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Abstract. We investigate the tumor boundary instability induced by nutrient
consumption and supply based on a Hele-Shaw model derived from taking
the incompressible limit of a cell density model. We analyze the boundary
stability/instability in two scenarios: 1) the front of the traveling wave; 2) the
radially symmetric boundary. In each scenario, we investigate the boundary
behaviors under two different nutrient supply regimes, in vitro and in vivo. Our
main conclusion is that for either scenario, the in vitro regime always stabilizes
the tumor’s boundary regardless of the nutrient consumption rate. However,
boundary instability may occur when the tumor cells aggressively consume
nutrients, and the nutrient supply is governed by the in vivo regime.

1. Introduction
Tumor, one of the major diseases threatening human life and health, has been

widely concerned. The mathematical study of tumors has a long history and
constantly active. We refer the reader to the textbook [10,11] and review articles
[2, 7, 48, 62]. Previous studies and experiments indicate that the shape of tumors
is one of the critical criteria to distinguish malignant from benign. Specifically,
malignant tumors are more likely to form dendritic structures than benign ones.
Therefore, it is significant to detect and predict the formation of tumor boundary
instability through mathematical models. Before discussing the mathematical studies
of tumor morphology, we review relevant mathematical models as follows.

The first class of model was initiated by Greenspan in 1976 [32], which further
inspired a mass of mathematical studies on tumor growth (e.g., [5, 8, 23,65]). The
tumor is regarded as an incompressible fluid satisfying mass conversation. More
precisely, these free boundary type models have two main ingredients. One is the
nutrient concentration σ governed by a reaction-diffusion equation, which considers
the consumption by the cells and the supplement by vessels. The other main
component is the internal pressure p, which further induces the cell velocity v
via different physical laws (e.g., Darcy’s law [5, 12, 26, 32], Stokes law [23, 28, 29],
and Darcy&Stokes law [18,19,44,60,65]). Finally, the two ingredients are coupled
via the mass conservation of incompressible tumor cells, which yields the relation
∇ · v = λ(σ), with the cell proliferation rate λ depending on σ. To close the model,
the Laplace-Young condition (p|∂Ω = γκ, where κ is the mean curvature, and γ
stands for the surface tension coefficient) is imposed on the tumor-host interface.
For some variant models, people replace the Laplace-Young condition with other
curvature-dependent boundary conditions (see, e.g., [50,61,64]). More sophisticated
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models were also investigated recently. In particular, we mention the studies based
on the two-phase models [50,61,64], and the works involve chemotaxis [34,38].

Most studies on the stability/instability of tumor boundary are based on the above
class of models and have been investigated from different points of view. Among
them, for different models (e.g., Darcy [17, 21, 22, 25, 27]; and Stokes [20, 23, 24]),
Friedman et al. proved the existence of non-radially symmetric steady states
analytically and classified the stability/instability of the boundaries from the Hopf
bifurcation point of view. Specifically, in their studies, the bifurcation parameter is
characterized by the cell proliferation rate or ratio to cell-cell adhesiveness. Then the
authors showed that the boundary stability/instability changes when the parameter
crosses a specific bifurcation point. On the other hand, Cristini et al. in [12], as
the pioneers, employ asymptotic analysis to study and predict the tumor evolution.
Their work is of great significance to the dynamic simulation of tumors and nurtured
more related works in this direction [49,51,52,61,64]. All the research demonstrated
that many factors could induce the tumor’s boundary instability, including but
not limited to vascularization [12, 49, 50, 61], proliferation [12, 20, 24, 25, 27, 49],
apoptosis [12, 20, 24, 25, 27, 49, 49, 61, 64], cell-cell adhesion [12, 20, 24, 25, 27, 61],
bending rigidity [50,64], microenvironment [51,52,61,64], chemotaxis [49,51].

In recent decades, tumor modeling from different perspectives has emerged and
developed. In particular, one could consider the density model proposed by Byrne
and Drasdo in [6], in which the tumor cell density ρ is governed by a porous medium
type equation, and the internal pressure p is induced by the power rule p = ρm

with the parameter m > 1. The power rule enables p naturally vanish on the
tumor boundary. Moreover, the boundary velocity v is governed by Darcy’s law
v = −∇p|∂Ω. Previous research indicates that the porous media type equations
have an asymptote concerning the parameter m tending to infinity [3, 30, 35, 41, 42].
Motivated by this, Perthame et al. derived the second kind of free boundary model
in [57] by taking the incompressible limit (sending m to infinity), or equivalently
mesa-limit of the density models. An asymptotic preserving numerical scheme
was designed by J.Liu et al. in [45], the scheme naturally connects the numerical
solutions to the density models to that of the free boundary models.

In the mesa-limit free boundary models proposed in [57], the limit density ρ∞ can
only take value in [0, 1], and the corresponding limit pressure p∞ is characterized
by a monotone Hele-Shaw graph. More specifically, p∞ vanishes on the unsaturated
region where ρ∞ < 1 (see equation (2.7)). The Hele-Shaw graph representation of
pressure brings the following advantages. Firstly, in the Hele-Shaw type model, the
formation of a necrotic core can be described by an obstacle problem [33], which
leads ρ∞ to decay exponentially in the necrotic core. Due to the Hele-Shaw graph,
the pressure p∞ naturally vanishes there instead of taking negative values. Secondly,
a transparent regime called "patch solutions" exists, in which ρ∞ remains in the
form of χD(t), i.e., the indicator function of the tumor region. Again, to satisfy
the corresponding Hele-Shaw graph, p∞ has to vanish on the tumor’s interface
(where ρ∞ drops from 1 to 0), which is significantly different from the first kind
of free boundary models developed from [32], in which the internal pressure relies
on the boundary curvature κ as mentioned previously. Moreover, in the mesa-
limit free boundary models, the boundary velocity is still induced by Darcy’s law
v∞ = −∇p∞|∂Ω. For completeness, the derivation of the mesa-limit model is
summarized in Section 2.1. Albeit various successful explorations based on such
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mesa-limit free boundary models [13–16,33, 36, 38–41,43, 47, 54, 58, 59], the study on
its boundary stability/instability is yet thoroughly open.

The primary purpose of this paper is to investigate whether boundary instability
will arise in the mesa-limit free boundary models, which should shed light on the
boundary stability of the cell density models when m is sufficiently large. To simplify
the discussion, we consider tumors in the avascular stage with saturated cell density
so that the density function ρ∞ is a patch solution, and the tumor has a sharp
interface. As the first attempt in this regard, we explore the instability caused
by nutrient consumption and supply. A similar mechanism can induce boundary
instability in other biological systems, see [4] for nutrient induce boundary instability
in bacterial colony growth models. The role of nutrition in tumor models has been
widely studied, and we refer the reader to the latest article in this direction [36].
Inspired by [58], we divide the nutrient models into two kinds, in vitro and in
vivo, according to the nutrient supply regime. In either regime, the nutrient is
consumed linearly in the tumor region with a rate λ > 0. However, in the in vitro
model, we assume that a liquid surrounds the tumor with nutrient concentration cB .
Mathematically, the nutrient concentration remains cB at the tumor-host interface.
For the in vivo model, the nutrient is transported by vessels outside the tumor and
reaches cB at the far field. Correspondingly, we assume the exchange rate outside
the tumor is determined by the concentration difference from the background, i.e.,
cB − c. The two nutrient models will be specified more clearly in Section 2.1.2.

Our study of boundary stability/instability consists of two scenarios. We begin
with a relatively simple case, the front of traveling waves, in which quantitative
properties can be studied more explicitly. In this case, the unperturbed tumor region
corresponds to a half plane with the boundary being a vertical line propagating
with a constant normal velocity. Then we test the boundary stability/instability by
adding a perturbation with frequency l ∈ R+ and amplitude δ. Our analysis shows
that in the in vitro regime, δ always decreases to zero as time propagates. In other
words, the boundary is stable for any frequency perturbation. In contrast, in vivo
regime, there exists a threshold value L such that the perturbation with a frequency
smaller than L becomes unstable when the nutrient consumption rate, λ, is larger
than one.

The above case corresponds to the boundary stability/instability while the tumor
is infinitely large. In order to further explore the influence of the finite size effect on
the boundary stability/instability, we consider the perturbation of radially symmetric
boundary with different wave numbers l ∈ N and radius R. Our analysis shows
that the in vitro regime still suppresses the increase of perturbation amplitude
and stabilizes the boundary regardless of the consumption rate, perturbation wave
number, and tumor size. For the in vivo regime, when the consumption rate λ is less
than or equal to one, the boundary behaves identically the same as the in vitro case.
However, when λ is greater than one, the continuous growth of tumor radius will
enable perturbation wave number to become unstable in turn (from low to high).
Further more, as R is approaching infinity, the results in the radial case connect to
the counterparts in the traveling wave case.

The main contribution of this work is to show that tumor boundary instability
can be induced by nutrient consumption and supply. As a by-product, our results
indicate that the cell apoptosis and curvature-dependent boundary conditions present
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abundantly in previous studies (e.g., [12,23]) are unnecessary for tumor boundary
instability formation.

The paper is organized as follows. In Section 2, we first derive our free boundary
models by taking the incompressible limit of density models characterized by porous
medium type equations in Section 2.1. Besides that, we also introduce the in vitro
and in vivo nutrient regimes in this subsection. Furthermore, the corresponding
analytic solutions are derived in Section 2.2. Section 3 is devoted to introducing the
linear perturbation technique in a general framework. Then, by using the technique
in Section 3, we study the boundary stability of the traveling wave and the radially
symmetric boundary under the two nutrient regimes, respectively, in Section 4 and
Section 5 (with main results in Section 4.1 and Section 5.1). Finally, we summarize
our results and discuss future research plans in Section 6.

2. Preliminary
2.1. model introduction.

2.1.1. The cell density model and its Hele-Shaw limit. To study the tumor growth
under nutrient supply, let ρ(x, t) denote the cell population density and c(x, t) be
the nutrient concentration. We assume the production rate of tumor cells is given
by the growth function G(c), which only depends on the nutrient concentration. On
the other hand, we introduce

(2.1) D(t) = {ρ(x, t) > 0}

to denote the support of ρ. Physically, it presents the tumoral region at time t. We
assume the tumoral region expands with a finite speed governed by the Darcy law
v = −∇p via the pressure p(ρ) = ρm. Thus, the cell density ρ satisfies the equation:

(2.2) ∂

∂t
ρ−∇ · (ρ∇p(ρ)) = ρG(c), x ∈ R2, t > 0.

