
ar
X

iv
:2

21
0.

01
35

4v
2

 [
m

at
h.

O
C

]
 2

2
M

ar
 2

02
3

Compositions of Multiple Control Barrier Functions Under
Input Constraints

Joseph Breeden and Dimitra Panagou

Abstract— This paper presents a methodology for ensuring
that the composition of multiple Control Barrier Functions
(CBFs) always leads to feasible conditions on the control input,
even in the presence of input constraints. In the case of a
system subject to a single constraint function, there exist many
methods to generate a CBF that ensures constraint satisfaction.
However, when there are multiple constraint functions, the
problem of finding and tuning one or more CBFs becomes more
challenging, especially in the presence of input constraints. This
paper addresses this challenge by providing tools to 1) decouple
the design of multiple CBFs, so that a CBF can be designed
for each constraint function independently of other constraints,
and 2) ensure that the set composed from all the CBFs together
is a viability domain. Thus, a quadratic program subject to all
the CBFs simultaneously is always feasible. The utility of this
methodology is then demonstrated in simulation for a nonlinear
orientation control system.

I. INTRODUCTION

Control Barrier Functions (CBFs) are a control synthesis

method for ensuring that system state trajectories always

remain within some specified safe set [1]. In general, there

may exist points within the safe set for which all feasible

trajectories originating at these points will eventually exit the

safe set. In such cases, one often seeks to construct a CBF

so that a subset of the safe set, herein called the CBF set, is

rendered forward invariant, where the CBF set is a viability

domain (i.e. a controlled invariant set) for the given system

dynamics and input bounds. The problem of finding a CBF

is equivalent to the problem of finding a description for such

a viability domain. This in itself is a challenging problem,

but for simple safe sets, i.e. safe sets that can be described as

a sublevel set of a single constraint function, several authors

have proposed strategies to find CBFs as functions of the

constraint function, including [1]–[5] among others.

One open challenge in the CBF literature is that most

works assume that the viability domain is sufficiently simple

to be described by the zero sublevel (or superlevel) set

of a single CBF. More complex viability domains could

be expressed as the intersection of the zero sublevel sets

of multiple CBFs, e.g. when each CBF represents a sin-

gle obstacle in a cluttered environment. This is sometimes

achieved by taking a smooth [6], nonsmooth [7], or adaptive

[8] maximum over several CBFs, or by simply applying

multiple CBFs at once in a Quadratic Program (QP) [9], [10].

However, these approaches all assume that one is able to find

This work was supported by the National Science Foundation Graduate
Research Fellowship Program and the Fraņois Xavier Bagnoud Fellowship.

The authors are with the Department of Aerospace Engi-
neering, University of Michigan, Ann Arbor, MI, USA. Email:
{jbreeden,dpanagou}@umich.edu

q
v

κ1 > 0
κ2 ≤ 0

κ1 ≤ 0
κ2 > 0

κ1 ≤ 0
κ2 ≤ 0

κ1 > 0
κ2 > 0

CBF Conditions on u at (q, v)

w1

w2

A2u ≤ b2

A1u ≤ b1

Fig. 1: Left: Visualization of the safe positions q = (q1, q2) ∈ R
2

(green) for a double-integrator agent with two constraints κ1, κ2

as in Example 1. The state x0 = (q, v) ∈ R
4 in Example 1 has

position q labeled above and velocity v pointing to the right.
Right: Visualization of the control space at x0 in Example 1. Both
CBF conditions are individually feasible via control inputs w1 and
w2, but there is no u ∈ U satisfying both conditions simultaneously,
so the intersection of the CBF sets is not a viability domain.

h1 > 0 h2 > 0 h1 > 0 h2 > 0

S1 ∩ S2 S1 ∩ S2

h1 ≥ −ǫ h2 ≥ −ǫ

Fig. 2: Left: In [13], the problem of multi-CBF safety is simplified
by assuming that {x | h1(x) = 0} ∩ {x | h2(x) = 0} = ∅, and
then designing separate safe controllers for the cases h1(x) ≥ −ǫ
and h2(x) ≥ −ǫ. Right: By contrast, this work is interested in the
case where {x | h1(x) = 0} ∩ {x | h2(x) = 0} 6= ∅, and thus
both CBF conditions must be simultaneously satisfied, potentially
resulting in conflicts such as that in Fig. 1.

a collection of CBFs whose CBF sets form a viability domain

when intersected, or else the QP could become infeasible, as

is illustrated by the two planar constraints in Fig. 1. Finding

such a collection of CBFs is a much more challenging

problem than finding a single CBF. The authors are not aware

of any general algorithms analogous to [1]–[5] for finding

several CBFs at once, excepting learning approaches [11],

[12], which can only yield probabilistic safety guarantees.

The most common strategy to employ multiple CBFs is

to assume that all the CBFs act independently of each other

[13]–[15]. For example, the CBFs may apply to different

states with decoupled input channels [14], [15], or it may be

the case that only one CBF acts at a time [13]. The latter is

equivalent to assuming that the boundaries of the individual

CBF zero sublevel sets, i.e. the CBF zero level sets, do

not intersect, as shown in Fig. 2. In this case, the CBFs

http://arxiv.org/abs/2210.01354v2

may be designed in a one-at-a-time fashion using existing

algorithms. However, if this does not hold, then the CBFs

must be designed all-at-once, or else the intersection of the

CBF sets may not be a viability domain.

There exist many tools for the computation of viability

domains in the control verification literature [16]–[22]. Such

tools have also been used to construct CBFs [23], and have

been augmented via application of CBF concepts [24]. How-

ever, all of these algorithms are computationally expensive,

even for linear systems [20], [21].

Compared to prior works, this paper presents two con-

tributions. First, we present a methodology for decoupling

the design of multiple CBFs in the presence of prescribed

input bounds. This decoupling allows one to leverage exist-

ing single-CBF algorithms [1]–[5] while avoiding conflicts

such as those in Fig. 1. Second, we present an iterative

algorithm to find a viability domain parameterized by these

decoupled CBFs. That is, instead of using zonotopes, [17],

[18], polytopes [19], [20], or other parameterized functions

[22], [24], [25], this paper expresses viability domains in

terms of an intersection of CBF sets. As each CBF forbids

state trajectories from crossing the boundary of its own CBF

set, our algorithm focuses on verifying Nagumo’s condition

only at the states where the boundaries of multiple CBF

sets intersect. One can then compute safe control actions

using a quadratic program (QP) [1], [26] subject to the CBF

conditions arising from every CBF, and we show that this

QP is always feasible. Note that, compared to [16]–[22], the

viability domains resulting from this algorithm will generally

be more conservative, as our intent is to enable the use of

existing (usually conservative) CBF literature rather than to

approximate the maximal viability kernel.

