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LAGRANGIAN FIBRATION STRUCTURE ON THE COTANGENT
BUNDLE OF A DEL PEZZO SURFACE OF DEGREE 4

HOSUNG KIM AND YONGNAM LEE

ABSTRACT. In this paper, we show that there is a natural Lagrangian fibration structure
on the map ® from the cotangent bundle of a del Pezzo surface X of degree 4 to C2.
Moreover, we describe explicitly all level surfaces of the above natural map ®.

1. INTRODUCTION

Throughout this paper we will work over the field of complex numbers.

The cotangent bundle of a complex projective manifold carries a natural holomorphic
symplectic 2-form. The existence of a natural Lagrangian fibration structure of these non-
compact complex manifolds has not been studied very much.

There are two famous known examples in this direction, one is the Hitchin map [7]
h: T — Cr*=DE-D where X is the moduli space SUE(r,d) of stable vector bundle of
rank r with a fixed determinant of degree d coprime to r over a smooth projective curve
C of genus g. This map has been used as a tool to derive results on the moduli spaces
themselves in [I]. The other example is a rational homogeneous space G/P where G is
a semisimple complex Lie group and P is a parabolic subgroup. The group G acts on
the cotangent bundle T, /p as symplectic automorphisms. This induces the moment map
1¢,p — G to the dual of the Lie algebra of G (cf. Section 1.4 of [CG]). Both examples

SUE(r,d) and G/ P are Fano manifolds. This suggests that there may exist some interesting
Lagrangian fibration structure in the cotangent bundles of Fano manifolds. J-M. Hwang
[T0] shows that the varieties of minimal rational tangents play an important role in the
symplectic geometry of the cotangent bundles of uniruled projective manifolds.

The current paper is motivated by the fundamental work of the moduli spaces of vector
bundles from the viewpoint of symplectic geometry of its cotangent bundle by Hitchin [7],
and by the result of J-M. Hwang and Ramanan in [I2], where they studied the Hitchin
system and the Hitchin discriminant associated to the Hitchin map on the cotangent bundle
of SUE(r, d).

Our computational result directly shows that the cotangent bundle of a del Pezzo surface
X of degree 4 has also the Lagarangian fibration structure ® : 75 — C2, and its level sur-
faces have some similar properties of the Hitchin discriminant in [I2]. Similarly as Corollary
4.6 in [12], ®7'(A) is the closure of the union of rational curves in T% where A = {b €
C?| ®~1(b) is singular}. In the current paper, A = {five lines through the origin in C?}.
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On the other hand, the positivity problem of the tangent bundle of a del Pezzo surface
S of degree d is completely answered recently in [15] and in [9]. If S is a del Pezzo surafce
of degree d then
e T is big if and only if d > 5.
e H°(S,Sym™Tys) = 0 for all m > 1 if and only if d < 3.
So the case of d = 4 arouses special interest to us.
Let X be a del Pezzo surface of degree 4. Then X is a complete intersection of two

.....

in variables 1, ..., ys respectively. By a linear change of variables and multiplication by
C*, we can assume that

5 5
(1.1) Q1= ny and Q2 = Zaiy?

i=1 i=1

for some distinct a; € C. (cf. Theorem 8.6.2 in [5]).
From Theorem 5.1 in [6] and the proof of Theorem 6.1 in [15], there is an isomorphism
of graded rings:

(1.2) P HO(X,Sym™Tx) ~ ClQs, Q).
m=0

In particular @, and @, form a basis of H°(X, Sym*Tx).

Let

Ty — C?

be the natural morphism defined by the pair (Q1, Q). For each e € C?, the fiber ®~1(e) C
T% will be called a level surface, and we will denote it by S.. From the isomorphism in
, we can see that S, = S, for all A € C*.

First of all, in this paper, we show the following theorem. The proof will be given in
Section 2.

Theorem 1.1. The morphism ® : T% — C? is a Lagrangian fibration.

It means that the restriction w|g, of the natural symplectic two form w on T% is zero.
Remark also explains the relation between the Lagrangian fibration structure of the
Hitchin map for the case of ¢ = 2 and the Lagrangian fibration structure of the cotangent
bundle of a del Pezzo surface X of degree 4.

Meanwhile, we let ¢ := O(1) be the tautological line bundle on P(Tx) so that 7. =
Tx where m : P(Tx) — X be the projection. By the isomorphism H°(P(Tx),2() =~
H°(X,Sym?TY), the pencil {Q¢}ecpr of quadric hypersurfaces in P4 induced by Q; and Qs
gives the linear system |2¢| in P(Tx) defining a rational map ¢ : P(Tx) --» P*.

It is well known that there are exactly 16 lines ¢4, . .., {1 in P* contained in X. The base
locus B of the linear system |2¢| in P(T’x) consists of the disjoint union of 16 sections ¢,
of P(T'x|g;) — ¢; which are associated to quotients T'x|s,, = Op1(2) & Op1(—1) = Op1(—1)
(p.12 in [9]); Since ¢ - ¢ = —1, we have ¢, C B.

After the blow-up ugp : BlgP(Tx) — P(Tx) along the base locus B, we have a morphism

(ﬁ : BIBIP)(T)() — P17
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and the following commutative diagram of morphisms and rational maps:

BlgP(Tx) L IP(TX) S T
5 BN ¥ o .
¢ 0
v
Pl < C2

For each e € P!, we let K, be the fiber ¢~!(e). In Lemma[3.5 we show that K, is a double
cover of X if Qe is smooth. Due to the description of Section 2 in [6], for each x € X, the
points in K, over = correspond to lines in Q. N Ty X through x where T, X C P* denotes
the embedded projective tangent plane to X at x. So if Q)¢ is smooth, the branch locus of
the double cover from K, to X is the locus of points x such that Q. N T, X is a double
line. The total dual VMRT theory (cf. [9]) also helps to give an explicit description of K,
especially when K, is not irreducible. We will explain this description in Section 3.

Through an explicit description of K., we get the following theorem (a) for a general
e € C? and (b). Then by using the idea of the characteristic vector fields in [11], the proof
of Theorem [I.2(=Theorem can be completed. The proof will be given in Section 3.

Theorem 1.2. Let by, ..., bs be the points in P* such that Qy, are singular. For each
i =1,...,5, take one point b; in the fiber at b; of the quotient map C? \ {0} — P! and
let C - b; be the line in C? through b; and the origin . We have the following description of
level surfaces of ® : T% — C2.
(a) For every e € C2\ U_,C - b;, S, is S, \ {16 points} where S, is isomorphic to the
Jacobian variety of a curve C, of genus two.
(b) For eachi=1,...,5, we have the following description of Sy, .
(i) Sp, consists of two irreducible components A;1 and A,; 5.
(ii) Each A;; for j = 1,2 is a ruled surface\{8 points} over an elliptic curve E; ;.
(ili) A;1 N Ao is an elliptic curve By, .

