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TORIC VARIETIES WITH AMPLE TANGENT BUNDLE

KUANG-YU WU

Abstract. We give a simple combinatorial proof of the toric version of Mori’s theorem that the only n-

dimensional smooth projective varieties with ample tangent bundle are the projective spaces P
n.

1. Introduction

It is a well-known theorem that the only smooth projective varieties (over an algebraically closed field k) with

ample tangent bundles are the projective spaces Pn
k . This is first conjectured by Hartshorne [Har70, Problem

2.3] and later proved by Mori [Mor79] using the full force of his now-celebrated “bend and break” technique.

Here we say that a vector bundle E is ample (resp. nef) if the line bundle OPE(1) on the projectivized bundle

PE is ample (resp. nef).

In this paper, we consider a toric version of this theorem and show that it admits a simple combinatorial

proof.

Theorem 1.1. Let X be an n-dimensional smooth projective toric variety (over an algebraically closed field

k) with ample tangent bundle TX . Then X is isomorphic to P
n
k .

In the proof we consider the polytope P ⊆ R
n corresponding to X (together with any ample divisor D).

The key observation we make is that the ampleness of TX implies that the sum of any pair of two adjacent

angles on a 2-dimensional face of P is smaller than π. It follows that P has to be an n-simplex, and hence X

is isomorphic to P
n.

1.1. Acknowledgment. The author was partially supported by the NSF grant DMS-1749447. I would like

to thank my advisor Julius Ross for setting this project and for discussions about this project.

2. Preliminaries

Here we list out some definitions and facts regarding toric varieties and toric vector bundles that we will use

in this article. One may refer to [Ful93, CLS11] for more details about toric varieties, and [Pay08, DRJS18]

for more details about toric vector bundles.

2.1. Toric varieties. We work throughout over an algebraically closed field k. By a toric variety, we mean

an irreducible and normal algebraic variety X containing a torus T ∼= (k∗)n as a Zariski open subset such that

the action of T on itself (by multiplication) extends to an algebraic action of T on X .

Let M be the group of the characters of T , and N the group of the 1-parameter subgroups of T . Both M

and N are lattices of rank n (equal to the dimension of T ), i.e. isomorphic to Z
n. They are dual to each other

in the sense that there is a natural pairing of M and N denoted by 〈·, ·〉 : M ×N → Z.

Every toric variety X is associated to a fan Σ in NR := N ⊗Z R (∼= R
n). A fan Σ is said to be complete if it

supports on the whole NR, and is said to be smooth if every cone in Σ is generated by a subset of a Z-basis of
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N . A toric variety X is complete if and only if its associated fan Σ is complete, and X is smooth if and only

if Σ is smooth.

There is an inclusion-reversing bijection between the cones σ ∈ Σ and the T -orbits in X . Let Oσ ⊆ X be

the orbit corresponding to σ. The codimension of Oσ in X is equal to the dimension of σ. Each cone σ ∈ Σ

also corresponds to an open affine set Uσ ∈ X , which is equal to the union of all the orbits Oτ corresponding

to cones τ contained in σ. Given a 1-dimensional cone ρ ∈ Σ, the closure of Oρ is a Weil divisor, denoted by

Dρ. The class group of X is generated by the classes of the divisors Dρ corresponding to the 1-dimensional

cones in Σ.

2.2. Polytopes and toric varieties. Let MR := M ⊗Z R ∼= R
n. A lattice polytope P in MR is the convex

hull of finitely many points in M . The dimension of P is the dimension of the affine span of P . When

dimP = dimMR, we say that P is full dimensional.

Let P ⊆ MR be a full dimensional lattice polytope, and let P1, ..., Pm be the facets of P , i.e. codimension 1

faces of P . For each facet Pk, there exists a unique primitive lattice point vk ∈ N and a unique integer ck ∈ Z

such that

Pk = {u ∈ P | 〈u, vk〉 = −ck}

and 〈u, vk〉 ≥ −ck for all u ∈ P .

Define ΣP to be the complete fan whose 1-dimensional cones are exactly those generated by vk. This fan

ΣP is called the (inner) normal fan of P . The toric variety XΣP
associated to ΣP is called the toric variety of

P , and denoted by XP . Denote by Dk the divisor corresponding to the 1-dimensional cone generated by vk.

