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CLASS FIELD THEORY, HASSE PRINCIPLES AND

PICARD-BRAUER DUALITY FOR TWO-DIMENSIONAL LOCAL

RINGS

TAKASHI SUZUKI

Abstract. We draw concrete consequences from our arithmetic duality for
two-dimensional local rings with perfect residue field. These consequences in-
clude class field theory, Hasse principles for coverings and K2 and a duality
between divisor class groups and Brauer groups. To obtain these, we analyze
the ind-pro-algebraic group structures on arithmetic cohomology obtained ear-
lier and prove some finiteness properties about them.
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1. Introduction

1.1. Aim of the paper. Let A be a two-dimensional normal complete noetherian
local ring of mixed characteristic (0, p) with perfect residue field F . In [Sai86, Sai87],
Saito gives arithmetic duality and class field theory for A when F is finite. We
refined this theory in our recent work [Suz24] when F is a general perfect field,
by giving ind-pro-algebraic group structures for arithmetic cohomology attached A
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2 TAKASHI SUZUKI

and taking these structures into account. However, our duality was on the derived
category level and we could not deduce concrete consequences due to lack of precise
understanding of the structure of each cohomology object.

In this paper, we will prove some finiteness (or admissibility) properties of our
ind-pro-algebraic group structures. This allows us to deduce concrete duality state-
ments for each cohomology object. The statements we deduce include class field
theory, Hasse principles for coverings and K2 and a duality between divisor class
groups and Brauer groups. The key inputs are the relatively perfect unipotent
group structures on p-adic nearby cycle sheaves [BS20], the finite generation of the
pro-p fundamental group of the punctured spectrum [Suz23] and Lipman’s group
scheme structure for the divisor class group [Lip69, Lip76].

Along the way, we also prove a duality for relatively perfect unipotent groups
(especially, wound ones) over fields with finite p-bases, which may be of independent
interest. When F is finite, we explain how to recover Saito’s duality and its local
counterpart, namely Kato’s two-dimensional local class field theory [Kat79]. Our
duality actually gives locally compact (and, in particular, Hausdorff!) topologies
for the groups appearing in these theories.

1.2. Main results. We formulate our results. Let F be a perfect field of char-
acteristic p > 0. Let Alg/F be the category of perfections (inverse limits along
Frobenius) of commutative algebraic groups over F with group scheme morphisms
([Ser60]). Let Algu/F ⊂ Alg/F be the full subcategory of perfections of unipotent
groups. Let PAlgu/F and IAlgu/F be its pro-category and ind-category, respec-
tively. Let IPAlgu/F be the ind-category of PAlgu/F . For G ∈ Alg/F , denote
its identity component by G0 and set π0G = G/G0. The functors G 7→ G0, π0G
naturally extend to IPAlgu/F . An object G ∈ IPAlgu/F is said to be connected if
π0G = 0. As in [Suz24, Definition 3.1.1], we define the following class of objects of
IPAlgu/F with nice finiteness (or admissibility) properties:

Definition 1.1. Define WF ⊂ IPAlgu/F to be the full subcategory of objects G
admitting a filtration G ⊃ G0 ⊃ G′ ⊃ 0 such that:

• G/G0 = π0G is finite étale (p-primary),
• G0/G′ can be written as a direct limit lim

−→n≥1
G′′

n, where each G′′
n ∈ Algu/F

is connected and each transition morphism G′′
n → G′′

n+1 is injective,
• G′ can be written as an inverse limit lim

←−n≥1
G′

n, where each G′
n ∈ Algu/F

is connected and each transition morphism G′
n+1 → G′

n is surjective with
connected kernel.

What is nice about WF is that the full subcategory of WF of connected groups
has a canonical contravariant autoequivalence ([Suz24, Proposition 3.1.7]) that
maps the perfection of the additive group to itself. We call it Serre duality for
connected groups in WF .

Let A be a two-dimensional normal complete noetherian local ring of mixed char-
acteristic with maximal ideal m whose residue field is the above F . Let K be its
fraction field. Let P be the set of height one prime ideals of A. SetX = SpecA\{m}.
Let U be a dense open subscheme of X . Let Z/pnZ(r) ∈ D(Uet) be the Bloch cycle
complex mod pn in the étale topology if r ≥ 0 and let Z/pnZ(r) ∈ D(Uet) be the
extension-by-zero of the usual Tate twist Z/pnZ(r) on U ∩ SpecA[1/p] if r < 0.
Denote the étale cohomology functor by Hq(U, · ) and let Hq

c (U, · ) = Hq(X, j! · ),
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where j : U →֒ X is the inclusion. By [Suz24, Theorem 1.3.1], we have canonical ob-
jects Hq(U,Z/pnZ(r)) and Hq

c(U,Z/pnZ(r)) of IPAlgu/F for each integers n ≥ 1,
q and r, which are algebraic structures on Hq(U,Z/pnZ(r)) and Hq

c (U,Z/p
nZ(r)).

Note that when U = X , there is no difference between Hq(U,Z/pnZ(r)) and
Hq

c(U,Z/pnZ(r)). Here is the structure result for these groups:

Theorem 1.2. We have Hq(U,Z/pnZ(r)),Hq
c(U,Z/pnZ(r)) ∈ WF . They are zero

unless 0 ≤ q ≤ 3. Their structures are described as follows.

(1) Assume U = X. Then:

Hq(X,Z/pnZ(r)) r = 0 r = 1 r = 2
q = 0 Z/pnZ finite finite
q = 1 finite pro-alg pro-alg
q = 2 ind-alg alg pro-alg
q = 3 ind-alg ind-alg Z/pnZ

Here finite means finite étale, alg means in Algu/F , pro-alg means in
PAlgu/F and ind-alg means in IAlgu/F .

(2) Assume U ⊂ SpecA[1/p]. Then:

Hq(U,Z/pnZ(r)) ∀r
q = 0 finite
q = 1 pro-alg
q = 2 pro-alg
q = 3 0

Hq
c(U,Z/pnZ(r)) ∀r

q = 0 0
q = 1 finite
q = 2 ind-alg
q = 3 ind-alg

(3) In general:

Hq(U,Z/pnZ(r)) r ≤ 0 r = 1 r ≥ 2
q = 0 finite finite finite
q = 1 pro-alg pro-alg pro-alg
q = 2 general pro-alg pro-alg
q = 3 ind-alg ind-alg finite

Hq
c(U,Z/pnZ(r)) r ≤ 0 r = 1 r ≥ 2

q = 0 finite finite finite
q = 1 finite pro-alg pro-alg
q = 2 ind-alg ind-alg general
q = 3 ind-alg ind-alg ind-alg

Here general means a general object of WF .

Note that the apparently missing group Hq(X,Z/pnZ(r)) for r < 0 (resp. r > 2)
is isomorphic to Hq

c(U,Z/pnZ(r)) (resp. Hq(U,Z/pnZ(r))) with U = SpecA[1/p],
so it is also covered in the tables.

In particular, the group H1(X,Z/pnZ) is finite étale. We will first prove that
this group is in Algu/F . That it is finite étale then follows from the result of
[Suz23]. This implies the above structure result H3(X,Z/pnZ(2)) ∼= Z/pnZ by
duality (Theorem 1.4 below). The group H3(X,Z/pnZ(2)) is the group “SK1(X)”
([Blo81], [Sai86]) mod pn when F is algebraically closed. Hence we obtain:

Corollary 1.3. Assume F is algebraically closed. Then the sequence

K2(K)/pnK2(K)→
⊕

p∈P

κ(p)×/κ(p)×pn

→ Z/pnZ→ 0
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is exact, where the first map is the tame symbols to the residue fields at p and the
second map is the sum of the normalized valuation maps.

By Levine [Lev88, Theorem 2.1], the group SK1(X) is isomorphic to the Gro-
thendieck group of the category of A-modules of finite length and finite projec-
tive dimension. The above corollary says that the kernel of the “length” map
SK1(X) → Z studied by Srinivas [Sri87], [Sri96, Chapter 9] is p-divisible. It is
relatively easy to prove that Ker(SK1(X)→ Z) is l-divisible for any prime l 6= p.1

Therefore this kernel is divisible. For an equal characteristic A (normal and two-
dimensional), this divisibility is proved in Srinivas’s unpublished notes [Sri85] by a
global method.

The part Hq(U,Z/pnZ(r)),Hq
c(U,Z/pnZ(r)) ∈ WF of Theorem 1.2 allows us to

deduce concrete duality statements from the abstract duality statement of [Suz24].
The result is:

Theorem 1.4. We have a Serre duality

Hq(U,Z/pnZ(r))0 ↔ H4−q
c (U,Z/pnZ(2 − r))0

of connected groups in WF and a Pontryagin duality

π0H
q(U,Z/pnZ(r)) ↔ π0H

3−q
c (U,Z/pnZ(2 − r))

of finite étale groups over F .

Theorems 1.2 and 1.4 will be proved together in Section 8.
As a particular example, we have a Pontryagin duality

H1(X,Z/pnZ)↔ π0H
2(X,Z/pnZ(2)),

which is unramified class field theory in this context. The Serre duality

H1(U,Z/pnZ)0 ↔ H3
c(U,Z/pnZ(2))0

should look more similar to Saito’s class field theory [Sai87], since H3
c (U,Z/p

nZ(2))
is the K2-idèle class group of U mod pn when F is algebraically closed.

We now state Hasse principles in this context. Assume for the moment that
F is algebraically closed. Let H1

cs(X,Z/pnZ) ⊂ H1(X,Z/pnZ) be the subgroup
consisting of coverings of X completely split at all closed points of X . Let

π0H
2(K,Z/pnZ(2)) := lim−→

U

π0H
2(U,Z/pnZ(2)),

where the direct limit is over all dense open subschemes U ⊂ X . For each p ∈ P ,
let K̂p be the fraction field of the completion of the localization of A at p. We have
a natural map

π0H
2(K,Z/pnZ(2))→

⊕

p∈P

π0H
2(K̂p,Z/p

nZ(2)) ∼=
⊕

p∈P

Z/pnZ,

whereH2(K̂p,Z/p
nZ(2)) is the algebraic structure on the Galois cohomologyH2(K̂p,Z/p

nZ(2))
([Suz24, Theorem 6.4.2 (1)]).

Theorem 1.5. Assume F is algebraically closed.

1Use the fact H3(X,Z/lZ(2)) ∼= H4
m(A,Z/lZ(2)) ∼= Z/lZ ([ILO14, Exposé XVII, Corollaire

3.4.1.6]) in place of our result H3(X,Z/pZ(2)) ∼= Z/pZ above.
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(1) The sequence

π0H
2(K,Z/pnZ(2))→

⊕

p∈P

Z/pnZ
sum
→ Z/pnZ→ 0

is exact and the kernel of the first map is Pontryagin dual to H1
cs(X,Z/pnZ).

(2) Let X→ SpecA be a resolution of singularities such that X×A A/pA ⊂ X

is supported on a strict normal crossing divisor ([Sta22, Tag 0BIC]). Let Y
be the reduced part of X×A F . Then H1

cs(X,Z/pnZ) ∼= H1(Y,Z/pnZ).
(3) Let Y1, . . . , Ym be the irreducible components of Y . Let Γ be the dual graph

of Y . Then we have an exact sequence

0→ H1(Γ,Z/pnZ)→ H1(Y,Z/pnZ)→
⊕

i

H1(Yi,Z/p
nZ)→ 0.

Saito gives this type of Hasse principle for finite F in [Sai87]. We will actually
prove the above theorem for not necessarily algebraically closed F , where the Galois
actions will be taken into account. The finite étale property of H1(X,Z/pnZ) is
crucial in deducing Theorem 1.5 from Theorem 1.4.

We return to not necessarily algebraically closed F to state a duality between the
divisor class group and the Brauer group, which is a refinement of Saito’s duality
[Sai86]. Let PicX ∈ Alg/F be the perfection of Lipman’s group scheme structure
on Pic(X) with identity component Pic0X . Let PicX,sAb ⊂ PicX be the maximal

semi-abelian part and set Pic0X/sAb = Pic0X/PicX,sAb. Define

BrX [p∞] := lim
−→
n≥1

H2(X,Z/pnZ(1)).