(iv) In the fibration A;; — Eij, By intersects two distinct points at each fiber.

We remark that X is isomorphic to the blow up of P? at the five points which are the
images of by, ..., bs under the Veronese embedding (cf. [19]).

As a corollary, the map @ is flat, and all elements of the linear system |2¢| in P(7T’x) can
be also fully described.

Theorem 1.3. We have the following description of K for all e € P!,

(a) For everye € P\ {by,...,bs}, K, is a K3 surface of degree 8 of Kummer type. It
has 16 (-2)-curves le,; which are intersection of Ko with the exceptional divisor D
of the blow-up pp : BlgP(Tx) — P(Tx).

(b) For eachi=1,...,5, we have the following description of Ky, .

(i) Ky, consists of two irreducible components CVM and CUZQ
(ii) For each j = 1,2, we have a conic fibration m;; : X — P* with four singular
fibers such that (f'” 15 1somorphic to the blow-up of X at four distinct points
which are the singular points of the four singular fibers of m; ;.
(iii) Cum N Cvm s a smooth elliptic curve By, .
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iv) In the fibration 7; ; C.i— P! given by the composition of the blow-up Cii— X
7] 7‘7 7]
in (i1) and the conic fibration m,;, Ey, intersects two distinct points at each
smooth fiber, and one point at the exceptional curve of each singular fiber.

This theorem is proved by Lemma and Corollary (3.15]

Acknowledgements. Both authors would like to thank Jun-Muk Hwang to explain us
the results of his papers and helpful comments, and would like to thank Arnaud Beauville
for his interest and useful comments.

2. LAGRANGIAN FIBRATION STRUCTURE ON THE CONTANGENT BUNDLE

In order to show Theorem 1.1, we first describe the members of H°(X, Sym®T) in terms
of local parameters of T%.

Notation 2.1. Consider P> = P2 which means that [zo, 21, 3] is a homogeneous

coordinate system of P?. Set x = 7L and y = 2. Let Uy = A2 | C P? be the affine open

subset defined by zy # 0. Take one H € H°(Uy, Sym*Tp2). Then we can write H uniquely
as

(2.1) H = f(z,y) <(%>2 +9(,y) <8%)2 + h(z,y) (%) ((%)

where
flasy) =225 figa'ys g(x,y) =325 957"y, hla,y) =32, 5 hija'y’ € Cla,y).
2.1. Description of H°(P? Sym*Tp:).

Lemma 2.2. In the situation of Notaion H is in H°(P?, Sym*Tp2) if and only if deg f,
deg g, degh < 4, and the following 18 linear forms of the coefficients of H vanish:

h0,47 h1,3 - 290,4, hz,z - 291,3, h3,1 - 292,2, h4,0 - 293,1, 94,0,
f0,3, f1,2 - h0,3, f2,1 + go3 — h1,27 f3,0 +g12 — h2,1, 921 — h3,0, 93,0,

f0,47 f1,3, f2,2 — Jo.4, f3,1 — 01,3, f4,0 — 322, g31-

Proof. Assume that H € H°(P? Sym*Tp2).
Let u = 22 and v = 7L. Then u and v form an affine coordinate system on the affine
open subset Uy = A2 | C P? given by x5 # 0. Since z =2, y = 1, u = i, v =%, we have

o ouo oo 10 0

oz ozou ozov  yov  “ow
and
0 oud owd 109 x0 e 0

8y_8_y%+8_y%_ y2ou  y?2ov ou o’
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Therefore

v Lo, (0 2 v 1 5 0 0
H\U2 = f(aa)u (a) +9(a>a) (U % +uv%)

Since H|y, € H°(Uy, Sym?®Tp2), the coefficients of

2
(5)° (3)" and () ()
appearing in H|y, above are holomorphic functions in w,v. Therefore

v 1 4
g(=, —)u
which is the coefficient of (%)2 in H|y, is holomorphic, and hence
gi; =0 forall 4,7 withi+j>5

which means that degg < 4.
We have the following equalities:

1 1
29(=, —Ju'v - h(”, “)u?

uu

—QZQU Juv—ZhU
= QZgi,ju:S - jv’“ —Zhi,jug - ]v (%)

From the same arguments as above, we can see that the coefficients of u~'v* for [ > 0 and
k >0 in (%) vanish which implies

hij =0 for all 7,5 with7+75>5
and
h0,4 =0, h1,3 = 290,4, h2,2 = 291,3, h3,1 = 292,2, h4,0 = 293,1, gao = 0.

We have the following equalities:

—Zf” Ju —i—Zgi,j( Zh” ]uv
:Zfi,ju2 i— jv +Zgi’ju2 i ]UHQ—Zhi,qu i— ]U1+1 (s5)

By the same reason as before, it follows that the coefficients of u~'v* with [ > 0 and k > 0
in (%) vanish. This shows that
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fij=0foralli4+j>5
and
f0,3 = f1,2 - h0,3 = f2,1 + 90,3 — h1,2 = f3,o +g12 — h2,1 =921 — h3,o =030 = 0,
Joa = fiz—hoa = foot+goa—his= fa1+g13—hoo = fao+geo—hs1 = g31—hag = gap = 0.

So we obtained all the 18 linear relations in our lemma.
Coversely if H satisfies the conditions in this lemma, then H is holomorphic on P?\ {(0 :
0: 1)} and hence it can be holomorphically extended to all P2. O

Remark 2.3. The above 18 linear relations in Lemma [2.2] are independent and thus
hO(PQ,Smesz) = 27. The dimension can be also computed from the Euler sequence
of Tp2. From the exact sequence

0 — Opz — Op2(1)% — Tpo — 0,
we have
0— OP2<1)®3 — Sym2<(9]11>2(1)®3) — Smesz — 0.