Then we may define a divisor on XP by DP :=
∑m

k=1 ckDk. Such a divisor DP is necessarily ample.

This process is reversible, and there is a 1-to-1 correspondance between full dimensional lattice polytope

P ⊆ MR and a pair (X,D) of a complete toric variety X together with an ample T -invariant divisor D on X .

2.3. Toric vector bundles. A vector bundle π : E → X over a toric variety X = XΣ is said to be toric (or

equivariant) if there is a T -action on E such that t ◦ π = π ◦ t for all t ∈ T .

Given a cone σ ∈ Σ and u ∈ M , define the line bundle Lu|Uσ
over Uσ to be the trivial line bundle Uσ × k

equipped with the T -action given by t.(x, z) := (t.x, χu(t) · z). If u, u′ ∈ M satisfy u−u′ ∈ σ⊥, then χu−u′

is a

non-vanishing regular function on Uσ which gives an isomorphism Lu|Uσ

∼= Lu′ |Uσ
. In fact, the group of toric

line bundles on Uσ is isomorphic to Mσ := M/(M ∩ σ⊥). Therefore, we also write L[u]|Uσ
, where [u] ∈ Mσ is

the class of u.

Let E → X be a toric vector bundle of rank r. Its restriction to an invariant open affine set Uσ splits

into a direct sum of toric line bundles with trivial underlying line bundles [Pay08, Proposition 2.2]; i.e. we

have E|Uσ

∼=
⊕r

i=1 L[ui]|Uσ
for some [ui] ∈ Mσ. Define the associated characters of E on σ to be the multiset

uE(σ) ⊂ Mσ of size r that contains the [ui] showing up in the splitting.

Example 2.1 (Associated characters of tangent bundles). Let X = XΣ be an n-dimensional smooth projective

toric variety, and consider its tangent bundle TX . Fix a maximal cone σ ∈ Σ. Since X is smooth, the dual

cone σ̌ of σ is generated by some u1, ..., un ∈ M that form a Z-basis of M . Denote by x1, ..., xn ∈ Γ(Uσ,OX)

the coordinates on Uσ
∼= kn corresponding to u1, ..., un. Then

{
∂

∂x1

, ..., ∂
∂xn

}
is a local frame of TX on Uσ.

Each non-vanishing section ∂
∂xi

∈ Γ(Uσ, TX) naturally generates a toric line bundle on Uσ isomorphic to Lui
|Uσ

.

Thus we have TX |Uσ

∼=
⊕n

i=1 Lui
|Uσ

, and hence the associated characters of TX on σ are uTX
(σ) = {u1, ..., un}.
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2.4. Positivity of toric vector bundles. Let X = XΣ be a complete toric variety. By an invariant curve on

X , we mean a complete irreducible 1-dimensional subvariety that is invariant under the T -action. Via the cone-

orbit correspondence, there is a one-to-one correspondence between the invariant curves and the codimension-1

cones; every invariant curve is the closure of an 1-dimensional orbit, which corresponds to a codimension-1

cone in Σ. For each codimension-1 cone τ ∈ Σ, denote the corresponding invariant curve by Cτ .

The positivity of toric vector bundles can be checked on invariant curves according to the following result

in [HMP10].

Theorem 2.2. [HMP10, Theorem 2.1] A toric vector bundle on a complete toric variety is ample (resp. nef)

if and only if its restriction to every invariant curve is ample (resp. nef).

Note that every invariant curve is a P
1. By Birkhoff-Grothendieck theorem, every vector bundle on P

1 splits

into a direct sum of line bundles. Hence, the positivity of vector bundles on P
1 is well understood, namely

⊕r
i=1 OP1(ai) is ample (resp. nef) if and only if every ai is positive (resp. non-negative). It is common to call

the r-tuple (or multiset) (ai)
r
i=1 the splitting type of the vector bundle.