Let A be the completed unramified extension of A corresponding to F and set
X = X ×A A.

Theorem 1.6.

(1) The group of F -points of BrX [p∞] is Br(X)[p∞].
(2) We have BrX [p∞]0 ∈ Algu/F and the object π0(BrX [p∞]) is of cofinite

type.
(3) We have a Serre duality

Pic0X/sAb↔ BrX [p∞]0

of connected groups in Algu/F and a Pontryagin duality

TpPic0X,sAb ↔ π0(BrX [p∞]),

where Tp denotes the p-adic Tate module.

In particular, the dimension of BrX [p∞] is equal to the dimension of the unipo-
tent part of PicX .

We give consequences for finite F . In this case, by [Suz20b, Proposition (10.3)
(b)], the group of F -valued points of any object of (the bounded derived category
of) IPAlgu/F can be equipped with a canonical structure as an ind-profinite group.
Applying this process to (the derived categorical versions of) Hq(U,Z/pnZ(r)) and
Hq

c(U,Z/pnZ(r)), we obtain ind-profinite group structures onHq(U,Z/pnZ(r)) and
Hq

c (U,Z/p
nZ(r)).

Theorem 1.7. Assume F is finite.
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(1) The groups Hq(U,Z/pnZ(r)) and Hq
c (U,Z/p

nZ(r)) are locally compact (and,
in particular, Hausdorff).

(2) We have a Pontryagin duality

Hq(U,Z/pnZ(r))↔ H4−q
c (U,Z/pnZ(2 − r)).

We also prove a variant of this for local fields K̂p at height one primes p ∈ P .

This gives a locally compact group structure on Hq(K̂p,Z/p
nZ(r)) and shows its

duality. The Hausdorff property of H2(K̂p,Z/p
nZ(2)) ∼= K2(K̂p)/p

nK2(K̂p) is
claimed in [Fes01, Section 4.3] (see also [Fes01, Theorem 4.7] and [Fes00, Section
6.6, Theorem 3]). But these references omit the relevant calculations of Vostokov’s
pairing, and this pairing is even undefined for the case p = 2. We do not use the
results of [Fes00, Fes01].

1.3. Outline of proof. To prove Theorems 1.2 and 1.4, we first need to prove
corresponding statements for the local field K̂p (and its ring of integers) at each
p ∈ P . We have nothing to add to [Suz24, Section 7] if p does not divide p. For
p dividing p, what we need is already given in [Suz24, Proposition 6.4.1 and the
proof of Proposition 6.5.2] if n = 1. The same proof does not work for n ≥ 2
since the graded pieces of p-adic nearby cycles RqΨZ/pnZ(r) are not completely
determined in this case. A simple dévissage on n does not work either since WF

is not an abelian category. What we know is that RqΨZ/pnZ(r) has a structure
as a relatively perfect unipotent group over κ(p) ([BS20]). For a relatively perfect
unipotent group G, in Section 4, we show that Hs(κ(p), G) for each s ∈ Z has a
structure as an object of WF . To prove this statement for s = 0, we use Néron
models of wound unipotent groups and their Greenberg transforms. The statement
for s = 1 is reduced to the statement for s = 0 by the duality for relatively perfect
unipotent groups given in Sections 3 and 4. Based on this result, we prove the
desired result for K̂p in Section 5.

We then prove that Hq(U,Z/pnZ(r)) ∈ PAlgu/F and Hq
c(U,Z/pnZ(r)) ∈

IAlgu/F for U ⊂ SpecA[1/p] in Section 7. These statements do not immedi-
ately imply that these groups are in WF , but they are the best we can have at
this point. To prove these statements, we show the corresponding statements for
curves, tubular neighborhoods and two-dimensional regular local rings in Sections
6 and 7. Applying them to a resolution of singularities of A, we get the desired
statements for U .

Now the above results for K̂p and U ⊂ SpecA[1/p] are sufficient, in Section
8, to deduce Theorems 1.2 and 1.4 for general U by somewhat heavy homological
algebra in IPAlgu/F . The lemmas needed for this homological algebra are provided
in Section 2.

This being done, it is relatively straightforward to deduce Theorem 1.5 in Section
9. The proof of Theorem 1.6, on the other hand, is a bit more complicated since
we need to deal with the non-torsion coefficient sheaf Gm and direct/inverse limits
in n. Sections 10 and 11 are devoted for this.

Finally, in Section 12, we deduce consequences for the case of finite F . In this
case, for any connected group G in WF , the group of rational points G(F ) has a
canonical structure as a locally compact group. We use the pro-étale site of a point
∗proet for showing this, just as we did in [Suz20b, Section 10] and [Suz20a, Section
4.2]. This proves Theorem 1.7.
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2. Notation and homological algebra of ind-pro-algebraic groups

Throughout this paper, let F be a perfect field of characteristic p > 0. We
generally follow the notation of [Suz24], especially [Suz24, Section 2]. We first
briefly recall some of the notation there. We then give several facts on homological
algebra of ind-pro-algebraic groups. They will be used later on to show that the
ind-pro-algebraic groups at hand belong to the category WF .

All sites in this paper are defined by given pretopologies. For a site S, let Ab(S)
be the category of sheaves of abelian groups on S, Ch(S) the category of complexes
in Ab(S) (in the cohomological grading) and D(S) its derived category. Let

Λn = Z/pnZ, Λ∞ = Qp/Zp, Λ = Λ1 = Z/pZ.

Denote ⊗ = ⊗Z. Let HomS be the sheaf-Hom functor for Ab(S) with right derived
functors Ext

q
S and RHomS . For objects G,H,K ∈ D(S), we say that a morphism

G⊗LH → K is a perfect pairing if G→ RHomS(H,K) and H → RHomS(G,K)
are both isomorphisms. A premorphism of sites f : S′ → S is a functor f−1 from
the underlying category of S to the underlying category of S′ that sends covering
families to covering families such that f−1(Y ×XZ)

∼
→ f−1Y ×f−1X f−1Z whenever

Y → X appears in a covering family. Let f∗ : Ab(S) → Ab(S′) be the pullback
functor for sheaves of abelian groups and Lf∗ : D(S) → D(S′) its left derived

functor. We say that an object G ∈ D(S) is f -acyclic if G
∼
→ Rf∗Lf

∗G.
We recall the ind-rational pro-étale site SpecF indrat

proet from [Suz20b]. An F -algebra
is said to be rational if it is a finite direct product of perfections (direct limits along
Frobenius) of finitely generated fields over F . An ind-rational F -algebra is a direct
limit of a filtered direct system consisting of rational F -algebras. Let F indrat be
the category of ind-rational F -algebras with F -algebra homomorphisms. Then
SpecF indrat

proet is (the opposite category of) the category F indrat equipped with the

pro-étale topology. We denote Ab(F indrat
proet ) = Ab(SpecF indrat

proet ) and use similar such
notation as HomF indrat

proet
.

We recall the perfect artinian étale site SpecF perar
et from [Suz21]. Let F perar be

the category of perfect artinian F -algebras (or, equivalently, finite direct products
of perfect field extensions of F ) with F -algebra homomorphisms. Then SpecF perar

et

is the category F perar endowed with the étale topology.

We recall the perfect pro-fppf site SpecF perf
profppf [Suz22]. A perfect F -algebra

homomorphism R → S is said to be flat of finite presentation (in the perfect
algebra sense) if S is the perfection of a flat R-algebra of finite presentation. It is
said to be flat of ind-finite presentation if S is the direct limit of a filtered direct

system of perfect R-algebras flat of finite presentation. Define SpecF perf
profppf to be

the category of perfect F -algebras where a covering of an object R is a finite family
{Ri} of R-algebras flat of ind-finite presentation such that

∏

i Ri is faithfully flat
over R.

In any of these sites, if F0 is a finite extension of F , let RF0/F be the Weil
restriction functor for F0/F (which is the pushforward functor by the morphism of
sites defined by the base change functor for SpecF0 → SpecF ).
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We recall the functor á : D(F perar
et )→ D(F indrat

proet ) [Suz21]. Let

(2.1) SpecF perf
profppf

f
→ SpecF indrat

proet
g
→ SpecF perar

et

be the premorphisms defined by the inclusion functors on the underlying categories.
Let h = g ◦ f . Then á = Rf∗Lh

∗.
Recall that the Yoneda functors WF → Ab(F perar

et ) and Alg/F → Ab(F perar
et )

are fully faithful ([Suz21, Proposition 7.1]). As in [Suz24, Definition 3.1.3], define
〈WF 〉Fperar

et
to be the smallest full triangulated subcategory of D(F perar

et ) closed
under direct summands containing objects ofWF placed in degree zero. We say that
an object G ∈ IPAlgu/F is pro-algebraic or ind-algebraic if it is in the subcategory
PAlgu/F or IAlgu/F , respectively.

Proposition 2.1. Let q ∈ Z and G ∈ 〈WF 〉Fperar
et

. Set H = áG. Assume that
HqG ∈ WF and HqH ∈ WF . Then HqG ∼= HqH.

Proof. By [Suz24, Proposition 3.1.4], we have RΓ(F ′
et, G) ∼= RΓ(F ′

proet, H) for all

F ′ ∈ F perar. In particular, we have (HqG)(F ′) ∼= (HqH)(F ′) for any field F ′ ∈
F perar and its algebraic closure F ′ compatible with the actions of Gal(F ′/F ′). The
assumption HqG ∈ WF implies that the Gal(F ′/F ′)-invariant part of (HqG)(F ′) is
(HqG)(F ′). The assumption G ∈ 〈WF 〉Fperar

et
implies that H ∈ Db(IPAlgu/F ) by

[Suz24, Proposition 3.1.5] and hence HqH ∈ IPAlgu/F . Therefore the Gal(F ′/F ′)-
invariant part of (HqH)(F ′) is (HqH)(F ′). Thus (HqG)(F ′) ∼= (HqH)(F ′) for all
F ′ ∈ F perar. Since WF is a full subcategory of Ab(F perar

et ), we obtain an isomor-
phism HqG ∼= HqH . �

Proposition 2.2. Let G ∈ IAlgu/F . Then any subobject and quotient object of G
in IPAlgu/F is in IAlgu/F .

Proof. Let H →֒ G be a subobject in IPAlgu/F . Write H = lim
−→λ

Hλ with Hλ ∈

PAlgu/F . Then for any λ, the composite morphism Hλ → H →֒ G is a morphism
from an object of PAlgu/F to an object of IAlgu/F . Hence it factors through an
object of Algu/F . Hence Hλ → H factors through an object of Algu/F . This
implies H ∈ IAlgu/F , thus G/H ∈ IAlgu/F . �

Proposition 2.3. Let G ։ H be a surjection in IPAlgu/F . Assume that G ∈ WF

and H ∈ PAlgu/F . Then H ∈ WF .

Proof. First assume that G is pro-algebraic. We may assume G connected. Let
K be the kernel of G ։ H . Write G as the inverse limit of a surjective system
of connected groups Gn ∈ Algu/F with connected Ker(Gn+1 ։ Gn). Let Hn

be the cokernel of the composite K →֒ G ։ Gn. Then H is the inverse limit
of the surjective system of the connected unipotent groups Hn with connected
Ker(Hn+1 ։ Hn).

For the general case, write G is a filtered union of proalgebraic subgroups Gm ∈
WF . Since H ∈ PAlgu/F , we know that the composite Gm →֒ G ։ H is surjective
for some m, which reduces the statement to the first case. �

Proposition 2.4. Let ϕ : G → H be a morphism in IPAlgu/F . Assume G,H ∈
WF . Then Im(ϕ) ∈ WF .

