
ON DECOMPOSITION OF THE LAST PASSAGE TIME OF DIFFUSIONS

MASAHIKO EGAMI1 AND RUSUDAN KEVKHISHVILI2

1,2Graduate School of Economics, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan

ABSTRACT. For a regular transient diffusion, we provide a decomposition of its last passage time to a certain state α.
This is accomplished by transforming the original diffusion into two diffusions using the occupation time of the area
above and below α. Based on these two processes, both having a reflecting boundary at α, we derive the decomposition
formula of the Laplace transform of the last passage time explicitly in a simple form in terms of Green functions. This
equation also leads to the Green function’s decomposition formula. We demonstrate an application of these formulas
to a diffusion with two-valued parameters.
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1. INTRODUCTION

This paper provides a decomposition of the last passage time’s Laplace transform and the Green function for a
general one-dimensional regular transient diffusion. Considering the last passage time to a certain state α, the proof
of the main result in Proposition 1 is based on the transformation of the original diffusion into two diffusions using
the occupation time of the area above and below α. To the best of our knowledge, the related Lemmas 2.1-2.4,
which are the foundations of Proposition 1, are fully original. They also provide new insights on the occupation
and local times of these two diffusions since we handle two local times together in analyzing a killing time and
a last passage time. An immediate and important application of this result is Theorem 1, the decomposition
of the Green function, the latter being one of the fundamental objects in applied mathematics (e.g. differential
equations (Duffy, 2015) and potential theory including its probabilistic approach (Doob, 1984; Chung and Zhao,
1995; Pinsky, 1995)). The decomposition can be done easily as demonstrated in Section 4.1 where we handle the
Ornstein-Uhlenbeck (OU) process: its Green function involves non-elementary hard-to-treat functions.

The decomposition formulas in Proposition 1 and Theorem 1 are new results. With these formulas, the behavior
of diffusions above and below a certain point α can be analyzed separately from the original diffusion. One example
is to apply this decomposition to a diffusion whose parameters are different above and below α. We demonstrate
this point in Section 5: our results allow us to bypass the need of knowing the explicit transition density of such
diffusions by reducing the original problem to the case of two non-switching diffusions. This feature is particularly
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2 ON DECOMPOSITION OF THE LAST PASSAGE TIME OF DIFFUSIONS

important because the transition density (and its Laplace transform) in the case of switching parameters is often
unavailable. Let us point out that there is no general established method in the literature for explicitly obtaining the
Green function of diffusions with switching parameters. We provide this method. In the special case of a Brownian
motion with two-valued drift, Beneš et al. (1980) derives its Green function using the symmetry of the Brownian
motion, the forward Kolmogorov equation (satisfied by the transition density), and a linear system of equations
based on various conditions satisfied by the density’s Laplace transform. Section 5.1 shows that the decomposition
formula saves these computations. Moreover, a diffusion with switching parameters is useful in modeling real-life
problems. For example, in Section 5.2, we show the last passage time distribution of such a process, quantifying
the leverage effect of high volatility stock. In addition, Proposition 2 derives the killing rate for the diffusion above
level α explicitly. This is also a new finding that uncovers a connection between the component diffusions in the
decomposition formula.

The literature for the last passage time (or the last exit time) includes Doob (1957), Nagasawa (1964), Kunita
and Watanabe (1966), Salminen (1984), Rogers and Williams (1994), Chung and Walsh (2004), Revuz and Yor
(2005) as well as the studies referred therein. This object is closely related to the concepts of transience/recurrence,
Doob’s h-transform, time-reversed process, and the Martin boundary theory, and has been an important subject in
the probability literature. Salminen (1984) derives the distribution of the last passage time using the transition
density of the original diffusion, which leads to its Laplace transform in terms of the original Green function
(Borodin and Salminen, 2002, Chapter II.3.20). See also Egami and Kevkhishvili (2020). In contrast to the
existing literature, the study of this paper is the first one to investigate the distribution of the last passage time
to α by focusing on the regions above and below α separately. Propositions 1-3 and Theorem 1 characterize the
behavior of the original process in these two regions, and the decomposition formulas represent a new tool for
further investigation of diffusions.

A wide range of applications of last passage times in financial modeling are discussed in Nikeghbali and Platen
(2013). These applications cover the analysis of default risk, insider trading, and option valuation, which we
summarize below. Elliott et al. (2000) and Jeanblanc and Rutkowski (2000) discuss the valuation of defaultable
claims with payoff depending on the last passage time of a firm’s value to a certain level. See also Coculescu
and Nikeghbali (2012) and Chapters 4 and 5 in Jeanblanc et al. (2009). Egami and Kevkhishvili (2020) develops
a new risk management framework for companies based on the last passage time of a leverage ratio to some
alarming level. They derive the distribution of the time interval between the last passage time and the default time.
Their analysis of company data demonstrates that the information regarding this time interval together with the
distribution of the last passage time is useful for credit risk management. To distinguish the information available
to a regular trader versus an insider, Imkeller (2002) uses the last passage time of a Brownian motion driving a
stock price process. The last passage time, which is not a stopping time to a regular trader, becomes a stopping time
to an insider by utilizing progressive enlargement of filtration. This study illustrates how additional information
provided by the last passage time can create arbitrage opportunities. Last passage times have also been used in the
European put and call option pricing. The related studies are presented in Profeta et al. (2010). These studies show
that option prices can be expressed in terms of probability distributions of last passage times. See also Cheridito
et al. (2012).

The structure of the paper is the following. In the rest of this section, we summarize some mathematical facts of
one-dimensional diffusion. Section 2 is devoted to the proof of Proposition 1 and the identification of the associated
killing rate. Section 3.2 is an example of last passage time decomposition. We present extensions and applications
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in Sections 4 and 5 where the decomposition for the Green function is established in a general setting (Section 4)
and diffusions with switching parameters are studied in Sections 5.1 and 5.2, the latter being a financial application.

1.1. Mathematical Setup. We refer to Borodin and Salminen (2002, Chapter II), Karlin and Taylor (1981, Chap-
ter 15), Karatzas and Shreve (1998, Chapter 5), Itô and McKean (1974, Chapter 4), and Rogers and Williams
(1994, Chapter III) for diffusion processes. The main reference is the first one. Except for the proof of (10), the
facts regarding diffusions mentioned in this subsection can be found in the references above. We cite specific
references for the facts that are not listed in Borodin and Salminen (2002, Chapter II).

Let us consider a complete probability space (Ω,F ,P) with a filtration F = (Ft)t≥0 satisfying the usual con-
ditions. Let X be a regular diffusion process adapted to F with the state space I = (ℓ, r) ⊂ R. We assume X
is not killed in the interior of I, which is a standard grand assumption for a general study of regular diffusions
(e.g., see Salminen (1984) and Dayanik and Karatzas (2003)). On the other hand, if X hits ℓ or r, it is killed and
immediately transferred to the cemetery ∆ /∈ I. The lifetime of X is given by

ξ = inf{t : X(t−) = ℓ or r}.

Following Rogers and Williams (1994, Chapter III), we write

X = (Ω, {Ft : t ≥ 0}, {Xt : t ≥ 0}, {Pt : t ≥ 0}, {Px : x ∈ I})

where Px denotes the probability law of the process when it starts at x ∈ I. For every t ≥ 0, the transition function
is given by Pt : I × B(I) 7→ [0, 1] such that for all t, s ≥ 0 and every Borel set A ∈ B(I)

Px (Xt+s ∈ A | Fs) = Pt(Xs, A), Px-a.s.

The dynamics of a one-dimensional diffusion are characterized by scale function, speed measure, and killing
measure (see Appendix A.1 for definitions). The scale function and the speed measure of X are given by s(·) and
m(·), respectively. The killing measure is given by k(·). The assumption we made above that killing does not
occur in the interior of the state space is expressed by k(dx) = 0 for x ∈ I.

We assume thatX is transient. The transience is equivalent to one or both of the boundaries being attracting; that
is, s(ℓ) > −∞ and/or s(r) < +∞. See Proposition 5.22 in Karatzas and Shreve (1998, Chapter 5) and Salminen
(1984). Note that s(ℓ) := s(ℓ+) and s(r) := s(r−). Transient diffusion can also be obtained from originally
recurrent diffusion (such as Brownian motion and Ornstein-Uhlenbeck process) by including a killing boundary
in its state space. Such setup is often used in engineering, economics, finance, and other scientific fields when
dealing with real-life problems. For example, we refer the reader to Linetsky (2007) for financial engineering
applications such as derivative pricing. Applications in neuroscience are discussed in Bibbona and Ditlevsen
(2013). For optimal stopping problems, refer to Alvarez and Matomäki (2014). Hence transient diffusions are
useful in modeling.

To obtain concrete results, we set a specific assumption:

Assumption 1.
s(ℓ) > −∞ and s(r) = +∞.

Then, it holds that

Px
(
lim
t→ξ

Xt = ℓ

)
= 1, ∀x ∈ I
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(see Proposition 5.22 in Karatzas and Shreve (1998, Chapter 5)). That is, killing occurs at ℓ. For the later reference,
we state the definition of the killing rate of a diffusion: the infinitesimal killing rate γ(x) at x ∈ I is

γ(x) := lim
s↓0

1

s
(1− Px(ξ > s)) . (1)

Assumption 1 is necessary to fix a method to prove Proposition 1. But we shall remove this assumption in Propo-
sition 3.

For every t > 0 and x ∈ I, Pt(x, ·) : A 7→ Pt(x,A) is absolutely continuous with respect to the speed measure
m:

Pt(x,A) =

∫
A
p(t;x, y)m(dy), A ∈ B(I).

As discussed in Itô and McKean (1974, Chapter 4.11), the transition density p may be constructed to be positive
and jointly continuous in all variables as well as symmetric satisfying p(t;x, y) = p(t; y, x).