II. PRELIMINARIES

A. Notations

Given a set S, let ∂S denote the boundary of S, and int(S)
denote the interior of S. Given a function ψ : Rn1 × Rn2 ,

denoted ψ(q, v), let ∇qψ(q, v) denote the row vector of

derivatives (i.e. the gradient) of ψ with respect to inputs q ∈
Rn1 , and let ∇vψ(q, v) denote the row vector of derivatives

of ψ with respect to inputs v ∈ Rn2 . Let Cr denote the

set of functions r-times continuously differentiable in all

arguments, and K the set of class-K functions. Let a·b denote

the dot product between vectors a and b. Let aT denote the

transpose of the vector a. Let ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞
denote the 1-norm, 2-norm, and ∞-norm respectively. Let

[N] denote the set of all integers between 1 and N . Given

one or more vectors {v1, · · · , vN}, define proj{v1,··· ,vN} u =
∑

i∈[M](u · b̂i)b̂i, where {b̂1, · · · , b̂M} is an orthonormal

basis spanning span{v1, · · · , vN}.

B. Model

Let q ∈ Rn1 be the coordinates, and v ∈ Rn2 the

velocities, of a second-order system of the form

q̇ = g1(q)v, (1a)

v̇ = f(q, v) + g2(q)u , (1b)

with state x , (q, v) ∈ Rn1+n2 and control input u ∈ U ⊂
R

m. Let f : R
n1 × R

n2 → R
n2 , g1 : R

n1 → R
n1×n2 ,

and g2 : Rn1 → Rn2×m belong to C2. Let U encode the

set of allowable control inputs, herein called the control set,

and assume that U is compact and convex and contains the

zero vector. Assume that f , g1, g2, and u are sufficiently

regular that trajectories of (1) exist and are unique for all

times t ∈ T = [t0, tf), where tf is possibly∞. Note that the

model (1) includes Euler-Lagrange systems, where n1 = n2,

as in [2], [14], [27], but is also more general.

C. Safety Definitions

A principal requirement of any autonomous system should

be to at all times satisfy certain operation constraints. Specif-

ically, suppose we are given several constraint functions

κi : R
n1 → R, κi ∈ C2, i ∈ [N1] and ηj : Rn2 → R, ηj ∈

C1, j ∈ [N2], which each generate a constraint set:

Qi , {q ∈ R
n | κi(q) ≤ 0} , (2)

Vj , {v ∈ R
n | ηj(v) ≤ 0} . (3)

We call the composition of all the constraint sets the safe set

S, and say that the system is safe at time t if x(t) ∈ S:

S ,

(⋂

i∈[N1]

Qi

)

×

(⋂

j∈[N2]

Vj

)

. (4)

That is, we allow for both position constraints κi and velocity

constraints ηi, but assume that these constraints are encoded

separately. This implies that each κi is of relative-degree

2 along (1) and each ηi is of relative-degree 1 along (1).

This separation of Qi and Vi is not necessary, but is greatly

simplifying, as will be explained in Remark 2.

We now introduce two notions of CBF.

Definition 1. Let X ⊆ S and Y ⊆ U . A function h :
Rn1+n2 → R, h ∈ C1 is a control barrier function (CBF)

for (X ,Y) if there exists α ∈ K such that the set

µ(q, v,Y) , {u ∈ Y | ḣ(q, v, u) ≤ α(−h(q, v))} (5)

is nonempty for all (q, v) ∈ H ∩X , where

H , {(q, v) ∈ R
n1+n2 | h(q, v) ≤ 0} . (6)

We call H the CBF induced set, or simply CBF set.

Note that under the dynamics (1), ḣ is affine in u,

ḣ(q, v, u) = ∇qh(q, v)g1(q)v +∇vh(q, v)g2(q)u , (7)

so if Y is convex, then the set µ in (5) is also convex.

Definition 2. Let X ⊆ S and Y ⊆ U . A function h :
Rn1+n2 → R, h ∈ C1 is a simple control barrier function

(SCBF) for (X ,Y) if 1) h is a CBF for (X ,Y), and 2) the

set
µ
s(q, v,Y) , {u ∈ µ(q, v,Y) |

∃c ≥ 0 : u = −c[∇vh(q, v)g2(q)]
T} (8)

is nonempty for all (q, v) ∈ H ∩X .

That is, h is an SCBF if the condition ḣ(q, v, u) ≤
α(−h(q, v)) can always be satisfied for a control input

u anti-parallel to the vector ∇vh(q, v)g2(q). We introduce

the notion of SCBF because it allows for slightly less

conservative viability domain computations, as we will show

in Section III. SCBFs arise naturally in many practical

applications. Note that if Y = {u ∈ Rm | ‖u‖2 ≤ umax},
then any CBF for (X ,Y) is automatically an SCBF for

(X ,Y) too. Next, we recall the definition of viability domain.

Definition 3 ([18, Eq. 7]). A set A ⊆ S is called a viability

domain if for every point x(t0) ∈ A, there exists a control

signal u(t) ∈ U , t ∈ T such that the trajectory x(·) of (1)

satisifes x(t) ∈ A for all t ∈ T .

Note that if 1) h is a CBF for (S,U) and 2) H ⊆ S, then it

follows from Definition 1 and [1, Thm. 2] thatH is a viability

domain. This is useful because generally S in (4) is not a

viability domain, but we can use CBFs to describe subsets

of S that are viability domains. However, in this paper, we

assume that S is sufficiently complex that it is difficult to

find a single CBF h for which H ⊆ S, thus motivating the

following extensions of [1, Thm. 2].

D. Safe Quadratic Program Control

The heart of safety-critical control is Nagumo’s theorem:

Lemma 1 ([28, Thm. 3.1]). Let A ⊆ Rn be a closed convex

set, and let AT (x) be the tangent cone of A at x ∈ Rn. Then

A is forward invariant under (1) if and only if ẋ ∈ AT (x)
for all x ∈ A.

Note that if x ∈ int(A), then AT (x) = Rn, so Lemma 1

in effect only depends on the flow ẋ when x ∈ ∂A. We use

this fact in Lemma 3 below.

Given multiple constraint functions κi, i ∈ [N1] and

ηj , j ∈ [N2], it is common [9], [10], [29] to construct mul-

tiple CBFs hk, k ∈ [M]. These can then be used for safe

control according to the following lemma, which follows

immediately from [1, Thm. 2].