For the growth function G(c), we assume

(2.3) G(c) = G0c, with G0 > 0,

note that in contrast to the nutrient models in [57,63], we eliminate the possibility
of the formation of a necrotic core by assuming that G(·) is always positive and
linear (for simplicity), since this project aims to study the boundary instability
induced by the nutrient distribution itself.

Many researches, e.g. [14,15,33,39,43,57], indicate that there is a limit as m→∞
which turns out to be a solution to a free boundary problem of Hele-Shaw type. To
see what happens, we multiply equation (2.2) by mρm−1 on both sides to get

(2.4) ∂

∂t
p(ρ) = |∇p(ρ)|2 +mp(ρ)∆p(ρ) +mG0p(ρ)c.

Hence, if we send m → ∞, we formally obtain the so called complementarity
condition (see [14,57] for a slight different model):

(2.5) p∞(∆p∞ +G0c) = 0.

On the other hand, the cell density ρ(x, t) converges to the weak solution (see [57])
of

(2.6) ∂

∂t
ρ∞ −∇ · (ρ∞∇p∞) = ρ∞G(c),
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and p∞ compels the limit density ρ∞ only take value in the range of [0, 1] for
any initial date ρ0 ∈ [0, 1] (see Theorem 4.1 in [57] for a slightly different model).
Moreover, the limit pressure p∞ belongs to the Hele-Shaw monotone graph:

(2.7) p∞(ρ∞) =
{

0, 0 6 ρ∞ < 1,
[0,∞) , ρ∞ = 1.

The incompressible limit and the complementarity condition of a fluid mechanical
related model have been rigorously justified in [14,57]. And the incompressible limit
of (2.2) (coupled with nutrient models that will be introduced in the next section)
was verified numerically in [46].

We define the support of p∞ to be

(2.8) D∞(t) = {p∞(x, t) > 0} ,

then (2.5) and (2.7) together yield

−∆p∞ = G0c for x ∈ D∞(t),(2.9a)
p∞ = 0, for x ∈ R2 \D∞(t),(2.9b)

and ρ∞ = 1 in D∞. Therefore, once the nutrient concentration c(x, t) is known one
can recover p∞ from the elliptic equation above.

Now we justify the relationship between D(t) and D∞(t). Observe that when
m is finite, ρ and p(ρ) have the same support D(t), whereas as m tends to infinity,
ρ∞ may have larger support than p∞. However, a large class of initial data, see
e.g. [56], enable the free boundary problem (correspond to (2.6) and (2.9)) possess
patch solutions, i.e., ρ∞ = χD∞ , where χA stands for the indicator function of the
set A. In this case, the support of p∞ coincides with that of ρ∞. Moreover, the
boundary velocity v is governed by Darcy law v = −∇p∞. Further, the boundary
moving speed along the normal direction at the boundary point x, denote by σ(x),
is given by:

(2.10) σ(x) = −∇p∞ · n̂(x),

where n̂(x) is the outer unit normal vector at x ∈ ∂D∞(t). The boundary speed for
more general initial data was studied in [39].

As the end of this subsection, we emphasize that in our free boundary model, as the
limit of the density models, the pressure p∞ always vanishes on ∂D∞. However, as
mentioned previously, in the first kind free boundary models, the internal pressure p̃
is assumed to satisfy the so-called Laplace-Young condition (or some other curvature
dependent boundary condition). Mathematically, the boundary condition (2.9b) is
replaced by

(2.11) p̃(x) = γκ(x),

where γ > 0 is a constant coefficient, and κ(x) denotes the curvature at the boundary
point x. In the related studies, the curvature condition (2.11) plays an essential role
(e.g., [12, 23]).

2.1.2. Two nutrient models. Regarding the nutrient, it diffuses freely over the
two dimensional plane. However, inside the tumoral region, the cells consume
the nutrient. While outside the tumor, the nutrient exchanges with the far field
concentration cB provided by the surrounding environment or vasculature. It follows
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that the following reaction-diffusion equation can govern the consumption, exchange,
and diffusion of the nutrient in general:

(2.12) τ∂tc−∆c+ Ψ(ρ, c) = 0,

where τ is the characteristic time scale of the nutrient change, and Ψ(ρ, c) describes
the overall effects of the nutrient supply regime outside the tumor and the nutrient
consumption by cells inside the tumor. To simplify the mathematical analysis, we
drop the time derivative in (2.12) and consider following elliptic formulation instead

(2.13) −∆c+ Ψ(ρ, c) = 0.

This is reasonable because τ � 1 (see, e.g., [1, 5, 31]). As in [58], two specific
developed and widely studied models are the in vitro and the in vivo model.

For the in vitro model, we assume that the tumor is surrounded by a liquid in which
the exchange rate with the background is so fast that the nutrient concentration
can be assumed to be the same constant cB as that of the surrounding liquid,
while inside the tumoral region, the consumption function is bi-linear in both the
concentration c and the cell density ρ with consumption rate λ > 0. The boundary
instability was observed in models where tissues aggressively consume nutrients [53].
Therefore, in our models, we expect boundaries are more likely to be unstable when
λ is large. When the in vitro is coupled with the cell density model (2.2), equation
(2.13) writes

−∆c+ λρc = 0, for x ∈ D(t),(2.14a)
c = cB , for x ∈ R2 \D(t).(2.14b)

By considering the incompressible limit of the density model (sending m→∞), and
concern patch solutions ρ∞ = χD∞ . Equation (2.14) tends to:

−∆c+ λc = 0, for x ∈ D∞(t),(2.15a)
c = cB , for x ∈ R2 \D∞(t).(2.15b)

For the in vivo model, the consumption of nutrients within the tumor region
(where ρ > 0) remains the same as in the in vitro model. However, in the in vivo
model, the nutrients are provided by vessels of the healthy tissue surrounding the
tumor, while the healthy tissue consumes nutrients as well. This leads to the nutrient
supply outside the tumor being determined by the concentration difference from
the background, cB − c, with a positive coefficient λ̃. Mathematically, the overall
function Ψ(ρ, c) is written as Ψ(ρ, c) = λρc ·χD − λ̃(cB − c) ·χDc . For simplicity, we
set λ̃ = 1 and λ > 0. Note that this expression guarantees the nutrient concentration
reaches cB at the far field. A more detailed discussion of this issue can be found
in [9, 37].

With the same reason as the previous case, by taking m → ∞ in the density
model and concerning patch solutions, we get the in vivo nutrient equations for the
limit free boundary model,

−∆c+ λc = 0, for x ∈ D∞(t),(2.16a)
−∆c = cB − c, for x ∈ R2 \D∞(t).(2.16b)

Moreover, we need to emphasize that the in vivo we refer to is different from the
previous articles (see, e.g., [12]) in which in vivo corresponds to the vascularization
inside the tumor.
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The uneven growth phenomena in the tumor models are conjectured due to
the non-uniform distribution of nutrients [53]. More precisely, in contrast to the
fingertips region, the nutrient is inadequate around the valley since more cells
consume nutrients there. Consequently, the tissue around the tips grows faster
than the valleys, and therefore instability occurs. In the in vitro model, the
concentration of the nutrient will match the background concentration cB at the
boundary regardless of the regions. However, for the in vivo model, the nutrient is
directly available only from healthy tissue; this regime will enlarge the concentration
difference at the tips and valleys. Therefore, we expect tumor borders are more
prone to grow unevenly in the in vivo models, in particular when the consumption
rate λ is relatively large.

2.2. Analytic solutions. Starting from this section, we focus on the mesa limit
free boundary models. Therefore, for simplicity of the notations, we drop the free
boundary models’ subscripts and use D(t), ρ, and p to denote the tumoral region,
cell density, and pressure in the limit model. On the other hand, through this paper,
we use Ij and Kj (j ∈ N) to denote the second kind of modified Bessel functions,
their definitions and basic properties are reviewed in Appendix A.

The models introduced in Section 2.1 have been studied in [46] when λ = 1.
In particular, the authors derived 2D radially symmetric solutions for the free
boundary models, which are coupled with either the in vitro or the in vivo model.
Moreover, their computation yields that as the radius of the tumor tends to infinity,
the boundary velocity tends to be a finite constant. In other words, the radially
symmetric solutions converge to traveling wave solutions.

For self-consistency, we recall the derivation of the radially symmetric solutions
in [46] in this section. Besides that we also derive the traveling wave solutions for
the two nutrient models and verify that they are indeed the limit of the radially
symmetric solutions as radius goes to infinity. The analytical solutions in this section
will serve as the cornerstone of subsequent perturbation analysis. Now, we begin
with the traveling wave scenario.

2.2.1. traveling plane solution for the in vitro model. For solving two-dimensional
traveling wave solutions, we fix the traveling front at ξ = x−σt = 0, where σ stands
for the traveling speed and will be determined later. Without loss of generality, let
the tumoral region be the left half plane, that is D(t) = {(ξ, y)|ξ 6 0}. One can
easily see that in the unperturbed two-dimensional problem, to find its solution
reduces to solve a one-dimensional problem. Moreover, we disclose that the variable
y will serve as the perturbation parameter in the perturbation problems, which will
be investigated later. The one dimensional problem writes:

−∂2
ξ c+ λc = 0, for ξ 6 0,(2.17a)

c = cB , at ξ = 0,(2.17b)
in addition, we also assume the concentration of nutrient vanish at the center of
tumor, that is
(2.17c) c(ξ) = 0, for ξ = −∞.
And the equations for pressure p(ξ, y), i.e., (2.9) and (2.10) reads

−∂2
ξp = G0c, for ξ 6 0,(2.18a)

p = 0, for ξ > 0,(2.18b)
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and traveling speed is given by

(2.18c) σ = −∂ξp(0).

Since the gradient of the pressure is always equal to zero at the center of the tumor,
we also have

(2.18d) ∂ξp(ξ) = 0, for ξ = −∞.

By solving (2.17) we get

(2.19) c = cBe
√
λξ, for ξ 6 0,

plug the above expression into (2.18) to solve for p and get:

(2.20) p(ξ) = −G0cB
λ

e
√
λξ + G0cB

λ
for ξ 6 0.