We use superscripts + and − to denote the right and left derivatives of some function f with respect to the scale
function:

f+(x) := lim
h↓0

f(x+ h)− f(x)

s(x+ h)− s(x)
, f−(x) := lim

h↓0

f(x)− f(x− h)

s(x)− s(x− h)
. (2)

The infinitesimal generator G is defined by

Gf := lim
t↓0

Ptf − f

t
(3)

applied to bounded continuous functions f defined in I for which the limit exists pointwise, is a bounded con-
tinuous function in I, and supt>0 ||

Ptf−f
t || < ∞ with the sup norm || · ||. We assume s and m are absolutely

continuous with respect to the Lebesgue measure and have smooth derivatives. With this assumption together with
a continuous second derivative of s, the generator G coincides with the second-order differential operator given by

Gf(x) = 1

2
σ2(x)f ′′(x) + µ(x)f ′(x), x ∈ I (4)

where µ(·) and σ(·) denote infinitesimal drift and diffusion parameters, respectively. We assume σ2(x) > 0 for all
x ∈ I. To ensure that dXt = µ(Xt)dt + σ(Xt)dWt (with a standard Brownian motion W ) has a weak solution,
we impose a standard condition on µ and σ:

∀x ∈ I, ∃ε > 0 such that
∫ x+ε

x−ε

1 + |µ(y)|
σ2(y)

dy <∞.

See Karatzas and Shreve (1998, Chapter 5, Theorem 5.15). Consider the equation Gu = qu for q > 0. Under the
original definition of G in (3), it should read as follows: u is a function which satisfies

q

∫
[a,b)

u(x)m(dx) = u−(b)− u−(a)

for all a, b such that ℓ < a < b < r. But in the absolute continuous case, u is the solution to Gu = qu for G in (4),
so that the existence of u is part of the definition of the generator. From the generator equation we have

s(x) =

∫ x

e
−

∫ y 2µ(u)

σ2(u)
du
dy, m(dx) =

2e
∫ x 2µ(u)

σ2(u)
du

σ2(x)
dx. (5)

Note that such definitions and assumptions for the scale function and speed measure are used in Karatzas and
Shreve (1998, Chapter 5) and Karlin and Taylor (1981, Chapter 15) and that s(x) satisfies Gs = 0 on I.
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The Laplace transform of the hitting time Hz := inf{t ≥ 0 : Xt = z} for z ∈ I is given by

Ex
[
e−qHz

]
=


ϕq(x)
ϕq(z)

, x ≥ z,
ψq(x)
ψq(z)

, x ≤ z,
(6)

where the continuous positive functions ψq and ϕq denote linearly independent solutions of the ODE Gf = qf

with q > 0. Here ψq is increasing while ϕq is decreasing. They are unique up to a multiplicative constant, once the
boundary conditions at ℓ and r are specified. Finally, the Green function is defined as

Gq(x, y) :=


ψq(y)ϕq(x)

wq
, x ≥ y,

ψq(x)ϕq(y)
wq

, x ≤ y,
(7)

with the Wronskian wq := ψ+
q (x)ϕq(x) − ψq(x)ϕ

+
q (x) = ψ−

q (x)ϕq(x) − ψq(x)ϕ
−
q (x). It holds that Gq(x, y) =∫∞

0 e−qtp(t;x, y)dt for x, y ∈ I.
Under Assumption 1, the killing boundary ℓ is attracting and limx↓ℓ Ex

[
e−qHz

]
=

ψq(ℓ+)
ψq(z)

= 0 for z ∈ I. Hence

ψq(ℓ+) = 0. As the right boundary r is not attracting, limz↑r Ex
[
e−qHz

]
=

ψq(x)
ψq(r−) = 0 for x ∈ I and we obtain

ψq(r−) = +∞.
Next, due to the transience of X , we define

G0(x, y) := lim
q↓0

Gq(x, y) =

∫ ∞

0
p(t;x, y)dt < +∞. (8)

Following Itô and McKean (1974, Section 4.11), this quantity is represented by

G0(x, y) =


ψ0(y)ϕ0(x)

w0
, x ≥ y,

ψ0(x)ϕ0(y)
w0

, x ≤ y,
(9)

where the continuous positive functions ψ0 and ϕ0 denote (linearly independent) solutions of the ODE Gf = 0 and

w0 := ψ+
0 (x)ϕ0(x)− ψ0(x)ϕ

+
0 (x) = ψ−

0 (x)ϕ0(x)− ψ0(x)ϕ
−
0 (x).

Here ψ0 is increasing while ϕ0 is decreasing. These functions are uniquely determined based on the boundary
conditions and satisfy

ϕ0 ≡ 1, ψ0(ℓ+) = 0, ψ0(r−) = +∞ (10)

under Assumption 1. We show a proof of (10) in Appendix A.2 since to our knowledge it is not shown in the
existing literature. The first equation ϕ0 ≡ 1 should be understood such that the solution ϕ0 can be taken as unity.

Since ψ0 solves Gf = 0 and is increasing, we can set ψ0(x) = w0(s(x) + constant). Then, the boundary
condition at ℓ determines the constant, i.e.,

ψ0(x) = w0(s(x)− s(ℓ)), x ∈ I,

which in turn leads to

G0(x, y) = (s(x)− s(ℓ)) ∧ (s(y)− s(ℓ)), (11)

since ϕ0 ≡ 1 by (10). Note that w0 is forced to be ψ−
0 .

Our analysis focuses on a decomposition of the last passage time of some fixed level α ∈ I which is denoted by

λα := sup{t : Xt = α} (12)
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with sup ∅ = 0. Our objective is to decompose the Laplace transform of λα in a simple formula convenient for use
(see Proposition 1). As X is a transient diffusion, λα < +∞ a.s. The distribution of the last passage time is given
by

Px(0 < λα ≤ t) =

∫ t

0

p(u;x, α)

G0(α, α)
du.

See Borodin and Salminen (2002, Chapter II.3.20), Salminen (1984, Proposition 4), Egami and Kevkhishvili
(2020). Then, the Laplace transform is

Ex
[
e−qλα

]
=

∫ ∞

0
e−qt

p(t;x, α)

G0(α, α)
dt =

Gq(x, α)

G0(α, α)
, x ≥ α. (13)

To the best of our knowledge, these two formulas are essentially the known results about last passage time distri-
bution. Our objective is to study its decomposition by focusing on the regions above and below α separately. This
results in a simple decomposition formula connecting two diffusions with reflecting boundaries at α. We derive
this new result in Section 2.

2. DECOMPOSITION OF X AND ITS LAST PASSAGE TIME

Consider the transient diffusion X on I = (ℓ, r) with Assumption 1 and its last passage time λα of some fixed
level α ∈ I as defined in (12). We draw a schematic diagram of the dynamics of X along with λα in Figure 1a.

2.1. Time-changed processes. Let us fix some α ∈ I and consider an occupation time of the region above and
below α

Γ+(t) :=

∫ t

0
1{Xs≥α}ds and Γ−(t) :=

∫ t

0
1{Xs<α}ds

together with its right inverse:

Γ−1
+ (t) := inf{s : Γ+(s) > t} and Γ−1

− (t) := inf{s : Γ−(s) > t}.

Define λAα := Γ+(λα) and λBα := Γ−(λα). Then, it holds that

λα = λAα + λBα .

Throughout the paper,

superscript A stands for “above the level α” and superscript B stands for “below the level α”.

We will use the following time-changed processes:

X̂A(t) := X(Γ−1
+ (t)) and XB(t) := X(Γ−1

− (t)). (14)

Time-change by additive functionals (such as occupation time) are discussed in Karlin and Taylor (1981, Chapter
15.8). See also Rogers and Walsh (1991) and Walsh (1978) where such techniques are employed for the path
decomposition. Our interest lies in how we can decompose the last passage time λα of X to the point α in terms
of X̂A and XB .

Note that X̂A and XB have the same speed measure and scale function as X (Dynkin, 1965, Theorem 10.12).
Then, XB can be seen as the process for which α is a reflecting boundary. Similarly, X̂A can be considered as the
process for which α is an elastic boundary. For the definition of an elastic boundary, refer to Borodin and Salminen
(2002, Chapter II.1.7). The hat is to stress that X̂A is a killed process with the non-zero killing measure k̂A. See
Figure 1b for this probabilistic feature.
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(A) The original process X and its last passage time λα.
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(B) A schematic expression of X̂A andXB . Note that the graphs of X̂A andXB are presented
by rotating 90◦ degrees counter-clockwise.

FIGURE 1
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Further note that

λAα is considered as the killing time of X̂A and λBα is the last passage time of XB to level α.

Let us introduce another diffusion XA on [α, r) for which α is a reflecting boundary. The process XA has the
same speed measure and scale function as X̂A (hence the same as X) but its killing measure is zero. To be precise,
we denote

X̂A(t) =

XA(t), 0 ≤ t < λAα

∆, t ≥ λAα
(15)

to distinguish the killed process X̂A from XA. Even after time λAα , the scale function, speed measure and the zero
killing measure of XA are unchanged and XA continues to be reflected at α. The killing measure of X̂A satisfies
k̂A({α}) > 0 and k̂A(dx) = 0 for x ̸= α. Note that the speed measure m̂A of X̂A satisfies m̂A({α}) = 0.

Let us summarize the above construction for later use:

Remark 2.1. Under Assumption 1, XA is a diffusion on IA := [α, r) with zero killing measure in IA. X̂A is
defined by (14) on IA with a non-zero killing measure in IA and XB is defined by (14) on IB := (ℓ, α] with zero
killing measure in IB . All the three processes have the reflecting point at α and their scale functions and speed
measures are the same as those of the original process X . The decomposition of the original process X into X̂A

and XB is illustrated in Figure 1b.

We begin with the case where X starts at α, so that λα > 0. This assumption is relaxed in Theorem 1 in Section
4, where we treat explicitly the possibility of λα = 0. The main result shows that the Laplace transform of the last
passage time λα can be decomposed into two parts:

Proposition 1. Under Assumption 1, the Laplace transform of λα in (12) is represented as

Eα[e−qλα ] =
GAq (α, α)

GAq (α, α) +GBq (α, α)
·
GBq (α, α)

GB0 (α, α)
(16)

where GA· (·, ·) and GB· (·, ·) are the Green functions of XA (not X̂A) and XB , respectively.

