
NONPOSITIVE TOWERS IN BING’S NEIGHBOURHOOD

MAX CHEMTOV AND DANIEL T. WISE

Abstract. Every 2-dimensional spine of an aspherical 3-manifold has the nonpositive
towers property, but every collapsed 2-dimensional spine of a 3-ball containing a 2-cell
has an immersed sphere.

1. Introduction

Definition 1.1. A 2-complex X has nonpositive immersions if for every combinatorial
immersion Y → X with Y compact and connected, either χ(Y ) ≤ 0 or Y is contractible.

A 2-complex X has nonpositive towers if for every tower map Y → X with Y compact
and connected, either χ(Y ) ≤ 0 or Y is contractible.

There are many variations: For instance, one can generalize to combinatorial near-
immersions, or relax to π1Y = 1 or χ(Y ) ≤ 1, and there also variations requiring χ(Y ) ≤
−c|Y | for some “size” |Y | of Y . Note that nonpositive immersions implies nonpositive
towers. The main consequences of nonpositive immersions hold for nonpositive towers.
E.g. if X has nonpositive towers then π1X is locally indicable. These ideas have promise
as a contextualizing framework towards Whitehead’s asphericity conjecture, as well as
towards understanding coherence.

In [8] it was shown that every aspherical 3-manifold with nonempty boundary has a spine
with nonpositive immersions. This utilized that there exists a spine with no near-immersion
of a 2-sphere [1].

In this note, we observe the following failure, which is a special case of Proposition 3.5:

Theorem 1.2. Every collapsed spine of a simply-connected 3-manifold containing a disc
has an immersed sphere.

Bing’s “house with two rooms” provides such a spine. It is obtained from a 3-ball divided
into two rooms by a pair of collapses, corresponding to entering the left room from the
right side of the house and entering the right room from the left side. See Figure 1.

W. Fisher also found examples of the failure of nonpositive immersions in other con-
tractible 2-complexes: the Miller-Schupp balanced presentations of the trivial group [2].
There are thus two sources of counter-examples to the conjecture that contractible 2-
complexes have nonpositive immersions [8, Conj 1.7].
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Figure 1. An immersed sphere (left) in Bing’s house (right).

In [3] it is shown that for n ≥ 3, every PL n-manifold M with ∂M 6= ∅ has a spine
X such that ∂M → X is an immersion, and moreover, such spines are generic among all
spines. So Theorem 1.2 is a variant of the simplest instance of their result. However it is
a counterpoint to the following statement (see Theorem 2.11) which is our main motive:

Theorem 1.3. Every 2-dimensional spine of an aspherical 3-manifold has nonpositive
towers.

Thus nonpositive immersions does not always hold for a natural family of contractible
complexes which nevertheless have nonpositive towers, so we are motivated to refocus on:

Conjecture 1.4. Every contractible 2-complex has nonpositive towers.

For instance:

Proposition 1.5. A contractible 2-complex with two 2-cells has nonpositive towers.

Proof. As a contractible 2-complex X admits no nontrivial connected covering map, any
tower map Y → X must begin with a subcomplex X ′ ⊂ X, so X ′ has at most one 2-cell.
But X ′ has nonpositive immersions (hence nonpositive towers) by [7, 5]. �

Acknowledgement: We are extremely grateful to Grigori Avramidi for helpful com-
ments and the valuable reference [3]. We tremendously appreciate the referee’s useful
feedback in improving the exposition.

2. Thickenings and nonpositive towers

Definition 2.1. Let X be a connected 2-complex. A tower map Y → X is a finite
composition of covering maps and subcomplex embeddings, such that Y and the domain
of each embedding are compact connected 2-complexes.

Tower maps arose in Papakyriakopolous’ classical 3-manifold proofs, and also arose
naturally in one-relator group theory [6].

Definition 2.2. A 2-complex X has nonpositive towers if, for any tower map Y → X,
either χ(Y ) ≤ 0 or Y is contractible.

The goal of this section is to prove the nonpositive tower property for an aspherical
2-complex X embedded in a 3-manifold M . The idea of the proof is to consider a manifold
“thickening” T of X in M , which deformation retracts to X. The asphericity of X ensures
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that ∂T has no 2-sphere, which in turn ensures χ(X) ≤ 0. Asphericity is preserved by
towers, since it is preserved by both covering maps and subcomplexes. The latter is ensured
by a simple argument using the Sphere Theorem.