Then, we can further find the traveling speed

(2.21) σ = −∂ξp(0) = G0cB√
λ
.

2.2.2. traveling plane solution for the in vivo model. For the in vivo model, the only
difference from the in vitro model is the equations for c(ξ, y) are replaced by

−∂2
ξ c+ λc = 0, for ξ 6 0,(2.22a)

−∂2
ξ c = cB − c, for ξ > 0,(2.22b)

c(ξ) = 0, for ξ = −∞.(2.22c)

in addition, c and ∂ξc are both continuous at the boundary of the tumor, that is

(2.22d) c(0−) = c(0+) and ∂ξc(0−) = ∂ξc(0+).

And the pressure p still satisfies (2.18).
By solving (2.22) we get

(2.23) c(ξ) =
{

cB√
λ+1e

√
λξ def= c(i)(ξ) for ξ 6 0,

−
√
λcB√
λ+1e

−ξ + cB
def= c(o)(ξ) for ξ > 0.

and plug the above expression into (2.18) to derive p and get

(2.24) p(ξ) = − G0cB

λ(
√
λ+ 1)

e
√
λξ + G0cB

λ(
√
λ+ 1)

for ξ 6 0.

And the boundary speed is given by

(2.25) σ = −∂ξp(0) = G0cB

λ+
√
λ
.

By now, we have finished the derivation for the traveling wave solutions. In the
next two subsections, we recall the derivation for the radially symmetric scenario
in [46] and verify that the boundary speeds converge to the traveling waves’ for the
corresponding nutrient regime.
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2.2.3. 2D radially symmetric model for the in vitro model. For the radially symmetric
free boundary model, the tumoral region becomes D(t) = BR(t)(0) (a disk centered
at origin with radius R). In this case, we employ polar coordinates (r, θ), and we
can conclude that the solutions are independent of θ by symmetry. However the
variable θ will play an important role in the perturbed problem, which will be seen
in the later sections. Thus, for the free boundary model with nutrients governed by
the in vitro model, equation (2.15) can be further written as

−1
r
∂r(r∂rc) + λc = 0, for r 6 R(t),(2.26a)

c = cB , for r > R(t).(2.26b)
And the equations for pressure p (2.9) and (2.10) reads

−1
r
∂r(r∂rp) = G0c for r 6 R(t),(2.27a)

p = 0, for r > R(t),(2.27b)
σ(R(t)) = −∂rp(R(t)), on ∂BR(0).(2.27c)

And by symmetry, we also require
(2.27d) ∂rp(0) = 0.
By solving (2.26) we get

(2.28) c(r, t) = cB
I0(
√
λr)

I0(
√
λR)

for r 6 R(t).

Plug the above expression into (2.27) to solve for p, and we get:

(2.29) p(r, t) = − G0cB

λI0(
√
λR(t))

I0(
√
λr) + G0

λ
cB for r 6 R(t).

And the boundary velocity is given by

(2.30) Ṙ = σ(R(t)) = −∂p
∂r

(R(t)) = G0cBI1(
√
λR)√

λI0(
√
λR)

.

Note that as R(t)→∞ the speed limit is G0cB√
λ
, which recovers the speed for the

traveling wave solution (2.21).

2.2.4. 2D radially symmetric model for the in vivo model. The computation is
similar to the previous case, except that the equations for nutrient are replaced by

−1
r
∂r(r∂rc) + λc = 0, for r 6 R(t),(2.31a)

−1
r
∂r(r∂rc) = cB − c, for r > R(t).(2.31b)

By solving above two equations and using the continuity of both c and ∂rc at R(t),
we get

(2.32) c(r, t) =
{

cBa0(R)I0(
√
λr) def= c(i)(r, t), for r 6 R(t),

cB(1 + b0(R)K0(r)) def= c(o)(r, t), for r > R(t),
where a0 and b0 are given by

a0(R) = K1(R)√
λK0(R)I1(

√
λR) +K1(R)I0(

√
λR)

def= K1(R)
C(R) ,(2.33a)
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b0(R) = −
√
λI1(R)√

λK0(R)I1(
√
λR) +K1(R)I0(

√
λR)

def= −
√
λI1(R)
C(R) .(2.33b)

Then from the pressure equations (2.27), we can solve and get

(2.34) p(r, t) = −G0cB
λ

a0(R)I0(
√
λr) + G0cB

λ
a0(R)I0(

√
λR), for r 6 R(t).

And the velocity of the boundary is given by

(2.35) Ṙ = σ(R(t)) = G0cBK1(R)I1(
√
λR)

λK0(R)I1(
√
λR) +

√
λK1(R)I0(

√
λR)

6
G0cBI1(

√
λR)√

λI0(
√
λR)

,

which implies that the speed in the in vivo model is slower than that in the in vitro
model. Again, by sending R→∞, we get the limiting speed for the in vivo model
is cBG0

λ+
√
λ
, which recovers the speed for the traveling wave in (2.25).

3. Framework of the perturbation analysis
We devote this section to establishing the general framework of our asymptotic

analysis. Such analysis involves classical techniques which was originally developed
by Mullins et al. in [55] and widely used in [12,49,51,52,61,64], whereas we present
it as generic methodology which in theory can be applied to other problems as well.

We divide our analysis into three parts as follows.

3.1. Perturbation of the boundary. We study the perturbation of two kinds of
boundaries, the radial boundary and the front of traveling waves, and the relationship
between them. In either case, we have a proper coordinate system denoted as (ζ, ϑ).
For simplicity, we assume the boundary profile is a curve Ot ⊆ R2, which can be
parameterized by the variable ϑ in the following form:
(3.1) Ot(ϑ) = {(ζ, ϑ)|ζ = Z(t, ϑ), ϑ ∈ R}
with some contour index function Z(t, ϑ) and range R.

For the radial case, the unperturbed tumor region at time t is given by a disk
with radius R(t), that is D(t) = BR(t). In this case, equations and functions are
naturally presented in terms of the polar coordinate. Therefore, (ζ, ϑ) = (r, θ) and
R = [−π, π). Further more, the tumor boundary at time t can be written as:
(3.2) Bt(θ) = {(r, θ)|r = R(t), θ ∈ [−π, π)} .

For the traveling wave case, we employ the Euler coordinate (ξ, y) (where ξ =
x− σt). In this case, the tumor region is a half plane with a moving front. We fix
the front (propagate to the right) at ξ = 0 with traveling speed σ, and the tumor
region, therefore, become D(t) = {(ξ, y)|ξ 6 0}. Then, we write the traveling front
more clearly in the parameter curve form:
(3.3) B(y) = {(ξ, y)|ξ = 0, y ∈ R} .

For the purpose of introducing perturbation method in a general framework, we
combine the two scenarios above in the following unified notations. Let D(t) still
presents the tumor region at time t; and the boundary curve writes
(3.4) Bt(ϑ) = {(ζ, ϑ)|ζ = Z(t), ϑ ∈ R} .
Moreover, any point B ∈ Bt can be presented as B(Z, ϑ∗) for some ϑ∗ ∈ R. Note
that in either case above, the index function Z(t) is independent on the parameter
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variable ϑ. More precisely, for the radial case Z(t) = R(t), and (3.4) stands for (3.2);
for the traveling wave case, (3.4) stands for (3.3) with Z(t) takes constant value 0.

Next, we add a small perturbation to the two kinds of boundaries. From the pa-
rameterization representation point of view, the perturbation replaces the boundary
curve (3.4) by:

(3.5) B̃t(ϑ) = {(ζ, ϑ)|ζ = Z(t) + δ(t)P(ϑ), ϑ ∈ R} ,

where δ(t)� 1 stands for the amplitude of the perturbation, and P(ϑ) characterizes
the perturbation profile. Thus, the perturbed boundary at time t is still parame-
terized by the variable ϑ. Intuitively, (3.5) means that the perturbation will push
the point (Z, ϑ∗) ∈ Bt to (Z + δP(ϑ∗), ϑ∗) ∈ B̃t for any ϑ∗ ∈ R. Note that the
perturbation form (3.5) enables the evolution of the perturbation term to reduce to
the evolution of the amplitude function δ(t) while its spatial profile persists. Such
an ansatz with temporal and spatial degrees of freedom separated makes sense only
when the profile function represents a typical model of a general classical of contours.
In the next, we explain how to choose the perturbation profiles in the two cases.

In the radial symmetry case, the profile P(θ) is parameterized by θ ∈ [−π, π)
and it can be expressed as a Fourier expansions in general. In particular, for the
single wave perturbation with wave number l, P(θ) takes the form of:

(3.6) P(θ) = C1 cos lθ + C2 sin lθ, with l ∈ N+,

where C1, C2 are constant coefficients. Note that by rotating the coordinate system
and rescaling on δ(t), without loss of generality we can simply take

(3.7) P(θ) = cos lθ def= Pl(θ).

For the traveling wave case, the profile is parameterized by y ∈ R. By a similar
reason to the radial case, we can simply consider

(3.8) Pl(y) = cos ly, with l ∈ R+,

otherwise we can just shift the profile along y-axis.
It is important to note that for the perturbation of the traveling wave, we are

actually allowed to take P(y) = cos ly with l ∈ R+. However, only integer frequencies
perturbation are reasonable for the radial case, since P(θ) has to be a 2π-periodic
function.

3.2. Solutions after perturbation. Let D̃(t), enclosed by B̃t, denote the tumoral
region after the perturbation. Then the perturbed functions (c̃, p̃, ρ̃) satisfy the
equations (boundary conditions will be specified in the next subsection):

−∆c̃+ Ψ(ρ̃, c̃) = 0, on R2,(3.9a)
−∆p̃ = G0c̃, in D̃(t),(3.9b)

recall that Ψ(ρ̃, c̃) reads (2.15) in the in vitro model and (2.16) in the in vivo model.
When the boundary perturbation vanishes, (3.9) reduce to the the unperturbed
problem, where the solutions are given in a closed-form. In the presence of the
boundary perturbation, we still have ρ̃ = χD̃ since it remains as a patch, but the
solution to c̃ and p̃ are no longer available. However, we can alternatively seek
asymptotic solutions of c̃ and p̃ with respect to δ, while the condition ρ̃ = χD̃ help
to linearize the calculation. We elaborate the asymptotic analysis procedures as
follows.
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Firstly, corresponding to the small perturbation (3.5), we have the following
asymtotic expansion with respect to the small value δ:

c̃(ζ, ϑ, t) = c0(ζ, t) + δc1(ζ, ϑ, t) +O(δ2),(3.10a)
p̃(ζ, ϑ, t) = p0(ζ, t) + δp1(ζ, ϑ, t) +O(δ2).(3.10b)

Since the perturbation scale is assumed to be very small, i.e., δ � 1, the behavior of
the perturbed solutions are dominated by the unperturbed ones. Thus, the leading
order terms c0(ζ, t) and p0(ζ, t) take the same expression as the solutions without
perturbation, which have been solved in Section 2.2. On the other hand, the main
response corresponding to the perturbation are captured by the first-order terms
c1(ζ, ϑ, t) and p1(ζ, ϑ, t). Note that besides variable ζ they depend on ϑ as well.