We also remark that Lemmais equivalent to the following statement: H € H°(P?, Sym*Tp:)
if and only if deg f,degg,degh < 4, and

1 1
?h(:r,y) = ?94(1’,1/)
2
2 2 2 €z
fa(z,y) = x*(faoor” + fa12y + fo2u”) = ?94(1?&)
2 2 2 ZJ2
ga(x,y) = y*(90ay” + 91,37y + g2 00°) = ﬁfzx(x, Y)
2x 2y Y T
ha(z,y) = zy(h1 3y° + hoszy + hy12°y) = ggwc, y) = —falw,y) = ~falw,y) + §g4(x, Y).

and
f3(@,y) = 2(fs00” + fopzy + fr29”)
93(2,9) = y(g2,12% + g1.22y + go,39%)
hs(z,y) = hsox® + ho12%y + hy2xy® + ho 3y°
= g212° + (fs0 + 912)2y + (fr2 + 903)xy” + fr2y®
= %f:&(%y) + 593(%9)-

2.2. Description of H°(X,Sym®T). Let yi, : Y =Bl P? — P> =P2 _  be the blow-up
at p=(1:a:0b). Then

H°(Y,Sym?Ty) € H°(P?, Sym*Tp)

Take H € H°(P?, Sym®Tp2). For the affine open subset Uy C P? defined by zy # 0, write
H|y, as in Notaion so that it satisfies the properties in Lemma
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Lemma 2.4. The above H is in H°(Y,Sym*Ty) if and only if

f(a7b> = g(CL, b) = h(a7b) = g:v(av b) = fy(a’> b) =0
and
Gy(,5) — hala,B) = fula,b) — hy(a,b) = 0.

Proof. For simplicity we only prove that if p = (1:0:0), then H € H°(Y,Sym®Ty) if and
only if

fo,o = go,0 = ho,o =0J1,0 = fo,l = go1 — h1,0 = fl,O - ho,1 =0

The proof for the general case can be done by the same argument.
Let E be the exceptional divisor of p,. Let Uy C P* = P . .. be the affine open

neighborhood of p defined by xg # 0. Consider = £+ and y = £* as an affine coordinate
system on Uy = A2, C P? so that p = (0,0). Then s, ' (Up) C A2, x P. _ is defined by

20,21
xz1 = yzo. Let W C ,u;l(Uo) be the open subset given by zy # 0. Set w = 2 and r = x.
Then y = zw, W = A2, and ENW is defined by r = 0 in W.

W)

From the relations

g ord Ow 0 0 y O 0 w0

9r  dzor oxdw or 2ow _or row
and

o oo owo 10

oy oyor  oyow  row

it follows that

) o\? o\? ) ) )
Hlw\g = f(r,rw) (5 - %%> + g(r, rw) (%%) + h(r,rw) (% - %%) (%%)
0\? w? 1 w o \?
= f(r,rw) <E) + {f(r7 7"w)r—2 + g(r, 7“w)r—2 — h(r, rw)—} <3_w)

+ {—Qf(r, rw)% +h(r, Tw)%} (%) (%)

The coefficient of (8%)2 in H|yn g satisfies the following equalities:

2

w 1 w
f(Ta Iw)? + 9(7"7 Tw)_g - h(?", Tw)ﬁ

,
i W’ i 1 i j W
= Z fijr (Tw)]r—2 + ngr (Tw)Jﬁ - Z hi jr (TM)JT—Z
=3 fur T 4 3 gl = 3 Ry 2!
Therefore if H|y\ g holomorphically extends to W,

fo,o = go0 = ho,o =0 and g1,0 = Jo1 — h1,0 = f1,0 - ho,l = f0,1 =0
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because £ N W is defined by r =0 in W.
Similarly, from the following equalities

—2f(r, rw) + h(r, rw)l

:_QZf” rw)’ —|—Zh”r rw)’
_ _2Zfi,jrz+] le—i-l + th‘,jrz—‘r] 1wg

it follows that if H |y g holomorphically extends to W then fyo = hoo = 0.
Let W' C u;l(U) be the open subset defined by 21 # 0. Let w = 2. Then z = yw and

W' = A2 . Using the following relations

2_6_@03_’_81;8 10
or  O0row Ox0dy y@w

and

g owd 0Oy x 0 g  wd 0

8y_8_y8_w+8y8y 28w+8_y_ y8w+6_y’

we have

19\’ wa 9\
Hlwne = f(yw,y) (g%) + g(yw, y) (_Z% + a_y)

+ h(yw, y) L0 —gi—l—g
vy y&w yow Oy

= {f(yw,y)i + g(yw,y):]—j - h(y“”y)%} (%)2 T olyey) (%)2

{2002 e} (5) ()

The coefficient of (%)2 in H|wn g satisfies the following equalities:

1 w? w
fyw,y)— + g(yw,y)— — h(yw,y)—
(yw,y) " (yw,y)— " (yw,y)— y

_Zfz] yw Zgl] yw y__zh"bj yw y_
:meywr] 2 z+zg jszr] 2 z+2 Zhwywr] 2 z+1

and thus if H|yn g holomorphically extends to W' then

fo,o = goo = ho,o =0 and fo,l = f1,0 - hO,l = go1 — h1,0 = g1.0 = 0.
O

Lemma 2.5. Let p1,...,ps be five distinct points in P? in general position, i.e., no three
of them lie in a line. Then we can choose a homogeneous coordinate system on P? so that
pr=(1:0:0),p=(1:1:0),p3=(1:0:1),pp=(1:1:—-1)or(1:1:-1/2), and
ps = (1:a:b) for some a,be C.
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Proof. Clearly we can choose a homogeneous coordinate system xg, 21, 72 on P? so that
pr=(1:0:0),pp=(1:1:0),p3=(1:0:1)andpy=(1:1:-1).
Assume that ps = (0:1:5b). Set
x oy z
M=10 z+y O
0 0 x4z

Let us change the homogeneous coordinate system xg, z1, x2 by the linear transform on P2
given by a matrix of the from M above such that

y+bz=x+y=—-blr+z2)#0.
In this new coordinates, we have
pr=01:0:0),p2=(1:1:0),p3=(1:0:1),ps=(1:1:-1)
and
pm=@4+y—z:x+y:—(z+2)).
Assume that x +y — 2 = 0. Then
r+y—z=bz—(b*+bz—z2=—b*+b+1)2=0.

Since z # 0 we have
b*+b+1=0.

Let us change the initial homogeneous coordinate system zg, z1, 72 on P? by a matrix of
the form M above such that

y+bz=aw+y=-2b(x+2)#0.

In this new coordinates, we have
pl:(100)>p2:(110)7p3:(101)7p5:<11_1/2)

and

pm=@4+y—z:x+y:—(z+2)).
Then

TH+y—2z=>bz— (20" +3b)z —z=—(20* +2b+ 1)z # 0

because b> +b+ 1 =0 and z # 0. We get our lemma. O
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2.3. Tangents of Lagrangian fibration. Let p: X = Bl,,  ,.P? — P? be the blow up
at five points pq, ..., ps € P? in general position. Let £; C X be the exceptional curve over
Di-

Take any two independent sections H,G € H°(X,Sym?7Tx). Then we can consider H
and G as regular funtions on 7% so that they define a morphism

Ty — C2 g (H(q),G(a)).

We recall that for each e € C?, the fiber S, = ®7!(e) is called a level surface.

