TX)→ P(TX).
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Boston, MA, 1997.

[3] Desale, U. V.; Ramanan, S.; Classification of vector bundles of rank 2 on hyperelliptic curves. Invent.
Math. 38 (1976/77), no. 2, 161–185.

[4] Diaz, Steven; Harbater, David; Strong Bertini theorems. Trans. Amer. Math. Soc. 324 (1991), no. 1,
73–86.

[5] Dolgachev, Igor V.; Classical algebraic geometry. A modern view. Cambridge University Press, Cam-
bridge, 2012.

[6] De Oliveira, Bruno; Langdon, Christopher; Twisted symmetric differentials and the quadric algebra
of subvarieties of PN of low codimension. Eur. J. Math. 5 (2019), no. 2, 454–475.

[7] Hitchin N.J.; Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91-114.
[8] Hitchin N.J.; Spinors, twistors and classical geometry. SIGMA Symmetry Integrability Geom. Methods

Appl. 17 (2021), Paper No. 090, 9 pp.
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