We continue to investigate the structures of c1 and p1 when the perturbation
profile (3.5) is given by P(ϑ) = Pl(ϑ), here Pl(ϑ) presents (3.7) or (3.8) in the
respective case. In either case, the perturbed tumoral region D̃ still possess a
symmetry, or periodicity, respect to the parameter ϑ (θ for the radial case and y
for the traveling wave case). Then we have following conclusion for the perturbed
solutions (c̃, p̃).

Lemma 3.1. If the perturbed solutions are unique, then they must process the same
periodicity as the boundary geometry.

Proof. For either scenario, the front of traveling wave or radially symmetric boundary,
we assume the boundary has periodicity ϑ∗. Then, with respect to (3.5) we have:

(3.11) ζ(ϑ) = ζ(ϑ+ ϑ∗),

where ζ(ϑ) def= Z(t) + δP(ϑ). For P(ϑ) = cos lϑ, ϑ∗ is given by ϑ∗ = 2π
l . We define

the translation operator τϑ∗(ζ, ϑ) : (ζ, ϑ) 7→ (ζ, ϑ+ ϑ∗). One can easily observe that
the nutrient equations (for either in vitro or in vivo) and the pressure equation are
both invariant under τϑ∗ since the operator simply corresponds to a translation or a
rotation, and diffusion operator is isotropic. Moreover, the boundary geometry and
boundary conditions remain the same under the operator τϑ∗ as well. Thus, the
uniqueness of the solution yield that the unique solutions c∗ and p∗ must possess
the same periodicity as the boundary geometry. That is,

c∗(ζ, ϑ) = c∗(τϑ∗(ζ, ϑ)),(3.12a)
p∗(ζ, ϑ) = p∗(τϑ∗(ζ, ϑ)).(3.12b)

�

According to the above lemma, to be consistent with the boundary’s periodicity,
we expand c1(ζ, ϑ, t) and p1(ζ, ϑ, t) as Fourier series, and (3.10) can be further
written as:

c̃(ζ, ϑ, t) = c0(ζ, t) + δ(t)Σ∞k=1c
k
1(ζ, t)Pkl (ϑ) +O(δ2),(3.13a)

p̃(ζ, ϑ, t) = p0(ζ, t) + δ(t)Σ∞k=1p
k
1(ζ, t)Pkl (ϑ) +O(δ2),(3.13b)

where Pkl (ϑ) = cos klϑ. In the above expansions, ck1(ζ, t) and pk1(ζ, t) (with k ∈ N+)
serve as the Fourier coefficients with O(1). From the calculation in the later sections
(Section 4.2 and Section 5.2), we will see that only c11 and p1

1, the coefficients of the
wave number that is the same as the perturbation, do not vanish. Therefore, it
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suffices to keep the first term in the series (3.13) and drop the superscript in c11, p1
1

and, P1
l . Thus, (3.13) writes

c̃(ζ, ϑ, t) = c0(ζ, t) + δ(t)c1(ζ, t)Pl(ϑ) +O(δ2),(3.14a)
p̃(ζ, ϑ, t) = p0(ζ, t) + δ(t)p1(ζ, t)Pl(ϑ) +O(δ2).(3.14b)

In the traveling wave case, the dependency of t can be removed for the terms cj
and pj (j = {0, 1}), since the unperturbed tumor boundary do not evolve in time.
Finally, by plugging the expansion (3.14) into (3.9) and collect the first order terms
we get

−∆(c1(ζ, t)Pl(ϑ)) + λc1(ζ, t)Pl(ϑ) = 0, in D̃(t),(3.15a)
−∆(p1(ζ, t)Pl(ϑ)) = G0(c1(ζ, t)Pl(ϑ)), in D̃(t),(3.15b)

for either nutrient regime. In addition, for the in vivo model c1 also satisfies

(3.15c) −∆(c1(ζ, t)Pl(ϑ)) + c1(ζ, t)Pl(ϑ) = 0, in R2 \ D̃(t).

where we used the fact that the zero order terms satisfy (3.9). By solving (3.15),
one can get the solutions of c1 and p1 for the respective models. Note that (3.15)
implies the expression of c1 and p1 depend on the wave number l. The detailed
computation will be carried out for the specific cases in the later sections.

3.3. Match the boundary condition. In the last part of this section, we explain
how to determine the particular solutions of c1 and p1 by matching the boundary
conditions. We also show that by using the expression of p1, one can determine the
evolution of the perturbation magnitude.

In this section, we always assume the perturbation profile P(ϑ) is given by Pl(ϑ).
And note that given t for any ϑ ∈ R, (Z + δPl(ϑ), ϑ) presents a point on the
perturbed boundary B̃t, which is originally at the position (Z, ϑ) ∈ Bt. Recall that
c0 and c1 (similarly for p0 and p1) only depend on the variable ζ in space, and the
unperturbed boundary Bt is characterized as the contour of ζ with level set index
Z(t) (see (3.4)).

Since the analytical solutions are not available for the perturbed problem, it is
not practical to enforce the boundary conditions in the precise way. Instead, since
we seek the first order perturbation solutions due to the boundary variation, we can
approximately match the the perturbed solutions at the perturbed boundary up to
O(δ2) error with the their evaluations at the unperturbed boundary.

For the in vitro model, the perturbed solution c̃ satisfies the boundary condition:

(3.16) c̃ = cB , at B̃t.

Thus by using expansion (3.14a), we can evaluate c̃ at the perturbed boundary point
(Z + δPl(ϑ), ϑ) to get

c̃(Z + δPl(ϑ), ϑ, t) = c0(Z + δPl(ϑ), t) + δc1(Z + δPl(ϑ), t)Pl(ϑ) +O(δ2)(3.17)
= c0(Z, t) + δ∂ζc0(Z, t)Pl(ϑ) + δc1(Z, t)Pl(ϑ) +O(δ2),

where we used the Taylor expansions for c0(Z + δPl, t) and c1(Z + δPl, t). By
the boundary conditions of the perturbed and unperturbed problems, we have
c̃(Z + δPl(ϑ), ϑ, t) = c0(Z, t) = cB for arbitrary ϑ ∈ R. Thus the zero order terms
in (3.17) are canceled out, and by balancing the first order terms in (3.17) we get

(3.18) ∂ζc0(Z, t) + c1(Z, t) = 0.
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While for the in vivo model, c̃ and its normal derivative are both continuous at B̃t.
And in either kind of boundary, the normal derivative of c̃(ζ, ϑ, t) on B̃t is given
by ∂ζ c̃(ζ, ϑ, t) for any B̃(ζ, ϑ) ∈ B̃t. And if we decompose the solution c̃ according
to the regions as c̃ = c̃(i)χD̃ + c̃(o)χR2\D̃, i.e., let c̃(i) denotes the nutrient solution
inside the tumor, and c̃(o) presents the outside solution. Then, the continuity at the
boundary yields

c̃(i)(Z + δPl(ϑ), ϑ, t) = c̃(o)(Z + δPl(ϑ), ϑ, t), ∀ϑ ∈ R(3.19a)

∂ζ c̃
(i)(Z + δPl(ϑ), ϑ, t) = ∂ζ c̃

(o)(Z + δPl(ϑ), ϑ, t), ∀ϑ ∈ R,(3.19b)

With the same spirit of (3.17), for ∂ζ c̃(Z + δPl(ϑ), ϑ, t) we have
(3.20)
∂ζ c̃(Z + δPl(ϑ), ϑ, t) = ∂ζc0(Z, t) + ∂2

ζ c0(Z, t)δPl(ϑ) + ∂ζc1(Z, t)δPl(ϑ) +O(δ2).

Since c0 is the solution to the unperturbed problem (given by (2.32) or (2.23) for
the respect case), c0 and c′0 are both continuous at the unperturbed boundary
Bt = {ζ = Z(t)}. More precisely,

c
(i)
0 (Z, t) = c

(o)
0 (Z, t),(3.21)

∂ζc
(i)
0 (Z, t) = ∂ζc

(o)
0 (Z, t).(3.22)

Thus, by using the expansions (3.17) and (3.20), the boundary condition (3.19)
yields

c
(i)
1 (Z, t) = c

(o)
1 (Z, t),(3.23a)

∂2
ζ c

(i)
0 (Z, t) + ∂ζc

(i)
1 (Z, t) = ∂2

ζ c
(o)
0 (Z, t) + ∂ζc

(o)
1 (Z, t).(3.23b)

By using (3.18) or (3.23) as the boundary condition for c1, we can work out the
particular solution of c1 in the respective cases. We mention that when the boundary
is the traveling front, to carry out the full expression of c1, we also need to use the
boundary condition c1(−∞, y) = c1(+∞, y) = 0 for any y ∈ R, which is derived
from c̃(−∞, y) = 0 and c̃(+∞, y) = cB for any y ∈ R. The detail calculations will
be carried out for each specific case later (Section 4.2 and Section 5.2).