By Lemma [2.5, we can choose a homogeneous coordinate system xg, z1, zo on P? so that

pr=(1:0:0),p2=(1:1:0),p3=(1:0:1),ps=(1:a:p5),andps;=(1:a:b)

for some a,b € C, and (o, 5) = (1,—1) or (1,—1/2).

Let Uy C P? = PP? be the affine open subset defined by zy # 0. Set x = 1, y = 22,

Z0,21,T2

u=% and v = a%' Let U := (= (Up) \ U_ E;). Here IT : T% — X is the projection

morphism. We can consider the restrictions H|y and G|y as members in Clz, y, u, v].
Let us consider the canonical symplectic two form w on T%: w|y can be expressed as
wly = dx Adu+dy A dv.
Lemma 2.6. Take e € C* and ¢ € S.NU. If dimT,S. = 2 and

H,(q)Gy(q) — Hy(9)Gy(q) + Ho(q)Gu(q) — Hu(q)G2(q) =0

then wlr,s, = 0. (Here Hy(q) = 92(q), H,(q) = %—Z(q), and so on.)

Proof. We remark that the tangent space T,(S.) C T,(T%) is defined by

(2.2) d,H = H,(q)d,x + H,(¢q)dyy + Hu(q)dyu + H,(q)d,v = 0 and

(2.3) d,G = G,(q)dyr + Gy(q)dyy + Gu(q)dyu + G,(q)dgv = 0.
Assume that dim7,S, = 2 and

H,(q)Gy(q) — Hy(q)Gy(q) + Ho(q)Gu(q) — Hu(q)Gz(q) = 0.

Then
0

— | 0
Ox'?

0 0
— Hu(‘])a_y‘q + Hx(Q)%’q + Hy(q)_‘q

A:=—-H,(q) 5

and
0 0 0 0
B = Gu(Q)%L] + GU(Q)a_y|q - Ga:(‘])%hz - Gy(Q)%LJ

are tangent vectors in T,(S,) because they satisfy the two equations (2.2)) and (2.3]). Since
dim T, (S,) = 2, they also form a basis of T},(S.). By our assumption we have

w(A, B) = Hy(9)Gu(q) — Hu(q)Gy(q) + Ha(q)Gulq) — Hu(q)Ga(q) = 0
which implies that w|r,s,) = 0. O

Proposition 2.7. For all ¢ € S NU we have w|7,(s,) = 0. Here S:™ denotes the smooth
locus of S..

Proof. By Lemma [2.6] it is enough to show that for all ¢ € S*™ N U,

H,(q)Gy(q) — Hy(9)Gy(q) + Hy(q)Gu(q) — Hu(q)G.(q) = 0.
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Let us write H|y and G|y as in Notation [2.1]so that
Hly = H(z,y,u,v) = f(z,y)u” + g(z,y)v* + h(z,y)uv € Clz,y, u, v]

and
Glo = G(z,y,u,v) = c(z,y)u? + d(z,y)v* + e(z, y)uv € Clr,y, u,v]
where
f(z,y) = Z fi,jxiyj7 9= Z gz‘,ﬁiyj, h = Z hi,jxiyj
i+j<4 i+j<4 i+j<4
and
c(x,y) = Z o'y, d= Z dijx'y’, e = Z ei 'y’
itj<d i+j<4 i+j<4

are polynomials in variables x and y satisfying the conditions in Lemmas [2.2] and [2.4]
Set

R:=Gy(z,y,u,v)Hy(z,y,u,v) — Hy(z,y,u,v)Gy(z,y,u,v)
+ Hy(z,y,u,0)Gy(z,y,u,v) — Hy(z,y,u,v)Gp(z, y,u,v).
Then R is a member of the polynomial ring
P :=Clfij, i, Pij, Cijs dij, €5, T, Yy, u,v,a,b | 045 < 4.

Let I be the ideal of P generated by following polynomials given by the conditions in
Lemmas 2.2 and 2.4

ho4,h13 — 2904, h22 — 2913, h3,1 — 2922, hao — 293,1, 94,0,
fo,3, f12 —ho3, fa1 + 903 — hi2, f30 + 91,2 — h21,921 — h30, 93,0,
foas f1,3, f2.2 — 90,4, 31 — 91,3, f4,0 — 92,2, 93,15

€0,4,€1,3 — 2dp 4, €22 — 2d1 3,e31 — 2d22,e40 — 2d31, d4 0,
€0,3,C1,2 — €0,3,C2,1 +do3 — e12,¢30 +d12 —e21,d21 — €3,0,d30,
€0,4,C1,3,C22 — doa,c31 — d1,3,ca0 — da2,d31,

£(0,0),9(0,0),1(0,0),9:(0,0), fy(0,0), 94(0,0) — (0,0, fz(0,0) — hy (0,0),

f(1,0),9(1,0), h(1,0), 92(1,0), £4(1,0), gy (1,0) = ha(1,0), £2(1,0) — hy(1,0),

f(0,1),9(0,1),1(0,1), 92(0, 1), fy(0,1), 94(0,1) — ha(0, 1), £(0, 1) = hyy (0, 1),
fla, B), (e, B), hle, B), g (@, B), fy(@; B), gy(@; B) = ha(v, B), fulav, B) = hy(av, B),

¢(0,0), d(0,0), e(0, 0), dz(0,0), ¢, (0, 0), dy (0, 0) — e4(0, 0), ¢z (0,0) — ¢,(0,0),
¢(1,0),d(1,0), (1,0), dg(1,0), ¢,(1,0), dy(1,0) — ex(1,0), cx(1,0) — e, (1,0),
¢(0,1),d(0,1),e(0,1),dx(0,1), ¢,(0,1),dy(0,1) — €4(0,1), ¢, (0,1) — €,(0, 1),

C(a75)7d( /8) 6(04,5 d a?/B)’Cy(aHB)v y(awB)_ex(a B)vcx(a75)_ey(aw@>v

For the proof it is enough to show the following claim.
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Claim: If we fix a and b so that ps = (1 :a: b) # p; for all i = 1,...,4, then R vanishes
if H and G satisfy the relations in Lemmas [2.2] and

By using Magma calculator, we can show that
(a —1)abR, (a —1)(b+1)aR, (a — 1)abR, (b — B)abR, and (:-La+b—1))bR

are members in /.

Assume that a # 0 and b # 0. Since ps # py, we have a # 1 or b # [ which implies that
the claim because (a — 1)abR, (b — f)abR € I.

Assume that a # 0 and b = 0. Then a # 1 since ps # py. This implies the claim because
(a—1)(b+1)aR € I.