Proof. We may assume that G and H are connected. Write G as a direct limit
lim
−→n

Gn with Gn ∈ WF connected pro-algebraic and Gn+1/Gn ∈ Algu/F . The
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restriction of ϕ to Gn factors through some pro-algebraic subgroup of H . Hence
ϕ(Gn) ∈ PAlgu/F , so ϕ(Gn) ∈ WF by Proposition 2.3. It is connected. The group
ϕ(Gn+1)/ϕ(Gn) is a quotient of Gn+1/Gn ∈ Algu/F , hence ϕ(Gn+1)/ϕ(Gn) ∈
Algu/F . Thus Im(ϕ) = lim

−→n
ϕ(Gn) is in WF . �

Proposition 2.5. Let H →֒ G be an injection in IAlgu/F . If G ∈ WF , then
H0 ∈ WF . Hence if G ∈ WF and π0(H) is finite, then H ∈ WF .

Proof. We may assume that G and H are connected. First assume that G ∈
Algu/F . Write H as a filtered direct limit of connected Hλ ∈ Algu/F . Then
Im(Hλ → H) ∼= Im(Hλ → G) is connected in Algu/F . As G ∈ Algu/F , this
implies that the system of subgroups Im(Hλ → H) of G is stationary, meaning that
Im(Hλ → H) = H for some λ. Hence H ∈ Algu/F .

For the general case, write G as the direct limit of an injective system of con-
nected groups Gn ∈ Algu/F . Then (H ∩ Gn)

0 ∈ Algu/F by the first case. Hence
H is the direct limit of the injective system of the connected groups (H ∩ Gn)

0 ∈
Algu/F . �

Proposition 2.6. Let 0→ K → G→ H → 0 be an exact sequence in IPAlgu/F .
Assume that G ∈ WF and H is ind-algebraic in WF . Then K0 ∈ WF and π0(K)
is étale (that is, in IAlgu/F ).

Proof. Let G′ ⊂ G0 be connected pro-algebraic in WF such that G0/G′ ∈ WF

is ind-algebraic. Then the image of G′ in H is in Algu/F . Therefore G′ ∩ K is
pro-algebraic in WF . In the exact sequence

0→ K/(G′ ∩K)→ G/(G′ ∩K)→ H → 0,

the second and third terms are ind-algebraic inWF . Hence the first termK/(G′∩K)
is ind-algebraic and its identity component is in WF by Proposition 2.5. �

Proposition 2.7. Let

(2.2) · · · → Cn−1 → An → Bn → Cn → An+1 → · · ·

be a long exact sequence in IPAlgu/F . Assume that An ∈ PAlgu/F , Bn ∈ WF and
Cn ∈ IAlgu/F for all n. Then any term of (2.2) and the image of any morphism
in (2.2) are in WF . The images of An → Bn, Bn → Cn and Cn → An+1 are
pro-algebraic, ind-algebraic and in Algu/F , respectively, for all n.

Proof. Let Dn, En and Fn be the images of An → Bn, Bn → Cn and Cn → An+1,
respectively. Choose a pro-algebraic subgroup B′n ∈ WF of Bn such that Bn/B′n ∈
WF is ind-algebraic and the morphism An → Bn factors through B′n. Then Dn

is the image of An → B′n, so it is in PAlgu/F . We have En, Fn ∈ IAlgu/F by
Proposition 2.2. The exact sequence 0→ Fn → An+1 → Dn+1 → 0 shows that Fn

is also in PAlgu/F , hence in Algu/F . We have an exact sequence

0→ B′n/Dn → En → Bn/B′n → 0.

Hence B′n/Dn ∈ Algu/F by Proposition 2.2. As Bn/B′n ∈ WF , we haveE
n ∈ WF .

As B′n ∈ WF , we have Dn ∈ WF . The rest follows since WF is closed under
extensions. �

A perfect pairing on the derived category level gives a duality for each cohomol-
ogy objects as soon as the cohomology objects are shown to belong to WF :
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Proposition 2.8. Let G⊗LH → Λ∞ be a perfect pairing in D(F indrat
proet ) or D(F perar

et ).
Assume that HqG are in WF for all q and zero for all but finitely many q. Then
HqH are in WF for all q and zero for all but finitely many q, and the pairing
induces a Serre duality

(HqG)0 ↔ (H1−qH)0

of connected groups in WF and a Pontryagin duality

π0(H
qG)↔ π0(H

−qH)

of finite étale groups over F for all q.

Proof. This follows from [Suz24, Propositions 3.1.7 and 3.1.9]. �

3. Unipotent groups in positive characteristic

In this section, we show that the derived category level duality statement by Kato
[Kat86, Theorem 4.3 (ii)] has a counterpart for each cohomology objects when the
base scheme is a field with a finite p-basis. The cohomology objects turn out to
be relatively perfect unipotent groups studied in [BS20, Section 8]. Hence Kato’s
duality in this case can be interpreted as a duality for relatively perfect unipotent
groups. Under this duality, split groups correspond to split groups and wound
groups correspond to wound groups.

Let k be a field of characteristic p > 0 such that [k : kp] = pr for some finite
r ≥ 0. Let Spec kRP be the relatively perfect site of k ([Kat86, Section 2], [KS19,
Section 2], [BS20, Definition 8.2]). It is the category of relatively perfect k-schemes
(where relatively perfect means that the relative Frobenius Y → Y (p) over k is
an isomorphism) with k-scheme morphisms endowed with the étale topology. The
inclusion functor from the category of relatively perfect k-schemes to the category
of all k-schemes admits a right adjoint ([Kat86, Definition 1.8]), called the relative

perfection functor and denoted by Y 7→ Y RP. Let AlgRP/k ⊂ Ab(kRP) be the
full subcategory consisting of relative perfections of quasi-compact smooth group
schemes over k. It is an abelian subcategory closed under extensions by [BS20,
Propositions 8.7 and 8.12].

Recall from [DG70, Chapter IV, Section 2, Definition 2.1] that a (commutative)
group scheme G over k (not necessarily of finite type) is said to be unipotent if
it is affine and for any closed subgroup scheme 0 6= H ⊂ G, there is a non-zero
morphism H → Ga of group schemes over k.

Proposition 3.1. An object of AlgRP/k is unipotent if and only if it is the rela-
tive perfection of a quasi-compact smooth unipotent group scheme over k. Denote
by AlgRP

u /k the full subcategory of AlgRP/k consisting of objects satisfying these
equivalent conditions. It is an abelian subcategory closed under extensions.

Proof. Let G ∈ AlgRP/k be unipotent. Write it as the relative perfection of a
quasi-compact smooth group scheme G0 over k. The natural morphism G → G0

is faithfully flat by [BS20, Proposition 8.13]. Hence G0 is unipotent by [DG70,
Chapter IV, Section 2, Proposition 2.3 (a)]. Conversely, let G0 be a quasi-compact
smooth unipotent group scheme over k. Then G = GRP

0 can be written as the
inverse limit of a system · · · → G2 → G1 → G0 of groups schemes over k, where
each Gn is the Weil restriction along the pn-th power Frobenius Spec k → Spec k of
G0 ([BS20, Section 2]). Since Weil restrictions of unipotent groups are unipotent,
we know that Gn is unipotent. Hence G = lim

←−n
Gn is unipotent. The second
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statement follows from the fact that unipotent group schemes are closed under
kernels, cokernels and extensions. �

Let D0(kRP) ⊂ D(kRP) be the smallest triangulated full subcategory containing
GRP

a ([Kat86, Definition 4.2.3]).

Proposition 3.2. D0(kRP) ⊂ D(kRP) agrees with the full subcategory of Db(kRP)

consisting of objects G with HqG ∈ AlgRP
u /k for all q.

Proof. The latter category is triangulated by [Sta22, Tag 06UQ] and hence contains

D0(kRP). For the opposite inclusion, it is enough to show that AlgRP
u /k ⊂ D0(kRP).

Let G ∈ AlgRP
u /k be the relative perfection of a quasi-compact smooth unipotent

group scheme G0. By [BS20, Propositions 8.13 and 8.14], we know that π0(G) ∼=
π0(G0) is a finite étale group scheme over k. The Artin-Schreier sequence shows that
Λ ∈ D0(kRP) and hence π0(G) ∈ D0(kRP). Therefore we may assume that G (and
hence G0) is connected. Then G0 admits a finite filtration whose graded pieces are
smooth connected group schemes killed by p by [CGP15, Corollary B.3.3]. A short
exact sequence of smooth group schemes remains exact after relative perfection by
[BS20, Proposition 8.8]. Hence we may assume that G0 is killed by p. Then there
exists an exact sequence 0 → G0 → GdimG0+1

a → Ga → 0 by [CGP15, B.1.13].
Hence G ∈ D0(kRP). �

We say that G ∈ AlgRP
u /k is wound if any morphism GRP

a → G is zero. This
is equivalent that G be the relative perfection of a wound smooth unipotent group
scheme G0 over k in the sense that any morphism Ga → G0 be zero ([CGP15,
Definition B.2.1]). Here we allow disconnected groups. Any p-primary finite étale

group is wound in our sense. We say that G ∈ AlgRP
u /k is split if it admits a

finite filtration whose graded pieces are isomorphic to GRP
a . By [CGP15, Theo-

rem B.3.4], any G ∈ AlgRP
u /k admits a unique maximal split subgroup Gsplit and

G/Gsplit is wound.
For n ≥ 1, let νn(r) ∈ Ab(kRP) be the dlog part of the Hodge-Witt sheaf WnΩ

r
k

([Kat86, Section 4]). Let ν∞(r) be the direct limit of νn(r) over n ≥ 1. We have

RHomkRP( · , ν∞(r)) ∼= lim
−→
n

RHomkRP( · , νn(r))

on D0(kRP) by the same proof as [BS20, Proposition 8.10]. Recall from [Kat86,
Theorem 4.3] that the endofunctor RHomkRP( · , ν∞(r)) on D(kRP) restricts to a
contravariant autoequivalence on the subcategory D0(kRP) with inverse itself.

Proposition 3.3. Let G ∈ AlgRP
u /k. Then HomkRP(G, ν∞(r)) ∈ AlgRP

u /k is

wound, Ext1kRP
(G, ν∞(r)) ∈ AlgRP

u /k is split and Ext
q
kRP

(G, ν∞(r)) = 0 for all
q ≥ 2.

Proof. We have RHomkRP(G, ν∞(r)) ∈ D0(kRP) by [Kat86, Theorem 4.3 (ii)].

HenceExt
q
kRP

(G, ν∞(r)) ∈ AlgRP
u /k for all q by Proposition 3.2. AlsoExt

q
kRP

(G, ν∞(r)) =

0 for all q ≥ 2 by [Kat86, Theorem 3.2]. SinceHomkRP(G
RP
a , ν∞(r)) = 0 by [Kat86,

Theorem 3.2 (ii)], any morphism GRP
a → HomkRP(G, ν∞(r)) is zero. There-

fore HomkRP(G, ν∞(r)) is wound. To show the splitness of Ext1kRP
(G, ν∞(r)) ∈

AlgRP
u /k, note that a quotient of a split group and an extension of split groups

are split. Hence again by [CGP15, Corollary B.3.3], we may assume that pG = 0.
Take an exact sequence 0 → G0 → GdimG0+1

a → Ga → 0 as above. We have
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Ext1kRP
(GRP

a , ν∞(r)) ∼= Ωr
k
∼= GRP

a by [Kat86, Theorem 3.2 (ii)]. Therefore apply-

ing Ext1kRP
( · , ν∞(r)) to G0 →֒ GdimG0+1

a gives a surjection from (GRP
a )dimG0+1

to Ext1kRP
(G, ν∞(r)). Thus Ext1kRP

(G, ν∞(r)) is split. �

Proposition 3.4. Let G ∈ AlgRP
u /k. Then HomkRP(G, ν∞(r)) = 0 if G is split

and Ext1kRP
(G, ν∞(r)) = 0 if G is wound.

Proof. The first statement is [Kat86, Theorem 3.2 (ii)]. Assume that G is wound.
By Proposition 3.3, the isomorphism

G
∼
→ RHomkRP

(

RHomkRP(G, ν∞(r)), ν∞(r)
)

induces an exact sequence

0→ Ext1kRP

(

Ext1kRP
(G, ν∞(r)), ν∞(r)

)

→ G→ HomkRP

(

HomkRP(G, ν∞(r)), ν∞(r)
)

→ 0.