In either nutrient model, the perturbed pressure solution p̃ satisfies the boundary
condition
(3.24) p̃ = 0, at B̃t.
Similar to the previous calculations. By using the expansion (3.14b) to evaluate p̃
at (Z + δPl(ϑ)) ∈ B̃t, we get
(3.25) p̃(Z + δPl(ϑ), ϑ, t) = p0(Z, t) + ∂ζp0(Z, t)δPl(ϑ) + p1(Z, t)δPl(ϑ) +O(δ2).
The perturbed and unperturbed boundary condition yield that p̃(Z + δPl(ϑ), ϑ, t)
and p0(Z, t) both equal to zero. In particular, p0 as the unperturbed solution has
already been solved in the Section 2.2. Thus we get
(3.26) ∂ζp0(Z, t) + p1(Z, t) = 0.
Then by using the expression of c1 (see (3.15b)) and (3.26), we can further determine
the particular solution of p1. For the traveling wave case, we also use the condition
∂ζp1(−∞, y) = 0 for ∀y ∈ R. Finally, the normal boundary speed (2.10) yields:

(3.27) d(Z(t) + δ(t)Pl(ϑ))
dt

= −∂ζ p̃(Z + δPl(ϑ), ϑ, t).
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By plugging the expression of p̃ into (3.27) and taking Taylor expansion for the ζ
variable, we get
(3.28)
dZ

dt
+ dδ

dt
Pl(ϑ) = −

(
∂ζp0(Z, t) + ∂2

ζp0(Z, t)δPl(ϑ) + ∂ζp1(Z, t)δPl(ϑ) +O(δ2)
)
.

Since the unperturbed problem yields dZ
dt = −∂ζp0(Z, t), the above identity can be

further simplified into

(3.29) δ−1 dδ

dt
= −

(
∂2
ζp0(Z, t) + ∂ζp1(Z, t) +O(δ)

)
.

In the end, we determine the evolution of the perturbation magnitude by the sign
of δ−1 dδ

dt . If it is positive, then it implies the growing of the magnitude. For
the radial case, Z(t) is given by the unperturbed tumor radius R(t), therefore
δ−1 dδ

dt ∼ −(∂2
rp0(R(t), t) + ∂rp1(R(t), t)). Note that the leading order of δ−1 dδ

dt is
independent on θ, which parameterize the boundaries. While, for the traveling
wave case, Z(t) = 0, thus δ−1 dδ

dt ∼ −(∂2
ξp0(0) + ∂ξp1(0)), which is independent of

y. Furthermore, under the same nutrient regime, we expect that the boundary
instability of the radius case will coincide with that of the traveling wave when R
increase to infinity.

4. Stability of traveling waves in the two nutrient models
In this section, we study the boundary stability of the traveling wave front under

two nutrient regimes. In Section 4.1, we establish the set up and main conclusions. In
Section 4.2, we work out the expression of δ−1 dδ

dt for the two nutrient models, which
serves as the proof of Theorem 4.1. And in Section 4.3, we prove the mathematical
properties of δ−1 dδ

dt summarized in Corollary 4.2, and these properties further yield
the boundary behaviors summarized in Remark 4.3.

4.1. Setup and main results. As presented in Section 3.1, in the traveling wave
case we employ the Euler coordinate system (ξ, y). In the absence of perturbation,
the tumor boundary is defined by (3.3) with the level set index Z(t) = 0, and
the tumor region is the left half space D(t) = {(ξ, y)|ξ 6 0}. Then following the
framework of Section 3, we consider the perturbation by a single wave mode:
(4.1) Pl(y) = cos ly with l ∈ R+,

thus the perturbed boundary (3.5) writes:

(4.2) B̃t(y) = {(ξ, y)|ξ = δ(t) cos ly, y ∈ R} ,

and the perturbed tumor region becomes
(4.3) D̃(t) = {(ξ, y)|ξ 6 δ(t) cos ly, y ∈ R} .

Then correspond to the above perturbation, the perturbed solutions c and p solves
(3.9). Note that we dropped the tilde of the perturbed solutions for simplicity.
Further more, the perturbed solutions possess the asymptotic expansions:

c(ξ, y, t) = c0(ξ) + δ(t)c1(ξ, y) +O(δ2),(4.4a)
p(ξ, y, t) = p0(ξ) + δ(t)p1(ξ, y) +O(δ2),(4.4b)

where the leading order terms c0 and p0 correspond to the solution of the unperturbed
problems, which have been solved in Section 2.2.1 and Section 2.2.2 for the respective
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nutrient model. And the first order terms c1(ξ, y, t) and p1(ξ, y, t) can be further
expanded as

c1(ξ, y) = Σ∞k=1c
k
1(ξ) cos kly,(4.4c)

p1(ξ, y) = Σ∞k=1p
k
1(ξ) cos kly.(4.4d)

with l ∈ R+, so that c1 has the same periodicity as the boundary geometry. However,
from the calculation later we will see that ck1(ξ) = pk1(ξ) = 0 for any k 6= 1.

For the in vivo model, we use the superscript (i) or (o) to denote the solution
inside or outside the tumor region D̃(t). Then according to (3.15a) and (3.15c) we
have

−∆c(i)
1 (ξ, y) + λc

(i)
1 (ξ, y) = 0,(4.5a)

−∆c(o)
1 (ξ, y) + c

(o)
1 (ξ, y) = 0.(4.5b)

And by using the expansion in (3.17) and (3.20), the series form of c1(ξ, y) in (4.4c),
the boundary condition (3.19) yields

c
(i),k
1 (0) = c

(o),k
1 (0), ∀k ∈ N+,(4.6a)

∂ξc
(i),k
1 (0) = ∂ξc

(o),k
1 (0), ∀k > 2,(4.6b)

∂2
ξ c

(i)
0 (0) + ∂ξc

(i),1
1 (0) = ∂2

ξ c
(o)
0 (0) + ∂ξc

(o),1
1 (0).(4.6c)

Further more, the assumptions c(−∞, y) = 0 and c(+∞, y) = cB for any y ∈ R
yields

c
(i),k
1 (−∞) = 0,(4.6d)

c
(o),k
1 (+∞) = 0,(4.6e)

for any k ∈ N+.
For the in vitro model, c presents the nutrient solution inside the tumor and

equation (3.15a) writes

(4.7) −∆c1(ξ, y) + λc1(ξ, y) = 0, in D̃(t).
By using (3.17) and the series expansion of c1 in (4.4c), the boundary condition
(3.16) yields:

∂ζc0(0) + c11(0) = 0.(4.8a)
ck1(0) = 0, ∀k > 2.(4.8b)

and similar to the in vivo model, the assumption c(−∞, y) = 0 for any y ∈ R gives

(4.8c) ck1(−∞) = 0, ∀k ∈ N+.

Once c1(ξ, y) is determined, we can move on to the study of the first order term of
pressure, i.e., p1(ξ, y). Under either nutrient regime, p1(ξ, y) satisfies the equation:

(4.9) −∆p1(ξ, y) = G0c1(ξ, y), in D̃(t).
By using the expansion (3.25), the series form of p1 in (4.4d), the boundary condition
(3.24) yields

∂ζp0(0) + p1
1(0) = 0,(4.10a)

pk1(0) = 0, ∀k > 2.(4.10b)
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Figure 1. F2(λ, l) for G0 = 1, cB = 100, left one: λ = 0.8, right
one: λ = 2.

On the other hand, for the traveling wave case we require ∂ζp(−∞, y) = 0, which
further yields ∂ξp1(−∞, y) = 0. Therefore,

(4.10c) ∂ξp
k
1(−∞) = 0, for ∀k ∈ N+.

Once the expression of p1(ξ, y) is determined, we can further work out the expression
of δ−1 dδ

dt for the two nutrient regimes, which determines the evolution of the
perturbation amplitude. Now we establish the main conclusions, and the details of
the calculation will be left to the next subsection.

Theorem 4.1. Given growing rate G0 > 0, background concentration cB > 0, nu-
trient consumption rate λ > 0, and perturbation frequency l ∈ R+. The perturbation
evolution function, δ−1 dδ

dt , of the in vitro model is given by:

(4.11) δ−1 dδ

dt
= G0cB√

λ
· (
√
λ−

√
λ+ l2) +O(δ) def= F1(λ, l) +O(δ).

For the in vivo model, δ−1 dδ
dt is given by:

δ−1 dδ

dt
= G0cB√

λ

(√
λ− l√
λ+ 1

+ l −
√
λ+ l2√

λ+ l2 +
√

1 + l2

)
+O(δ)(4.12)

def= F2(λ, l) +O(δ).

Note that in either nutrient regime, the value of G0, cB > 0 serve as scaling
parameters, therefore do not influence the quantitative behavior of δ−1 dδ

dt . For the
in vitro model, one can easily check that F1(λ, l) is always negative. For the in vivo
model, F2(λ, l) is plotted in Figure 1 for different choice of λ. Base on the expression
of F1, F2, and the observations from Figure 1, we prove following mathematical
properties for the evolution equations.

Corollary 4.2. Fix G0 > 0 and cB > 0. For any λ > 0 and l > 0, F1(λ, l) in
(4.11) is always negative, therefore the perturbation amplitude always decreases in
the in vitro model. For the in vivo model, δ−1 dδ

dt is given by F2(λ, l) as in (4.12).
When l approaches zero, F2 has the asymptote:

F2(λ, l) ∼ (λ− 1) · l2 +O(l3)
2λ(
√
λ+ 1)(

√
λ+ l2 +

√
1 + l2)

,(4.13a)
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and the limit at infinity:

lim
l→+∞

F2(λ, l)→ −∞.(4.13b)

Further more, for λ > 1 there exists L > 0 such that F2(λ, l) > 0 for l ∈ (0, L). And
for 0 < λ 6 1, we have F2(λ, l) < 0 for any l > 0. And in particular, when λ = 1,
F2 can be further simplified into:

(4.14) F2(1, l) = l(1−
√

1 + l2)
2
√

1 + l2
< 0, for l > 0.

Remark 4.3. The mathematical properties of F2(λ, l) in Corollary 4.2 imply the
following boundary behaviors:

(1) When the consumption rate is relatively large, the amplitude of low-
frequency perturbations can grow in time, and the boundary propagation,
therefore, becomes unstable. However, the amplitude of high-frequency
perturbation decays. Correspondingly, the perturbed, wave like, boundary
degenerates to the vertical line.

(2) When the nutrient consumption rate is relatively small, the perturbation
amplitude decreases for perturbation of any frequency, i.e., the wave like
boundary always evolve to a vertical line in this regime.

Remark 4.4. For either nutrient model, δ−1 dδ
dt → 0 as l → 0, we claim that this

relate to the single wave perturbation of the radially symmetric solution as its radius
R goes to infinity. This relationship will be further discussed in Section 5.4.