Assume that a = 0. Since ps # p1,p3, we can see that b # 0,1. So we get the claim
because (%a +b—1)bR e I. d

Proof of Theorem [1.1l Let X be a del Pezzo surface of degree 4. By Lemma [2.5] we
may assume that X is the blow-up of P2 . . at five distinct points p; = (1 : 0 : 0),
pp=(1:1:0),p3=(1:0:1),ps=(1:a:p),and p; = (1:a:0b) for some a,b € C,
and («, 5) = (1,—1) or (1,—1/2). Since the restriction Il|g, : S, — X is surjective for all
e € C?, S*mNU forms a dense open subset of S¥™. From this and Proposition we get
the theorem. |

Remark 2.8. The question on the relation between the Lagrangian fibration structure
of the Hitchin map for the case of ¢ = 2 and the Lagrangian fibration structure of the
cotangent bundle of a del Pezzo surface X of degree 4 was raised by Beaville and Brambila-
Paz when the second named author gave a talk at the the conference for Fabrizio Catanese’s
70th birthday. Let Z = SU&(2,1) where C is a smooth projective curve of genus 2. By
the Hitchin map hy : T — C* = H°(C,2K¢),

@ H°(Z,Sym™Ty) ~ C|F, F, Fj

m=0

where F; € H°(Z,Sym*Ty). This is an isomorphism of graded rings. It is well known that
Z is a complete intersection of two smooth quadrics @, and @Q, in P°. More precisely,
if a genus two curve C' is defined by six Weierstrass points \; for ¢« = 1,...,6 then 7 is
isomorphic to the complete intersection of two quadrics (cf. [16], [17], [3])

6 6
Q=Y X}=0, Q=) ANX]=0.
i=1 i=1
The above question is whether we can find a Z such that each fiber ®~!(e) of the
Lagrangian fibration of a del Pezzo surface X can be embedded naturally into each fiber
of the Hitchin map hyz : T} — C3* = H°(C,2K¢) with X = ZN H where H is a hyperplane
in P,
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There is a natural identification of the pencil Pb of quadrics induced by Q; and Q, with
P(H°(C, K¢)). Also from Theorem 5.1 in [6], there is an also isomorphism of graded rings:

P HO(Z,Sym™ Q4 (1)]) =~ C[Q1. Q).

m=0

Then the preimage h,'(W) of the Hitchin map of the image of a natural embedding
W := Sym’H°(C, K¢) in C* = H°(C,2K¢) is the locus of singular spectral curves. This
identification is explained in detail in the thesis of Sarbeswar Pal [I§]. Also recently, Hitchin
[8] studies explicitly the Hitchin map hy : Tj — C* = HY(C,2K¢).

Then the question is whether the restriction of this h,'(W) over X, which is the inter-
section of Z with some hyperplane section H, is the cotangent bundle of X. Since we have
a natural identification between

éHO(Z N H,Sym™[Q} 5 (1)]) ~ C[Q: N H,Q, N H] and

m=0

P HO(Z, Sym™ (0L (1)]) ~ C[Q1, Qs

m=0
and due to the description of an irreducible component of a general fiber of the locus of
singular spectral curves (Theorem 1.3 in [I1]), if the question is true then a general fiber
of the locus of singular spectral curves seems to be isomorphic either a P! bundle or an
elliptic fiber bundle over S, (up to étale cover) in Theorem 1.2. We cannot answer on this
question now because there is no enough study on the hy : T — C? = H(C,2K¢). We
leave it for the future study.

3. LEVEL SURFACES IN THE LAGRANGIAN FIBRATION

We use the same notations as in the introduction. Let X be a del Pezzo surface of degree
4. Let @, and Q3 be two quadratic forms in variables 1, ..., ys defining X C P* =P,
such that det @)y = 1. We define the characteristic polynomial P(t) := det(tQ1 — ()2), then

it satisfies
5

LOES | (0
i=1
where all §; € C are distinct.
We have a pencil of quadric hypersurfaces in P*:

w : Q = {Qe}eEPl 5 — ]Pél,eg = Pl

ey,e

such that its fiber at e = (ey : e3) € P},
P* defined by e2Q1 — e1Q4 = 0.

For each i =1,...,5, set a;, = (1: 6;) € P} ..
e = a, for some 3.

corresponds to the quadric hypersurface Qe in

Then Q. is singular exactly only when
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Lemma 3.1 ([19]). X is isomorphic to the blow-up of P* at the images p; € P* of a; € P},
under the Veronese embedding P* — P2, and is isomorphic to the subscheme of Pgl

defined by
5 5

(3.1) D P0) =) P(0) 0y =0,

i=1 =1

3.1. Surfaces in the linear system |2(| in P(Tx). Let us consider X as the blow-up of
P? at pq,...,ps € P? in Lemma [3.1{ and denote by p : X — P? the blow-up morphism.

3.1.1. Description of lines in X. Let E; be the exceptional curve on X over p; and C' the
proper transform of the unique conic in P? through all py,...,ps. For each 1 < i # j <5,
let ¢;; C X be the proper transform of the line in P? connecting p; and p;. Then C, {E;};
and {/; ;};; are exactly the 16 lines /1, ..., /16 in X in the introduction. We denote by C”,
E; and (;; C P(Tx) the sections of the respective lines associated quotients of the form:
Tx|[p>1 = O]pl (2) D O]pl(—l) - Opl(—l)

3.1.2. Linear system |2C|. As seen in the introduction, the pencil {Qe}eep: . of quadric
hypersurfaces induced by @1 and @y gives the linear system |2¢| in P(Tx). Let £, be 16
sections of P(T'x|,) — ¢; which are associated to quotients Tx|,, = Op1(2) ® Op1(—1) —
Op1(—1). Let B be the base locus of the linear system |2¢| in P(Tx). Using ¢ - £, = —1 and
the description of Section 2 in [6] we can show that B is supported on the disjoint union
of 16 sections ¢} so that B = Zgl a;l; for some integers a; > 1. Using the Grothendieck
relation

C2 + 7T*I('X : C + +7T*CQ<TX) =0
we can calculate (3 = —4. Therefore

16 16
(20 ¢=) ailj-¢==> a;=—-16
=1 =1

which implies that a; = 1 for all 7.
Let
UB : BIB]P)(T)() — ]P(Tx)

be the bolow-up along B. We have a smooth member K|, of |2¢| (see Corollary 2.4 in [4]).
The exact sequence on normal bundles

0= Neyw, = Og(=2) = Negpecre) = Nieyjprwle, = O (=2) = 0
shows that Ny pire) = Op1(—2) @ Op1(—2) because Ext!(Opi(—2), Opi(—2)) = 0. Thus

Y

the exceptional divisor over £; of the blow-up pp is isomorphic to P(Op: (—2) @ Op1(—2)) =
P! x P!, This implies that, after blow-up, the rational map ¢ : P(Tx) --» P! _ induced by

€1,€2

the morphism & : T — Cglm defined by the pair (@1, Q2) can extended to a morphism
¢ : BlzP(Tx) —» P! =P

€1,€2

which is a family of members of |2¢|. We often consider each fiber K, = ¢ '(e) as a
subscheme of P(Tx).
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For each e € P}, , we let

e : Ko > X
be the restriction of the composition 7 o up : BlgP(Tx) — P(Tx) — X.