Proof. The series of Lemmas 2.1-2.4 in the next subsection lead to this result. □

Before we start with the lemmas, we need to introduce the local time at α for X̂A and XB by denoting

L̂A(t) := L̂A(t, α) = L(Γ−1
+ (t), α) and LB(t) := LB(t, α) = L(Γ−1

− (t), α), (17)

where L(·, α) is the local time of X at α. Let us also define the inverse local time processes

ρ̂A(s) := ρ̂A(s, α) = inf{t : L̂A(t, α) > s} and ρB(s) := ρB(s, α) = inf{t : LB(t, α) > s}. (18)

For a standard Brownian motion, local times such as L̂A and LB are referred to as intrinsic local time (see Rogers
and Walsh (1991)).

Remark 2.2. Due to the Markov property of X , the excursions of XA from α are independent of the excursions
of XB from α: in particular during [0, λAα ). Recall that XA(t) = X̂A(t) and LA(t) = L̂A(t) on [0, λAα ) where
LA(t) is the local time at α for XA. Refer to Figure 1b. Note that the excursion of XB commencing at time 0 by
the clock Γ−(·) occurs when XA returns to α at time u by the clock Γ+(·). This excursion of XA corresponds to
the time interval [0, t1) in the real clock (t) and is independent of XB and hence of LB . Then, the excursion of
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XA commencing at time u by the clock Γ+(·) occurs when XB returns to α at time λBα by the clock Γ−(·). This
excursion of XB corresponds to the time interval [t1, t2) in the real clock (t) and is independent of XA and hence
of LA. In this way, the construction of XA and XB in (14) and (15) implies that LA(·) and LB(·) are independent.

We use superscript B to denote quantities associated with XB . We denote Green functions of XA and XB by
GA· (·, ·) and GB· (·, ·), respectively. Let us stress that GA· is not the Green function of X̂A.

2.2. The Laplace transform of λα. Let us introduce a (generic) exponential random variable eq with rate q > 0

which is independent of X . Hence it is independent of both X̂A and XB . Recall (15) which states that X̂A(t) =

XA(t) for t ∈ [0, λAα ). In this subsection, the argument is concerned with the time interval [0, λAα ), so that we
deal with XA, not X̂A. For simplicity, in the sequel we omit the subscript α to denote λ := λα, λA := λAα , and
λB := λBα .

Let us start with

Eα[e−qλ] = Pα(λ ≤ eq) = Pα(Γ+(λ) ≤ Γ+(eq),Γ−(λ) ≤ Γ−(eq))

= Pα(λA ≤ Γ+(eq), λ
B ≤ Γ−(eq))

= Pα
[
λA ≤ Γ+(eq) | λB ≤ Γ−(eq)

]
Pα(λB ≤ Γ−(eq)). (19)

We shall compute explicitly the right-hand side of (19). Let us first consider the set {ω : λB(ω) ≤ Γ−(eq)(ω)}.

Lemma 2.1. Let eq be a (generic) exponential random variable with rate q > 0. Define P := {ω : λB(ω) ≤
Γ−(eq)(ω)} and Q := {ω : λB(ω) ≤ eq(ω)}. Then the sets P and Q are equivalent. Similarly, the sets
{ω : λA(ω) ≤ Γ+(eq)(ω)} and {ω : λA(ω) ≤ eq(ω)} are equivalent.

Proof. Suppose that ω ∈ P . Then λB ≤ Γ−(eq) ≤ eq by the definition of Γ−(·), so that ω ∈ Q. On the other
hand, suppose that ω ∈ Q. This implies that by the memoryless property

eq − λB = e′q ◦ θ(λB) (20)

where e′q is another exponential random variable with rate q and θ(·) is the shift operator. Define J := Γ−1
− (eq).

Since Γ−1
− (λB) = λ and Γ−(t) is strictly increasing on t ≥ λ, we have

eq − λB = J − λ = J ′ ◦ θ(λ) (21)

for some nonnegative random variable J ′. From (20) and (21), J ′ is an exponential random variable with rate q.
Then, the representation

J = λ+ J ′ ◦ θ(λ) (22)

implies that it is also an exponential random variable with rate q. Indeed, J is a continuous random variable and
(22) shows that J has the memoryless property as eq in (20) does, so that J must be an exponential random variable
with rate q. Now, λ ≤ J implies that λB = Γ−(λ) ≤ Γ−(J). By rewriting J as a generic exponential random
variable eq, we conclude that ω ∈ P . □

The next two lemmas are concerned with the first term of (19), the conditional probability.

Lemma 2.2. For the exponential random variable eq with rate q > 0, we have

Pα[λA ≤ Γ+(eq) | λB ≤ Γ−(eq)] = Pα[LB(Γ−(eq)) < LA(Γ+(eq)) | λB ≤ Γ−(eq)].
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Proof. Define
u := sup{t < λA : XA

t = α}; (23)

that is, the last time of visit to α before X̂A is elastically killed at time λA = Γ+(λ). This time point u is
characterized as Γ−(Γ

−1
+ (u)) = λB , and hence we have

LA(u) = LB(λB). (24)

It may be useful to see the schematic diagram in Figure 1b where the time u is marked in the upper left panel.
Since the local time LA(·) of XA (see (17) and Remark 2.2) shall not increase until the next visit to α by XA

(at time λA), we have
λA = inf{t : LA(t) > LA(u)}, (25)

which implies LA(λA) > LB(λB) from (24).
Now we condition on λB ≤ Γ−(eq). Under this condition, it is easy to see that the event {λA ≤ Γ+(eq)}

occurs when and only when the equal sign holds. Due to the argument in the preceding paragraph, under the
condition λB ≤ Γ−(eq), {λA ≤ Γ+(eq)} = {LA(Γ+(eq)) > LB(λB)} but we also have

LA(Γ+(eq)) = LA(λA) > LB(λB) = LB(Γ−(eq)),

which proves the lemma. □

Lemma 2.3. For the exponential random variable eq with rate q > 0, we have

Pα[LB(Γ−(eq)) < LA(Γ+(eq)) | λB ≤ Γ−(eq)] =
GAq (α, α)

GAq (α, α) +GBq (α, α)
. (26)

Proof. First, we shall prove that the left-hand side of (26) simplifies to

Pα[LB(Γ−(eq)) < LA(Γ+(eq)) | λB ≤ Γ−(eq)] = Pα(LB(eq) < LA(eq)). (27)

Indeed, given the fact λB ≤ Γ−(eq), due to Lemma 2.1,

Γ−(eq)− λB = eq ◦ θ(λB) = eq − λB. (28)

Let us denote (see the lower right panel in Figure 1b)

c := inf{t : Γ−(t) ≥ λB},

for which the condition λB ≤ Γ−(eq) implies that c ≤ eq. Since the time point c is the left-end point of a region
where Γ−(·) becomes constant, it corresponds to the left-end point of an excursion of XA from level α. Hence
Γ+(c) = u, the right-hand side being defined in (23). Using the same argument as in Lemma 2.1, we have

Γ+(eq)− u = eq ◦ θ(u) = eq − u. (29)

Recall also (24). In other words, equations (28) and (29) imply that, instead of evaluating LB and LA at Γ−(eq)

and Γ+(eq), we can evaluate LB and LA both at time eq. We have proved (27) using the memoryless property of
eq.

Let us now evaluate Pα(LB(eq) < LA(eq)). It is known that the random variables LB(eq) and LA(eq) are
exponentially distributed and

Pα(LA(eq) > s) = Pα(ρA(s) < eq) = Eα[e−qρ
A(s)] = exp

(
− s

GAq (α, α)

)
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where ρA(s) := inf{t : LA(t, α) > s} is the inverse local time process for XA (c.f. (18)). See Getoor (1979,
Section 7). Similarly, we have

Pα(LB(eq) > s) = exp

(
− s

GBq (α, α)

)
. (30)

Since eq is independent of X , LA(eq) and LB(eq) are independent. See Remark 2.2. We have

Pα(LB(eq) < LA(eq)) =

1
GB

q (α,α)

1
GA

q (α,α)
+ 1

GB
q (α,α)

,

which yields (26). □

By the two lemmas, we have computed the first term of (19) on its right-hand side:

Pα[λA ≤ Γ+(eq) | λB ≤ Γ−(eq)] =
GAq (α, α)

GAq (α, α) +GBq (α, α)
. (31)

Let us proceed to the second term of (19).

Lemma 2.4. It holds that for the exponential random variable eq with rate q > 0,

Pα(λB ≤ Γ−(eq)) =
GBq (α, α)

GB0 (α, α)
. (32)

Proof. Due to Lemma 2.1, Pα(λB ≤ Γ−(eq)) = Pα(λB ≤ eq) = Eα[e−qλB ]. Using the expression of the Laplace
transform of the last passage time in (13), we obtain (32). □

By combining Lemmas 2.2-2.4, i.e., plugging (31) and (32) into (19), we obtain the result of Proposition 1.

2.3. The killing rate of X̂A. In this subsection, we shall find the infinitesimal killing rate of X̂A at α under the
condition λB ≤ Γ−(eq). We denote this rate by γq. Recall that the killing time for the process X̂A has been
denoted by λA = Γ+(λ). By (1), γq is given by

γq := lim
s↓0

1

s

(
1− Pα[λA > s | λB ≤ Γ−(eq)]

)
. (33)

For the purpose of finding γq, we represent the first term on the right-hand side of (19) in an alternative way. More
specifically, we shall prove the following:

Proposition 2. The first term on the right-hand side of (19) has the representation in terms of the infinitesimal
killing rate γq

Pα[λA ≤ Γ+(eq) | λB ≤ Γ−(eq)] =
γq ·GAq (α, α)

1 + γq ·GAq (α, α)
, (34)

where γq = 1
GB

q (α,α)
.