Fix a codimension-1 cone τ , and let σ, σ′ be the two maximal cones containing τ . Given u, u′ ∈ M satisfying

u − u′ ∈ τ⊥, define a toric line bundle Lu,u′ on Uσ ∪ Uσ′ by glueing the toric line bundles Lu|Uσ
and Lu′ |U

σ′

with the transition function χu′
−u. Since the invariant curve Cτ is contained in Uσ∪Uσ′ , we may restrict Lu,u′

to get a toric line bundle Lu,u′ |Cτ
on Cτ .

Proposition 2.3. [HMP10, Corollary 5.5 and 5.10] Let X be a complete toric variety. Any toric vector bundle

E|Cτ
on the invariant curve Cτ splits equivariantly as a sum of line bundles

E|Cτ
=

r⊕

i=1

Lui,u
′

i
|Cτ

.

The splitting is unique up to reordering.

Combining this with the following lemma that computes the underlying line bundle of Lu,u′ |Cτ
, one gets

the splitting type of E|Cτ
.

Lemma 2.4. [HMP10, Example 5.1] Let u0 be the generator of M ∩ τ⊥ ∼= Z that is positive on σ, and let m

be the integer such that u− u′ = mu0. Then, the underlying line bundle of Lu,u′ |Cτ
is isomorphic to OP1(m).

3. Restricting TX to invariant curves

Let X = XΣ be a smooth complete toric variety of dimension n. In this section, we consider the restrictions

of the tangent bundle TX to the invariant curves. The goal is to get the splitting types in terms of the

combinatorial data of the fan Σ of X . This has in fact been done in [DRJS18, Example 5.1 and 5.2] and

[Sch18, Theorem 2]. We repeat the calculation for the convenience of the readers.

Fix an (n − 1)-dimensional cone τ ∈ Σ. Let σ, σ′ ∈ Σ(n) be the two maximal cones containing τ . Let

v1, ..., vn−1, vn, v
′
n ∈ N be primitive vectors such that τ is generated by {v1, ..., vn−1}, σ is generated by

{v1, ..., vn−1, vn}, and σ′ is generated by {v1, ..., vn−1, v
′
n}. There are unique ui, u

′
i ∈ M (i = 1, ..., n) such that

〈ui, vi〉 = 〈u′
i, v

′
i〉 = 1 for all i and 〈ui, vj〉 = 〈u′

i, v
′
j〉 = 0 for all i 6= j, where we define v′i = vi for i = 1, ..., n−1.

The dual cones σ̌ and σ̌′ are generated by {u1, ..., un} and {u′
1, ..., u

′
n}, respectively.

By Example 2.1, the associated characters of TX on σ and σ′ are given by

uTX
(σ) = {u1, ..., un} , uTX

(σ′) = {u′
1, ..., u

′
n} .
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Following Section 2.4, let Cτ be the invariant curve corresponding to τ . The splitting of TX |Cτ
as in Proposition

2.3 is easy to get by the following fact.

Lemma 3.1. We have ui − u′
i ∈ τ⊥ for all i = 1, ..., n, and ui − u′

j /∈ τ⊥ for all i 6= j.

Proof. The first part follows from 〈ui − u′
i, vi′〉 = 0 for all i′ = 1, ..., n − 1, and the second part follows from

〈ui − u′
j , vi〉 = −〈ui − u′

j , vj〉 = 1, where at least one of i, j is not n. �

Definition 3.2. Define ai ∈ Z (i = 1, ..., n) to be the integers satisfying ui = u′
i + aiun. Such integers exist

since un is a primitive generator of τ⊥ ∩M ∼= Z. Note that u′
n = −un so that an = 2.

Proposition 3.3. On the invariant curve Cτ , the restriction TX |Cτ
of the tangent bundle (as a toric vector

bundle) splits into the following direct sum of toric line bundles

TX |Cτ

∼=

n⊕

i=1

Lui,u
′

i
|Cτ

.

In particular, we have the following splitting of TX |Cτ
as a vector bundle

TX |Cτ

∼=

n⊕

i=1

OP1(ai) .