The first term in this sequence is split by Proposition 3.3 and hence zero. This
implies that the split group Ext1kRP

(G, ν∞(r)) is zero. �

Proposition 3.5. Let G ∈ AlgRP
u /k. If G is wound, then HomkRP(G, ν∞(r)) ∈

AlgRP
u /k is wound and

G ∼= HomkRP

(

HomkRP(G, ν∞(r)), ν∞(r)
)

.

If G is split, then Ext1kRP
(G, ν∞(r)) ∈ AlgRP

u /k is split and

G ∼= Ext1kRP

(

Ext1kRP
(G, ν∞(r)), ν∞(r)

)

.

Proof. This follows from Propositions 3.3 and 3.4. �

This gives a duality for would groups and for split groups in AlgRP
u /k. For

example, for any n ≥ 1 and 0 ≤ s ≤ r, the groups νn(s) and νn(r − s) are wound
groups dual to each other by [Kat86, Theorem 4.3]. Note that νn(0) = Z/pnZ is
discrete, while one can check that its dual νn(r) is connected if r > 0. On the other
hand, for a finite-dimensional k-vector group V , its dual in the above sense (that
is, Ext1kRP

(V, ν∞(r))) is given by the vector space dual V ∗ tensored with Ωr
k by

[Kat86, Theorem 3.2 (ii)].

4. Duality for unipotent groups over local fields of positive

characteristic

Recall that F is a fixed perfect field of characteristic p > 0. Let k be a complete
discrete valuation field of characteristic p with residue field F . In this section, we
give a duality for cohomology of k with coefficients in relatively perfect unipotent
groups. Compare it with Rosengarten’s duality [Ros18].

Let Ok be the ring of integers of k with maximal ideal pk. The functor

F ′ 7→ k(F ′) = (F ′ ⊗̂F Ok)⊗Ok
k

(where F ′ ⊗̂F Ok means the inverse limit of F ′⊗F Ok/p
n
k over n) defines a premor-

phism of sites

πk,RP : Spec kRP → SpecF perar
et .

Proposition 4.1. Let G ∈ AlgRP
u /k. Then πk,RP,∗G ∈ WF . It is pro-algebraic if

G is wound.
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Proof. We have Rqπk,RP,∗Gsplit = 0 for q ≥ 1. Hence we have an exact sequence

0→ πk,RP,∗Gsplit → πk,RP,∗G→ πk,RP,∗(G/Gsplit)→ 0

in Ab(F perar
et ). Since πk,RP,∗G

RP
a
∼= k ∼= GN

a ⊕G⊕N
a ∈ WF , we have πk,RP,∗Gsplit ∈

WF . Let G
′ = G/Gsplit. Since it is wound, it admits a Néron finite-type model G′

over Ok by [BLR90, Section 10.2, Theorem 1]. For any F ′ ∈ F perar, we have

(πk,RP,∗G
′)(F ′) ∼= G′(F ′ ⊗̂F Ok).

Therefore πk,RP,∗G
′ is represented by the perfect Greenberg transform of G′ [BGA18,

Section 14, Equation (74)]. By [BGA18, Proposition 11.1], the natural morphism
πk,RP,∗G

′ → G′F to the special fiber of G′ is surjective and its kernel is pro-algebraic
in WF . Thus πk,RP,∗G

′ ∈ WF . Hence πk,RP,∗G ∈ WF . �

Proposition 4.2. Let G ∈ IPAlgu/F be such that π0(G) is étale. Assume that

lim
−→
λ

G(F ′
λ)

∼
→ G(lim

−→
λ

F ′
λ)

for any filtered direct system {F ′
λ} of perfect fields over F . Then G ∈ IAlgu/F .

Proof. The assumption and conclusion are satisfied if G is étale. Hence we may
assume that G is connected. Then G can be written as the direct limit of a filtered
direct system {Gµ} of connected groups in PAlgu/F . Hence we need to show that
any morphism H → G from a connected group H ∈ PAlgu/F factors through an
object of Algu/F . Let ξH be the generic point of H . The same argument as the
proof of [Suz20b, Lemma (3.4.4)] applied to this situation gives the result. �

Proposition 4.3. Let G ∈ AlgRP
u /k. Then R1πk,RP,∗G ∈ IAlgu/F is connected

and Rqπk,RP,∗G = 0 for q ≥ 2.

Proof. As in the proof of Proposition 3.2, we may assume that G is wound and there
exists an exact sequence 0→ G→ GRPn

a → GRP
a → 0, where n = dim(G) + 1. We

have Rqπk,RP,∗G
RP
a = 0 for q ≥ 1. Hence Rqπk,RP,∗G = 0 for q ≥ 2, and we have

an exact sequence

0→ πk,RP,∗G→ kn → k→ R1πk,RP,∗G→ 0

in Ab(F perar
et ). The morphism πk,RP,∗G → kn is injective in IPAlgu/F . Let H

be its cokernel in IPAlgu/F , which is in WF by Propositions 4.1 and 2.7. Then,
since the pro-étale cohomology with coefficients in an object ofWF is isomorphic to
the étale cohomology by [Suz24, Proposition 3.1.2], this cokernel H represents the
cokernel of πk,RP,∗G → kn in Ab(F perar

et ). The same argument applied to H →֒ k

shows that R1πk,RP,∗G ∈ IPAlgu/F . It is connected since k is connected. For any
filtered direct system {F ′

λ} of perfect fields over F , we have

lim
−→
λ

H1(k(F ′
λ), G)

∼
→ H1

(

lim
−→
λ

k(F ′
λ), G

) ∼
→ H1

(

k(lim
−→
λ

F ′
λ), G

)

by [GGMB14, Proposition 3.5.3 (2)]. This implies that R1πk,RP,∗G ∈ IPAlgu/F
satisfies the assumption of Proposition 4.2. Thus R1πk,RP,∗G ∈ IAlgu/F . �

We have

Rqπk,RP,∗ν∞(1) ∼=

{

k× ⊗Z Λ∞ if q = 0,

0 otherwise
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by [Suz24, Proposition 6.1.6]. With the valuation map k× ։ Z, this gives a canon-
ical morphism

Rπk,RP,∗ν∞(1)→ Λ∞

in D(F perar
et ).

Proposition 4.4. Let G ∈ D0(kRP) and set H = RHomkRP(G, ν∞(1)). Then the
composite

(4.1) Rπk,RP,∗G⊗
L Rπk,RP,∗H → Rπk,RP,∗ν∞(1)→ Λ∞

is a perfect pairing in D(F perar
et ).

Proof. We may assume that G = GRP
a and hence H = Ω1

k[−1]. This case can be
proved in the same way as the proof of [Suz20b, Proposition (5.2.2.4)] (or is reduced
to it). More explicitly, we have Rπk,RP,∗G

RP
a
∼= k and Rπk,RP,∗Ω

1
k
∼= Ω1

k
, where

Ω1
k
= Ω1

k ⊗k k. The multiplication pairing k × Ω1
k → Ω1

k followed by the residue
map Ω1

k ։ F is a perfect pairing of Tate vector spaces over F . Hence [Suz24,
Propositions 3.4.5 and 3.4.4] imply the result. �

Proposition 4.5. Let G ∈ AlgRP
u /k be wound and set H = HomkRP(G, ν∞(1)).

Then the paring (4.1) induces isomorphisms

π0(πk,RP,∗G) ∼= HomFperar
et

(π0(πk,RP,∗H),Λ∞),

R1πk,RP,∗G ∼= Ext1Fperar
et

((πk,RP,∗H)0,Λ∞).

Proof. This follows from the connectedness of R1πk,RP,∗H (Proposition 4.3). �

Proposition 4.6. Let G ∈ AlgRP
u /k. Then R1πk,RP,∗G ∈ WF .

Proof. We may assume that G is wound. Let H = HomkRP(G, ν∞(1)). Since
πk,RP,∗H ∈ WF by Proposition 4.1, we have

Ext1Fperar
et

((πk,RP,∗H)0,Λ∞) ∈ WF

by [Suz24, Proposition 3.1.7 (2)]. With Proposition 4.5, we get the result. �

For G ∈ AlgRP
u , set

RΓ(k, G) = áRπk,RP,∗G ∈ D(F indrat
proet )

and Hq = HqRΓ for q ∈ Z and Γ = H0.

Proposition 4.7. Let G ∈ AlgRP
u /k.

(1) Assume G is split. Set H = Ext1kRP
(G, ν∞(1)). Then Hq(k, G) = 0 unless

q = 0. We have a Serre duality

Γ(k, G)↔ Γ(k, H)

of connected groups in WF .
(2) Assume G is wound. Set H = HomkRP(G, ν∞(1)). Then Hq(k, G) = 0

unless 0 ≤ q ≤ 1. We have a Pontryagin duality

(4.2) π0Γ(k, G)↔ π0Γ(k, H)

of finite étale groups over F and a Serre duality

(4.3) H1(k, G)↔ Γ(k, H)0

of connected groups in WF .
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Proof. This follows from Propositions 2.8, 4.1, 4.3, 4.4, 4.5 and 4.6. �

The dualities (4.2) and (4.3) above are unipotent group analogues of Grothen-
dieck’s and Shafarevich’s duality conjectures, respectively, for abelian varieties
proved in [Suz20b] after Grothendieck, Werner, Bégueri, Bester, Bertapelle and
others.

5. Two-dimensional local fields

Let k be as in Section 4. Let K be a complete discrete valuation field of char-
acteristic zero with residue field k. Let OK be its ring of integers. In this section,
we show that the derived category level duality statement for K in [Suz24, Section
6] has a counterpart for each cohomology objects. The key point is to show that
the nearby cycle functor from K to k takes values in relatively perfect unipotent
groups, which allows us to apply the results of Section 4 to these groups. There
are some technicalities to deal with about the choice of sites. Below we identify
Z/pnZ(r) with the p-adic étale Tate twist Tn(r) ([Sch94, Gei04, Sat07, Sat13]).

Let Spec kRPS be the relatively perfectly smooth site of k ([KS19, Section 2]). It
is the category of relatively perfectly smooth k-schemes (that is, k-schemes Zariski
locally isomorphic to relative perfections of smooth k-schemes) with k-scheme mor-
phisms endowed with the étale topology. Let D0(kRPS) ⊂ D(kRPS) be the smallest
triangulated subcategory containing GRP

a . Let α : Spec kRP → Spec kRPS be the
premorphism defined by the inclusion functor on the underlying categories. Its
(exact) pushforward functor gives an equivalence D0(kRP)

∼
→ D0(kRPS) ([KS19,

Corollary 2.3]). We identify these equivalent categories. For G ∈ D0(kRP) (or
D0(kRPS)), the natural morphism gives an isomorphism

α∗RHomkRP(G, ν∞(1))
∼
→ RHomkRPS (G, ν∞(1))

by [KS19, Proposition 2.2].
Let SpecOK,RPS be relatively perfectly smooth site of OK ([KS19, Section 3]),

whose objects are flat OK -algebras R such that R ⊗OK
k is relatively perfectly

smooth over k. The topology of SpecOK,RPS is the étale topology. Let SpecKEt

be the big étale site of K. By [KS19, Proposition 3.2, Equation (3.1)], the base
change functors define morphisms of sites

SpecKEt
jRPS
→ SpecOK,RPS

iRPS← Spec kRPS.