Lemma 2. Given functions {hk}k∈[M], with Hk as in (6),

denote Hall = ∩k∈[M]Hk. Assume that each hk is a CBF for

(Hall,U). Then any control law u : Rn1+n2 → U satisfying

u(q, v) ∈ µall(q, v) ,
⋂

k∈[M]

µk(q, v,U) (9)

for all (q, v) ∈ Hall will render Hall forward invariant.

Note that Lemma 2 does not include the safe set S from

(4), so safety is only guaranteed if Hall ⊆ S. We next

introduce a modified version of Lemma 2 to handle the

possibility that Hall 6⊆ S, as frequently occurs when using

High Order CBFs (e.g. [4, Thm. 5], [5, Lemma 7]).

Lemma 3. Given functions {hk}k∈[M], with Hk as in (6),

denote Hall = ∩k∈[M]Hk and A = Hall ∩ S. Assume that

each hk is a CBF for (A,U). Let u : Rn1+n2 → U be a

control law. For every i ∈ [N1], j ∈ [N2], and all (q, v) ∈
int(Hall), assume that κi(q) = 0 =⇒ κ̇i(q, v) ≤ 0 and that

ηj(v) = 0 =⇒ η̇j(q, v, u(q, v)) ≤ 0. If u satisfies (9) for

all (q, v) ∈ A, then u will render A forward invariant.

Note that κi(q) = 0 =⇒ κ̇i(q, v) ≤ 0 is equivalent to

Nagumo’s necessary condition in Lemma 1. Thus, Lemma 3

highlights how one purpose of the CBFs hk is to construct a

set A ⊆ S that excludes all the states in S where Nagumo’s

necessary condition does not hold for any u ∈ U . This idea

is the central motivation for the algorithm in Section III-C.

Finally, given a collection of constraints κi, ηj and CBFs

hk satisfying the conditions of Lemma 3, it is common to

construct control laws u : Rn1+n2 → U of the form [1,

Sec. II-C]

u(q, v) = argmin
u∈U

‖u− unom(q, v)‖
2
2 (10a)

s.t. ḣk(q, v, u) ≤ αk(−hk(q, v)), ∀k ∈ [M] (10b)

where αk comes from (5), unom is any control law, and (10b)

is affine due to (7). If u in (10) always exists, i.e. if µall in

(9) is nonempty for all (q, v) ∈ A, then it follows from

Lemma 3 that the set A in Lemma 3 is a viability domain.

However, if there exists (q, v) ∈ A for which µall(q, v) is

empty, then trajectories originating at (q, v) might exit the

safe set S. Thus, the goal of this paper is to present tools

to ensure that A is a viability domain, so that the related

controller (12) (to be introduced) is always feasible.

Problem 1. Determine a set of CBFs {hk}k∈[M] such that

the set A in Lemma 3 is a viability domain.

E. Assumptions and Motivating Example

The principal challenge addressed in this paper is the

problem of multi-CBF compositions. For this reason, we

assume that the single-CBF problem is sufficiently solved.

Assumption 1. Given sets X ⊆ S and Y ⊆ U , focus on any

single constraint function κi (or ηj). Denote O = Qi×Rn2

(or O = Rn1×Vj). Consider the set Z = X∩(int(X)∪∂O).
Assume that there exists an algorithm (e.g. [1]–[5]) to derive

one or more functions {hk}
k2

k=k1
, each a CBF for (X ,Y),

such that κi(q) = 0 =⇒ κ̇i(q, v) ≤ 0 (or ηj(v) = 0 =⇒
η̇j(q, v, u) ≤ 0) for all (q, v) ∈ (Z ∩ (∩k2

k=k1
int(Hk)))

and all u ∈ U , where Hk is as in (6). That is, for each

constraint function, assume that we can find one or more

CBFs that prevents state trajectories from violating that

particular constraint function.

Remark 1. In practice, for the relative-degree 1 constraint

functions ηj , we can often choose a CBF hk so that hk = ηj .

In this case, the set Z ∩ int(Hk) in Assumption 1 has empty

intersection with the set {(q, v) ∈ X | ηj(v) = 0}, so

the condition “ηj(v) = 0 =⇒ η̇(q, v, u) ≤ 0 for all

(q, v) ∈ (Z ∩ int(Hk)), u ∈ U” is automatically satisfied.

Therefore, the “all u ∈ U” part of Assumption 1 is a rarely

used technicality. One only needs to check this technicality

if one chooses a CBF hk such that there exists (q, v) ∈ Hk

where ηj(v) > 0. The authors are unaware of a practical

example where this occurs for a relative degree 1 constraint

function ηj , though such a choice of hk is common for

relative-degree 2 constraint functions κi, e.g. [5].

Successive application of Assumption 1 to every constraint

function one-at-a-time then produces a collection of CBFs

{hk}k∈[M] satisfying the assumptions of Lemma 3. However,

this still does not imply joint feasibility of all the CBFs hk,

as we illustrate with the following example.

Example 1. Consider the 2D double integrator q̇ = v, v̇ =
u, q = (q1, q2) ∈ R2, v = (v1, v2) ∈ R2, u = (u1, u2) ∈
U = [−1, 1] × [−1, 1] subject to two constraint functions

κ1(q) = q1 + γq2 and κ2(q) = q1 − γq2 for some constant

γ > 0, resulting in the safe set S = (Q1∩Q2)×R2, pictured

in Fig. 1. From [4], [5], one can derive CBFs h1, h2 for

(S,U), where hi(q, v) = κ̇i(q, v) −
√

−2(1 + γ)κi(q), that

satisfy the conditions of Lemma 3. Denote A = H1∩H2∩S
and let x0 = (q, v) = (− 1

2(1+γ) , 0, 1, 0) ∈ ∂A. Then there is

no u ∈ U that renders A forward invariant from x0 (see the

right side of Fig. 1). That is, Nagumo’s necessary condition

(Lemma 1) for forward invariance of A is violated at x0.

III. METHODOLOGY

It is clear from Example 1 that possessing a collection

of CBFs for (S,U) is not sufficient to solve Problem 1.

Thus, our first strategy is to identify other control sets

Y , for which possessing CBFs for (S,Y) is sufficient to

solve Problem 1. That is, if we restrict w1, w2 in Fig. 1

to a smaller set Y ⊂ U when designing our CBFs, then

under certain conditions, presented in Section III-A, we can

ensure that several CBFs will be concurrently feasible over

the full control set U . When this strategy fails to yield a

full solution to Problem 1, we then present a more typical

iterative algorithm in Section III-C to remove the remaining

infeasible states in S. We also present a brief remark on QP

controllers in Section III-B.