Convention 2.3. We work in the category of PL-manifolds: all submanifolds, as well as
cells of complexes embedded in a manifold, are assumed to be PL-embedded. This avoids
pathologies like Alexander’s horned sphere.

Construction 2.4. Let X be a locally finite 2-complex. A thickening of X is a 3-manifold
T = T (X) with boundary, and a continuous map Θ : T → X, constructed as follows:

• Let T 0 be a disjoint union of closed 3-balls, one for each vertex in X, and let Θ
map each ball to its corresponding vertex.
• For each edge e in X, define T (e) ∼= [0, 1]×D2, and identify {0}×D2 and {1}×D2

with discs on the boundary of the components of T 0 corresponding to the endpoints
of e. Let Θ map (0, 1)×D2 onto int(e). The resulting complex is T 1.

We require that each T (e) embeds and that T (e1) ∩ T (e2) = ∅ for e1 6= e2.
• For each disc F in X, define T (F ) ∼= D2 × [0, 1], and identify the outer cylinder
S1 × [0, 1] with an embedded cylinder on the boundary of T 1 which is mapped by
Θ to the attaching loop of F in X. Let Θ map int(D2) × [0, 1] onto int(F ). The
resulting complex is T .

We require that each T (F ) embeds and that T (F1) ∩ T (F2) = ∅ for F1 6= F2.

For a subcomplex A ⊆ X, we use T (A) ⊆ T (X) to denote the thickening of A to Θ−1(A)
induced by the thickening of X.

Remark 2.5. If a thickening T of X exists, then by construction, T is a 3-manifold with
boundary. Furthermore, there is a PL-embedding X ↪→ int(T (X)) such that T deformation
retracts to X, with T (A) retracting to A for any subcomplex A ⊆ X.

Remark 2.6. If X PL-embeds in a 3-manifold M , then we can take T to be a small closed
neighbourhood of X in M . Let Θ : T (X) → X be a retraction homotopic to the identity
map T (X)→ T (X). Then T and Θ give a thickening of X.

Lemma 2.7. Let X be a locally finite aspherical connected 2-complex that PL-embeds in
a 3-manifold. Then removing a collection of 2-cells {Di} in X results in a new 2-complex
Y which is also aspherical.

Proof. If T (X) is non-orientable, we can consider an orientable double-cover T̂ (X). This

induces a double-cover X̂ of X, which is locally finite, aspherical, connected, and PL-

embeds in T (X̂) = T̂ (X). Consider the induced orientable double-cover Ŷ ⊆ X̂ of Y , and

note that Ŷ can be obtained from X̂ by deleting a collection of 2-cells. It suffices to prove

that Ŷ is aspherical, since this would imply that Y is aspherical. Since the non-orientable

case with X and Y reduces to the orientable case with X̂ and Ŷ , we can assume without
loss of generality that T (X) is orientable.
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Let Y be a 2-complex, and let X = Y ∪
(⋃

i
Di

)
, where each 2-cell Di is attached to Y

along ∂Di. We assume X is a locally finite aspherical connected 2-complex that PL-embeds
in an orientable manifold, and prove that Y is aspherical.

Suppose for contradiction that Y is not aspherical. Let (T (X),Θ) be an orientable
thickening of X. Then π2(int(T (Y ))) 6= 0. Since int(T (Y )) is orientable, int(T (Y )) has an
embedded essential 2-sphere S by the Sphere Theorem [4, Thm 3.8]. Since X is aspherical,
S bounds a contractible submanifold B ⊆ int(T (X)) by [4, Prop 3.10]. Note that T (X)−S
has two connected components: int(B) and the component C containing ∂T (X).

For any Di, we have Θ−1(int(Di)) ∩ S = ∅, since S ⊆ T (Y ) and int(Di) ∩ Y = ∅.
Since Θ−1(int(Di)) is connected, it must lie either entirely in int(B) or entirely in C. By
construction of T (X), we know that Θ−1(int(Di)) ∩ ∂T (X) 6= ∅. So Θ−1(int(Di)) ⊂ C.