Let RΨRPS = i∗RPSRjRPS,∗ and RqΨRPS = i∗RPSR
qjRPS,∗ for q ∈ Z. For n ≥ 1 and

r ≥ 0, we have a canonical morphism

RrΨRPSΛn(r)→ νn(r − 1)

in Ab(kRPS) by [KS19, Proposition 5.1] (where we set νn(−1) = 0). Hence we have
a canonical morphism

(5.1) τ≤rRjRPS,∗Λn(r)→ iRPS,∗νn(r − 1)

in D(OK,RPS). Let Tn(r) ∈ D(OK,RPS) be its canonical mapping fiber. For r < 0,
let Tn(r) = jRPS,!Λn(r). We have a canonical natural transformation

i∗RPS → i∗RPSRjRPS,∗j
∗
RPS : D(OK,RPS)→ D(kRPS).
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Since j∗RPS sends K-injectives to K-injectives, we have its canonical mapping fiber,
which we denote by Ri!RPS, so that we have a canonical distinguished triangle

Ri!RPSG→ i∗RPSG→ RΨRPSj
∗
RPSG

in D(kRPS) for G ∈ D(OK,RPS) functorially. In particular, we have a distinguished
triangle

i∗RPSTn(r)→ RΨRPSΛn(r)→ Ri!RPSTn(r)[1].

Proposition 5.1. Let n ≥ 1 and r ∈ Z. Then the objects RΨRPSΛn(r), i
∗
RPSTn(r)

and Ri!RPSTn(r) are in D0(kRPS).

Proof. It is enough to treat RΨRPSΛn(r) and i∗RPSTn(r). We may assume that
n = 1. We may also assume that K contains a fixed primitive p-th root of unity
ζp. We identify all the twists Λ(r) with Λ using ζp. Then for any q ∈ Z, the
sheaf RqΨRPSΛ has a finite filtration whose graded pieces are either GRP

a , Ω1
k,

GRP
a /(GRP

a )p, Λ or ν(1) by [KS19, Proposition 6.1]. All these graded pieces are in

AlgRP
u /k. Hence RqΨRPSΛ ∈ AlgRP

u /k and so RΨRPSΛ ∈ D0(Alg
RP
u /k). We have

Hqi∗RPST(r)
∼=











RqΨRPSΛ if q < r,

Ker
(

RrΨRPSΛ ։ ν(r − 1)
)

if q = r,

0 if q > r.

Hence it is in AlgRP
u /k for all q. �

Proposition 5.2. Let n ≥ 1 and q, s, r ∈ Z. Let G ∈ AlgRP
u /k be either RqΨRPSΛn(r),

Hqi∗RPSTn(r) or HqRi!RPSTn(r). Then Rsπk,RP,∗G ∈ WF .

Proof. This follows from Propositions 4.1, 4.6 and 5.1. �

Recall from [Kat82, Section 1, Definition 1] and [Suz24, Section 2.3] that for
a relatively perfect k-algebra R, its Kato canonical lifting over OK is a unique
complete flat OK-algebra S equipped with an isomorphism S ⊗OK

k ∼= R over k.
For F ′ ∈ F perar, let OK(F ′) be the Kato canonical lifting of k(F ′) over OK . De-

fine K(F ′) = OK(F ′)⊗OK
K. We recall the relative sites SpecKet, SpecOK,et and

Specket from [Suz24, Sections 4.1 and 5.1]. The underlying category of Specket

consists of pairs (k′, F ′), where F ′ ∈ F perar and k′ an étale k(F ′)-algebra. Mor-
phisms are morphisms between morphisms (k(F ′) → k′) → (k(F ′′) → k′′). A
covering is a finite family {(k′, F ′) → (k′i, F

′
i )} such that F ′ → F ′

i is étale for all
i and k′ →

∏

i k
′
i is faithfully flat étale. The sites SpecKet and SpecOK,et are

defined similarly using the functors K and OK instead.
We have morphisms of sites

SpecKet
j
−−→ SpecOK,et

i
←−− Specket

πK





y

πOK





y

πk





y

SpecF perar
et SpecF perar

et SpecF perar
et ,

where vertical morphisms are defined by the functors F ′ 7→ (K(F ′), F ′), (OK(F ′), F ′)
and (k(F ′), F ′) and the upper horizontal morphisms are by (A′, F ′) 7→ (A′ ⊗OK

K,F ′) and (A′, F ′) 7→ (A′ ⊗OK
k, F ′) (where A′ is an étale OK(F ′)-algebra).
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Let RΨ = i∗Rj∗. For r ∈ Z and n ≥ 1, the objects Λn(r) and Tn(r) are naturally
viewed as objects of Ab(Ket) and D(OK,et), respectively. For q ∈ Z, the sheaves
RqπK,∗Λn(r) and RqπOK ,∗Tn(r) are the étale sheafifications of the presheaves

F ′ 7→ Hq(K(F ′),Λn(r)), Hq(OK(F ′),Tn(r)).

The object RπOK ,!Tn(r) is defined as Rπk,∗Ri!Tn(r), where i! is the right adjoint
of i∗ (see [Suz24, Section 4.3] for more details).

Proposition 5.3. Let G ∈ Ab(ket) be torsion. Then Rqπk,∗G = 0 for all q ≥ 2.

Proof. The sheaf Rqπk,∗G ∈ Ab(F perar
et ) is the étale sheafification of the presheaf

F ′ 7→ Hq(k(F ′), G), where G is restricted to the small étale site of k(F ′). Let
F ′ ∈ F perar be a field and F ′ its algebraic closure. Then the direct limit of k(F ′′)
over all finite subextensions F ′′ of F ′/F ′ is a henselian discrete valuation field with
residue field F ′. Such a field has cohomological dimension 1. This implies the
result. �

Proposition 5.4. Let F ′ ∈ F perar. Then the base change functor defines a mor-
phism of sites Speck(F ′)RPS → Spec kRPS.

Proof. The only point to check is the exactness of the pullback functor for sheaves of
sets. It is enough to show that k(F ′) is a filtered direct limit of relatively perfectly
smooth k-algebras. We may assume that F ′ is a field. The ring F ′ ⊗̂F Ok is
regular over Ok by [BLR90, Section 3.6, Lemma 2]. Hence k(F ′) is a filtered direct
limit of smooth k-algebras by the paragraph before [BLR90, Section 3.6, Lemma
2]. Applying the relative perfections, we know that k(F ′) is a filtered direct limit of
relatively perfectly smooth k-algebras since k(F ′) is relatively perfect over k. �

Proposition 5.5. Let q, s, r ∈ Z and n ≥ 1. Let G ∈ Ab(ket) be either RqΨΛn(r),
Hqi∗Tn(r) or HqRi!Tn(r). Then Rsπk,∗G ∈ WF .

Proof. Let G′ ∈ AlgRP
u /k be either RqΨRPSΛn(r), H

qi∗RPSTn(r) or H
qRi!RPSTn(r),

correspondingly. By Proposition 5.2, it is enough to show thatRsπk,∗G ∼= Rsπk,RP,∗G
′.

They are the sheafifications of the presheaves

F ′ 7→ Hs(k(F ′), G), Hs(k(F ′), G′ ×k k(F
′)),

where the G in the first presheaf is the restriction of G to the small étale site of
k(F ′) and the G′ ×k k(F ′) in the second presheaf is the fiber product of schemes

(G′ ∈ AlgRP
u /k being representable). Hence it is enough to show that the group

scheme G′ ×k k(F ′) as a sheaf on k(F ′)et is isomorphic to the restriction of G
to k(F ′)et. We may assume that F ′ is a field. The base change functors define
morphisms of sites

SpecK(F ′)Et

jRPS,F ′

→ SpecOK(F ′)RPS

iRPS,F ′

← Speck(F ′)RPS.

Let RΨRPS,F ′ = i∗RPS,F ′RjRPS,F ′,∗. Let

SpecK(F ′)Et

jRPS,F ′

−−−−−→ SpecOK(F ′)RPS

iRPS,F ′

←−−−−− Speck(F ′)RPS

gK





y

gOK





y

gk





y

SpecKEt
jRPS
−−−→ SpecOK,RPS

iRPS←−−− Spec kRPS



18 TAKASHI SUZUKI

be the premorphisms of sites defined by base change functors. LetG′′ ∈ Ab(k(F ′)RPS)
be either RqΨRPS,F ′Λn(r), H

qi∗RPS,F ′Tn(r) or HqRi!RPS,F ′Tn(r), correspondingly.

Then the restriction of G′′ to k(F ′)et is the restriction of G to k(F ′)et. Hence
it is enough to show that G′ ×k k(F ′) ∼= g∗kG

′ is isomorphic to G′′. We have an
isomorphism of functors

g∗ki
∗
RPS
∼= i∗RPS,F ′Lg∗OK

: D(OK,RPS)→ D(k(F ′)RPS)

and a natural morphism of functors

Lg∗OK
RjRPS,∗ → RjRPS,F ′,∗g

∗
K : D(KEt)→ D(OK(F ′)RPS)

by [Suz21, Proposition 2.6]. Combining them, we have a morphism of functors

g∗kRΨRPS → RΨRPS,F ′g∗K : D(KEt)→ D(k(F ′)RPS).

This induces a morphism

(5.2) g∗kRΨRPSΛn(r)→ RΨRPS,F ′Λn(r).

For n = 1, the explicit calculations of the graded pieces of RqΨRPSΛ(r) ([Suz24,
(6.3.1), (6.3.2)]) when ζp ∈ K shows that the morphism

g∗kR
qΨRPSΛ(r)→ RqΨRPS,F ′Λ(r)

is an isomorphism (with ζp ∈ K or not) for all q. Hence (5.2) is an isomorphism
for general n. This settles the case G′ = RqΨRPSΛ(r) and G′′ = RqΨRPS,F ′Λ(r).
We have a commutative diagram

g∗kR
rΨRPSΛn(r) −−→ g∗kνn(r − 1)





y





y

RrΨRPS,F ′Λn(r) −−→ νn(r − 1)

in Ab(k(F ′)RPS) by the construction of the Kato boundary map. The vertical
morphisms are isomorphisms. Hence they induce an isomorphism of triangles

g∗ki
∗
RPSTn(r) −−→ g∗kτ≤rRΨRPSΛn(r) −−→ g∗kνn(r − 1)

∥

∥

∥

∥

∥

∥

∥

∥

∥

i∗RPS,F ′Tn(r) −−→ τ≤rRΨRPS,F ′Λn(r) −−→ νn(r − 1)

This settles the case G′ = Hqi∗RPSTn(r) and G′′ = Hqi∗RPS,F ′Tn(r). This in turn
induces an isomorphism of triangles

g∗ki
∗
RPSTn(r) −−→ g∗kRΨRPSΛn(r) −−→ g∗kRi!RPSTn(r)[1]

∥

∥

∥

∥

∥

∥

∥

∥

∥

i∗RPS,F ′Tn(r) −−→ RΨRPS,F ′Λn(r) −−→ Ri!RPS,F ′Tn(r)[1],

settling the remaining case. �

Proposition 5.6. Let q, r ∈ Z and n ≥ 1. Then the objects RqπK,∗Λn(r),
RqπOK ,∗Tn(r) and Rq+1πOK ,!Tn(r) are in WF . They are zero unless q = 0, 1, 2.

Proof. Let G ∈ D(ket) be either RΨΛn(r), i
∗Tn(r) or Ri!Tn(r). By Proposition

5.3, we have an exact sequence

0→ R1πk,∗H
q−1G→ Rqπk,∗G→ πk,∗H

qG→ 0
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in Ab(F perar
et ). The first and third terms are in WF by Proposition 5.5. Hence so

is the second. The vanishing for q 6= 0, 1, 2 follows from [Suz24, Propositions 6.2.1
and 6.5.1]. �

Proposition 5.7. Let r, q,∈ Z and n ≥ 1.

(1) The perfect pairing

RπK,∗Λn(r) ⊗
L RπK,∗Λn(2− r)→ Λ∞[−2],

in [Suz24, Proposition 6.2.2] induces a Pontryagin duality

π0(R
qπK,∗Λn(r))↔ π0(R

2−qπK,∗Λn(2− r))

of finite étale group schemes over F and a Serre duality

(RqπK,∗Λn(r))
0 ↔ (R3−qπK,∗Λn(2− r))0

of connected groups in WF .
(2) The perfect pairing

RπOK ,∗Tn(r) ⊗
L RπOK ,!Tn(2 − r)→ Λ∞[−3],

in [Suz24, Proposition 6.5.1] induces a Pontryagin duality

π0(R
qπOK ,∗Tn(r))↔ π0(R

3−qπOK ,!Tn(2− r))

of finite étale group schemes over F and a Serre duality

(RqπOK ,∗Tn(r))
0 ↔ (R4−qπOK ,!Tn(r))

0

of connected groups in WF .