A. When All CBFs are Non-Interfering

Some properties we will need are as follows:

Definition 4. Two CBFs hi and hj are called non-interfering

on X if (∇vhi(q, v)g2(q)) · (∇vhj(q, v)g2(q)) ≥ 0 for all

(q, v) ∈ X . A collection of CBFs {hk}k∈[M] is called non-

interfering if every pair of CBFs is non-interfering.

Definition 5. Given a set U ′ ⊂ U , let {wi}i∈[m] be a set of

m vectors wi ∈ U ′ satisfying wi ·wj ≥ 0, ∀i ∈ [m], j ∈ [m].
Let {yi}i∈[m] be the set of orthogonal projections yi =
wi − proj({wj}j∈[i−1])

wi (or yi = wi if {wi}i∈[m] are or-

thogonal). The set U ′ has the orthogonal extension property

(OEP) with respect to U if for every such set {wi}i∈[m], the

point z =
∑

i∈[m] yi belongs to U .

Definition 6. Given a set U ′ ⊂ U , let {Pi}i∈[m] be a set

of m orthogonal hyperplanes in Rm satisfying Pi ∩ U ′ 6=
∅, ∀i ∈ [m]. Let p be the point where all m hyperplanes

intersect (where p is guaranteed to exist because {Pi}i∈[m]

are orthogonal). The set U ′ has the quadrant extension

property (QEP) with respect to U if for every such set

{Pi}i∈[m], the point p belongs to U .

Examples of sets satisfying Definitions 5-6 are as follows:

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 3: Given three different control sets U (gray), the above
illustrates possible choices of set U ′ (blue) that: left) have the OEP
with respect to U , and right) have the QEP with respect to U , as in
Definitions 5-6. The left plots also show how given two orthogonal
vectors (solid arrows) in U ′, their sum (dashed arrow) must by
construction belong to U . The right plots also show various choices
of orthogonal hyperplanes (i.e. lines in R

2) whose intersections (the
red right angles) by construction must belong to U .

Example 2. Given various prescribed input bounds U , the

following sets U ′ possess the OEP or QEP with respect to

U . Note that these choices of U ′ are not unique.

1) If U = {u ∈ Rm | ‖u‖∞ ≤ γ}, then one possible set

with the OEP is U ′ = {u ∈ Rm | ‖u‖1 ≤ γ} (Fig. 3a).

One possible set with the QEP is U ′ = {u ∈ Rm |
‖u‖1 ≤ γ∗} (Fig. 3b), where γ∗ must be computed. If

m = 2, then γ∗ = 2γ

1+
√
2

.

2) If U = {u ∈ Rm | ‖u‖1 ≤ γ}, then one possible set

with the OEP is U ′ = {u ∈ Rm | ‖u‖∞ ≤
γ
m
}. One

possible set with the QEP is U ′ = {u ∈ Rm | ‖u‖∞ ≤
γ∗

m
}, where γ∗ is as in the prior case.

3) If U = {u ∈ R | ‖u‖2 ≤ γ}, then one possible set with

the OEP (Fig. 3c) and QEP (Fig. 3d) is U ′ = {u ∈
Rm | ‖u‖2 ≤

γ√
m
}.

4) If U = {u ∈ Rm | maxi |aiui| ≤ γ} for constants

{a1, · · · , am}, then one possible set with the OEP is

U ′ = {u ∈ Rm |
∑

i |aiui| ≤ γ∗} (Fig. 3e), where

γ∗ ≤ γ must be computed. A set with the QEP can be

constructed similarly (Fig. 3f).

The core idea of this subsection is that given a set U ′ with

the OEP or QEP, if we design our CBFs {hk}k∈[M] one-at-

a-time for (S,U ′), then, subject to an additional condition on

the CBF gradients, we can guarantee a priori that {hk}k∈[M]

will have jointly feasible CBF conditions. To show this, we

begin with several lemmas about the geometry of the OEP

and QEP, first for two constraints, and then forM constraints.

Lemma 4. Let U ′ have the OEP with respect to U . Given

two row vectors A1, A2 ∈ R1×m and two scalars b1, b2 ∈ R,

if A1 · A2 ≥ 0 and there exists w1, w2 ∈ U ′ such that 1)

A1w1 ≤ b1, 2) A2w2 ≤ b2, 3) A1 · w1 = −‖A1‖2‖w1‖2,

and 4) A2 · w2 = −‖A2‖2‖w2‖2, then there exists z ∈ U
such that A1z ≤ b1 and A2z ≤ b2.

Proof. Note that conditions 3 and 4 imply that either 1) w1

is parallel and opposite to A1 when b1 < 0, or 2) that w1 = 0
when b1 ≥ 0, and similarly for A2, b2, w2. Without loss of

generality, assume that ‖w1‖2 ≥ ‖w2‖2. Let w∗ = w2 −
w2·w1

w1·w1
w1. Then z = w1 + w∗ satisfies A1z = A1w1 ≤ b1

since w∗ is orthogonal to w1 and A1, and

A2z = A2w2 +A2w1
︸ ︷︷ ︸

≤0

(1 − w2·w1

w1·w1
︸ ︷︷ ︸

≤1

) ≤ A2w2 ≤ b2 .

By the OEP, z ∈ U . �

Lemma 5. Let U ′ have the OEP with respect to U . Given M

row vectors {Ak}k∈[M] and scalars {bk}k∈[M] with Ak ∈
R1×m, if 1) Ai · Aj ≥ 0 for all i ∈ [M], j ∈ [M], 2) there

exists wk ∈ U ′ such that Akwk ≤ bk for all k ∈ [M], and 3)

Akwk = −‖Ak‖2‖wk‖2 for all k ∈ [M], then there exists

z ∈ U such that Akz ≤ bk for all k ∈ [M].

Proof. The proof follows from that of Lemma 4. Assume

that the vectors are ordered by decreasing ‖wk‖2. If M ≤
m, then use orthogonal projections to construct a vector

z =
∑

i∈[M](wi − proj({wj}j∈[i−1])
wi) that satisfies all M

constraints Akz ≤ bk simultaneously. By the OEP, z ∈ U .

If M > m, then because Ai · Aj ≥ 0 for all i, j, the set

W = {u ∈ Rm | Aku ≤ bk, ∀k ∈ [M]} must contain a

complete orthant O = {u ∈ Rm | Oku ≤ Oky, ∀k ∈ [m]} ⊆
W for some orthogonal set {Ok}k∈[m], Ok ∈ R1×m and

some point y ∈ Rm. Therefore, at least l0 =M −m of the

constraints Akz ≤ bk must be redundant, i.e. l ≥ l0 of the

constraints must be automatically satisfied if the remaining

constraints are satisfied. Use the remaining M− l constraints

as in the prior case to construct a vector z ∈ U satisfying all

M inequalities simultaneously. �

Lemma 6. Let U ′ have the QEP with respect to U . Given

two row vectors A1, A2 ∈ R1×m and two scalars b1, b2 ∈
R, if A1 · A2 ≥ 0 and there exists w1, w2 ∈ U ′ such that

A1w1 ≤ b1 and A2w2 ≤ b2, then there exists p ∈ U such

that A1p ≤ b1 and A2p ≤ b2.