4.2. The detailed calculations for the two nutrient regimes. In this sub-
section we work out the expression of δ−1 dδ

dt in Theorem 4.1 for the two nutrient
models.

For the in vivo case. Plugging the expansion (4.4c) of c1(ξ, y) into (4.5), together
with the conditions (4.6d) and (4.6e), for any k ∈ N+ we have:

c
(i),k
1 (ξ) = ak1e

√
λ+k2ξ for ξ 6 0,(4.15a)

c
(o),k
1 (ξ) = bk1e

−
√

1+k2ξ for ξ > 0.(4.15b)

Recall that the leading order terms c(i)
0 (ξ) and c(o)

0 (ξ) are given by (2.23). Then
(4.6a)-(4.6c) yield ak1 = bk1 = 0 for any k 6= 1, for k = 1 we get nontrivial solution:

(4.16) c
(i),1
1 (ξ) = c

(o),1
1 (ξ) = −

√
λcB√

λ+ l2 +
√

1 + l2
e
√
λ+l2ξ.

By now, c(i),k
1 (ξ) and c

(o),k
1 (ξ) are determined for any k. Therefore, c1(ξ, y) is

determined. Then by solving equation (4.9) together with boundary conditions
(4.10) (with p0 given by (2.24)), we get pk1(ξ) = 0 for any k 6= 1, and:

(4.17a) p1
1(ξ) = Aelξ − G0

λ
c

(i),1
1 (ξ) = Aelξ + G0cB√

λ(
√
λ+ l2 +

√
1 + l2)

e
√
λ+l2ξ,

with A given by:

(4.17b) A = G0cB√
λ

(
1√
λ+ 1

− 1√
λ+ l2 +

√
1 + l2

)
.
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By using the expression of p0(ξ) and p1
1(ξ), (3.29) yields that up to an error of O(δ):

δ−1 dδ

dt
= −

(
∂2
ξp0(0) + ∂ξp

1
1(0)

)
(4.18)

= G0cB√
λ

(√
λ− l√
λ+ 1

+ l −
√
λ+ l2√

λ+ l2 +
√

1 + l2

)
= F2(λ, l).

For the in vitro model. Plugging the expansion of c1(ξ, y) (4.4c) into (4.7), together
with the conditions (4.8c), for any k ∈ N+ we have:

(4.19) ck1(ξ) = ak1e
√
λ+k2ξ for ξ 6 0.

And the leading order term c0(ξ) for this case is given by (2.19). Then by using
boundary condition (4.8), we get ck1(ξ) = 0 for any k 6= 1, and for k = 1:

(4.20) c11(ξ) = −cB
√
λe
√
λ+l2ξ.

Then similar to the previous case, by solving equation (4.9) together with boundary
conditions (4.10) (with p0 given by (2.20)), we get pk1(ξ) = 0 for any k 6= 1. And for
k = 1:

(4.21) p1
1(ξ) = G0cB√

λ
e
√
λ+l2ξ.

Finally, by using the expression of p0 and p1
1, (3.29) yields up to an error of O(δ):

δ−1 dδ

dt
= −

(
∂2
ξp0(0) + ∂ξp

1
1(0)

)
(4.22)

= G0cB√
λ

(
√
λ−

√
λ+ l2) = F1(λ, l).

By now we complete the proof of Theorem 4.1.

4.3. Boundary stability analysis for the two nutrient models. In this sub-
section, we prove the mathematical properties of F1 and F2 in Corollary 4.2, which
further yields the boundary behaviors in Remark 4.3.

For the in vitro model, one can easily check that F1(λ, l) 6 0 for any frequency
l > 0. Thus, the amplitude of the perturbation decays as time evolves for any single
frequency perturbation. Therefore, the proof of the argument for the in vitro model
in Corollary 4.2 is completed.

For the in vivo model, δ−1 dδ
dt is given by (4.12) and plotted in Figure 1. The

limit (4.13b) is obviously for checking. For the asymptote of l approaches 0, note
that

F2(λ, l) = (
√
λ− l)(

√
λ+ l2 +

√
1 + l2) + (l −

√
λ+ l2)(

√
λ+ 1)√

λ(
√
λ+ 1)(

√
λ+ l2 +

√
1 + l2)

(4.23)

= N(λ, l)
2λ(
√
λ+ 1)(

√
λ+ l2 +

√
1 + l2)

.

By using the Taylor expansion
√

1 + x = 1 + x
2 +O(x2), when l approaches to 0 we

have

(4.24) N(λ, l) = λ− 1
2
√
λ
l2 +O(l3).
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Therefore, if λ > 1 then F2(λ, l) > 0 for l close to zero, and F2(λ, l) < 0 for l
sufficiently large. Thus, by the intermediate value theorem and the continuity of
F2(λ, l) in l, there exists L > 0 such that F2(λ, l) > 0 for l ∈ (0, L).

Now, we prove F2(λ, l) < 0 for any 0 < λ 6 1 and l > 0. From the expression in
(4.12), F2(λ, l) < 0 hold obviously for l >

√
λ. On the other hand, the denominator

in (4.23) is always positive. Therefore, it is sufficient for us to show the numerator
N(λ, l) is negative for 0 < l <

√
λ 6 1. Indeed, by taking the derivative of N(λ, l)

with respect to l, we get
∂N(λ, l)

∂l
= −(

√
λ+ l2 +

√
1 + l2) + (

√
λ+ 1) + −l(l + 1)√

λ+ l2
+ l(
√
λ− l)√

1 + l2
(4.25)

6 − l(l + 1)√
λ+ l2

+ l(
√
λ− l)√

1 + l2

6
l(
√
λ− 1− 2l)√
λ+ l2

< 0.

for 0 < l <
√
λ 6 1. Finally, combine with the fact N(λ, 0) = 0, we can conclude

N(λ, l) < 0 for 0 < l <
√
λ 6 1. By now, we complete the proof of Corollary 4.2.

5. Stability of radially symmetric boundary in the two nutrient
models
In this section, we study the boundary stability of the radially symmetric solution

under the two nutrient regimes. The structure of this section is arranged as follow.
We establish the setups and main conclusions in Section 5.1. After that we carry
out the calculation of δ−1 dδ

dt for the two nutrient models in Section 5.2, which serves
as the proof of Theorem 5.1. Then, we proof the mathematical properties of the
perturbation evolution functions summarized in Corollary 5.5 in Section 5.3. Finally,
we discuss the relationship between the perturbation of the radial boundary and
the traveling wave boundary in Section 5.4.

5.1. Setup and main results. For the radial case, we employ the polar coordinate
system (r, θ). Before the perturbation, the tumor boundary is defined by (3.3) with
the level set index Z(t) = R(t), and the tumor region corresponds to the disk with
radius R(t), D(t) = {(r, θ)|r 6 R(t)}. Following the framework of Section 3, we
consider the perturbation by a single wave mode, i.e. Pl(θ) = cos lθ with θ ∈ [−π, π).
Then, the perturbed boundary (3.5) writes:

(5.1) B̃t(θ) = {(r, θ)|r = R(t) + δ(t) cos lθ, θ ∈ [−π, π)} .
Then the perturbed solutions (drop the tilde) c and p solves (3.9), with the perturbed
tumor region D̃(t) enclosed by B̃t(θ). Further more, c and p have the asymptotic
expansions:

c(r, θ, t) = c0(r, t) + δ(t)c1(r, θ, t) +O(δ2),(5.2a)
p(r, θ, t) = p0(r, t) + δ(t)p1(r, θ, t) +O(δ2),(5.2b)

where the leading order terms c0 and p0 correspond to the unperturbed solutions
for the respective nutrient model solved in Section 2.2.3 and Section 2.2.4. And the
first order terms c1(r, θ, t) and p1(r, θ, t) can be further expanded as

c1(r, θ, t) = Σ∞k=1c
k
1(r, t) cos klθ,(5.2c)
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p1(r, θ, t) = Σ∞k=1p
k
1(r, t) cos klθ.(5.2d)

where l as the perturbation wave number is a positive integer. And from the
calculation we will verify that ck1(r, t) = pk1(r, t) = 0 for any k 6= 1.

For the in vivo model, same as before we use the superscript (i) or (o) to denote
the solution inside or outside the tumor region D̃(t). Then according to (3.15a) and
(3.15c) we have

−∆c(i)
1 (r, θ, t) + λc

(i)
1 (r, θ, t) = 0,(5.3a)

−∆c(o)
1 (r, θ, t) + c

(o)
1 (r, θ, t) = 0.(5.3b)

and the Laplacian operator writes: ∆ = ∂2

∂r2 + 1
r
∂
∂r + 1

r2
∂2

∂θ2 . By using the expansion
in (3.17) and (3.20), the series form of c1(ξ, y) in (5.2c), the boundary condition
(3.19) yields

c
(i),k
1 (R(t), t) = c

(o),k
1 (R(t), t), ∀k ∈ N+,(5.4a)

∂rc
(i),k
1 (R(t), t) = ∂rc

(o),k
1 (R(t), t), ∀k > 2,(5.4b)

∂2
r c

(i)
0 (R(t), t) + ∂rc

(i),1
1 (R(t), t) = ∂2

r c
(o)
0 (R(t), t) + ∂rc

(o),1
1 (R(t), t).(5.4c)

In addition, the assumptions c(0, θ) < +∞ and c(+∞, θ) = cB for any θ ∈ [−π, π)
yield that

c
(i),k
1 (0, t) < +∞,(5.4d)

c
(o),k
1 (+∞, t) = 0,(5.4e)

for any k ∈ N+.
For the in vitro model, c presents the nutrient solution inside the tumor and

equation (3.15a) writes

(5.5) −∆c1(r, θ, t) + λc1(r, θ, t) = 0, in D̃(t).
And by using (3.17) and the series expansion of c1 in (5.2c), the boundary condition
(3.16) yields:

∂ζc0(R(t), t) + c11(R(t), t) = 0.(5.6a)
ck1(R(t), t) = 0, ∀k > 2.(5.6b)

Similar to the in vivo model, the boundary condition (5.4d) remains ture (drop the
superscript (i)).