Remark 2.3. When we plug the value of γq = 1
GB

q (α,α)
into (34), we retrieve (31):

Pα[λA ≤ Γ+(eq) | λB ≤ Γ−(eq)] =
γq ·GAq (α, α)

1 + γq ·GAq (α, α)
=

GAq (α, α)

GAq (α, α) +GBq (α, α)
.
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Proof. Recall that XA is a diffusion on [α, r) and is reflecting at α with its killing measure being zero. Recall
also that the local time at α of XA is LA(t) and ρA(s) = inf{t : LA(t) > s} is the inverse local time process.
Referring to Itô and McKean (1974, Section 5.6), one could obtain a process identical in law to X̂A, conditioned
on λB ≤ Γ−(eq), by killing the process XA in the following way: let τ be an independent exponential random
variable with rate γq and kill XA at the time inf{t : LA(t) ≥ τ}. That is, with the definition of γq in (33),

Pα[λA > s | λB ≤ Γ−(eq)] = Pα(τ > LA(s) | λB ≤ Γ−(eq)) = Eα[e−γqL
A(s)],

which is equivalent to saying that

Pα[LA(λA) > s | λB ≤ Γ−(eq)] = Pα[λA > ρA(s) | λB ≤ Γ−(eq)] = Pα(τ > s | λB ≤ Γ−(eq)) = e−γqs,

(35)
where the first equality is due to ρA(LA(λA)) = sup{t : LA(t) = LA(λA)} = λA.

On the other hand, recall that we have λA = inf{t : LA(t) > LA(u)} = inf{t : LA(t) > LB(λB)} in (24) and
(25), with or without the condition λB ≤ Γ−(eq). Thus, XA is killed at the time inf{t : LA(t) > LB(λB)}. It
follows that the role played by τ is identical to the role played by LB(λB) under the condition λB ≤ Γ−(eq).

Take LB(λB). Under λB ≤ Γ−(eq), the local time LB of XB shall not increase after time λB due to the
occurrence of λB , so that LB(λB) = LB(Γ−(eq)) and therefore, we have

Pα[LB(λB) > s | λB ≤ Γ−(eq)] = Pα(LB(Γ−(eq)) > s | λB ≤ Γ−(eq))

= Pα(LB(eq) > s) = exp

(
− s

GBq (α, α)

)
(36)

where the last two equalities are due to Lemma 2.1 with (28) and (30), respectively. It follows from the comparison
of (35) and (36) that γq = 1

GB
q (α,α)

.

Finally, we derive (34). We have shown above that, given λB ≤ Γ−(eq), the way of killing XA using the
exponential random variable τ with rate γq = 1

GB
q (α,α)

is identical to the way in which one kills XA as in (15).
This fact is used in the second equality below:

Pα[λA ≤ Γ+(eq) | λB ≤ Γ−(eq)] = Pα[λA ≤ eq | λB ≤ eq] = Eα
[
e−q inf{t:L

A(t)≥τ}
]

=

∫ ∞

0
Eα
[
e−q inf{t:L

A(t)≥s}
]
γqe

−γqsds =

∫ ∞

0
Eα
[
e−qρ

A(s)
]
γqe

−γqsds

=

∫ ∞

0
e
− s

GA
q (α,α)γqe

−γqsds =
γq ·GAq (α, α)

1 + γq ·GAq (α, α)
.

In the fourth equality, we used the fact that the jumps of the inverse local time process ρA(s) occur countably many
times, so that the value of the integral is not affected if inf{t : LA(t) ≥ s} is replaced by inf{t : LA(t) > s} =

ρA(s). □

3. IMPLEMENTATION

In this section, we keep Assumption 1 valid. For the boundary conditions at the reflecting point, we refer the
reader to Borodin and Salminen (2002, Chapter II, Sections 1.7, 1.10).



ON DECOMPOSITION OF THE LAST PASSAGE TIME OF DIFFUSIONS 13

3.1. General procedure. We shall describe how we obtain the decomposition formula (16). First, we solve
Gf = qf with G in (4) to find ψq(·) and ϕq(·) and calculate the Wronskian as well as the scale function s(·) in (5).
By (7) we obtain the Green function Gq(·, ·).

The procedure to obtain GAq (·, ·) for q > 0 is as follows. Let us consider XA on IA = [α, r) and denote
its increasing and decreasing solutions to Gf = qf as ψAq and ϕAq , respectively. Recall that we can work for
Proposition 1 with XA (rather than X̂A) which is reflected at α. At the reflecting boundary α, the condition is
(ψAq )

+(α) = 0. Let us set ψAq (x) = a1ψq(x)+a2ϕq(x) with some constants a1, a2 depending on α, which satisfy(
ψ+
q (α) ϕ+q (α)

ψq(α) ϕq(α)

)(
a1

a2

)
=

(
0

ψAq (α)

)
.

By using the Wronskian wq, the solutions are a1(α) =
−ϕ+q (α)ψA

q (α)

wq
and a2(α) =

ψ+
q (α)ψA

q (α)

wq
. Since these

solutions are unique up to constant multiplication, we choose

a1(α) =
−ϕ+q (α)
wq

> 0 and a2(α) =
ψ+
q (α)

wq
> 0 (37)

so that ψAq (x) =
−ϕ+q (α)
wq

ψq(x) +
ψ+
q (α)
wq

ϕq(x). This function is indeed increasing on IA. See Appendix A.3 for
details. There is no boundary condition at α for ϕAq and we set ϕAq (x) = ϕq(x) in IA. From these, we compute
wAq (the Wronskian for XA) also depending on α. That is wAq (α) = (ψAq )

+(x)ϕAq (x) − ψAq (x)(ϕ
A
q )

+(x). Plug
(37) in this equation and rearrange the terms to obtain

wAq (α) =

[
−ϕ+q (α)
wq

ψ+
q (x) +

ψ+
q (α)

wq
ϕ+q (x)

]
ϕq(x)−

[
−ϕ+q (α)
wq

ψq(x) +
ψ+
q (α)

wq
ϕq(x)

]
ϕ+q (x)

=
−ϕ+q (α)
wq

[ψ+
q (x)ϕq(x)− ψq(x)ϕ

+
q (x)] = −ϕ+q (α) > 0 (38)

by using the definition of wq in the last equality. It is now clear why a1(α) and a2(α) are so chosen in (37). The
Green function of XA is thereby written as

GAq (x, y) =
1

−ϕ+q (α)
ϕq(x)

[
−ϕ+q (α)
wq

ψq(y) +
ψ+
q (α)

wq
ϕq(y)

]
, x ≥ y. (39)

For the case x ≤ y, ψAq should be evaluated at x and ϕAq should be evaluated at y. In particular, evaluating this
Green function at (α, α), we obtain

GAq (α, α) =
ϕq(α)

−ϕ+q (α)
(40)

since the numerator in the square bracket of (39) is wq, the Wronskian of the original X .
Let us move on to GBq (·, ·) for q > 0. Consider XB on IB = (ℓ, α] and denote its increasing and decreas-

ing solutions to Gf = qf as ψBq and ϕBq , respectively. The boundary condition at the reflecting boundary α is
(ϕBq )

−(α) = 0. We set ϕBq (x) = b1ψq(x) + b2ϕq(x) with some constants b1, b2 depending on α. By proceeding
similarly to the case of XA, we choose

b1(α) =
−ϕ−q (α)
wq

> 0 and b2(α) =
ψ−
q (α)

wq
> 0 (41)
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so that ϕBq (x) =
−ϕ−q (α)
wq

ψq(x)+
ψ−
q (α)
wq

ϕq(x). This function is decreasing on IB as shown in Appendix A.3. There
is no boundary condition at α for ψBq and we set ψBq (x) = ψq(x) in IB . Thus, the Wronskian forXB is calculated,
similarly to (38), as

wBq (α) = ψ−
q (α) > 0.

The Green function of XB is thereby written as

GBq (x, y) =
1

ψ−
q (α)

ψq(y)

[
−ϕ−q (α)
wq

ψq(x) +
ψ−
q (α)

wq
ϕq(x)

]
, x ≥ y. (42)

For the case x ≤ y, ψBq should be evaluated at x and ϕBq should be evaluated at y. In particular, evaluating this
Green function at (α, α), we obtain

GBq (α, α) =
ψq(α)

ψ−
q (α)

(43)

since the numerator in the square bracket of (42) is wq, the Wronskian of the original X .
Next we calculate GB0 (·, ·). We proceed similarly to the case of GBq , solving Gf = 0 to obtain ψ0 and ϕ0. The

boundary condition at the reflecting boundary α is (ϕB0 )
−(α) = 0. We set ϕB0 (x) = c1ψ0(x)+ c2ϕ0(x) with some

constants c1, c2 depending on α. Similarly to (41), we have c1(α) =
−ϕ−0 (α)
w0

and c2(α) =
ψ−
0 (α)
w0

. This implies that
ϕB0 is in fact constant on IB as shown in Appendix A.3. There is no boundary condition at α for ψB0 and we set
ψB0 (x) = ψ0(x). Then wB0 (α) = (ψB0 )

−(x)ϕB0 (x) − ψB0 (x)(ϕ
B
0 )

−(x) = ψ−
0 (α). The Green function GB0 (x, y)

for x ≥ y becomes

GB0 (x, y) =
1

ψ−
0 (α)

ψ0(y)

[
−ϕ−0 (α)
w0

ψ0(x) +
ψ−
0 (α)

w0
ϕ0(x)

]
. (44)

But thanks to (10), we can set ϕ0 = 1 and simplify further to obtain GB0 (x, y) = ψ0(y)
w0

. On the other hand, the

Green function of the original X with q = 0 for x ≥ y is G0(x, y) =
ψ0(y)
w0

by (9). The case x ≤ y is similar, so
that we have

GB0 (x, y) = G0(x, y) =


ψ0(y)
w0

, x ≥ y
ψ0(x)
w0

, x ≤ y
= (s(x)− s(ℓ)) ∧ (s(y)− s(ℓ)).

In particular,

GB0 (α, α) = G0(α, α) =
ψ0(α)

w0
= s(α)− s(ℓ), α ∈ I. (45)

The quantities a1, a2, b1, b2, wAq and wBq all depend on α. But since α is a pre-fixed state in I, we consider
them constant. For this reason, we omit the argument of these quantities for the rest of this paper. Since we have
established the general procedure, we shall take specific diffusions below. For the basic characteristics of each
diffusion, refer to Borodin and Salminen (2002, Appendix 1).