Proof. Consider the following figure:

A1

A2

w1 ∈ U
′

w2 ∈ U
′

p

p1

p2

A1u ≤ b1

A2u ≤ b2A1u ≤ b1 and A2u ≤ b2

y

Fig. 4: Visualization for Lemma 6 proof.

Since w1, w2 ∈ U
′, by the QEP, any two orthogonal lines (i.e.

hyperplanes in R2) that intersect w1 and w2 (i.e. intersect

points in U ′) must meet at a point in U , such as the points

p, p1, p2 above. That is, every point on the black arc must

belong to U . Next, since A1 ·A2 is at least zero, the point y

where the hyperplanes {u | A1u = b1} and {u | A2u = b2}
(dashed lines) intersect must be enclosed by the black arc. It

follows that at least one point, above labeled p, on this arc

must satisfy both inequalities simultaneously. �

Lemma 7. Let U ′ have the QEP with respect to U . Given M

row vectors {Ak}k∈[M] and scalars {bk}k∈[M] with Ak ∈
R1×m, if Ai · Aj ≥ 0 for all i ∈ [M], j ∈ [M] and there

exists wk ∈ U
′ such that Akwk ≤ bk for all k ∈ [M], then

there exists p ∈ U such that Akp ≤ bk for all k ∈ [M].

Proof. The argument is similar to that in Lemma 6, now

extended to higher dimension. Let {Pk}k∈[m] be a set of

orthogonal hyperplanes in Rm that meet at some point p ∈
R

m and satisfy Pk ∩ U
′ 6= ∅, ∀k ∈ [m]. Let P = {u ∈ R

m |
Pku ≤ Pkp, ∀k ∈ [m]} be the orthant of Rm originating

from p and enclosed by {Pk}k∈[m], for appropriate vectors

{Pk}k∈[m], Pk ∈ R1×m. As in Lemma 5, there are at most

m non-redundant constraints. Let N be the set of indices

of these non-redundant constraints, and construct P so that

wk ∈ ∂P, ∀k ∈ N , analogous to how the solid red lines (∂P)

intersect the vectors w1, w2 in Fig. 4. Then the point p will

lie on the boundary of an m-hypersphere S analogous to the

black arc in Fig. 4, and all possible choices of p must lie in

U by the QEP. Let y ∈ Rm satisfy Aky = bk, ∀k ∈ N . By

the same argument as in Lemma 6, S must enclose at least

one such y. Thus, there exists at least one p ∈ S ⊆ U that

satisfies all M inequalities simultaneously. �

We now apply the above geometric observations to the

concurrent feasibility of several SCBFs or CBFs as follows.

Theorem 1. Let U ′ be any set with the OEP with respect to

U . Let {hk}k∈[M] each be an SCBF for (S,U ′). If {hk}k∈[M]

are non-interfering on S as in Definition 4, then the set µall

in (9) is nonempty for all (q, v) ∈ S ∩ (∩k∈[M]Hk).

Proof. Let Ak = ∇vhk(q, v)g2(q) and bk = αk(−hk(q, v))
−∇qhk(q, v)g1(q)v for all k ∈ [M], where αk each come

from (5). It follows from Definition 4 that Ai · Aj ≥ 0
for all i ∈ [M], j ∈ [M] everywhere in S. It follows from

Definition 2 that for each k ∈ [M], there exists wk ∈ U ′ such

that Akwk ≤ bk and wk is anti-parallel to Ak. Lemma 5 then

implies that these M inequalities are simultaneously feasible

for some u in the full set U , which is equivalent to the sets

{µk}k∈[M] having a nonempty intersection µall. �

Theorem 2. Let U ′ be any set with the QEP with respect to

U . Let {hk}k∈[M] each be a CBF for (S,U ′). If {hk}k∈[M]

are non-interfering on S as in Definition 4, then the set µall

in (9) is nonempty for all (q, v) ∈ S ∩ (∩k∈[M]Hk).

Proof. The proof is identical to that of Theorem 1, except

that hk are CBFs instead of SCBFs, so each wk is not

guaranteed to be anti-parallel to each Ak, respectively. Thus,

we apply Lemma 7 instead of Lemma 5. �

Theorems 1-2 constitute our first method for ensuring

concurrent feasibility of multiple CBFs. Note that we provide

theorems under both the OEP and QEP separately, because

as shown in Fig. 3, the OEP is less conservative (i.e. allows

for larger U ′), but is only applicable when the stricter SCBF

condition (8) holds (which is often the case in practice). We

also note the following remark about the computation of the

gradients of the CBFs hk for Definition 4 and Theorems 1-2.

Remark 2. If κ is a High Order CBF as in [4], then there

exists a function φ ∈ K such that h(q, v) = κ̇(q, v) −
φ(−κ(q)) is a CBF as in Definition 1. Moreover, κ̇(q, v) =
∇qκ(q)g1(q)v, so ∇vh(q, v) ≡ ∇qκ(q)g1(q)g2(q). That is,

∇vh(q, v) 1) is independent of v and 2) does not depend

on the function φ. Thus, Definition 4 can be checked using

only the gradients of the constraint functions κi, κj and

the dynamics (1) without knowing the exact CBFs (i.e. the

choices of φ).

Referring to Example 1, Theorems 1-2 address the prob-

lem of determining a viability domain A when γ ∈ (0, 1].
However, how to address Example 1 when γ > 1 still needs

to be determined, as is done in Section III-C.

Example 3. Consider the problem in Example 1 with γ =
0.75. The set U ′ = {u ∈ R2 | ‖u‖1 ≤

2
1+

√
2
} has the QEP

with respect to U as in Example 1. Using the new set U ′ as

the assumed allowable input bounds, the method in [4], [5]

yields the CBFs hi(q, v) = κ̇i(q) −
√

− 4
1+

√
2
κi(q). Unlike

in Example 1, the new set A = S ∩ H1 ∩ H2 is indeed a

viability domain. The impact of constructing the CBFs for

(S,U ′) instead of (S,U) is visualized in the left half of Fig. 5.