Once c1(r, θ, t) is determined by the boundary value problems above, we can
further determine p1(r, θ, t) for the corresponding model. Under either nutrient
regime, p1(r, θ, t) satisfies the equation:

(5.7) −∆p1(r, θ, t) = G0c1(r, θ, t), in D̃(t).
By using the expansion (3.25), the series form of p1 in (5.2d), the boundary condition
(3.24) yields

∂rp0(R(t), t) + p1
1(R(t), t) = 0.(5.8a)

pk1(R(t), t) = 0, ∀k > 2.(5.8b)

And by asymmetry we also have ∂rp(0, θ, t) = 0, which further provides

(5.8c) ∂rp
k
1(0, t) = 0, for ∀k ∈ N+.
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Once p1(r, θ, t) are determined, we can work out the expression of δ−1 dδ
dt for the

two nutrient regimes as in (3.29), which further determines the evolution of the
perturbation amplitude. Now we establish the main conclusions, and the detailed
calculation will be left to the next subsection.

Theorem 5.1. Given growing rate G0 > 0, background concentration cB > 0,
nutrient consumption rate λ > 0, and perturbation wave number l ∈ N+. When the
radius of the tumor is around R (the corresponding unperturbed tumor has radius
R), the evolution function δ−1 dδ

dt for the in vitro model is given by:
(5.9)

δ−1 dδ

dt
= G0cBI1(

√
λR)

I0(
√
λR)

(
I ′1(
√
λR)

I1(
√
λR)

− I ′l(
√
λR)

Il(
√
λR)

)
+O(δ) def= F3(λ, l, R) +O(δ).

For the in vivo model, δ−1 dδ
dt is given by:

δ−1 dδ

dt
= G0cBl√

λRC(R)

(
C1(R)
Cl(R)Kl(R)Il(

√
λR)−K1(R)I1(

√
λR)

)
(5.10)

− G0cB
C(R)

(
C1(R)
Cl(R)Kl(R)I ′l(

√
λR)−K1(R)I ′1(

√
λR)

)
+O(δ)

def= F4(λ, l, R) +O(δ)

where C(R) is defined in (2.33), and Cj(R) (j ∈ N+) is given by

(5.11) Cj(R) = K ′j(R)Ij(
√
λR)−

√
λI ′j(
√
λR)Kj(R).

Since the results are presented in terms of the Bessel functions, we review the
basic properties of them in Appendix A. Also note that in either nutrient regime,
the value of G0, cB > 0 serve as scaling parameters, therefore do not influence the
quantitative behavior of δ−1 dδ

dt . For the in vitro model, we will show that F3(λ, l, R)
is always negative. For the in vivo model, fix the value of G0, cB > 0, F4(λ, l, R)
is plotted in Figure 2 for different choice of λ and perturbation wave number l.
Base on the expression of δ−1 dδ

dt for the two nutrient models and the Figure 2, we
establish following remarks.

Remark 5.2. F3(λ, 1, R) = F4(λ, 1, R) = 0 for any λ,R > 0. Since the mode 1
perturbation corresponds to a trivial translation instead of the change of boundary
geometry.

Remark 5.3. When 0 < λ 6 1, fix any wave number l > 2, F4(λ, l, R) is always
negative and monotone increases in R. Physically, when the nutrient consumption
rate is relatively low, the perturbation amplitude continuously decreases to zero,
regardless of the perturbation wave number and tumor size. Correspondingly, the
tumor always evolves from a star shape to a larger disk.

Remark 5.4. For the regime λ > 1, we have:
(1) For any fixed l > 2, there exists a threshold R∗(l) such that F4(λ, l, R) < 0

for 0 < R < R∗(l), and F4(λ, l, R) > 0 for R > R∗(l) (see the left top
picture in Figure 2). That means considering any single wave perturbation,
and assume the nutrient consumption rate is significant, the perturbation
amplitude will degenerate while the tumor size is relatively small, and the
tumor will evolve from a star shape to a larger disk as in the in vitro case.
However, when the tumor size becomes large enough, the amplitude of the
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Figure 2. Graphs of F4 with G0 = 1, cB = 100; top (left): λ = 100
and R ∈ [0, 20]; top (right): λ = 100 and R ∈ [0, 1]; bottom (left):
λ = 1 and R ∈ [0, 50]; bottom (right): λ = 0.8 and R ∈ [0, 50].

perturbation start to increase, and the tumor therefore remains in a star
shape (but with a larger size).

(2) Fix a proper value of R0, there exists l0 such that F4(λ, l, R0) > 0 for l < l0
and F4(λ, l, R0) < 0 for l > l0 (see the left top picture in Figure 2), which
implies that when the tumor size is around R0 the perturbation of lower
frequencies is easier to become unstable. See Figure 3 for the evolution of
tumors under different perturbation wave numbers, where the blue curves
correspond to the initial perturbed boundaries, and the red curves present
the tumors evolve after a certain time.

(3) As the tumor size expands, R(t) exceeds more thresholds R∗(l), therefore
the corresponding wave number perturbation become unstable successively.

Some of the results in the above remarks can be proved rigorously, we summarize
them in the following Corollary and the proof is left to Section 5.3.

Corollary 5.5. Fix G0 > 0 and cB > 0. For any λ > 0 and l > 0, F3(λ, l, R) is
always negative, therefore the perturbation amplitude always decays for the in vitro
model. For the in vivo model, we are able to show that for any λ > 0,

F4(λ, l, R) ∼ G0cB
1− l

2 as R ∼ 0,(5.12a)

F4(λ, l, R) ∼ G0cB
5(l2 − 1)(

√
λ− 1)

16λR2(
√
λ+ 1)

as R ∼ +∞.(5.12b)
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Figure 3. Evolution of tumor boundary for the in vivo model
with parameters: G0 = 1, cB = 100, λ = 100, R0 = 1.5, δ = 0.05,
T = 2. Wave numbers from left to right and top to bottom: l = 8,
l = 12, l = 16, l = 20.

Therefore, when λ > 1 and l > 2 there exists R∗(l) such that F4(λ, l, R∗(l)) = 0. In
addition, for λ = 1 and l > 2, F4(1, l, R) can be simplified into a simpler form:

(5.13) 1
cBG0

F4(1, l, R) =
l−1∑
j=1

R
(
Kj(R)Ij+1(R)−Kj+1(R)Ij+2(R)

)
−K1(R)I1(R).

Note that to fully prove the observations in Remark 5.3 and Remark 5.4, besides
the asymptotes given in Corollary 5.5, one also need to prove some monotonicity
results of F4(λ, l, R) with respect to the variable R or l. Unfortunately, we fail to
carry out the proof of that even for the special case λ = 1.

5.2. The detailed calculations for the two nutrient regimes. In this subsec-
tion we carry out the details of finding the expression of δ−1 dδ

dt for the two nutrient
models, which completes the proof of theorem 5.1.

For the in vivo case. Plugging the expansion (5.2c) of c1(ξ, y) into (5.3), together
with the conditions (5.4d) and (5.4e), for any k ∈ N+ we have:

c
(i),k
1 (r, t) = cBa

k
1(t)Ikl(

√
λr) for r 6 R(t),(5.14a)

c
(o),k
1 (r, t) = cBb

k
1(t)Kkl(r) for r > R(t).(5.14b)

Recall that the leading order terms c(i)
0 (ξ) and c(o)

0 (ξ) are given by (2.32). Then
(5.4a)-(5.4c) yield ak1 = bk1 = 0 for any k 6= 1, since Ij and Kj have the same sign,
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but I ′j and K ′j have the opposite sign, while for k = 1, we get nontrivial solutions

a1
1(t) =

(
a0(R(t))λI ′1(

√
λR(t)) + b0(R(t))K ′1(R(t))

)
Kl(R(t))

Cl(R(t)) ,(5.15a)

b11(t) =

(
a0(R(t))λI ′1(

√
λR(t)) + b0(R(t))K ′1(R(t))

)
Il(
√
λR(t))

Cl(R(t)) .(5.15b)

where Cl(R(t)) is defined by (5.11), and a0(R(t)) and b0(R(t)) are given by (2.33).
Note that a1

1(t) and b11(t) are depend on t via the tumor radius R(t), therefore we
write a1

1(R) instead of a1
1(t) in the following, and similarly for b11(R).

By now, ck1(r, t) is determined for all k, therefore c1(r, θ, t) is also determined.
Then by solving equation (5.7) with expansion (5.2d) and the boundary conditions
in (5.8) (with p0 given by (2.34)), we get pk1(r, t) = 0 for any k 6= 1, and:

(5.16a) p1
1(r, t) = G0cB

(
Bl(R)rl − 1

λ
a1

1(R)Il(
√
λr)
)

with Bl(R) given by:

(5.16b) Bl(R) = 1
Rl

(
a1

1(R)Il(
√
λR)

λ
+ a0(R)I1(

√
λR)√

λ

)
.

By using the expression of p0(r, t) and p1
1(r, t), (3.29) yields that up to an error of

O(δ):

δ−1 dδ

dt
= −

(
∂2
rp0(R, t) + ∂rp

1
1(R, t)

)
(5.17)

= G0cB

(
a0(R)I ′1(

√
λR)−Bl(R)lRl−1 + a1

1(R)I ′l(
√
λR)√

λ

)

= G0cB
l√

λR · C(R)

(
C1(R)
Cl(R)Kl(R)Il(

√
λR)−K1(R)I1(

√
λR)

)
−G0cB

1
C(R)

(
C1(R)
Cl(R)Kl(R)I ′l(

√
λR)−K1(R)I ′1(

√
λR)

)
def= F4(λ, l, R).

For the in vitro model. Plugging the expansion of c1(r, θ, t) (5.2c) into (5.5), together
with the conditions (5.4d), for any k ∈ N+ we have:

(5.18) ck1(r, t) = cBa
k
1(t)Ikl(

√
λr) for r 6 R(t).

And the leading order term c0(r, t) for this case is given by (2.28). Then by using
boundary condition (5.6), we get ak1(t) = 0 for any k 6= 1, since Ij is always positive.
While for k = 1:

(5.19) a1
1(R(t)) = − cB

√
λI1(
√
λR)

I0(
√
λR)Il(

√
λR)

.

Then similar to the previous case, by solving equation (5.7) together with boundary
conditions (5.8) (with p0 given by (2.29)), we get pk1(r, t) = 0 for any k 6= 1. And
for k = 1:

(5.20) p1
1(r, t) = G0cBI1(

√
λR)√

λI0(
√
λR)Il(

√
λR)

Il(
√
λr).
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Finally, by using the expression of p0 and p1
1, (3.29) yields up to an error of O(δ):

δ−1 dδ

dt
= −

(
∂2
rp0(R, t) + ∂rp

1
1(R, t)

)
(5.21)

= G0cBI1(
√
λR)

I0(
√
λR)

(
I ′1(
√
λR)

I1(
√
λR)

− I ′l(
√
λR)

Il(
√
λR)

)
= F3(λ, l, R).