Since this is true for all Di, we have int(B) ⊆ T (X) −
⋃
i

Θ−1(int(Di)) = T (Y ). Since

int(B) is an open submanifold of T (Y ), it is contained in int(T (Y )). Therefore, S bounds a
contractible submanifold B of int(T (Y )), contradicting that S is essential in int(T (Y )). �

Corollary 2.8. Let X be a locally finite aspherical connected 2-complex that PL-embeds
in a 3-manifold. Then every subcomplex Y ⊆ X is aspherical.

Proof. By Lemma 2.7, removing 2-cells from X yields another aspherical 2-complex. Since
removing 0- and 1-cells also preserves asphericity, every subcomplex of X is aspherical. �

Lemma 2.9. Let M be a compact orientable 3-manifold with boundary. Then χ(M) =
1
2χ(∂M). And if ∂M does not contain a 2-sphere then χ(M) ≤ 0.

Proof. Let M̃ be the manifold obtained by gluing two copies of M along ∂M . Since M̃

is a closed 3-manifold, 2χ(M) − χ(∂M) = χ(M̃) = 0. So χ(M) = 1
2χ(∂M). Since M is

orientable, each component of ∂M is an orientable surface. Since ∂M contains no 2-sphere,
every component of ∂M has nonpositive χ. So χ(M) = 1

2χ(∂M) ≤ 0. �

Lemma 2.10. Let X ′ → X be a finite-sheeted cover of a compact connected 2-complex X.
Then X has nonpositive towers if and only if X ′ has nonpositive towers.

Proof. Suppose X has nonpositive towers. Let Y → X ′ be a tower map. Then Y → X ′ �
X is a tower map, so either χ(Y ) ≤ 0 or Y is contractible.

Suppose that X ′ has nonpositive towers. Let t : Y → X be a tower map. Let n be the
degree of the cover p : X ′ → X. Then there is an induced tower map Y ′ → X ′, where Y ′

is an n-sheeted cover of Y , and maps to p−1(t(Y )). Either χ(Y ′) ≤ 0 or Y ′ is contractible.
If χ(Y ′) ≤ 0, then χ(Y ) = 1

nχ(Y ′) ≤ 0. If Y ′ is contractible, then Y ′ is the universal
cover of Y , so Y is a K(π1(Y ), 1) complex with |π1Y | = n. A nontrivial finite group does
not have a compact K(π, 1), so π1Y = 1. Thus Y = Y ′ is contractible. �

Theorem 2.11. Let X be an aspherical compact connected 2-complex that PL-embeds in
a 3-manifold M . Then X has nonpositive towers.
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Proof. Since X is compact, it PL-embeds in a thickening T (X) in M that is a compact sub-
3-manifold with boundary. So without loss of generality, we can assume that M = T (X)
is a compact 3-manifold with boundary that deformation retracts to X.

If M is non-orientable, we consider an orientable double cover of M that deformation
retracts to a double cover X ′ of X. By Lemma 2.10, it suffices to show that X ′ has
nonpositive towers. So without loss of generality, we can assume that M is orientable.
X itself is either contractible or has χ(X) ≤ 0. Indeed, if ∂M includes a 2-sphere S, then

asphericity of M ensures that S bounds a contractible submanifold of M [4, Prop 3.10].
Since M is connected, this submanifold must be M itself, and so M and X are contractible.
If ∂M does not include any 2-spheres, then χ(X) = χ(M) ≤ 0 by Lemma 2.9.

Note that any covering map X̂ → X (with X̂ connected) extends to a covering map

M̂ → M , where X̂ PL-embeds in int(M̂). Then X̂ is locally finite, aspherical, connected,
and PL-embeds in a 3-manifold.

Let X ′ be a compact connected subcomplex of X̂. By Corollary 2.8, X ′ is aspherical.

And X ′ also PL-embeds in int(M̂). Therefore, X ′ satisfies the same hypotheses as X, and
is also either contractible or has χ(X ′) ≤ 0.

Any tower map Y → X is a composition of maps X ′ ↪→ X̂ � X, so we are done. �

3. Bing’s Neighbours

In this section, we give an alternate construction of the thickening T of a 2-complex X
embedded in a 3-manifold. The cell structure on ∂T “follows” X and provides an immersion
∂T → X. When X is simply-connected, collapsed, and contains a 2-cell, ∂T is a union of
2-spheres. Thus examples like Bing’s house fail to have nonpositive immersions.