B. Modifying the Quadratic Program

The work in the prior section required Definition 4 to apply

to all states in S. Now, recall that Lemma 1 is effectively only

a condition on the boundary of the invariant set A. Noting

this, in Section III-C, we will focus only on the boundary

of A, so unlike in Section III-A we will no longer be able

to guarantee that µall(q, v) is nonempty for (q, v) ∈ int(A).

w1

w2z

A2u ≤ b2

A1u ≤ b1

w1

w2z

A2u ≤ b2

A1u ≤ b1

Fig. 5: Left: Visualization of the control space at a point x0 ∈
∂H1∩∂H2 using H1,H2 as in Example 3. Compared to Fig. 1, the
CBFs are now designed over U ′ (the blue diamond) instead of U , so
there exists z ∈ U satisfying both A1z ≤ b1 and A2z ≤ b2. Right:
Visualization of the control space at the point x0 in Example 4.
Because the CBFs h1, h2 do not satisfy Definition 4, it may be the
case that every point z satisfying both inequalities Akz ≤ bk lies
outside the set U , so x0 should not lie in the viability domain.

Rather, we will only be able to guarantee that there exists

u ∈ U such that ḣk(q, v, u) ≤ 0 for all k in the active set

I(q, v) = {k ∈ [M] | hk(q, v) = 0} . (11)

That is, after employing the algorithm in Section III-C,

the condition ḣk(q, v, u) ≤ αk(−hk(q, v)) in (10b) will

be feasible for all k ∈ I(q, v), but possibly not for k ∈
[M]\I(q, v). By [30], if A in Lemma 3 is a viability domain,

then there exists a set of class-K functions {α∗
k}k∈[M], such

that (10) is always feasible. Instead of computing such a set

directly, we let α∗
k(λ) = δkαk(λ), where δk is a free variable.

We then let Jk > 0, and modify the QP (10) as in [26] to

u(q, v) = argmin
u∈U ,δk≥1

‖u− unom(q, v)‖
2
2 +

∑

k∈[M]

Jkδk (12a)

s.t. ḣk(q, v, u) ≤ δkαk(−hk(q, v)), ∀k ∈ [M] (12b)

Proposition 1. Suppose the conditions of Lemma 3 hold.

Then 1) the control law (12) will render A forward invariant

for as long as (12) is feasible, 2) (12) is feasible for all

(q, v) ∈ A for which I(q, v) has cardinality of 0 or 1, and

3) (12) is feasible for all (q, v) ∈ A ifA is a viability domain.

C. When the CBFs are Interfering

Next, consider what happens in Example 3 if γ > 1.

Example 4. Consider the problem in Example 3 for γ =
1.25. Using the same strategy as in Example 3 yields the

new CBFs hi(q, v) = κ̇i(q, v)−
√

− 4γ

1+
√
2
κi(q). DenoteA =

S ∩ H1 ∩H2 and let x0 = (q, v) = (− 1+
√
2

4γ , 0, 1, 0) ∈ ∂A.

From the right side of Fig. 5, we see that there is no u ∈ U
that satisfies both CBF conditions at x0. That is, Nagumo’s

necessary condition for forward invariance of A is violated

at x0, so A is not a viability domain.

The difference between Example 3 and Example 4 is that

in Example 4, the CBFs h1, h2 do not satisfy Definition 4, so

Theorems 1-2 do not apply. Thus, we need additional tools to

systematically remove states such as x0 in Example 4 from

∇qh1

∇qh2
∇qh3

Allowable (q1, v1) when

q2 = v2 = 0

Fig. 6: Left: The CBFs h1, h2 do not satisfy Definition 4, so
Theorems 1-2 do not apply. To remedy this, we add a third
constraint κ3 and associated CBF h3 to remove the remaining states
where (12) is infeasible. Right: Fixing q2 = v2 = 0, we show the
allowable states (q1, v1) according to 1) the safe set (cyan), 2) the
CBFs in Example 4 (blue), and 3) the CBFs in Example 5 (green).

Algorithm 1 Get Viability Domain

Require: S in (4), U ′ possessing QEP (or OEP) w.r.t. U , CBFs

(or SCBFs) {hk}
M0

k=1 for (S,U ′) satisfying Lemma 3

1: X ← S ∩ (∩Mk=1Hk)
2: D = ∪i∈[M0],j∈[M0],i6=j(∂Hi ∩ ∂Hj)
3: M ←M0

4: E ← getInfeasibleSet(D)
5: while E 6= ∅ do

6: Ec ← getCluster(E)
7: hM+1 ← getCBF(Ec,X ,U ′)
8: X ← X ∩HM+1

9: M ←M + 1
10: D = ∪i∈[M],j∈[M],i6=j(∂Hi ∩ ∂Hj)
11: E ← getInfeasibleSet(D)
12: end while

13: A ← X
14: return A, {hk}Mk=1

A in such cases. We begin by presenting a solution to this

simple example before discussing a general algorithm.

Example 5. Consider the problem in Example 4. Introduce

κ3(q) = q1, resulting in the constraint geometry in Fig. 6.

Let H1 and H2 be as in Example 4, and using [4], [5], we

can derive the CBF h3(q, v) = κ̇3(q, v) −
√

− 4
1+

√
2
κ3(q).

Then A = S ∩ H1 ∩H2 ∩ H3 is a viability domain for the

sets S and U (see the green set on the right side of Fig. 6).

Example 5 improves upon Example 4 by further limiting

the system’s velocity v1 so as to remove all the points where

(12) is infeasible. This can be done either by adjusting h1 and

h2, or by adding the additional CBF h3. The first approach

amounts to a joint tuning of all CBFs, which is challenging,

so we instead focus on generalizing the latter strategy.

To this end, we propose Algorithm 1. Here, {hk}k∈[M] is

a working set of CBFs and X is a working domain. Let D
be a set of candidate points where (12) could be infeasible,

namely all points where at least two CBFs are active as in

(11), as Proposition 1 guarantees feasibility of (12) at all

other points. Next, let E be the subset of D where (12) is

actually infeasible, where E is more expensive to compute

than D. Next, let getCluster() be a function that divides all

the points in E into clusters (e.g. see Fig. 7), and then returns

a single cluster Ec ⊆ E for focus. Given this cluster, the

function getCBF() then determines a new CBF hM+1 for

(X ,U ′) such that the cluster Ec is entirely outside the CBF

set HM+1. By Assumption 1, such a CBF hM+1 will always

exist. Note also the use of the set U ′ satisfying Definition

5 or 6 in getCBF(); this is done to reduce the number of

points where hM+1 might conflict with the existing CBFs

{hk}k∈[M]. Algorithm 1 then adds hM+1 to the working set

of CBFs and shrinks the working domain to X ∩HM+1 (e.g.

see Fig. 6). The while block then repeats until either all the

CBFs are jointly feasible or the domain X becomes empty.