Lemma 3.2. For each point x in X, 7 ' (x) consists of two points with multiplicity except
only when Qe is singular and x is one of the intersection points of some two lines in X.
In this exceptional case, w ' (x) is isomorphic to P'.

Proof. Let @ be a smooth quadric hypersurface in P4 such that X = Q<NQ. The description
of Section 2 in [6] says that each fiber 7 !(z) parametrizes lines in Q. N T, X through z,
where T, X C P* denotes the embedded projective tangent plane to X at x. So we only
need to show the next claim.

Claim: For a point x in X, T, X N Qe = T, X if and only if (), is singular and x is the
intersection point of some two lines in X.

Assume that T,X N Qe = T, X. Then T, X C Q. Since any smooth quadric hypersur-
face in P* contains no plane in P4, Q. is singular so that it is a cone over a quadric surface
in P3. We also have equalities T, XN X = T, X NQ.NQ = T, X NQ as a set, which
implies that T, X N X is a union of some two lines in X and x is the intersection point of
them.

Conversely, assume that () is singular and x € X is the intersection point of some two
lines ¢,, and /¢,, in X. Then the intersection Qo N'T, X contains ¢,,, ¢,, and some other line
in the ruling of the cone structure on ) which implies that Qe N T, X = T, X. O

3.1.3. Conic fibration on X. Let RatCurves"(X) be the normalized space of rational curves
on X (see [14]). Foreachi =1,...,5,let K;; be the irreducible component of RatCurves” (X))
containing the proper transform of a general line in P? through p;, and let K;5 be that
containing the proper transform of a general conic in P? through {py,...,ps}\ {p:i}. There
is a conic fibration

5 X — ]Pl
whose general fiber is a member of K; ;. The conic fibration m; ; : X — P* has four singular
fibers. For each k € {1,...,5} \ {i}, there is a singular fiber of m;; which is the union of
Ui and Ej. Three of the four singular fibers of 7; 5 are the unions of two lines of the forms
Uy and £, ,, with {1, 00,03, 0} ={1,...,5}\ {i}, and the last one is the union of C' and
E;. We note that the union of singular fibers of m; ; and ;o is exactly the union of 16 lines
gl,.‘.,glg; in X.

3.1.4. Fibration on Total dual VMRT. Let CU” be the total dual VMRT associated to K; ;.
We refer to the paper [9] for the total dual VMRT. Let L be the class of u*Op2(1). By
Corollary 2.13 in [9], we have

[Cu“] =(—7n"L+7*[FE|+ -+ 7[E5] — 27*[E;], and
Cio] = ¢+ 7L — 7*[F\] — - - - — w*[Es] + 27 [ E}]
and thus
(3.2) (Cia] + [Ci2) = 2¢.
This shows that there are 5 points by, ..., bs in P! _ such that Ky, = Cvm U (12

€1,€2
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Lemma 3.3. The 5 points b; € P!
reordering.

are the same as the 5 points a; € I[”i1 e, Gfter

e1,e
Proof We only need to show that each @)y, is singular. Suppose not. Then by Lemma
C 1 and C 2 are 1sornorphlc to X. Clearly at least one of C 1 and C 2 contains some /.

Assume that CZ 1 contains some /. Let F be a general fiber of m;; : X — P'. Then
=0 and €/ (e, =—1. Slnce F is a conic and ¢y is a line in X, we have [F] = 2[(}]

in CM, a contradiction. Il
We have a fibration 7; ; : C; ; — P! of curves on C; ; given by the composition
= h— .. o M u< . 1
Tij i= T O W]Cm, :Cij = X =P

Lemma 3.4. The restriction ws = : Cij = X of 7 : P(Tx) — X is the blow-up of
four points of X which are the singular points of the singular fibers of the conic fibration
75 X — P Moreover the proper transform in C:,j of a line ly, in a singular fiber of m;
is equal to ().

Proof. Let us assume that a singular fiber of m;; : X — P! consists of two lines ¢,, and
?,, meeting at . Then by Lemmas and the preimge m,"' () of mp, : Kp, = X
is isomorphic to P'. Since 7y, |s = 7|z and my,|s = 7| give isomorphisms in the

outside of singular fibers of m;; and m; 5 respectively, the fiber ngl (x) is contained in Cv“
This shows the first statement in our lemma.
The fiber of 7;,; : ;1 — X — P! over the singular fiber ¢,, U ¢,, of m;; consists of the

proper transforms E:l and EZQ of ¢,, and /,, respectively, and 2¢ where ¢ is the exceptional
curve over x. Clearly ¢ is a fiber of 7w : P(X) ¢, = 1. From this and

(fiber of 7;1) - Cls., = 0, it follows that ‘, +(lg., = —1and l, - Clg,, = —1. This implies
that £, = ¢, and 0, = ¢,,. We are done. O

We know that the five K3, are reducible. Next lemma shows that there is no other
reducible K.

Lemma 3.5. For any e € P\ {by,...,bs}, K. is irreducible and the morphism e : Ko —
X is a double cover, i.e., a finite morphism of degree 2.

Proof. Since @) is smooth, Lemma says that the morphism 7, is a finite morphism
of degree 2. If K, is reducible, then it is a union of two irreducible components which
are isomorphic to X. We have a contradiction by the same reason as in the proof of
Lemma [3.3] O

For each e € P\ {by,...,bs}, let D, C X be the branch curve of the double covering
Te : Ko — X (see Lemma ; the branch curve D, is the locus of points x such that
Qe NT,X is a double line.

3.1.5. General K. For a general e € P} \ {by,...,bs}, K is a K3 surface of degree 8
of Kummer type; Since Kp(ry) = —2(, KK = QOk,. So the branch curve D, C X of the
double covering me = 7|k, : Ke — X is in |Ox(2)| because —Kx = Ox(1) where Ox (1) is
a hyperplane section of X in P4, Therefore D, is a nonsingular curve of genus 5 with degree
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8 in P*, and tangent to all 16 lines ¢; in X. And the lifts ¢; C P(Tx) of the 16 lines ¢; in

X as in the introduction are (—2)-curves le; in Ko C BlgP(Tx). These 16 (-2)-curves (e ;

are the intersection of K, with the exceptional divisor D of up : BlgP(Tx) — P(Tx). By

the blow-down p : X — P2, D, goes to a plane sextic curve with five cusps at {p,...,ps}.
By the above explanation, we obtain the following lemma.