Definition 3.1. A 2-complex is collapsed if no cell has a free face - i.e. no 0-cell has
degree 1, and no 1-cell is incident to a single side of a 2-cell.

Construction 3.2. Let X be a compact connected collapsed 2-complex with no isolated
vertex or edge that PL-embeds in a 3-manifoldM . We give a construction for the thickening
T = T (X), yielding an explicit cell structure on ∂T related to the cell structure on X:

∂T 0 For each vertex v in X, consider a small neighbourhood N(v) ⊆M of v. Add a 0-cell
in each component of N(v)−X. The union of these 0-cells is ∂T 0.

∂T 1 For each edge e in X, consider a small neighbourhood N(e) ⊆ M of e containing the
0-cells in ∂T 0 associated with the endpoints of e. Add a 1-cell in each component of
N(e) − X that contains a 0-cell associated to each endpoint of e. That 1-cell joins
those 0-cells. If n sides of discs are incident with e in X, then this process yields n
1-cells parallel to e. The union of ∂T 0 with these 1-cells is ∂T 1.

∂T 2 For each disc d of X, consider a small neighbourhood N(d) ⊆ M of d containing the
1-cells in ∂T 1 associated with the ∂d. Add a 2-cell in each component of N(d) − X
containing 1-cells associated to all edges of ∂d. Attach this 2-cell to those 1-cells
according to ∂d. This yields two 2-cells on opposite sides of d in M . The union of ∂T 1

with these 2-cells is ∂T .

The submanifold T is the union of ∂T and the component of M − ∂T containing X.
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Figure 2. Part of ∂T (X) for a complex X. The 0-cells of ∂T are red, and
the 1-cells of ∂T are blue. The 2-cells of ∂T run parallel to the grey discs
in X, forming a “bubble” hovering around X.

Lemma 3.3. T = T (X) deformation retracts to X. The retraction r : T → X induces an
immersion ∂T → X. If X is simply-connected, then ∂T is a union of 2-spheres.

Proof. Consider the map ∂T → X sending i-cells in ∂T to their associated i-cells in X.
T is homeomorphic to the mapping cylinder of ∂T → X, yielding a deformation retraction.

Let c1 and c2 be closed i-cells in ∂T with c1 ∩ c2 6= ∅. Suppose r(c1) = r(c2) = c. Then
c1 ∪ c2 is a connected subset of the neighbourhood N(c) used in the construction of ∂T .
At most one i-cell was added for each component of N(c), so c1 = c2. Thus r|∂T : ∂T → X
is an immersion.

The map ∂T → X can also be seen geometrically to be an immersion: in terms of
Figure 2, each cycle of 2-cells around a vertex in ∂T is mapped to a cycle of discs in X
associated to a corner of M −X.

Suppose π1X = 1. Then T is a compact orientable 3-manifold with rank(H1(T )) = 0,
so rank(H1(∂T )) = 0 by “half lives, half dies” [4, Lem 3.5]. Thus ∂T is a union of 2-
spheres. �

Lemma 3.4. Let X be a compact 2-complex with a collapsed subcomplex Y containing a
disc. Then X has a connected collapsed subcomplex Y ′ with no isolated vertex or edge,
whose inclusion map Y ′ ↪→ X is π1-injective.

Proof. If X contains a free i-face, delete that face and its attached (i+1)-cell. This deletion
does not affect π1. Repeat this process until the remaining subcomplex is collapsed. Delete
all isolated edges leaving a disjoint union X ′ of collapsed components X ′i without isolated
vertices or edges. Each X ′i ↪→ X is π1-injective. As the disc from Y must be contained in
some X ′i, we let Y ′ = X ′i. �

Proposition 3.5. Let X be a 2-spine of a simply-connected 3-manifold. Then X has an
immersed 2-sphere if and only if X has a collapsed subcomplex containing a disc.

Proof. Suppose S2 # X is a combinatorial immersion. Then im(S2 # X) is a collapsed
subcomplex containing a disc.
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Conversely, suppose X has a collapsed subcomplex Y containing a disc. By Lemma 3.4,
we can assume Y has no isolated vertex or edge, and π1Y ≤ π1X = 1. Then by Lemma
3.3, ∂T (X) is a union of 2-spheres that immerses in X. �
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