Proof. By Proposition 2.3, TX |Cτ
splits into a direct sum of toric line bundles of the form Lu,u′ |Cτ

. This

gives a bijection ι : uE(σ) → uE(σ
′) mapping u to u′ whenever Lu,u′ |Cτ

shows up in the splitting. Note that

ui− ι(ui) ∈ τ⊥ by the definiton of Lu,u′ . Then Lemma 3.1 implies that we must have ι(ui) = u′
i for all i, hence

the splitting in the first part.

The second part follows directly from the first part together with Lemma 2.4. �

Remark 3.4. The integers ai are the same as the integers bi that show up in the “wall relation”

b1v1 + · · ·+ bn−1vn−1 + vn + v′n = 0 ,

mentioned in [Sch18] and [DRJS18]. Indeed we have bi = −〈ui, v
′
n〉 = ai for all i.

Example 3.5. For each of the following toric surfaces X , we fix a 1-dimensional cone τ in its fan (as shown in

Figure 3.6) and compute the splitting type of TX |Cτ
.

(1) X = P
2. The dual cones of the maximal cones containing τ are given by σ̌ = Cone{(−1, 0), (−1, 1)}

and σ̌ = Cone{(0,−1), (1,−1)}. Therefore we get TX |Cτ

∼= OP1(1)⊕OP1(2). In fact, the restrictions of

TX to the other two invariant curves have the same splitting type, so TX is ample by Proposition 2.2.

(2) X = P
1×P

1. The dual cones of the maximal cones containing τ are given by σ̌ = Cone{(−1, 0), (0, 1)}

and σ̌ = Cone{(−1, 0), (0,−1)}. Therefore we get TX |Cτ

∼= OP1(0) ⊕OP1(2). In fact, the restrictions

of TX to the other three invariant curves have the same splitting type, so TX is nef (but not ample) by

Proposition 2.2.

(3) Let X be the Hirzebruch surface F1, which is isomorphic to P
2 blown up at one point. The dual cones of

the maximal cones containing τ are given by σ̌ = Cone{(−1, 0), (0, 1)} and σ̌ = Cone{(−1, 1), (0,−1)}.

Therefore we get TX |Cτ

∼= OP1(−1)⊕OP1(2), and hence TX is not nef by Proposition 2.2.
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(1) X = P
2

τ

σ

σ′

(2) X = P
1 × P

1

τ

σ

σ′

(3) X = F1

τ

σ

σ′

Figure 3.6. Fans of toric surfaces

4. Polytopes and ampleness of the tangent bundle

Let X = XΣ, TX , τ , σ, σ′, ui, u
′
i, ai be as in the previous section.

Fix an ample T -invariant divisor D, and let P = P (X,D) be the corresponding polytope. Note that X and

Σ are simplicial as they are smooth; in particular, every maximal cone in Σ has exactly n faces of dimension

(n − 1), and every (n− 1)-dimensional cone has exactly (n− 1) faces of dimension (n− 2). This implies that

there are exactly n edges emanating from every vertex of P and that every edge of P is contained in exactly

(n− 1) faces of dimension 2.

Let pσ ∈ P be the vertex corresponding to the maximal cone σ. Denote by P − pσ the translation of P by

−pσ. The cone generated by P − pσ is given by {u ∈ MR | 〈u, vi〉 ≥ 0 for all i = 1, ..., n}, which is exactly the

dual cone σ̌ of σ. Thus, the n edges of P emanating from pσ are parallel to u1, ..., un. Similarly the n edges

emanating from the vertex pσ′ corresponding to σ′ are parallel to u′
1, ..., u

′
n.

Recall that the ui and u′
i satisfy u′

i = ui− aiun for all i = 1, ..., n− 1 and u′
n = −un. Since σ and σ′ contain

the (n− 1)-dimensional cone τ as a common face, the convex hull of pσ, pσ′ of pσ and pσ′ is an edge of P ; it

corresponds to τ and is parallel to un and u′
n. Fix a j ∈ {1, ..., n−1}. Consider the points pσ+uj, pσ′+u′

j ∈ M .