Lemma 3.6. For a general e € P, \ {by,...,bs}, K¢ is a K3 surface of degree 8 of
Kummer type. It has 16 (-2)-curves le; which are intersection of K¢ with the exceptional
divisor D of the blow-up g : BlgP(Tx) — P(Tx).

Remark 3.7. We know
Xtop(BIBP(Tx)) = Xtop(P(Tx)) + 32 = Xtop(X) - 2+ 32 = 48.

Since Yiop(K3 surface) = 24 and Xtop(Kb) =24 for all i = 1,...,5, Xtop(Ke) = 24 for
a general e € JP’EI e, and {by,...,bs} C IP’el e, This seems to imply that for every e €

P} ., \{b1,...,bs}, KeisaK3 surface of degree 8 of Kummer type. In Corollary [3.15 we
prove that thls is true by considering on the Lagragian fibration of the map 7% — C

€1,e2”

Remark 3.8. By the result by Skorobogatov (Theorem 3.1 in [19]), we have more explicit
description of K, for a general e € P} . \ {b1,...,bs}. There exists an embedding
Ko CP) . 50 that it is defined by

6 6
ZQ’(ei)‘lyf=ZQ’(9i)—1eiyz ZQ ) 1622

where 64, ...,05 are the same 6;s in Lemma 3.1} 6 is determined by K, and

t) = H(t —0,)

Furthermore the restriction of the projection map

Py e P (Wi ye) o (s ys)
gives a double cover 7, : Ke — X branched on a degree 8 curve D, in X defined by

5
Y Q) =D Q) byl = Z@ )07y
=1

i=1

3.1.6. Reducible Ko. When K, goes to K, = Cumuém, the branch curve Dg of e : Ko — X
goes to 2F},, where Ey, is an elliptic curve which is a hyperplane section of X in P*. The
image of By, of the blow-up p : X — P? is a cubic curve in P? tangent to the line £;; at py
for each k € {1,...,5}\ {i}. For each i, this cubic plane curve is uniquely determined by
this property.

We can observe that Ej, is the closure of the locus of z in X such that some two conics
in X which are members of KC; ; and K, » respectively tangentially intersect at x.

Lemma 3.9. Ey,, meet smooth fibers of m; + X — P! at two distinct points, and the
singular fibers of it at the singular points.
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Proof. Given a smooth conic curve in P? through four points {p;,...,ps} \ {pi}, there are
two distinct lines in P? through the point p; which are tangent lines of the given conic
curve. When this smooth conic specializes to a singular conic in X, the above two distinct
lines in P? goes to the unique double line in P? through p; and the singular point of that
singular conic curve. This shows our lemma for 7; 5. The proof for the fibers of 7; ; can be
done in a similar method. O

From Lemma , it follows that the restriction m;;|p, : Eb, — P! is a double cover
branched at the four singular values of 7; ; : X — PL.

The intersection curve between two components CVM and éi,2 is the proper transform of
G, (f” — X. We will denote it by the same notation Fy,. By

Ey, of the blow-up 7

Lemma , Ey, intersects two distinct points at each smooth fiber of 7, ; : é” — P!, and
one point with multiplicity two at the exceptional curve of singular fibers of it; We note
that the multiplicity of this exceptional curve is two in a singular fiber.

Ky, Cs1 U Cs.2

By By Ejy Ej ba b lhy Ep

Tbg | 7r|CV5,1 I 7l—|(f5,2|

lig b3 l1g C

K R (-

Ey Es: E3 E4 l3,4 024 fl23 Es

5,1 | 7r5,2|

]P>1

So we obtain the following lemma.

Lemma 3.10. For each i =1,...,5, we have the following description of Ky, .

(i) Ky, consists two irreducible components éi,l and Cvm
(ii) Each CUU for j = 1,2 is isomorphic to the blow-up of four distinct points of X.
These four points are singular points of the four singular fibers of the conic fibrartion
m X — PL
(iii) CUM N Cum is a smooth elliptic curve Ey,.
(iv) In the fibration #;; : Ci; — P', Ey, intersects two distinct points at each smooth
fiber, and one point at the exceptional curve of each singular fiber.
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3.2. Description of level surfaces S.. From now on, we want to describe level surfaces
S.. As seen in the introduction, S, is defined by ®~!(e) where

¢:Ty —»C2,, =C

€1,€2

is the morphism defined by (Q1, Q2). Here we consider Q; as sections in H°(X, Sym*7T).

Let
I, : s, - X
be the restriction of Il : T% — X. Take e # 0 € CZ, ,, and denote by e € P' the image

point of e under the quotient map C? _ \ {0} — P! _ . There is a morphism

e1,e2 e1,e2”’
Te : Se = Kg

induced by the quotient map T% --» P(Tx). So we have the following commutative

diagram:
S, e s Ko
X

Since there is a graded ring isomorphism:

@ H°(X,Sym™Tx) ~ C[Q1, Q4]

m=0

Sre = S for all A € C*. We have the following diagram of maps.

fe i ~ f;

Ke =~ Ke -~ Se
n N Te
BIgP(Tx) — P(T'x ) < T%
J) NX 4 )
¢ U
v bi
1 2
e1,e2 e1,e2
e <~ e

Lemma 3.11. For every e € CZ ,, \ {(0)}, there is an involution v on S, acting freely and

the morphism 1. : Se — Ko factors through the quotient map S — S/, i.e.,
Te 1 Se = Se/t — Ko
so that Se /1 = K¢ \ U8 Lo
Proof. For each e = (eq, e5) and each point in X, there is an open neighborhood U = Ciy

of that point such that Se|g-1y C II7(U) = C} is locally defined by equations

ZT,Y,u,v
Q1 = f(z,y)v’ + g(z,y)v* + h(z, y)uv = €1 and
Q2 = c(z,y)u? + d(z, y)v* + e(z, y)uv = e,.
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Here (); = H and ()2 = G in the notations in Section 2.3. So for a general point in X,
there are four points in the preimage of the map II. : S, — X. And there is a natural
involution ¢ : (z,y,u,v) — (z,y, —u, —v) acting freely on S..