Note that the exact mechanics of grouping points into

clusters during getCluster() and of generating CBFs during

getCBF() will be specific to the system under study. An

example of these steps is described in Section IV.

Proposition 2. If Algorithm 1 converges, thenA is a viability

domain as in Definition 3 and the controller (12) is always

feasible and renders A forward invariant.

Algorithm 1 is similar to typical viability domain com-

putation algorithms [16]–[22], except that the set A is

parameterized by a collection of CBFs. Since these CBFs are

defined for a control set U ′ possessing the QEP (or OEP), we

can reduce the number of points that we need to check for

infeasibility to only the points where 1) multiple CBFs are

active as in (11) and 2) the active CBFs violate the condition

in Definition 4. We next illustrate the implementation of

Algorithm 1 by example on a nonlinear system.

Remark 3. The choice of the functions getCluster() and

getCBF() in Algorithm 1 will also affect the conservativeness

of the resulting set A compared to the viability kernel, and

the time of convergence of the algorithm. A very small cluster

size could result in many added CBFs and an explosion in

computation. Note also that Algorithm 1 can be either coded

and run autonomously, or followed step-by-step “by hand”

by a practiced engineer.

IV. APPLICATION TO ORIENTATION CONTROL

Let q ∈ {q ∈ R4 | ‖q‖2 = 1} be the quaternion describing

the orientation of a spherically symmetric rigid body with

unit moments of inertia, and let ω = (ω1, ω2, ω3) ∈ R3 be

the angular velocity of the body. The dynamics are

q̇ =
1

2

0 ω3 −ω2 ω1

ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

q, ω̇ = u . (13)

Suppose a sensitive instrument faces towards an axis â fixed

to the body, and must avoid pointing towards the fixed

directions b̂1, b̂2 in Fig. 7 by angles θ1, θ2 (red cones in

Fig. 7). These constraints can be expressed as κ1(q) =
qTP (â, b̂1, θ1)q and κ2(q) = qTP (â, b̂2, θ2)q, where P is

constant with respect to the state (q, ω) and is constructed

as in [31]. Let U = {u ∈ R3 | ‖u‖∞ ≤ umax} for some

b̂1 b̂2

Cluster 1

Cluster 2

Fig. 7: Visualization of the constrained reorientation problem stud-
ied in Section IV. The large red cones are the initial unsafe states
(where the body cannot point body-fixed vector â), the two clusters
are the states where (12b) is infeasible, and the brown cones are
the states excluded by the new CBFs introduced by Algorithm 1.

umax. Assume the angular velocity is bounded by η(ω) =
‖ω‖∞ − ωmax, where the ∞-norm can be expressed as 6

continuously differentiable constraint functions {ηj}j∈[6].

First, we find a set U ′ with the OEP with respect to U .

Example 2 tells us that U ′ = {u ∈ R
3 | ‖u‖2 ≤

umax√
3
} is

one such set, from which we derive SCBFs hκ,1, hκ,2 for

(S,U ′) given by hκ,i(q, ω) = κ̇i(q, ω) −
√

−βiκi(q) for

some βi ∈ R>0. We note that each ηj already satisfies the

definition of an SCBF on (S,U ′), so denote these SCBFs as

hη,j ≡ ηj . The eight SCBFs together satisfy the conditions

of Lemma 3. We now focus only on the hκ,1, hκ,2 SCBFs. If

the corresponding setsHκ,1,Hκ,2 satisfy ∂Hκ,1∩∂Hκ,2 = ∅,
then A in Lemma 3 is a viability domain and we are done.

Here, we chose θ1, θ2 sufficiently large that this does not

hold1, as indicated by the intersection of the red cones in

Fig. 7.

We then apply Algorithm 1. For this system, we coded

getCluster() to return connected subsets of E . In this case,

getInfeasibleSet() returned states (q, v) ∈ R7 with quater-

nions q corresponding to the green and blue chevrons in

Fig. 7, and getCluster() identified these points as two clus-

ters. We then coded getCBF() to remove the cluster states

by introducing a new constraint of the form κM+1(q) =
qTP (â, b̂M+1, θM+1)q, and computing an SCBF hκ,M+1 of

the same form as hκ,1 and hκ,2. The getCBF() function

searched for the orientation b̂M+1 and minimum angle θM+1

that removed the entire cluster and that satisfied Definition 4

when paired with each of the existing SCBFs. Visually,

for states with ω = 0, the new SCBF hκ,M+1 resulted in

removing one of the brown cones in Fig. 7. After removing

the first cluster, Algorithm 1 repeated for a second loop,

and then completed and returned the two initial SCBFs (red

cones) and two new SCBFs (brown cones) shown in Fig. 7.

One can also implement Algorithm 1 by hand as in

1All code and parameters used can be found at
https://github.com/jbreeden-um/phd-code/tree/main/2023/ACC%20Multiple%20Control%20Barrier%20Functions

Remark 3. For this system, a practiced engineer might instead

decide that both clusters in Fig. 7 should be grouped into a

single cluster, which can then be removed by adding a single

new SCBF representing a larger cone.

Note that the computation time of Algorithm 1 depends

most on the computation time of the getInfeasibleSet() step,

which has to search a potentially large set for infeasibilities.

However, this set is smaller than in typical verification

algorithms, because we only have to consider states where

the boundaries of two or more CBFs intersect. All other

states already satisfy Lemma 1 because X is parameterized

by CBFs. Possible implementations of getInfeasibleSet()

include [25], [29], and the wider viability theory literature.

Since these are primarily sampling-based algorithms, the

computation time is dependent on the sampling interval,

which depends on the Lipschitz constants of hk and the

margin by which each hk satisfies (5). The latter is equivalent

to the chosen amount of conservatism with which the CBFs

are implemented; more conservative margins (e.g. smaller βi)

will allow for sparser sampling and quicker computations. In

this case, the results in Fig. 7 took 1052 seconds to compute,

and results with a 10x coarser sampling took 0.30 seconds

to compute, using a 3.5 GHz processor.

V. CONCLUSION

We have presented conditions under which multiple CBFs

are guaranteed to be jointly feasible in the presence of

prescribed input bounds, while allowing each CBF to be

designed in a one-at-a-time fashion under more conservative

assumptions on the available control authority. However,

even under these assumptions, it is still possible for there

to exist points where an optimization-based controller with

multiple constraints may become infeasible. Thus, we also

introduced an algorithm to iteratively remove such points

from the allowable state set using additional CBFs until this

set becomes a viability domain and the safe controller is

always feasible. Future work in this area may include robust

and sampled-data extensions of this framework, generaliza-

tions to other classes of systems, or extensions to relate this

algorithm to the maximal viability kernel.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 18th Eur. Control Conf., 2019, pp. 3420–3431.