The point pσ+uj is on an edge emanating from pσ, and pσ′ +u′
j is on an edge emanating from pσ′ . In addition,

since (pσ + uj)− (pσ′ + u′
j) = (pσ − pσ′) +mjun, pσ + uj, pσ′ + u′

j is parallel to pσ, pσ′ . Thus, the four points

pσ, pσ′ , pσ +ui, pσ′ +u′
i are contained in a common 2-dimensional face Ai ⊆ P . In fact, Ai is the 2-dimensional

face of P corresponding to the (n− 2)-dimensional cone τ ∩ (ui)
⊥ = τ ∩ (u′

i)
⊥.

Denote the angles at pσ and pσ′ on Aj by θ(pσ, Aj) and θ(pσ′ , Aj), respectively. Their sum is related to the

integer aj in the following way.

Proposition 4.1. The sum θ(pσ, Aj) + θ(pσ′ , Aj) is smaller than π if and only if aj > 0, equal to π if and

only if aj = 0, and greater than π if and only if aj < 0.

Proof. Suppose aj < 0. Consider the quadrilateral with vertices pσ, pσ′ , pσ′ +u′
j, pσ+uj. It is a trapezoid with

the edges pσ + uj , pσ′ + u′
j and pσ, pσ′ parallel to each other. Since

(
(pσ′ + u′

j)− (pσ + uj)
)
− (pσ′ − pσ) = −aju1,

the edge pσ + ui, pσ′ + u′
i is longer than pσ, pσ′ , implying θ(pσ, Aj) + θ(pσ′ , Aj) > π.

The other two cases are similar. �

Remark 4.2. Although the angles θ(pσ, Aj), θ(pσ′ , Aj) themselves are not invariant under a change of bases of

M , whether their sum is smaller than, equal to, or greater than π is.
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Example 4.3. In Figure 4.4 are polytopes P (X,−KX) corresponding to the toric surfaces X in Example 3.5

together with their anticanonical line bundles −KX . The cones τ, σ, σ′ are the same as in Example 3.5.

(1) X = P
2. Recall TX |Cτ

∼= OP1(1)⊕OP1(2) so that a1 = 1 > 0. Here we see θ(pσ, P ) + θ(pσ′ , P ) < π.

(2) X = P
1 × P

1. Recall TX |Cτ

∼= OP1(0)⊕OP1(2) so that a1 = 0. Here we see θ(pσ, P ) + θ(pσ′ , P ) = π.

(3) X = F1. Recall TX |Cτ

∼= OP1(−1)⊕OP1(2) so that a1 = −1 < 0. Here we see θ(pσ, P )+ θ(pσ′ , P ) > π.

(1) X = P
2

pσ′

pσ

(2) X = P
1 × P

1

pσ′

pσ

(3) X = F1

pσ′

pσ

Figure 4.4. Polytopes P (X,−KX) of toric surfaces

5. Proof of Theorem 1.1

Proof of Theorem 1.1. As promised, we will show that the polytope P corresponding to X (together with any

ample T -invariant divisor D) is an n-simplex.

Let A be a 2-dimensional face of P . Let m be the number of vertices of A, and let p1, ..., pm be the

vertices of A, ordered so that pk is adjacent to pk+1 for all k = 1, ...,m (where pm+1 := p1). Since TX

is ample, its restriction to every invariant curve is ample. Then, by Proposition 3.3 and Proposition 4.1,

θ(pk, A) + θ(pk+1, A) < π for all k. This implies

mπ >
m∑

k=1

(θ(pk, A) + θ(pk+1, A)) = 2
m∑

k=1

θ(pk, A) = 2(m− 2)π.

We get m < 4, implying A is a triangle. The same is true for all 2-dimensional faces of P .

Now, we start with a vertex q0 of P . Recall that every vertex of P is adjacent to exactly n vertices since

X is smooth and hence simplicial. Let q1, ..., qn be the n points adjacent to q0. Given 1 < j ≤ n, let Aj be

the 2-dimensional face containing the edges q0q1 and q0qj . Since Aj is in fact a triangle, q1 is also adjacent to

qj . Thus q1 is adjacent to q0, q2, ..., qn. Similarly, every pj is adjacent to exactly p0, ..., p̂j, ..., pn. Consequently,

p0, p1, ..., pn are the only vertices of P , and hence P is the n-simplex with vertices p0, p1, ..., pn. �
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