Proof. This follows from Propositions 2.8 and 5.6. �

Proposition 5.8. Let n ≥ 1.

(1) πOK ,∗Λn
∼= Λn is finite, R1πOK ,∗Λn is connected ind-algebraic and R2πOK ,∗Λn =

0.
(2) πOK ,∗Tn(1) is finite and R2πOK ,∗Tn(1) = 0.
(3) πOK ,∗Tn(2) is finite.
(4) R1πOK ,!Tn(r) = 0 for all r.
(5) R2πOK ,!Tn(1) is finite.
(6) R2πOK ,!Tn(2) = 0 and R3πOK ,∗Tn(2) is pro-algebraic.

Proof. (1), (2) and (3) follow by applying étale sheafification to the descriptions of

the Zariski sheaves in the proof of [Suz24, Proposition 6.5.2]. We have πOK ,∗Tn(r)
∼
→

πK,∗Λn(r) for all r. The morphisms RqπOK ,∗Tn(r) → RqπK,∗Λn(r) are injective
for all q and r by the injectivity stated in the last paragraph of the proof of [Suz24,
Proposition 6.5.2]. These imply (4). The rest follow from Proposition 5.7 by dual-
ity. �

Recall from [Suz24, paragraph after Proposition 4.3.2] that we define

RΓ(K, · ) = áRπK,∗ : D(Ket)→ D(F indrat
proet ),

RΓ(OK , · ) = áRπOK ,∗ : D(OK,et)→ D(F indrat
proet ),

RΓc(OK , · ) = áRπOK ,! : D(OK,et)→ D(F indrat
proet )

and Hq = HqRΓ, Hq
c = HqRΓc. If G ∈ Db(Ket) or Db(OK,et) is concentrated

in non-negative degrees and RqπK,∗G is in WF for all q and zero for large enough
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q, then we occasionally write Γ(K, G) = H0(K, G) or Γ(OK , G) = H0(OK , G),
respectively.

Proposition 5.9. Let q, r ∈ Z and n ≥ 1.

(1) Hq(K,Λn(r)), H
q(OK ,Tn(r)) and Hq

c(OK ,Tn(r)) are in WF for all q and
r.

(2) Γ(K,Λn(r)) is finite and Hq(K,Λn(r)) = 0 for all q 6= 0, 1, 2 and all r.
(3) Γ(OK ,Λn) ∼= Λn is finite, H1(OK ,Λn) is connected ind-algebraic and

Hq(OK ,Λn) = 0 for all q 6= 0, 1.
(4) Hq

c(OK ,Λn) = 0 for all q 6= 2, 3.
(5) Γ(OK ,Tn(1)) is finite and Hq(OK ,Tn(1)) = 0 for all q 6= 0, 1.
(6) H2

c(OK ,Tn(1)) is finite and Hq
c(OK ,Tn(1)) = 0 for all q 6= 2, 3.

(7) Γ(OK ,Tn(2)) is finite and Hq(OK ,Tn(2)) = 0 for all q 6= 0, 1, 2.
(8) H3

c(OK ,Tn(2)) is pro-algebraic and Hq
c(OK ,Tn(2)) = 0 for all q 6= 3.

Proof. This follows from Propositions 2.1, 5.6 and 5.8. �

Proposition 5.10. Let r, q,∈ Z and n ≥ 1.

(1) The perfect pairing

RΓ(K,Λn(r)) ⊗
L RΓ(K,Λn(2− r))→ Λ∞[−2],

in [Suz24, Proposition 6.2.2] induces a Pontryagin duality

π0(H
q(K,Λn(r)))↔ π0(H

2−q(K,Λn(2− r)))

of finite étale group schemes over F and a Serre duality

Hq(K,Λn(r))
0 ↔ H3−q(K,Λn(2− r))0

of connected groups in WF .
(2) The perfect pairing

RΓ(OK ,Tn(r)) ⊗
L RΓc(OK ,Tn(2− r))→ Λ∞[−3]

in [Suz24, Proposition 6.5.1] induces a Pontryagin duality

π0(H
q(OK ,Tn(r)))↔ π0(H

3−q
c (OK ,Tn(2 − r)))

of finite étale group schemes over F and a Serre duality

Hq(OK ,Tn(r))
0 ↔ H4−q

c (OK ,Tn(2− r))0

of connected groups in WF .

Proof. This follows from Proposition 5.7. �

Here is a summary of the above finiteness results:

Hq(K,Λn(r)) ∀r
q = 0 finite
q = 1 general
q = 2 general

Hq(OK ,Tn(r)) r = 0 r = 1 r = 2
q = 0 Λn finite finite
q = 1 ind-alg general general
q = 2 0 0 general
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Hq
c(OK ,Tn(r)) r = 0 r = 1 r = 2

q = 2 general finite 0
q = 3 general general pro-alg

These groups are zero for (q, r) outside the ranges in the tables. By Proposition
5.10 (or by a direct calculation), we have

(5.3) π0H
3
c(OK ,Tn(2)) ∼= Λn.

6. Curves and their tubular neighborhoods

In this section, we show that the ind-pro-algebraic group structures on coho-
mology of smooth affine curves over F and their p-adic tubular neighborhoods
constructed in [Suz24, Section 9] belong to WF .

Let V = SpecB be a smooth affine geometrically connected curve over F . Let
Y be the smooth compactification of V and set T = Y \ V . We briefly recall the
constructions in [Suz24, Section 9.1]. For F ′ ∈ F perar, we set B(F ′) = F ′ ⊗F B.
The functor B defines a site SpecBet and a morphism of sites

πB : SpecBet → SpecF perar
et

by the method in Section 5. That is, SpecBet is the category of pairs (B
′, F ′) (where

F ′ ∈ F perar and B′ an étale B(F ′)-algebra) endowed with the étale topology. For

x ∈ T , let Ôkx
be the complete local ring of Y at x. Let k̂x and Fx be its fraction

field and residue field, respectively. As in Section 5, we have a functor

k̂x,0(F
′
x) = (F ′

x ⊗̂Fx
Ôkx

)⊗Ôkx
k̂x

in F ′
x ∈ F perar

x . Let k̂x be the Weil restriction RFx/F k̂x,0, so

k̂x(F
′) = k̂x,0(F

′ ⊗F Fx) = (F ′ ⊗̂F Ôkx
)⊗Ôkx

k̂x

for F ′ ∈ F perar. By the method in Section 5, the functor k̂x defines a site Spec k̂x

and a morphism of sites

π
k̂x

: Spec k̂x → SpecF perar
et .

Let

πkx/B : Spec k̂x,et → SpecBet

be the morphism defined by the functor (B′, F ′) 7→ (B′ ⊗B(F ′) k̂x(F
′), F ′) (where

F ′ ∈ F perar and B′ an étale B(F ′)-algebra).
A B-module M can naturally be viewed as a sheaf (B′, F ′) 7→ B′ ⊗B M on

SpecBet. A similar process exists for viewing a k̂x-module as a sheaf on Spec k̂x,et.
Hence the sheaf ν(1) (the dlog part of Ω1) can also be viewed as a sheaf on SpecBet

or Spec k̂x,et.

Let G ∈ Ab(Bet) and Gx ∈ Ab(k̂x) for each x ∈ T be sheaves and G →
π
k̂x/B,∗Gx a morphism in Ab(Bet). The latter induces a morphism

RπB,∗G→ Rπ
k̂x,∗

Gx
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in D(F perar
et ). Then the object Rπ

B,̂!G ∈ D(F perar
et ) in [Suz24, Section 9.1] is a

canonical object fitting in a distinguished triangle2

Rπ
B,̂!G→ RπB,∗G→

⊕

x∈T

Rπ
k̂x,∗

Gx.

For q ∈ Z, denote Rqπ
B,̂!G = HqRπ

B,̂!G. For G = Λ or ν(1), we take Gx to be its

natural counterpart over Spec k̂x. For G = M a B-module, we take Gx = M⊗B k̂x.
The morphism G→ π

k̂x/B,∗Gx is the natural one.

Proposition 6.1. Let q ∈ Z. Let G be either Λ, ν(1) or a finite projective
B-module. Then RqπB,∗G ∈ WF is ind-algebraic and Rq+1π

B,̂!G ∈ WF is pro-

algebraic. They are zero unless q = 0, 1.

Proof. This follows from [Suz24, Proposition 9.1.5] and its proof. �

Next, let A be a ring. Assume all of the following:

(1) A is a two-dimensional regular integral domain.
(2) A contains a primitive p-th root of unity ζp.
(3) The radical I of the ideal (p) of A is principal.
(4) B := A/I is a one-dimensional geometrically connected smooth algebra

over F .
(5) The pair (A, I) is complete.

Set R = A[1/p]. We apply the notation above for V = SpecB. We briefly re-

call the constructions in [Suz24, Section 9.2]. For F ′ ∈ F perar, let Â(F ′) be
the Kato canonical lifting of the relatively perfect B-algebra B(F ′) to A. Set

R̂(F ′) = Â(F ′) ⊗A R. This functor defines a site Spec R̂et and a morphism of

sites π
R̂
: Spec R̂et → SpecF perar

et by the method in Section 5. For x ∈ T , Let Ôηx

be the the Kato canonical lifting of the relatively perfect B-algebra k̂x to A. Let
K̂ηx

be its fraction field, which is a complete discrete valuation field with residue

field k̂x. Let K̂ηx,0(F
′
x) be the functor in F ′

x ∈ F perar
x defined in Section 5 for K̂ηx

.

Let K̂ηx
= RFx/F K̂ηx,0. Then we have a site a site Spec K̂ηx,et and a morphism

of sites π
K̂ηx

: Spec K̂ηx,et → SpecF perar
et by the method in Section 5. The object

Rπ
K̂ηx ,∗

Λ ∈ D(F perar
et ) is the Weil restriction RFx/F of Rπ

K̂ηx,0,∗
Λ ∈ D(F perar

x,et ).

We have a canonical morphism

Rπ
R̂,∗Λ→ Rπ

K̂ηx ,∗Λ

in D(F perar
et ). Then the object Rπ

R̂,̂!Λ ∈ D(F perar
et ) in [Suz24, Section 9.2] is a

canonical object fitting in a distinguished triangle

Rπ
R̂,̂!Λ→ Rπ

R̂,∗Λ→
⊕

x∈T

Rπ
K̂ηx ,∗

Λ.

For q ∈ Z, denote Rqπ
R̂,̂!Λ = HqRπ

R̂,̂!Λ.

Proposition 6.2. Let q ∈ Z. Then Rqπ
R̂,∗Λ ∈ WF is ind-algebraic and Rq+1π

R̂,̂!Λ ∈
WF is pro-algebraic. They are zero unless q = 0, 1, 2.

2Actually it is denoted as Rπ̄
B,̂!