3.2. Example: Brownian motion with drift. In this example, we consider the last passage time of the level α = 0

for a Brownian motion with drift starting at α = 0. We decompose its Laplace transform using Proposition 1. Let
X be a Brownian motion with drift µ < 0 and set ν = −µ > 0. The state space is I = (−∞,+∞) and both
boundaries are natural. The scale function is

s(x) =
1

2ν
(e2νx − 1).
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We see that limy↓−∞ s(y) = − 1
2ν > −∞ and limy↑+∞ s(y) = +∞, so that Assumption 1 holds. The generator is

given by Gf(x) = 1
2f

′′(x)− νf ′(x). The linearly independent solutions to Gf = qf are given by

ψq(x) = e(
√
ν2+2q+ν)x and ϕq(x) = e−(

√
ν2+2q−ν)x.

Moreover, from (2), we haveψ+
q (x) = (ν+

√
ν2 + 2q)e(

√
ν2+2q−ν)x and ϕ+q (x) = (ν−

√
ν2 + 2q)e−(

√
ν2+2q+ν)x.

Hence by (7)

wq = 2
√
ν2 + 2q and Gq(x, α) =

1

2
√
ν2 + 2q

e−(
√
ν2+2q−ν)x · e(

√
ν2+2q+ν)α

for x ≥ α.
Let us compute G0(α, α) in three ways, via (8), (9), and (11), to make sure that all lead to the same result. First,

by (8), limq↓0Gq(α, α) = 1
2ν e

2να. To use (9), we solve the ODE Gf = 0 to obtain the fundamental solutions
ψ0(x) = e2νx and ϕ0(x) = 1, so that w0 = 2ν. From these results, we have G0(α, α) = 1

w0
ψ0(α) = 1

2ν e
2να.

Finally, by (11), G0(α, α) = s(α) − limy↓−∞ s(y) = 1
2ν e

2να, which confirms the claim. Now, we obtain from
(13) by substituting α = 0

Ex
[
e−qλ0

]
=

ν√
ν2 + 2q

e−(
√
ν2+2q−ν)x, x ≥ 0. (46)

Let us consider XA on [0,∞). For the purpose of identifying the decomposition, we can save a lot of com-
putations by applying (40) to obtain GAq (0, 0) =

1√
ν2+2q−ν

with α = 0. Next, we move on to XB on (−∞, 0].

By (43), GBq (0, 0) = 1√
ν2+2q+ν

. On the other hand, by (45) we have GB0 (α, α) = G0(α, α) = 1
2ν e

2να and by

substitution GB0 (0, 0) =
1
2ν .

Now we substitute our results in the decomposition formula (16) to obtain

GAq (0, 0)

GAq (0, 0) +GBq (0, 0)
·
GBq (0, 0)

GB0 (0, 0)
=

√
ν2 + 2q + ν

2
√
ν2 + 2q

· 2ν√
ν2 + 2q + ν

=
ν√

ν2 + 2q

which matches (46) with x = 0. We have confirmed Proposition 1.

4. MATHEMATICAL APPLICATIONS: DECOMPOSITION OF GREEN FUNCTION

In this section, we present some mathematical applications of the decomposition formula (16). For this purpose,
first recall the processes XA on IA = [α, r) and XB on IB = (ℓ, α]. Refer to Remark 2.1 which says that,
in particular, (i) both XA and XB have the same scale function and speed measure as X , (ii) they are reflecting
at α, and (iii) not killed in the interior of I, but only killed at the boundaries r and ℓ, respectively (because the
original X is so assumed). For the rest of the paper, XA and XB should be understood as processes on IA and
IB , respectively, satisfying (i)∼(iii). Recall that superscriptsA andB are used to denote quantities associated with
these processes.

If we assume, in place of Assumption 1, s(ℓ) = −∞, s(r) < +∞ which we refer to as Case 2 below, the
construction of XA and XB (detailed in Section 2.1) changes in an obvious way. However, the points (i)∼(iii)
above remain valid. Furthermore, if we assume s(ℓ) > −∞, s(r) < +∞, which is referred to as Case 3, we do
not know whether X is killed at ℓ or at r.

The analysis of GAq (·, ·) and GBq (·, ·) for q > 0 does not change from the material in Section 3.1 in either Case 2
or Case 3. However, we need to be careful for q = 0. The key observation in Section 3.1 wasGB0 (α, α) = G0(α, α)
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in (45). The question is how we make adjustments of this fact in treating Cases 2 and 3. We shall show this in the
next two remarks, respectively. We could have used different notations of ψ0, ϕ0, G0 and w0 according to the three
cases. However, we do not want to flood the exposition with notations where the reader can easily differentiate
these quantities.

Remark 4.1. G0(x, y) is represented in (9). For the first case s(ℓ) > −∞, s(r) = +∞ (Assumption 1), see
the explanations preceding (11). In Case 2: s(ℓ) = −∞, s(r) < +∞, we work similarly to the first case. The
increasing solution ψ0 and decreasing solution ϕ0 of Gf = 0 are uniquely determined based on the boundary
conditions and satisfy

ψ0 ≡ 1, ϕ0(ℓ+) = +∞, ϕ0(r−) = 0.

Note that we can set ψ0 = 1 rather than ϕ0 = 1. Then from the boundary conditions, we have

ϕ0(x) = w0(s(r)− s(x)), x ∈ I,

which in turn leads to
G0(x, y) = (s(r)− s(x)) ∧ (s(r)− s(y))

since ψ0 ≡ 1. Note that w0 is forced to be −ϕ+0 .
We shall show GA0 (α, α) = G0(α, α) in Case 2. For XA, we denote the increasing and decreasing solutions

to Gf = 0 as ψA0 and ϕA0 , respectively. Using the condition at the reflecting boundary α, we have ψA0 (x) =

a1ψ0(x) + a2ϕ0(x) with a1 =
−ϕ+0 (α)
w0

> 0 and a2 =
ψ+
0 (α)
w0

> 0. There is no boundary condition at α for ϕA0
and we set ϕA0 (x) = ϕ0(x). Then wA0 = −ϕ+0 (α). The Green function GA0 (x, y) for x ≥ y becomes

GA0 (x, y) =
1

−ϕ+0 (α)
ϕ0(x)

[
−ϕ+0 (α)
w0

ψ0(y) +
ψ+
0 (α)

w0
ϕ0(y)

]
. (47)

By setting ψ0 = 1 and simplifying, we obtain GA0 (x, y) = ϕ0(x)
w0

. On the other hand, the Green function of the

original X with q = 0 for x ≥ y is G0(x, y) =
ϕ0(x)
w0

by (9) when we set ψ0 = 1. The case x ≤ y is similar, so
that we have

GA0 (x, y) = G0(x, y) =


ϕ0(x)
w0

, x ≥ y
ϕ0(y)
w0

, x ≤ y
= (s(r)− s(x)) ∧ (s(r)− s(y)). (48)

In particular, we obtain GA0 (α, α) = G0(α, α) =
ϕ0(α)
w0

= s(r)− s(α), α ∈ I.

Remark 4.2. In Case 3: s(ℓ) > −∞, s(r) < +∞, we set the increasing solution ψ0 and decreasing solution ϕ0
of Gf = 0 as

ψ0(y) = s(y)− s(ℓ) and ϕ0(x) = s(r)− s(x), x, y ∈ I. (49)

These functions satisfy the boundary condition ψ0(ℓ+) = ϕ0(r−) = 0. Then we compute the constant w0 and
observe

w0 = s(r)− s(ℓ) > 0 and ψ0(x) + ϕ0(x) = w0, ∀x ∈ I. (50)

Plugging these quantities into (9), we have

G0(x, y) =


(s(y)−s(ℓ))(s(r)−s(x))

s(r)−s(ℓ) , x ≥ y,
(s(x)−s(ℓ))(s(r)−s(y))

s(r)−s(ℓ) , x ≤ y.
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It is easy to see that we can retrieve the form of G0(x, y) in Cases 1 and 2 by using their respective conditions at ℓ
and r.

Let us consider processes XA and XB . Using the same method as in Remark 4.1, it is easy to see that GA0 (x, y)
for x ≥ y in this case becomes

GA0 (x, y) =
1

−ϕ+0 (α)
ϕ0(x)

[
−ϕ+0 (α)
w0

ψ0(y) +
ψ+
0 (α)

w0
ϕ0(y)

]
,

which is the same as (47) except for w0 = s(r)− s(ℓ). Noting that ψ0 = 1 and ϕ+0 (α) = −1, we simplify it with
(50) to find GA0 (x, y) = ϕ0(x). The case x ≤ y is similar, so that we have

GA0 (x, y) =

ϕ0(x), x ≥ y

ϕ0(y), x ≤ y
= (s(r)− s(x)) ∧ (s(r)− s(y)). (51)

On the other hand, following the procedure in Section 3.1, GB0 (x, y) for x ≥ y is

GB0 (x, y) =
1

ψ−
0 (α)

ψ0(y)

[
−ϕ−0 (α)
w0

ψ0(x) +
ψ−
0 (α)

w0
ϕ0(x)

]
,

which is the same as (44) except for w0 = s(r) − s(ℓ). Again noting that ψ−
0 (α) = 1 and ϕ−0 (α) = −1, we

simplify it with (50) to find GB0 (x, y) = ψ0(y). The case x ≤ y is similar, so that we have

GB0 (x, y) =

ψ0(y), x ≥ y

ψ0(x), x ≤ y
= (s(x)− s(ℓ)) ∧ (s(y)− s(ℓ)). (52)

Neither GA0 (x, y) nor GB0 (x, y) is equal to G0(x, y). This differs from the other two cases. However, we have
the following observations: by comparison we write GA0 (x, y) =

G0(x,y)w0

ψ0(y)
and GB0 (x, y) =

G0(x,y)w0

ϕ0(x)
for x ≥ y.