Let ¢t = . Then given (z,y), the solution of the equation

ex(ft? + g+ ht) = ey(ct* +d + et)

gives a fiber of the map 7, : Ko — X and a fiber of the map S./1 — X. Therefore

Se/1 — Ke. Since the base locus of the linear system |2¢| consists exactly of 16 sections ¢
which are £ ; in K, we have S./1 = K¢ \ U}%, (e ;. O

3.2.1. General S,. Take general e € C? , so that S, is smooth. The preimage 7' (¢;) of
¢; C X splits into two curves in Ke, one is (—2)-curves le; and the the other is a conic,
denoted by /., cut by a trope (Remark 8.6.9 in [5]). Let K, be a Kummer quartic surface
with 16 nodes obtained by contracting 16 (-2)-curves fe; in K. It is well known that
K, has a double cover S, which is an abelian surface. We note that S. does not contain
any rational curve because it is an abelian surface. The level surface S, for a general e is
S, \ {16 points} where these 16 points are the preimage of 16 nodes of the double cover

S, — K. Next figure shows these situations.

Abelian surface

oY

S, Se \ {16 points}——— S, 16 points
| T ]
2:1 2:1
\\\\\\\\\\\\\\\\\\\\\A gejk»node 3
SG/Z = Ke \ Uige,i( Ke N Ke 16 nodes
Te L beui %ee‘i Kummer quartic surface
X ¢

Remark 3.12. Take e # b; € P! Let Cs be the smooth curve of genus 2 with 6

€1,e2”
Weierstrass points over by, ..., bs, e € P! , under the hyperelliptic involution Cs — P! Leat

e1,e
If K, is smooth then S, can be embedded into the Jacobian variety Js of Cs for some € so

that Js \ S. consists of 16 disjoint points. It is not clear to us that e = e.

3.2.2. Reducible S.. For each i, we take one point b; € C? _ over b; under the quotient

€1,€2

map CZ _, \ {0} — P, .,. We recall that Sy, = Sy, for all A € C*. Now let us describe Sy,

%

by using the explicit description of K}, in Lemma m Let A;; be the preimage 7, ' (C; ;)
so that Sp, = A;1 U A;2. The restriction 7;; = 7,
degree 2 whose image is equal to ézj \ Ui e k. We remark that eacvh Cu” contains only 8
(-2) curves and the multiplicity of the exceptional curves of 7| ~: Ci; — X is two in the

Ay, - Aij — Cij is a finite morphism of

singular fiber of 7; ; : Cv” — PL.
We have a fibration
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over an elliptic curve E;;, and a double cover o;; : E;; — P! branched on four singular
values of 7; ; and making the following commutative diagram:

Ti,j v
Aij —— Cij

Hi’jl lffz‘,j

> i
Ez‘,j 2—;) Pl
The preimage b = Tijjl(Ebi) C A, ; intersect two distinct points on each fiber of 1, ;.
Every fiber of II; ; is either P! or P! \ {two points}, and there are four fibers which are
P! \ {two points}. The restriction of 7;; to a fiber of II;; of the form P'\ {two points}
gives a degree 2 morphism to the exceptional curve in a singular fiber of ; ;.

Therefore Sp, has two components A, and A, 5, both are ruled surface\{8 points} over
an elliptic curve. The intersecting curve between A;; and A, is the elliptic curve El’h

Sp, = A1 U Ao Tb; Ky, =Ci1UCi2

J

Ay
g |l 44
T 77

PPl 4 - P!\ {2 points} P! P!

lﬂm

Now we are ready to prove Theorem [1.2]

Theorem 3.13. We have the following description of level surfaces of the map ® : T% —
(C2

€1,e2”"
a) For every e € C? W>_,C-b;, S. is S.\ {16 points} where S, is isomorphic to the
e1,e2 =1

Jacobian variety of a curve of genus two. Here, C - b; is the line in (Czl’e2 through
b; and the origin 0.

(b) For eachi=1,...,5, we have the following description of Sy,.
(1) Sy, consists two irreducible components A; 1 and A; 5. )
(i) Each A;; is a ruled surface\{8 points} over an elliptic curve E; ;.
(iii) As1 N Ao is an elliptic curve By .
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(iv) In the fibration A;; — E;;, Ej intersects two distinct points at each fiber.

Proof. By the above argument, we prove (a) for a general S, and (b). So it is enough
to prove that every S, satisfies (a). If S, has non-isolated singularities then K, has also
non-isolated singularities. But we know that K, has at most isolated singularities if e does
not belong to {by,...,bs}; Since the corresponding quadric Q. is smooth, we have K, is
irreducible and 7 : Ko — X is a double cover (see Lemma which implies that K, has
at worst isolated singularities.

Therefore S, has at worst isolated singularities. We also note that .S, is isomorphic to S).
for all A € C*, so S, is a general singular fiber. Then by using the idea of the characteristic
vector fields in [11], S, should be smooth by the following reason.

Suppose ¢ is an isolated singularity of S.. Let S = Uycc+S)he, which is called a vertical
surface in [I1]. Let z be a local coordinate in a neighborhood of ®(S,) in ®(S) = C* and
consider the Hamiltonian vector fields

v, = 1,(P"dz)

by identification 1, : T§; — T where M = T% via using the natural symplectic 2-form w.
Since @ is a Lagrangian fibration, these vector fields are tangent to S.. So we have a flow
of singularities in S, coming from the singularity ¢q. Therefore S, cannot have an isolated
singularity.

It also implies that K, in P(Tx) corresponding to S, is also smooth on K\U!S le; = S/t
because ¢ acts freely on S.. Furthermore we can check that K, is smooth along each /e ;
which implies that K, is smooth. U

By the above theorem, we get the following corollaries.

Corollary 3.14. The map ® : T% — C? _ s flat.

€1,€2

Proof. Clearly, T is irreducible and Czlm is reduced. Then by using our description of

level surfaces and Lemma 10.48 in [13], the map ® : T5\®~'(0) — C2  \{0} is flat because
because ® is essentially of finite type, pure dimensional, and its fibers are geometrically
reduced. So it is enough to check ® is flat over {0}.

We recall the following diagram of maps.

¢ So
N N
BlB]P)(Tx) — P TX) e T)*(
- e
gé ™ X0 )
$ Y
v l
T 2
€1,€2 e1,e2

Since ¢ is defined outside UM ¢, Sy = ®1(0) is contained in the union of the zero
section of the map ® and the preimage of U%¢; of the quotient map T% --» P(Tx). This
implies that Sy has dimension two.
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For any smooth affine curve R € CZ, ,, through 0, Sy is not an associated point of

®~!(R). This implies that the flatness of the map ®. d

In the proof of Theorem [3.13]it is proved that K, is smooth for alle € P}, \{by,...,bs}.
From this and Lemma [3.6] we get the following corollary.

Corollary 3.15. For every e € P! _ \ {by,...,bs}, K. is a K3 surface of degree 8 of

€1,€2
Kummer type. It has 16 (-2)-curves le; which are intersection of K with the exceptional

divisor D of pp : BlgP(Tx) — P(Tx).
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