G in [Suz24, Section 9.1]. The bar in π̄ indicates it is defined by

“fibered sites”. Since we do not get into the details of fibered sites in this paper, we will not need
or use this notation. We have RπB,∗G ∼= Rπ̄B,∗G and Rπ

k̂x,∗
Gx

∼= Rπ̄
k̂x,∗

Gx by construction.
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Proof. By [Suz24, Section 9.3, Proposition 9.2.4, Propositions 9.3.1–3], there are
spectral sequences

Eij
2 = RiπB,∗H

jE =⇒ Ri+jπ
R̂,∗Λ,

Eij
2 = RiπB,!H

jE =⇒ Ri+jπ
R̂,!Λ,

where HjE ∈ Ab(Bet) (and, implicitly, HjEx ∈ Ab(k̂x,et) and a morphism HjE →
π
k̂x/B,∗H

jEx) is a certain sheaf admitting a finite filtration with graded pieces

isomorphic to Λ, ν(1) or a finite projective B-module (and this filtration is com-
patible at all x ∈ T ). We have R3π

R̂,∗Λ = 0 by [Suz24, Proposition 9.5.3]. Also

R3π
K̂ηx ,∗

Λ = 0 by Proposition 5.6. With Proposition 5.3, the result follows by

writing down the above (degenerate) spectral sequences and applying Propositions
6.1 and 5.6. �

Set

RΓ(R̂,Λ) = áRπ
R̂,ΛΛ ∈ D(F indrat

proet ),

RΓc(R̂,Λ) = áRπ
R̂,̂!Λ ∈ D(F indrat

proet ),

and Hq = HqRΓ, Hq
c = HqRΓc. The object RΓ(K̂ηx

,Λ) = áRπ
K̂ηx

Λ of D(F indrat
proet )

is the Weil restriction RFx/F of RΓ(K̂ηx,0,Λ) ∈ D(F indrat
x,proet).

Proposition 6.3. Let q ∈ Z. Then Hq(R̂,Λ) ∈ WF is ind-algebraic andHq+1
c (R̂,Λ) ∈

WF is pro-algebraic. They are zero unless q = 0, 1, 2.

Proof. This follows from Propositions 2.1 and 6.2. �

7. Two-dimensional local rings: preliminaries

For the rest of the paper, let A be a two-dimensional normal noetherian complete
local ring of mixed characteristic with residue field F .

In this section, we first show that the ind-pro-algebraic group structures on
cohomology of punctured spectra of A constructed in [Suz24] belong to WF if A is
“enough resolved”. We then show a slightly weaker property for a general A as a
preparation for the next section. This is done by taking a resolution of singularities
of A and combining the statements already proved for tubular neighborhoods of
the smooth part of the exceptional divisor (Section 6) and the local rings of the
resolution at closed points.

Let K be the fraction field of A. Let X = SpecA \ {m}, where m is the maximal

ideal of A. Let P be the set of height one primes ideals of A. For p ∈ P , let Âp

be the complete local ring of A at p and K̂p and κ(p) its fraction field and residue
field, respectively. Let Fp be the residue field of κ(p). Let S ⊂ P be a finite subset.
Set US = X \ S.

We briefly recall the constructions in [Suz24, Section 10.1]. The ring A has a
canonical W (F )-algebra structure ([DG70, Chapter V, Section 4, Theorem 2.1]).
For F ′ ∈ F perar, let

A(F ′) = W (F ′) ⊗̂W (F ) A = lim
←−
n

(W (F ′)⊗W (F ) A/m
n),

US(F
′) = US ×SpecA SpecA(F ′).
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Let US,et be the category of pairs (U ′, F ′) (where F ′ ∈ F perar and U ′ an étale
US(F

′)-scheme) endowed with the étale topology. The functor F ′ 7→ (US(F
′), F ′)

defines a morphism of sites

πUS
: US,et → SpecF perar

et .

Let λS : US,et → Xet be the morphism defined by (X ′, F ′) 7→ (X ′×X(F ′)US(F
′), F ′).

Let RπUS ,! = RπX,∗λS,!. Define

RΓ(US , · ) = áRπUS ,∗ : D(US,et)→ D(F indrat
proet ),

RΓc(US , · ) = áRπUS ,! : D(US,et)→ D(F indrat
proet )

and Hq = HqRΓ, Hq
c = HqRΓc. If G ∈ Db(US,et) is concentrated in non-negative

degrees and RqπUS ,∗G is in WF for all q and zero for large enough q, then we
occasionally write Γ(US , G) = H0(US , G). If US = SpecR is affine, then πUS

,
RΓ(US , · ) and RΓc(US , · ) are also denoted as πR, RΓ(R, · ) and RΓc(R, · ),
respectively.

For p ∈ P and F ′ ∈ F perar, let Âp(F
′) be the ring A(F ′)⊗A Âp completed with

respect to the ideal A(F ′)⊗A pÂp. Let

κ(p)(F ′) = Âp(F
′)⊗Âp

κ(p),

K̂p(F
′) = Âp(F

′)⊗Âp
K̂p.

If p divides p, then these functors are the Weil restrictions RFp/F of the functors

defined in Section 5 for K̂p. We have sites and morphisms of sites

Spec K̂p,et
λp

−−→ Spec Âp,et
ip
←−− Specκ(p)et

π
K̂p





y

π
Âp





y

π
κ(p)





y

SpecF perar
et SpecF perar

et SpecF perar
et

as in Section 5. Let RΓ(K̂p, · ) = áRπ
K̂p,∗

and so on.

For any n ≥ 1, r ≥ 0 and p ∈ P dividing p, we have the sheaf νn(r) on
Specκ(p)et. Setting S to be the set of primes dividing p, we have a morphism

τ≤rRλS,∗Λn(r)→ ip,∗νn(r − 1)

in D(Xet) by the restriction of the morphism (5.1) (where we set νn(−1) = 0). Let
Tn(r) ∈ D(Xet) to be the canonical mapping cone of the resulting morphism

τ≤rRλS,∗Λn(r)→
⊕

p∈S

ip,∗νn(r − 1).

For r < 0, we set Tn(r) = λS,!Λn(r). For a general S ⊂ P and r ∈ Z, we obtain an
object Tn(r) ∈ D(US,et) by the restriction of Tn(r) ∈ D(Xet).

Proposition 7.1. Assume all of the following:

(1) A is regular.
(2) A contains a fixed primitive p-th root of unity ζp.
(3) Either of the following holds:

(a) (p) is divisible by exactly one prime ideal p and A/p is regular, or
(b) (p) is divisible by exactly two prime ideals pα and pβ, and pα+pβ = m,

and both A/pα and A/pβ are regular.
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Set R = A[1/p] and write SpecR = US (so S is {p} in Case (3a) and {pα, pβ} in
Case (3b)). Let q ∈ Z.

Then RqπR,∗Λ ∈ WF is pro-algebraic and Rq+1πR,!Λ ∈ WF is ind-algebraic.
They are zero unless q = 0, 1, 2. We have πR,∗Λ ∼= Λ.

Proof. The statement for RqπR,∗Λ follows from [Suz24, Proposition 10.3.5]. We
have a perfect pairing

RπR,∗Λ⊗
L RπR,!Λ→ Λ∞[−3]

in D(F perar
et ) by [Suz24, Proposition 10.1.5]. Hence Proposition 2.8 implies the

statement for Rq+1πR,!Λ. �

Proposition 7.2. Under the assumptions of Proposition 7.1, let q ∈ Z. Then
Hq(R,Λ) ∈ WF is pro-algebraic and Hq+1

c (R,Λ) ∈ WF is ind-algebraic. They are
zero unless q = 0, 1, 2. We have Γ(R,Λ) ∼= Λ.

Proof. This follows from Propositions 2.1 and 7.1. �

Let πX/A : X → SpecA be a resolution of singularities such that Y ∪ S ⊂ X

is supported on a strict normal crossing divisor, where Y is the reduced part of
X×AF and S is the (reduced) closure of S in X. We briefly recall the constructions
in [Suz24, Sections 10.4 and 10.5].

Let Y0 (resp. Y1) be the set of closed (resp. generic) points of Y . For η ∈ Y1, let
Yη be the closure of η in Y and set η0 = Yη ∩Y0. Let Fη be the constant field of Yη.

Let ÔKη
be the complete local ring of X at η and K̂η its fraction field. For x ∈ Y0,

let Âx be the complete local ring of X at x with residue field Fx and let Y x
1 be the

set of height one primes of Âx lying over some element of Y1 (via the morphism

Spec Âx → X). For η ∈ Y1 and x ∈ η0, there is a unique ηx ∈ Y x
1 lying over η. Let

K̂ηx
be the complete local field of Âx at ηx, ÔKηx

its ring of integers and κ̂(ηx) its

residue field. For each x ∈ Y0, let B̂x = O(Spec Âx ×X Y ), R̂x = O(Spec Âx ×X X)

and R̂x,S = O(Spec Âx ×X US).
We will take completed neighborhoods of small enough affine opens of irreducible

components of Y . For each η ∈ Y1, choose an affine open neighborhood Wη ⊂ X of
η small enough so that:

• Wη ∩ Yη′ = ∅ for any η′ ∈ Y1 \ {η},
• Wη does not contain the specialization of any element of S in Y and
• Wη ∩ Y ⊂Wη is a principal divisor.

Set T = Y \
⋃

η∈Y1
(Wη ∩ Y ) and Bη,T = O(Wη ∩ Y ). For each η ∈ Y1, define

Âη,T to be the the completion of O(Wη) with respect to the ideal mO(Wη). Write

Spec R̂η,T = Spec Âη,T \ SpecBη,T . For any η ∈ Y1 and x ∈ η0, we have a canon-

ical A-algebra homomorphism Âη,T → ÔKηx
inducing the natural inclusion map

Bη,T →֒ κ̂(ηx) on the quotients.

We can apply the construction in this section for Âx and the construction in
Section 6 for Âη,T . With Weil restrictions RFx/F and RFη/F , we have objects

Rπ
R̂x,S,∗

Λ ∈ D(F perar
et ), RΓc(R̂η,T ,Λ) ∈ D(F indrat

proet ) and so on.

Proposition 7.3. Assume that S is the set of height one primes dividing p and
that ζp ∈ A. Let q ∈ Z. Then Hq(US ,Λ) ∈ PAlgu/F and Hq+1

c (US ,Λ) ∈ IAlgu/F .
They are zero unless q = 0, 1, 2, 3 and q = 0, 1, 2, respectively. We have Γ(US ,Λ) ∼=
Λ.
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Proof. We have distinguished triangles
⊕

η∈Y1

RΓc(R̂η,T ,Λ)→ RΓ(US ,Λ)→
⊕

x∈T

RΓ(R̂x,S ,Λ),

⊕

x∈T

RΓc(R̂x,S ,Λ)→ RΓc(US ,Λ)→
⊕

η∈Y1

RΓ(R̂η,T ,Λ)

in D(F indrat
proet ) by the diagram in the proof of [Suz24, Proposition 10.5.5].3 Hence

Propositions 6.3 and 7.2 imply the result. �

Proposition 7.4. Assume that S contains all height one primes dividing p. Let
n ≥ 1 and r ∈ Z. Then Hq(US ,Λn(r)) ∈ PAlgu/F and Hq+1

c (US ,Λn(r)) ∈
IAlgu/F . They are zero unless q = 0, 1, 2, 3 and q = 0, 1, 2, respectively. The group
Γ(US ,Λn(r)) is finite.

Proof. The case n ≥ 1 is reduced to the case n = 1. Let S′ ⊂ P be a finite subset
containing S. Let US′ = X \ S′. Then the statement for US is equivalent to the
statement for US′ . Indeed, we have distinguished triangles

⊕

p∈S′\S

RΓc(Âp,Λ(r))→ RΓ(US ,Λ(r))→ RΓ(US′ ,Λ(r)),

RΓc(US′ ,Λ(r))→ RΓc(US ,Λ(r))→
⊕

p∈S′\S

RΓ(Âp,Λ(r))

in D(F indrat
proet ); see the diagram in [Suz24, Section 10.6]. For any p ∈ P not dividing

p, we have

RΓc(Âp,Λ(r)) ∼= RΓ(κ(p),Λ(r − 1))[−2],

RΓ(Âp,Λ(r)) ∼= RΓ(κ(p),Λ(r)),

which are objects of Db(Algu/F ) concentrated in degrees 2, 3, degrees 0, 1, respec-
tively, by [Suz24, Theorem 7.2.4]. This implies the equivalence. Now a standard
dévissage argument (see [Suz24, Section 10.6]) reduces the general case to Propo-
sition 7.3. �

We will later show in Proposition 8.4 that the groups in Proposition 7.4 are
actually in WF .