Then by (50), we have
1

GA0 (α, α)
+

1

GB0 (α, α)
=

1

G0(α, α)
, (53)

which is the key to prove the decomposition formula for Case 3 and can be viewed as a decomposition formula of
the Green function when q = 0.

Proposition 3. In all three cases of (1) s(ℓ) > −∞, s(r) = +∞, (2) s(ℓ) = −∞, s(r) < +∞, and (3) s(ℓ) >
−∞, s(r) < +∞, we have for q > 0

Eα[e−qλα ] =
GAq (α, α)

GAq (α, α) +GBq (α, α)
·
GBq (α, α)

G0(α, α)
(54)

whereGA· (·, ·) andGB· (·, ·) are the Green functions ofXA andXB , respectively, andG0(·, ·) is the Green function
of the original X defined in (8): specifically,

G0(α, α) = lim
c↓ℓ,d↑r

(s(α)− s(c))(s(d)− s(α))

s(d)− s(c)
=


s(α)− s(ℓ), Case 1,

s(r)− s(α), Case 2,
(s(α)−s(ℓ))(s(r)−s(α))

s(r)−s(ℓ) , Case 3.

(55)
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Proof. Case 1: s(ℓ) > −∞, s(r) = +∞. This is the case of Assumption 1. We just note that G0(α, α) =

GB0 (α, α) = s(α)− s(ℓ) for α ∈ I as in (45) to see that (54) is identical to (16) in Proposition 1.
Case 2: s(ℓ) = −∞, s(r) < +∞. The same proof as for Proposition 1 leads to the decomposition formula as (16)
with the roles of GA0 (α, α) and GB0 (α, α) interchanged. We obtain (54) by noting that G0(α, α) = GA0 (α, α) =

s(r)− s(α) for α ∈ I as in (48) in Remark 4.1.
Case 3: s(ℓ) > −∞, s(r) < +∞. In this case, both events {limt→ξXt = ℓ} and {limt→ξXt = r} occur with
positive probability because both boundaries are attracting. We have

Pα(lim
t→ξ

Xt = ℓ) = 1− Pα(lim
t→ξ

Xt = r) =
s(r)− s(α)

s(r)− s(ℓ)
(56)

as shown in Proposition 5.22 in Karatzas and Shreve (1998, Chapter 5). Note that

Eα[e−qλα ] = Eα[e−qλα | lim
t→ξ

Xt = ℓ] · Pα(lim
t→ξ

Xt = ℓ) + Eα[e−qλα | lim
t→ξ

Xt = r] · Pα(lim
t→ξ

Xt = r). (57)

We use Doob’s h-transform to proceed with the proof. Refer to Appendix A.1 for details regarding h-transform.
The idea is to force the process X to the left (resp. right) boundary so that we can use the results of Case 1 (resp.
Case 2). It is well known that the h-transform of X with the excessive function ϕ0 (resp. ψ0) in (49) is identical in
law to the original X conditioned on {limt→ξXt = ℓ} (resp. {limt→ξXt = r}). See the references mentioned in
Appendix A.1.

Let us first consider the h-transform of X with ϕ0(x) = s(r) − s(x). We denote this transformed diffusion as
X∗ and use ∗ to indicate quantities associated with it. The scale function becomes s∗(x) = 1

ϕ0(x)
and we see that

X∗ satisfies Assumption 1. The Green function of X∗ is given by

G∗
q(x, y) =

Gq(x, y)

ϕ0(x)ϕ0(y)
, x, y ∈ I

from which we see that ψ∗
q =

ψq

ϕ0
, ϕ∗q =

ϕq
ϕ0

, and w∗
q = wq by direct computation. We can also check that ψ∗

q is
increasing and ϕ∗q is decreasing. See Appendix A.1.1 for a proof. Note that for X∗, the right and left derivatives
with respect to the scale function should be calculated based on s∗.

Let us consider (X∗)A on [α, r) and (X∗)B on (ℓ, α] which have the same scale function and speed measure as
X∗ and are reflecting at α. Recall that killing occurs only at boundaries ℓ and r. Using (40) and (43), we have

(G∗
q)
A(α, α) =

ϕ∗q(α)

−(ϕ∗q)
+(α)

=
GAq (α, α)

ϕ20(α)− ϕ0(α)GAq (α, α)
,

(G∗
q)
B(α, α) =

ψ∗
q (α)

(ψ∗
q )

−(α)
=

GBq (α, α)

ϕ20(α) + ϕ0(α)GBq (α, α)
.

Furthermore, due to (49) and (50), (45) results in

(G∗
0)
B(α, α) = s∗(α)− s∗(ℓ) =

1

ϕ0(α)
− 1

ϕ0(ℓ)
=

ψ0(α)

ϕ0(α)w0
.

Then, from the decomposition formula (16), (52), and (56), we obtain

Eα[e−qλα | lim
t→ξ

Xt = ℓ] · Pα(lim
t→ξ

Xt = ℓ) =
(G∗

q)
A(α, α)

(G∗
q)
A(α, α) + (G∗

q)
B(α, α)

·
(G∗

q)
B(α, α)

(G∗
0)
B(α, α)

· ϕ0(α)
w0

=
GAq (α, α) ·GBq (α, α)
GAq (α, α) +GBq (α, α)

· 1

GB0 (α, α)
.
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Next, we consider the h-transform of X with ψ0(x) = s(x)− s(ℓ). We denote this transformed diffusion as X̃
and use ∼ to indicate quantities associated with it. The scale function becomes s̃(x) = − 1

ψ0(x)
and we see that X̃

belongs to Case 2. The Green function is given by

G̃q(x, y) =
Gq(x, y)

ψ0(x)ψ0(y)
, x, y ∈ I

from which we obtain ψ̃q =
ψq

ψ0
, ϕ̃q =

ϕq
ψ0

, and w̃q = wq by direct computation. We can also check that ψ̃q is

increasing and ϕ̃q is decreasing. See Appendix A.1.1 for a proof.
Let us consider X̃A on [α, r) and X̃B on (ℓ, α] which have the same scale function and speed measure as X̃

and are reflecting at α, killing occurring only at ℓ and r. Using (40) and (43), we have

G̃Aq (α, α) =
ϕ̃q(α)

−ϕ̃+q (α)
=

GAq (α, α)

ψ2
0(α) + ψ0(α)GAq (α, α)

,

G̃Bq (α, α) =
ψ̃q(α)

ψ̃−
q (α)

=
GBq (α, α)

ψ2
0(α)− ψ0(α)GBq (α, α)

.

Furthermore, due to (49) and (50), (48) results in

G̃A0 (α, α) = s̃(r)− s̃(α) = − 1

ψ0(r)
+

1

ψ0(α)
=

ϕ0(α)

ψ0(α)w0
.

Then, the decomposition formula for Case 2, (51), and (56) provide

Eα[e−qλα | lim
t→ξ

Xt = r] · Pα(lim
t→ξ

Xt = r) =
G̃Aq (α, α)

G̃Aq (α, α) + G̃Bq (α, α)
·
G̃Bq (α, α)

G̃A0 (α, α)
· ψ0(α)

w0

=
GAq (α, α) ·GBq (α, α)
GAq (α, α) +GBq (α, α)

· 1

GA0 (α, α)
.

We have derived the expressions for both elements in (57). Finally, (54) holds due to (53). □

TABLE 1. Summary

Case 1 Case 2 Case 3

w0 (constant) ψ−
0 −ϕ+0 s(r)− s(ℓ)

ψ0(x) w0(s(x)− s(ℓ)) 1 s(x)− s(ℓ)

ϕ0(x) 1 w0(s(r)− s(x)) s(r)− s(x)

G0(x, y), x ≥ y s(y)− s(ℓ) s(r)− s(x) (s(y)−s(ℓ))(s(r)−s(x))
s(r)−s(ℓ)

GAq (α, α)
ϕq(α)

−ϕ+q (α)

ϕq(α)

−ϕ+q (α)

ϕq(α)

−ϕ+q (α)

GBq (α, α)
ψq(α)

ψ−
q (α)

ψq(α)

ψ−
q (α)

ψq(α)

ψ−
q (α)

GA0 (x, y), x ≥ y +∞ s(r)− s(x) s(r)− s(x)

GB0 (x, y), x ≥ y s(y)− s(ℓ) +∞ s(y)− s(ℓ)

In Table 1, we collect some results from Sections 1.1 and 3.1 and Remarks 4.1 and 4.2. The first step is to obtain
ψ0 and ϕ0 from the solutions of Gf = 0 as well as the scale function s. Then, the relationship of ψ0, ϕ0, w0, s
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and G0 is as described in the upper half of Table 1. To obtain the decomposition, after computing ψq and ϕq from
Gf = qf , refer to the bottom half. Note that for rows 4, 7, and 8, s(x) should be replaced by s(y) (and vice versa)
in case x ≤ y: except for GA0 (x, y) = +∞ in Case 1 and GB0 (x, y) = +∞ in Case 2, irrespective of the order of
x and y.

Let us now extend in another direction by starting X at x ̸= α. By using the shift operator,

λα = (Hα + λα ◦ θHα) · 1l{Hα<+∞}.

Recall that Hα = +∞ implies λα = 0 and vice versa. Hence by the strong Markov property at Hα,

Ex[e−qλα ] = 1 · Px(Hα = +∞) + Ex[e−q(Hα+λα◦θHα ) · 1l{Hα<+∞}]

= Px(Hα = +∞) + Ex[1l{Hα<+∞} · e−qHα · Ex[e−qλα◦θHα | FHα ]]

= Px(Hα = +∞) + Ex[1l{Hα<+∞} · e−qHα · Eα[e−qλα ]]

= Px(Hα = +∞) + Ex[e−qHα ] · Eα[e−qλα ], x ∈ I. (58)

Theorem 1. In all three cases of (1) s(ℓ) > −∞, s(r) = +∞, (2) s(ℓ) = −∞, s(r) < +∞, and (3) s(ℓ) >
−∞, s(r) < +∞, we have for any x, α ∈ I and q > 0

Ex[e−qλα ] =


lim
d↑r

s(x)−s(α)
s(d)−s(α) +

GA
q (x,α)

GA
q (α,α)+GB

q (α,α)
· G

B
q (α,α)

G0(α,α)
, x ≥ α,

lim
c↓ℓ

s(α)−s(x)
s(α)−s(c) +

GB
q (x,α)

GA
q (α,α)+GB

q (α,α)
· G

A
q (α,α)

G0(α,α)
, x ≤ α,

(59)

whereGA· (·, ·) andGB· (·, ·) are the Green functions ofXA andXB , respectively, andG0(·, ·) is the Green function
of the original X defined in (8) and described in (55).