[2] W. S. Cortez and D. V. Dimarogonas, “Correct-by-design control
barrier functions for euler-lagrange systems with input constraints,”
in Proc. Amer. Control Conf., 2020, pp. 950–955.

[3] E. Squires, P. Pierpaoli, and M. Egerstedt, “Constructive barrier cer-
tificates with applications to fixed-wing aircraft collision avoidance,”
in Proc. IEEE Conf. Control Technol. Appl., 2018, pp. 1656–1661.

[4] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” in IEEE 58th Conference on Decision and Control,
2019, pp. 474–479.

[5] J. Breeden and D. Panagou, “Robust control barrier functions under
high relative degree and input constraints for satellite trajectories,”
arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2107.04094v3

[6] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Syst. Lett., vol. 3, no. 1,
pp. 96–101, 2019.

https://github.com/jbreeden-um/phd-code/tree/main/2023/ACC%20Multiple%20Control%20Barrier%20Functions
https://arxiv.org/abs/2107.04094v3

[7] P. Glotfelter, J. Cortés, and M. Egerstedt, “Boolean composability of
constraints and control synthesis for multi-robot systems via nons-
mooth control barrier functions,” in Proc. IEEE Conf. Control Technol.

Appl., 2018, pp. 897–902.

[8] M. Black and D. Panagou, “Adaptation for validation of a
consolidated control barrier function based control synthesis,” arXiv,
2022. [Online]. Available: https://arxiv.org/abs/2209.08170v1

[9] M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control
using control barrier functions,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2016, pp. 279–285.

[10] X. Xu, “Constrained control of input–output linearizable systems using
control sharing barrier functions,” Automatica, vol. 87, pp. 195–201,
2018.

[11] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Neural certificates
for safe control policies,” arXiv, 2020. [Online]. Available:
https://arxiv.org/abs/2006.08465v1

[12] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas,
S. Tu, and N. Matni, “Learning control barrier functions from expert
demonstrations,” in 59th IEEE Conference on Decision and Control,
2020, pp. 3717–3724.

[13] W. Shaw Cortez, X. Tan, and D. V. Dimarogonas, “A robust, multiple
control barrier function framework for input constrained systems,”
IEEE Control Syst. Lett., vol. 6, pp. 1742–1747, 2022.

[14] W. Shaw Cortez and D. V. Dimarogonas, “Safe-by-design control for
euler–lagrange systems,” Automatica, vol. 146, p. 110620, 2022.

[15] J. Breeden and D. Panagou, “Guaranteed safe spacecraft docking with
control barrier functions,” IEEE Control Syst. Lett., vol. 6, pp. 2000–
2005, 2022.

[16] Y. Zhang, Y. Li, K. Tomsovic, S. M. Djouadi, and M. Yue, “Review
on set-theoretic methods for safety verification and control of power
system,” IET Energy Syst. Integration, vol. 2, no. 3, pp. 226–234,
2020.

[17] F. Gruber and M. Althoff, “Computing safe sets of linear sampled-data
systems,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 385–390, 2021.

[18] I. M. Mitchell, J. Budzis, and A. Bolyachevets, “Invariant, viability
and discriminating kernel under-approximation via zonotope scaling:
Poster abstract,” in Proc. of the 22nd ACM International Conference

on Hybrid Systems: Computation and Control. New York, NY, USA:
Association for Computing Machinery, 2019, p. 268–269.

[19] N. Athanasopoulos, G. Bitsoris, and M. Lazar, “Construction of invari-
ant polytopic sets with specified complexity,” International Journal of
Control, vol. 87, no. 8, pp. 1681–1693, 2014.

[20] S. V. Rakovic and M. Baric, “Parameterized robust control invariant
sets for linear systems: Theoretical advances and computational re-
marks,” IEEE Trans. Autom. Control, vol. 55, no. 7, pp. 1599–1614,
2010.

[21] M. A. Bouguerra, T. Fraichard, and M. Fezari, “Viability-based
guaranteed safe robot navigation,” Journal of Intelligent & Robotic
Systems, vol. 95, pp. 459–471, 2019.

[22] L. Wang, D. Han, and M. Egerstedt, “Permissive barrier certificates
for safe stabilization using sum-of-squares,” in Proc. Amer. Control

Conf., 2018, pp. 585–590.

[23] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert,
“Robust control barrier–value functions for safety-critical control,” in
60th IEEE Conference on Decision and Control, 2021, pp. 6814–6821.

[24] B. Martin and O. Mullier, “Improving validated computation of
viability kernels,” in Proc. of the 21st International Conference on

Hybrid Systems: Computation and Control. New York, NY, USA:
Association for Computing Machinery, 2018, p. 227–236.

[25] K. Garg, A. A. Cardenas, and R. G. Sanfelice, “Sampling-based com-
putation of viability domain to prevent safety violations by attackers,”
in 2022 Proc. IEEE Conf. Control Technol. Appl., 2022, pp. 720–725.

[26] J. Zeng, B. Zhang, Z. Li, and K. Sreenath, “Safety-critical control
using optimal-decay control barrier function with guaranteed point-
wise feasibility,” in Proc. Amer. Control Conf., 2021, pp. 3856–3863.

[27] A. Singletary, S. Kolathaya, and A. D. Ames, “Safety-critical kine-
matic control of robotic systems,” IEEE Control Syst. Lett., vol. 6, pp.
139–144, 2022.

[28] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747 – 1767, 1999.

[29] X. Tan and D. V. Dimarogonas, “Compatibility checking of multiple
control barrier functions for input constrained systems,” in IEEE 61st

Conference on Decision and Control, 2022, pp. 939–944.

[30] S. Prajna and A. Rantzer, “On the necessity of barrier certificates,”

IFAC Proceedings Volumes, vol. 38, no. 1, pp. 526 – 531, 2005, 16th
IFAC World Congress.

[31] Y. Kim and M. Mesbahi, “Quadratically constrained attitude control
via semidefinite programming,” IEEE Trans. Autom. Control, vol. 49,
no. 5, pp. 731–735, May 2004.

https://arxiv.org/abs/2209.08170v1
https://arxiv.org/abs/2006.08465v1

	I Introduction
	II Preliminaries
	II-A Notations
	II-B Model
	II-C Safety Definitions
	II-D Safe Quadratic Program Control
	II-E Assumptions and Motivating Example

	III Methodology
	III-A When All CBFs are Non-Interfering
	III-B Modifying the Quadratic Program
	III-C When the CBFs are Interfering

	IV Application to Orientation Control
	V Conclusion
	References