5.3. Boundary stability analysis for the two nutrient models. In this sub-
section, we prove the mathematical properties of F3 and F4 summarized in Corollary
5.5 by using the properties for Bessel functions in the Appendix A.

For the in vitro model, δ−1 dδ
dt is given by (5.9), which is negative for any l ∈ N+

and cB , G0, λ,R > 0. Indeed, observe that (5.9) can be written as:

(5.22) δ−1 dδ

dt
= G0cB

I1(
√
λR)√

λRI0(
√
λR)

Hl(
√
λR),

where Hl(r)
def= r

(
I′1(r)
I1(r) −

I′l(r)
Il(r)

)
. It was checked that H ′l(r) > 0 for any r > 0 and

l ∈ N+ (see equation (2.19) in [27]). On the other hand, by using the asymptote
of Il(r) in (A.5), one can check that limr→∞Hl(r) = 0. Thus, Hl(r) < 0 for any
r > 0 and wave number l, which further yields δ−1 dδ

dt is negative as well. Therefore,
the amplitude of the perturbation decays as time evolves for any wave number. By
now, the proof of the argument for the in vitro model in Corollary 5.5 is completed.

For the in vivo model, δ−1 dδ
dt is given by (5.10). Now we check the properties

of F4(λ, l, R) established in Corollary 5.5. Observe that according to (5.10), the
evolution function can be decomposed as F4(λ, l, R) = G0cB(T1 − T2), where
T1(λ, l, R) and T2(λ, l, R) are given by:

T1(λ, l, R) = l√
λRC(R)

(
C1(R)
Cl(R)Kl(R)Il(

√
λR)−K1(R)I1(

√
λR)

)
,(5.23a)

T2(λ, l, R) = 1
C(R)

(
C1(R)
Cl(R)Kl(R)I ′l(

√
λR)−K1(R)I ′1(

√
λR)

)
.(5.23b)

By using the asymptotes in (A.4) one can check that for any wave number l > 2:

T1 ∼
1− l

2 , as R ∼ 0,(5.24a)

T2 ∼ 0, as R ∼ 0.(5.24b)

Therefore, F4(λ, l, R) ∼ G0cB
1−l
2 < 0 as R approaches to zero (this can be observed

in Figure 2).
On the other hand, by using the asymptotes at infinity: (A.5) and (A.6), we can

also check that

T1 ∼
l(1− 10l2)

32λR3(
√
λ+ 1)

= O( 1
R3 ), as R ∼ +∞,(5.24ca)

T2 ∼
5(1− l2)(

√
λ− 1)

16λR2(
√
λ+ 1)

, as R ∼ +∞,(5.24cb)

which further yields

(5.24d) F4(λ, l, R) ∼ 5(l2 − 1)(
√
λ− 1)

16λR2(
√
λ+ 1)

+O( 1
R3 ) as R ∼ +∞.
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Therefore, for λ > 1 by intermediate value theorem the function F4(
√
λ, l, R0) must

intersect the horizontal axis.
Now, we investigate the special case λ = 1. Firstly, observe that by using the

identity (A.3), F4(λ, l, R) can be further written into:

F4 = 1
C(R)

(
K1(R)I2(

√
λR)− C1(R)

Cl(R)Kl(R)Il+1(
√
λR)− l − 1√

λR
K1(R)I1(

√
λR)

)
.

(5.4)

Also note that when λ = 1, by using the Wronskians cross product (A.7), we get:

C(R) = I0(R)K1(R) + I1(R)K0(R) = 1
R
,(5.5a)

Cl(R) = −1
2 ((Kl+1(R) +Kl−1(R)) Il(R) + (Il+1(R) + Il−1(R))Kl(R))(5.5b)

= − 1
R

for ∀l ∈ N.

Therefore, when λ = 1 we can further simplify F4(λ, l, R) into:

1
cBG0

F4(λ, l, R) = R
(
K1(R)I2(R)−Kl(R)Il+1(R)

)
− (l − 1)K1(R)I1(R)

(5.6)

=
l−1∑
j=1

R
(
Kj(R)Ij+1(R)−Kj+1(R)Ij+2(R)

)
−K1(R)I1(R).

5.4. Relationship between the Radial boundary and the traveling wave
boundary. In the last section we discuss the relationship between the two kinds of
boundaries. In Section 2.2 we have already checked that without the perturbation,
the propagation speed of the radial boundary converges to that of the traveling
wave boundary as the radius tends to infinity.

Now, we explore the relationship for the perturbed boundaries. As before, we
use (r, θ) to present the polar coordinates, and (ξ, y) for the Euler coordinates.
Considering the perturbation of the radial boundary, let ỹ = θ ∗R(t) and l̃ = l/R(t).
Then the perturbation part can be rewritten as:

(5.7) Pl(θ) = cos lθ = cos l̃ỹ def= Pω(ỹ)

with ỹ ∈ (−πR, πR). Moreover, as R→ +∞, l̃ tends to zero and ỹ ∈ R.
Also note that we can map the unperturbed radial boundary, r = R, to the

unperturbed traveling wave boundary, ξ = 0, by the map:

(5.8) (R, θ) 7→ (0, tan θ/2), θ ∈ (−π, π).

Thus, as R→ +∞ any radial perturbation with finite wave number l (defined by
(5.1)) will converge to the perturbation of the traveling wave boundary (defined by
(4.2)) but with the zero frequency. Further more, for the same nutrient model the
following relationships of the amplitude evolution equations hold:

lim
R→+∞

F3(λ, l, R) = F1(λ, 0) = 0,(5.9a)

lim
R→+∞

F4(λ, l, R) = F2(λ, 0) = 0.(5.9b)

for any λ > 0 and l ∈ N+.
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6. Conclusion
In this paper, we study the tumor boundary instability induced by nutrient

consumption and supply in two scenarios: 1) the front of the traveling wave; 2)
the radially symmetric boundary. In each scenario, we investigate the boundary
behaviors under two different nutrient supply regimes, in vitro and in vivo.

For the traveling wave scenario, our analysis shows the boundary is stable for any
frequency perturbation l ∈ R+ and positive consumption rate λ when the nutrient
supply is governed by the in vitro regime. In contrast, for in vivo regime, there
exists a threshold value L such that the perturbation with a frequency smaller than
L becomes unstable when the nutrient consumption rate λ is larger than one.

Then we consider the radially symmetric boundary scenario to explore further
the influence of the finite size effect on boundary stability/instability. Our analysis
shows that the in vitro regime still suppresses the increase of perturbation amplitude
and stabilizes the boundary regardless of the consumption rate λ, perturbation
wave number l ∈ N, and tumor size R. For the in vivo regime, when λ 6 1, the
boundary behaves identically the same as the in vitro case. However, when λ > 1,
the continuous growth of tumor radius enables perturbation wave number l to
become unstable in turn (from low to high). Further more, as R is approaching
infinity, the results in the radial case connect to the counterparts in the traveling
wave case.

In the end, we conjecture that symmetric breaking traveling wave solutions may
exist in the in vivo nutrient regime. From Figure 4.1, one can observe that for proper
large l there exists λ0 > 1 such that F2(λ0, l) = 0, i.e., the perturbation amplitude
δ, up to some higher order error, neither growing nor decaying for such parameters.
Thus, it is reasonable to expect that one may get the symmetric breaking traveling
wave solutions by carefully modifying the linear solutions around the parameter
(λ0, l). We speculate that the technique in [27] might be helpful in solving this
conjecture, which we save for future studies.
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Appendix A. Properties of Bessel functions
Since the solutions of the radial case are presented in terms of the second kind

modified Bessel functions In(r) and Kn(r) (for n ∈ N), we review some basic
properties of them in this section. Firstly, In(r) and Kn(r) solve the differential
equation:

(A.1) r2 d
2f

dr2 + r
df

dr
− (r2 + n2)f = 0,

and are strict positive for any n ∈ N and r > 0. For the derivatives, we have
I ′0(r) = I1(r) > 0 and K ′0(r) = −K1(r) < 0, and for n > 1:

I ′n(r) = In−1(r) + In+1(r)
2 > 0,(A.2a)

K ′n(r) = −Kn−1(r) +Kn+1(r)
2 < 0.(A.2b)

Therefore, Ij(r) are monotone increasing functions, and Kj(r) are monotone de-
creasing functions. And the Bessel function In(r) satisfies:

(A.3) I ′n(r)− n

r
In(r) = In+1(r),

for any n ∈ N+.
When r → 0, In(r) and Kn(r) possess following asymptotes:

In(r) ∼ 1
Γ(n+ 1)(r2)n, for n ∈ N,(A.4a)

Kn(r) ∼ Γ(n)
2 (r2)−n, for n ∈ N+,(A.4b)

K0(r) ∼ − ln r.(A.4c)
While as r → +∞, In(r) and Kn(r) have the asymptotes:

In(r) ∼ ( 1
2πr )1/2er

(
1− 4n2 − 1

8r + (4n2 − 1)(4n2 − 9)
128n2 +O( 1

r3 )
)
,(A.5a)

Kn(r) ∼ ( π2r )1/2e−r
(

1 + 4n2 − 1
8r + (4n2 − 1)(4n2 − 9)

128r2 +O( 1
r3 )
)
.(A.5b)

By using (A.2), we can also derive the asymptotes for I ′(r) and K ′(r) for r → +∞:

I ′n(r) ∼ ( 1
2πr )1/2er

(
1− 4n2 + 3

8r + (4n2 − 1)(4n2 + 15)
128r2 +O( 1

r3 )
)
,(A.6a)

K ′n(r) ∼ −( 1
2πr )1/2e−r

(
1 + 4n2 + 3

8r + (4n2 − 1)(4n2 + 15)
128r2 +O( 1

r3 )
)
.(A.6b)

Further more, In(r) and Kn(r) satisfy the so-called Wronskians cross product:

(A.7) In(r)Kn+1(r) + In+1(r)Kn(r) = 1
r

for ∀n ∈ N.
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