In all three cases, for any x, α ∈ I and q > 0,

Gq(x, α) =


GA

q (x,α)·GB
q (α,α)

GA
q (α,α)+GB

q (α,α)
, x ≥ α,

GA
q (α,α)·GB

q (x,α)

GA
q (α,α)+GB

q (α,α)
, x ≤ α.

(60)

Proof. First, note that

Px(Hα = +∞) =


Px(Hr ≤ Hα) = lim

d↑r
s(x)−s(α)
s(d)−s(α) , x ≥ α,

Px(Hℓ ≤ Hα) = lim
c↓ℓ

s(α)−s(x)
s(α)−s(c) , x ≤ α.

Take the case of x ≥ α. In this case, Ex[e−qHα ] =
ϕq(x)
ϕq(α)

(see (6)). Note also that from (7),

ϕq(x)

ϕq(α)
Gq(α, α) =

ϕq(x)

ϕq(α)

ϕq(α)ψq(α)

wq
= Gq(x, α).

Based on Section 3.1, we know that ϕAq (x) = ϕq(x) on IA = [α, r). Then, plugging (54) into the right-hand side
of (58) yields the first equation of (59). The case of x ≤ α is similar. The difference is that we have ψBq (x) = ψq(x)

on IB = (ℓ, α] as was shown in Section 3.1 based on boundary conditions.
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Finally, for the decomposition of the Green function of X , we observe that

Ex[e−qλα ] = Px(λα = 0) + Ex[e−qλα · 1l{λα>0}] = Px(Hα = +∞) +

∫ ∞

0
e−qt

p(t;x, α)

G0(α, α)
dt

= Px(Hα = +∞) +
Gq(x, α)

G0(α, α)
.

See (13). From (58) and (59), this equation implies that

Gq(x, α)

G0(α, α)
=


GA

q (x,α)

GA
q (α,α)+GB

q (α,α)
· G

B
q (α,α)

G0(α,α)
, x ≥ α,

GB
q (x,α)

GA
q (α,α)+GB

q (α,α)
· G

A
q (α,α)

G0(α,α)
, x ≤ α,

from which we obtain (60). □

4.1. Example: Ornstein-Uhlenbeck process. Let us illustrate the Green function’s decomposition (60) for Case
3: s(ℓ) > −∞, s(r) < +∞ by using a more complicated example of the Ornstein-Uhlenbeck process. Let X
follow the dynamics dXt = −κXtdt + dWt on I = (−∞,+∞) with constant κ < 0 and a standard Brownian
motion W . The scale function of X is given by s(x) =

∫ x
0 e

κy2dy. We see that both boundaries −∞ and +∞ are
attracting, so that X belongs to Case 3.

The increasing and decreasing linearly independent solutions of Gf = −κxf ′ + 1
2f

′′ = qf are given by

ψq(x) = e−|κ|x
2

2 D−
(

q
|κ|+1

)(−x√2|κ|) and ϕq(x) = e−|κ|x
2

2 D−
(

q
|κ|+1

)(x√2|κ|).

Here D−ν(x) and D−ν(−x) are parabolic cylinder functions which represent linearly independent solutions of the
differential equation f ′′(x)−

(
x2

4 + 2ν−1
2

)
f(x) = 0 for x ∈ R (see Borodin and Salminen (2002, Appendix 2.9)).

We could proceed without computing the constants a1, a2, b1, b2, wAq , and wBq below as in Section 3.2. However,
since the solutions involve special functions, we shall record them.

Refer to the procedure in Section 3.1. First, consider XA on IA. We have ψAq (x) = a1ψq(x) + a2ϕq(x) with

a1 =
Γ
(

q
|κ|+1

)
√
2π

e|κ|
α2

2 D− q
|κ|
(α
√
2|κ|) and a2 =

Γ
(

q
|κ|+1

)
√
2π

e|κ|
α2

2 D− q
|κ|
(−α

√
2|κ|), while ϕAq (x) = ϕq(x) on IA.

The Wronskian is given by wAq =
√

2|κ|e|κ|
α2

2 D− q
|κ|
(α
√
2|κ|).

Next, consider XB on IB . We have ϕBq (x) = b1ψq(x) + b2ϕq(x) with b1 =
Γ
(

q
|κ|+1

)
√
2π

e|κ|
α2

2 D− q
|κ|
(α
√
2|κ|)

and b2 =
Γ
(

q
|κ|+1

)
√
2π

e|κ|
α2

2 D− q
|κ|
(−α

√
2|κ|), while ψBq (x) = ψq(x) on IB . The Wronskian is given by wBq =√

2|κ|e|κ|
α2

2 D− q
|κ|
(−α

√
2|κ|). Feed the above facts regarding XA and XB into the right-hand side of the decom-

position formula (60) in Theorem 1 to obtain

Gq(x, α) =



e−|k|α
2

2 D
−
(

q
|κ|+1

)(−α√2|κ|)×e−|k|x
2

2 D
−
(

q
|κ|+1

)(x√2|κ|)

2
√

π|κ|

Γ

(
q
|κ|+1

) , x ≥ α,

e−|k|α
2

2 D
−
(

q
|κ|+1

)(α√2|κ|)×e−|k|x
2

2 D
−
(

q
|κ|+1

)(−x√2|κ|)

2
√

π|κ|

Γ

(
q
|κ|+1

) , x ≤ α,

which is confirmed to be the same as the Green function in Borodin and Salminen (2002, Appendix 1.24).
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5. PRACTICAL APPLICATIONS

5.1. Parameter-switching diffusion process. Let X be a diffusion on I = (ℓ, r) ⊂ R whose parameters are
different above and below some fixed level α ∈ I. This type of diffusion is useful in treating real-life problems.
For example, Karatzas and Shreve (1998, Section 6.5) considers a stochastic control problem.

Let the infinitesimal drift and diffusion parameters of X be µ(·) and σ(·), respectively, such that

µ(x) = µB(x)1l(ℓ,α)(x) + µA(x)1l[α,r)(x),

σ(x) = σB(x)1l(ℓ,α)(x) + σA(x)1l[α,r)(x).

The parameters µA(·), σA(·), µB(·), σB(·) are such that X is transient, belonging to either Case 1, 2 or 3. The
decomposition method of the last passage time is convenient when dealing with such processes. Proposition 3
allows us to bypass (often) hard calculations related to X (with switching parameters) and to reduce the object
to two processes XA and XB with no switching parameters. Moreover, one may find (60) useful in identifying
the Green function of parameter-switching diffusion. We point out that there is no general established method for
obtaining the Green function of such diffusions explicitly in the previous literature.

Note that in the case of switching parameters, we decompose the process into two processes and deal with them
separately. Therefore, if the conditions imposed on parameters (see Section 1.1) hold for each diffusion separately,
the results apply without any need of modification.

We illustrate the decomposition scheme by the example of a Brownian motion X with two-valued drift on R:

dXt = µ(Xt)dt+ dWt with µ(Xt) =

µA, Xt ≥ 0,

µB, Xt < 0,
(61)

with constants µA < 0, µB < 0 and W a standard one-dimensional Brownian motion. Note that X belongs to
Case 1. Based on (14), we transform X into XA and XB which are two Brownian motions with constant drifts
reflecting at 0 from above and below, respectively. Proposition 1 allows us to treat these two processes separately.

Consider XA on [0,+∞) with drift µA and XB on (−∞, 0] with drift µB . From Section 3.2, we obtain

GAq (0, 0) =
1√

(µA)2 + 2q + µA
, GBq (0, 0) =

1√
(µB)2 + 2q − µB

, GB0 (0, 0) = − 1

2µB
.

Then, Proposition 1 yields

E0[e−qλ0 ] =
GAq (0, 0)

GAq (0, 0) +GBq (0, 0)
·
GBq (0, 0)

GB0 (0, 0)
=

−2µB

µA − µB +
√
(µA)2 + 2q +

√
(µB)2 + 2q

. (62)

This provides the Laplace transform of the last passage time forX in (61) which has the switching parameters. This
result can be confirmed by Beneš et al. (1980) where they derive the Laplace transform of the transition density
function (with respect to the Lebesgue measure) of X in (61). For this, they use the symmetry of the Brownian
motion, the forward Kolmogorov equation satisfied by the transition density function, and a linear system of
equations based on various conditions satisfied by the density’s Laplace transform. Note that we have managed to
obtain (62) without computing this transition density.

Moreover, by Proposition 3 the Green function of the parameter-switching diffusion X is found to be

Gq(0, 0) =
1

µA − µB +
√
(µA)2 + 2q +

√
(µB)2 + 2q

.



ON DECOMPOSITION OF THE LAST PASSAGE TIME OF DIFFUSIONS 23

Again, there is no need to integrate the transition density function for this result. Since the Green function ap-
pears in various contexts of mathematical problems, it is convenient to have it available in its explicit form for a
compounded diffusion like this. The method presented in this section is applicable to all transient diffusions.

5.2. Leverage effect. Consider a geometric Brownian motion X on I = (0,+∞): dXt = µ(Xt)Xtdt +

σ(Xt)XtdWt with switching parameters

µ(x) = µB1l(−∞,α)(x) + µA1l[α,∞)(x) and σ(x) = σB1l(−∞,α)(x) + σA1l[α,∞)(x),

where W denotes a standard Brownian motion. The parameters are such that νi := µi

(σi)2
− 1

2 < 0 for i = A,B

which means that Assumption 1 is satisfied.
Let us set X0 = α. We may interpret X as a stock market price. When its value decreases beyond α, the ratio

of a firm’s debt over its equity market value (leverage ratio) increases, given the value of debt is unchanged. In
financial markets, it is observed that such increase in leverage is associated with higher stock price volatility. See,
for example, Bae et al. (2007). Then, the assumption σB > σA would capture such leverage effect.

Let us decompose X into XA on [α,+∞) and XB on (0, α], both reflecting at α, and use the procedure in
Section 3.1. For i = A,B, the increasing and decreasing linearly independent solutions to Gif := µixf ′(x) +
1
2(σ

i)2x2f ′′(x) = qf for q > 0 are given by

x
−νi+

√
(νi)2+ 2q

(σi)2 and x
−νi−

√
(νi)2+ 2q

(σi)2 , x ∈ I.

The scale function of a diffusion with the generator Gi is −x−2νi

2νi
for x ∈ I. By applying (40), (43), and (45), we

obtain

GAq (α, α) =
α−2νA

νA +
√
(νA)2 + 2q

(σA)2

, GBq (α, α) =
α−2νB

−νB +
√

(νB)2 + 2q
(σB)2

, and GB0 (α, α) = −α
−2νB

2νB
.

Then, Proposition 1 produces

Eα[e−qλα ] =
−2νBα−2νA

α−2νA ·
(
−νB +

√
(νB)2 + 2q

(σB)2

)
+ α−2νB ·

(
νA +

√
(νA)2 + 2q

(σA)2

) .
If there is no switch in the parameters, we would have µ := µA = µB , σ := σA = σB with ν = µ

σ2 − 1
2 < 0 and

Eα[e−qλα ] =
−ν√
ν2 + 2q

σ2

.

Below we illustrate how the switch in parameters affects the distribution of λα by inverting the Laplace transform
to obtain the probability density. Specifically, we focus on the effect arising from the switch in the diffusion
parameter. Let us set α = 100, µA = µB = −0.1, σA = 0.75, σB = 1.5. Thus, the diffusion parameter is
higher in the region below α, and this setup is consistent with the leverage effect discussed in the beginning of this
subsection. The probability density of the last passage time is given in Figure 2 where we also present the density
for the case of non-switching parameters: µ = µA and σ = σA. The graph in yellow is the last passage time
density of the switching parameter diffusion, while the blue one is that of the non-switching diffusion. We drew
these graphs by InverseLaplaceTransform function in Wolfram Mathematica 14.0. We see that there is a higher
probability of λα occurring earlier (to the left of the intersection of the two graphs) in the switching parameter case.
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This is due to the density in the switching parameter case having higher values, compared to the non-switching
case, in the lower range of the horizontal axis. This information is useful for risk management.

FIGURE 2. Probability density of λα for a geometric Brownian motion with α = 100. The yellow density
is the case of switching parameters µA = µB = −0.1, σA = 0.75, σB = 1.5. The blue density is the case
of non-switching parameters µ = −0.1, σ = 0.75.
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APPENDIX A.

A.1. Elements of a Diffusion. The scale function, speed measure, and killing measure represent basic charac-
teristics of a regular diffusion X . The following definitions are based on Borodin and Salminen (2002, Chapter
II.1.4). The scale function s : I → R is an increasing continuous function. If there is no killing inside I, we have
the following relation for the first hitting times of a and b (denoted by Ha and Hb, respectively):

Px(Ha < Hb) =
s(b)− s(x)

s(b)− s(a)
, ℓ < a ≤ x ≤ b < r. (63)

The speed measure m(·) is a measure on B(I) such that m((a, b)) ∈ (0,+∞) for ℓ < a < b < r. A regular
diffusion has a transition density with respect to its speed measure. Specifically, the speed measure satisfies the
following relation for every t > 0 and x ∈ I:

Px(Xt ∈ A) =

∫
A
Pt(x,dy) =

∫
A
p(t;x, y)m(dy), A ∈ B(I)

where Pt is the transition function and p(t;x, y) denotes the transition density with respect to the speed measure.
The killing measure k(·) is a measure on B(I) such that k((a, b)) ∈ [0,+∞) for ℓ < a < b < r. The killing

measure is related to the distribution of the location of the diffusion at its lifetime ξ = inf{t : Xt /∈ I}:

Px(Xξ− ∈ A, ξ < t) =

∫ t

0

(∫
A
p(s;x, y)k(dy)

)
ds, A ∈ B(I).

We can transform the density p using an excessive function h, thus changing the dynamics of X . The resulting
new diffusion is called Doob’s h-transform of X . Refer to Borodin and Salminen (2002, Chapter II.5). A Borel-
measurable function h : I → R+ is called excessive if

Ex[h(Xt)] ≤ h(x) for all x ∈ I and t ≥ 0,

lim
t↓0

Ex[h(Xt)] = h(x) for all x ∈ I.
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We consider a new transition function P ht which satisfies the following equation for t > 0 and x ∈ I:

P ht (x,A) =

∫
A

h(y)

h(x)
p(t;x, y)m(dy), A ∈ B(I).

This transformation is well-defined because for a regular diffusion h ≡ 0 or h(x) > 0 for all x ∈ I. The resulting
new diffusion Xh with the transition function P ht is the h-transform of X . The scale function and speed measure
of Xh can be easily obtained by using the procedure in Karlin and Taylor (1981, Chapter 15.9).

A.1.1. Analysis of ψ∗
q , ϕ∗q , ψ̃q, ϕ̃q. Consider Case 3 and refer to the proof of Proposition 3. Recall that ψ0, ψq are

increasing while ϕ0, ϕq are decreasing on I. Then, we see that ψ∗
q =

ψq

ϕ0
is increasing while ϕ̃q =

ϕq
ψ0

is decreasing
on I.

Next, take any x ≤ z in I. We have Px(Hz < +∞) = Px(Hz < Hℓ) =
s(x)−s(ℓ)
s(z)−s(ℓ) = ψ0(x)

ψ0(z)
using (63) and (49).

Note that Ex[e−qHz ] ↗ Px(Hz < +∞) as q → 0. Thus, we obtain with (6)

ψq(x)

ψq(z)
≤ ψ0(x)

ψ0(z)

from which we see that ψ̃q(x) =
ψq(x)
ψ0(x)

≤ ψq(z)
ψ0(z)

= ψ̃q(z). This proves that ψ̃q is increasing on I.
To see that ϕ∗q is a decreasing function, take any x ≥ z in I and observe that Px(Hz < +∞) = Px(Hz <

Hr) =
s(r)−s(x)
s(r)−s(z) =

ϕ0(x)
ϕ0(z)

using (63) and (49). Using the same argument as above, by (6) we have

ϕq(x)

ϕq(z)
≤ ϕ0(x)

ϕ0(z)

from which we see that ϕ∗q(x) =
ϕq(x)
ϕ0(x)

≤ ϕq(z)
ϕ0(z)

= ϕ∗q(z). This proves that ϕ∗q is decreasing on I.

A.2. Proof of Equation (10). Under Assumption 1, the functionsψ0 and ϕ0 in (9) satisfy the following conditions:

ϕ0 ≡ 1, ψ0(ℓ+) = 0, and ψ0(r−) = +∞.

Proof. Let ℓ < x ≤ y ≤ z < r. Then, by (6)

lim
q↓0

Gq(x, y)

Gq(y, z)
= lim

q↓0

ψq(x)ϕq(y)

ψq(y)ϕq(z)
= lim

q↓0

Ex
[
e−qHy

]
Ez [e−qHy ]

=
Px(Hy < +∞)

Pz(Hy < +∞)
.

On the other hand, by (8) and (9) we obtain

lim
q↓0

Gq(x, y)

Gq(y, z)
=
G0(x, y)

G0(y, z)
=
ψ0(x)ϕ0(y)

ψ0(y)ϕ0(z)
.

Hence
Px(Hy < +∞)

Pz(Hy < +∞)
=
ψ0(x)ϕ0(y)

ψ0(y)ϕ0(z)
. (64)

For the killing boundary ℓ, limx↓ℓ Px(Hy < +∞) = 0 and we obtain ψ0(ℓ+) = 0.
As Pz(Hy < +∞) = 1, the right-hand side in (64) does not depend on z. Thus, the function ϕ0(z) takes the

same value for every z and we may set ϕ0 ≡ 1. By substituting Pz(Hy < +∞) = 1 in (64), we also obtain
ψ0(r−) = +∞ due to limy↑r Px(Hy < +∞) = 0. □
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A.3. Analysis of ψAq and ϕBq . Let q > 0. As shown in Section 3.1, ψAq = a1ψq+a2ϕq and ϕBq = b1ψq+b2ϕq with
positive constants a1, a2, b1, b2 given in (37) and (41). Note that due to the boundary conditions (ψAq )

+(α) = 0

and (ϕBq )
−(α) = 0, we have

(ψAq )
+(α) = a1ψ

′
q(α) + a2ϕ

′
q(α) = 0 and (ϕBq )

−(α) = b1ψ
′
q(α) + b2ϕ

′
q(α) = 0.

To prove that ψAq is increasing on [α, r) and ϕBq is decreasing on (ℓ, α], we consider a function g(x) = aψq(x) +

bϕq(x) on I with arbitrary constants a > 0 and b > 0. We show that g attains its local minimum at α if g′(α) = 0

and that there is no local maximum.
Note that g is a positive solution to ODE Gf = qf and

1

2
σ2(x)g′′(x) + µ(x)g′(x) = qg(x), x ∈ I.

Thus, g′(α) = 0 implies g′′(α) > 0 and we have a local minimum at α. Since g′′(x) should always be positive
when g′(x) = 0, there is no local maximum. By the continuity of g, we see that g is decreasing on (ℓ, a] and
increasing on [α, r).

Finally, we show that ϕB0 in Section 3.1 is constant on (ℓ, α]. Using ϕ0 ≡ 1 from (10) and the constants c1, c2
derived in Section 3.1, we see that ϕB0 (x) = c1ψ0(x) + c2ϕ0(x) = 0 · w0(s(x)− s(ℓ)) + 1 = 1 for x ∈ (ℓ, α].
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