8. Finiteness and duality

We continue the notation of Section 7. In this section, we prove Theorems 1.2
and 1.4. We first treat the case S = ∅ (where U = US) since this case admits
stronger finiteness properties than the general case and hence is easier. Based on
it, we then treat the case where S ⊂ P contains all prime ideals dividing p. Finally,
we treat the general case.

We first recall the perfect pairing

(8.1) RΓ(US ,Tn(r)) ⊗
L RΓc(US ,Tn(2− r))→ Λ∞[−3]

in D(F indrat
proet ) from [Suz24, Theorem 10.6.1].

3The objects Rπ̄
Û

T̂
,∗
Λ and Rπ̄

Û
T̂
,̂!
Λ in the proof of [Suz24, Proposition 10.5.5] are isomorphic

to RπUS ,∗Λ and Rπ̄US ,!Λ (= RπUS ,!Λ in our notation), respectively, by [Suz24, Propositions

10.4.1 and 10.5.1]. After applying á, they become RΓ(US ,Λ) and RΓc(US ,Λ), respectively.
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Proposition 8.1. Let n ≥ 1. Then Γ(X,Λn) ∼= Λn and H1(X,Λn) are finite,
H2(X,Λn) and H3(X,Λn) are ind-algebraic in WF and Hq(X,Λn) = 0 for q 6=
0, 1, 2, 3.

Proof. Let S be the set of height one primes dividing p. By Proposition 5.9 (4), we

have Γ(X,Λn)
∼
→ Γ(US ,Λn) ∼= Λn. Consider the distinguished triangle

RΓc(US ,Λn)→ RΓ(X,Λn)→
⊕

p∈S

RΓ(Âp,Λn)

in D(F indrat
proet ). The first and third terms are in Db(IAlgu/F ) by Propositions 7.4

and 5.9 (3), respectively. Hence so is the second. The same propositions show
Hq(X,Λn) = 0 for q 6= 0, 1, 2, 3. In the distinguished triangle

(8.2) RΓ(X,Λn)→ RΓ(US ,Λn)→
⊕

p∈S

RΓc(Âp,Λn)[1],

the second term is in Db(PAlgu/F ) by Proposition 7.4 and the cohomologies of the
third term are in WF by Proposition 5.9 (1). Therefore we may apply Proposition
2.7 to the long exact sequence associated with (8.2). This implies that Hq(X,Λn) ∈

WF for all q. Since H1
c(Âp,Λn) = 0, we have an exact sequence

0→ H1(X,Λn)→ H1(US ,Λn)→
⊕

p∈S

H2
c(Âp,Λn).

All the terms are in WF , with the first ind-algebraic and the second pro-algebraic.
Therefore H1(X,Λn) ∈ Algu/F . By [Suz23, Theorem 1.2], we know that the group
H1(X,Λn)(F ) ∼= H1(X(F ),Λn) is finite. This implies that H1(X,Λn) is finite. �

Proposition 8.2. Let n ≥ 1. Then Γ(X,Tn(2)) and H3(X,Tn(2)) ∼= Λn are finite,
H1(X,Tn(2)) and H2(X,Tn(2)) are pro-algebraic in WF and Hq(X,Λn) = 0 for
q 6= 0, 1, 2, 3.

Proof. This follows from Propositions 2.8 and 8.1 by the perfect pairing (8.1) with
S = ∅ and r = 0. �

Proposition 8.3. Let n ≥ 1. Then Γ(X,Tn(1)) is finite, H1(X,Tn(1)) is pro-
algebraic in WF , H

2(X,Tn(1)) is in Algu/F , H3(X,Tn(1)) is ind-algebraic in WF

and Hq(X,Tn(1)) = 0 for q 6= 0, 1, 2, 3.

Proof. The statement for Γ(X,Tn(1)) is obvious. Let S be the set of primes dividing
p. Consider the distinguished triangle

(8.3)
⊕

p∈S

RΓc(Âp,Tn(1))→ RΓ(X,Tn(1))→ RΓ(US ,Λn(1))

in D(F indrat
proet ). By Propositions 5.9 and 7.4, we know that Hq(X,Tn(1)) ∈ PAlgu/F

for q = 1 and 2 and zero for q 6= 0, 1, 2, 3. Consider the distinguished triangle

RΓc(US ,Λn(1))→ RΓ(X,Tn(1))→
⊕

p∈S

RΓ(Âp,Tn(1))

in D(F indrat
proet ). As H2(Âp,Tn(1)) = 0 by Propositions 5.9, this induces a distin-

guished triangle

τ≤2RΓc(US ,Λn(1))→ τ≤2RΓ(X,Tn(1))→ τ≤2

⊕

p∈S

RΓ(Âp,Tn(1)).
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The first, second and third terms have cohomologies in IAlgu/F , PAlgu/F and
WF , respectively. Applying Proposition 2.7, we know that H1(X,Tn(1)) ∈ WF

and H2(X,Tn(1)) ∈ Algu/F . Also, we have H3
c(US ,Λn(1))

∼
→ H3(X,Tn(1)), so it

is in IAlgu/F . The distinguished triangle (8.3) induces an exact sequence

H2(X,Tn(1))→ H2(US ,Λn(1))→
⊕

p∈S

H3
c(Âp,Tn(1))

→ H3(X,Tn(1))→ H3(US ,Λn(1))→ 0,

where the kernel of the first morphism is finite. These terms, from left to right, are
in Algu/F , PAlgu/F , WF , IAlgu/F and PAlgu/F . Applying Proposition 2.7, we
know that H3(X,Tn(1)) ∈ WF . �

Proposition 8.4. Let n ≥ 1 and r ∈ Z. Assume that S contains all primes dividing
p.

(1) Γ(US ,Λn(r)) is finite, H
1(US ,Λn(r)) and H2(US ,Λn(r)) are pro-algebraic

in WF and Hq(US ,Λn(r)) = 0 for q 6= 0, 1, 2.
(2) H1

c(US ,Λn(r)) is finite, H
2
c(US ,Λn(r)) andH3

c(US ,Λn(r)) are ind-algebraic
in WF and Hq

c(US ,Λn(r)) = 0 for q 6= 1, 2, 3.

Proof. That these groups are in WF is already proved in the proof of Propositions
8.1 and 8.3 if S is the set of all primes dividing p. The case of larger S can be reduced
to this case. With Proposition 7.4, what is remaining to show isH3(US ,Λn(r)) = 0.
In the exact sequence

⊕

p∈S

Γ(Âp,Λn)→ H1
c(US ,Λn)→ H1(X,Λn),

the first and third terms are finite étale trivially and by Proposition 8.1, respectively.
Therefore H1

c(US ,Λn) is finite étale. This implies that H1
c(US ,Λ(r)) is finite étale

for all r (reduce to the case ζp ∈ A) and hence H1
c(US ,Λn(r)) is finite étale for all

r and n. With this and by the perfect pairing (8.1) and Proposition 2.8, we know
that H3(US ,Λn(r)) = 0. �

Now we make no assumption on S.

Proposition 8.5. Let n ≥ 1 and r ≤ 0. Then Γ(US ,Tn(r)) is finite, H
1(US ,Tn(r))

is pro-algebraic in WF , H
2(US ,Tn(r)) is in WF , H

3(US ,Tn(r)) is ind-algebraic
in WF and Hq(US ,Tn(r)) = 0 for q 6= 0, 1, 2, 3.

Proof. Let S0 be the set of all primes dividing p. We may assume that S ⊂ S0.
Let U0 = US0 . The finiteness of Γ(US ,Tn(r)) is obvious. Denote the distinguished
triangles

⊕

p∈S

RΓc(Âp,Tn(r))→ RΓ(X,Tn(r))→ RΓ(US ,Tn(r)),

⊕

p∈S0\S

RΓc(Âp,Tn(r))→ RΓ(US ,Tn(r))→ RΓ(U0,Tn(r)),

by

D → CX → CUS
,

E → CUS
→ CU0 ,

respectively.
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The morphism H1CU0 → H2E is a morphism from a pro-algebraic group in
WF to an object of WF . Hence its kernel H1CUS

is pro-algebraic. Hence the
morphism H1CUS

→ H2D is a morphism from a pro-algebraic group to an object
of WF . Hence its image is pro-algebraic. The morphism H2D → H2CX is a
morphism from an object of WF to an ind-algebraic group in WF . Hence its image
is ind-algebraic. Therefore Im(H1CUS

→ H2D), Im(H2D → H2CX) ∈ WF by
Proposition 2.7. As H1CX is finite, we have H1CUS

∈ WF .
In the exact sequence

0→ H1CUS
→ H1CU0 → H2E,

the terms are inWF , with the first and second terms pro-algebraic. Hence Im(H1CU0 →
H2E) is pro-algebraic inWF by Proposition 2.3. Hence Im(H2E → H2CUS

) ∈ WF

again by Proposition 2.3. AsH2CX is ind-algebraic inWF , the object Im(H2CX →
H2CUS

) is ind-algebraic by Proposition 2.2.
The morphism H2CU0 → H3E is a morphism from a pro-algebraic group in WF

to an object of WF . Hence Im(H2CUS
→ H2CU0) = Ker(H2CU0 → H3E) and

Im(H2CU0 → H3E) are pro-algebraic. Since the object H3CX is ind-algebraic in
WF and the morphism H3CX → H3CUS

is surjective, it follows that H3CUS
is

ind-algebraic by Proposition 2.2. We have H3E ∈ WF . Applying Proposition 2.7
to the exact sequence

0→ Im(H2CU0 → H3E)→ H3E → H3CUS
→ 0,

we know that the first and third terms in this sequence are in WF . Thus H3CUS

is ind-algebraic in WF .
The morphism H3D → H3CX is a morphism from an object of WF to an ind-

algebraic group in WF . Hence we have Im(H3D → H3CX) ∈ WF by Proposition
2.5. Hence the morphism H3D ։ Im(H3D → H3CX) is a morphism from an
object of WF to an ind-algebraic group in WF . Therefore Proposition 2.6 implies
that its kernel Im(H2CUS

→ H3D) has identity component in WF and component
group étale.

Consider the exact sequences

0→ Im(H2CX → H2CUS
)→ H2CUS

→ Im(H2CUS
→ H3D)→ 0,

0→ Im(H2E → H2CUS
)→ H2CUS

→ Im(H2CUS
→ H2CU0)→ 0.

With what have been proved so far, the first sequence shows that π0(H
2CUS

) is
étale and the second sequence shows that π0(H

2CUS
) is profinite. Thus π0(H

2CUS
)

is finite, and Im(H2CUS
→ H3D) ∈ WF . The image of the composite

Im(H2CX → H2CUS
) →֒ H2CUS

։ Im(H2CUS
→ H2CU0)

is Im(H2CX → H2CU0), which is in Algu/F by what was shown about (8.2) in the
proof of Proposition 8.1. Hence, with what have been proved so far, we know that
the induced morphism

Im(H2CUS
→ H3D) ։

Im(H2CUS
→ H2CU0)

Im(H2CX → H2CU0)

is a surjection from an object of WF onto a pro-algebraic group. Therefore Propo-
sition 2.3 implies that Im(H2CUS

→ H2CU0)/ Im(H2CX → H2CU0) is in WF .
Hence Im(H2CUS

→ H2CU0) ∈ WF . With Im(H2E → H2CUS
) ∈ WF , we know

that H2CUS
∈ WF . �
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Proposition 8.6. Let n ≥ 1 and r ≥ 2. Then H0
c(US ,Tn(r)) is finite, H

1
c(US ,Tn(r))

is pro-algebraic in WF , H
2
c(US ,Tn(r)) is in WF , H

3
c(US ,Tn(r)) is ind-algebraic

in WF and Hq
c(US ,Tn(r)) = 0 for q 6= 0, 1, 2, 3.

Proof. This follows from Proposition 8.5 by duality. �

Proposition 8.7. Let n ≥ 1 and r ≤ 0. Then H0
c(US ,Tn(r)) and H1

c(US ,Tn(r))
are finite, H2

c(US ,Tn(r)) and H3
c(US ,Tn(r)) are ind-algebraic inWF and Hq(US ,Tn(r)) =

0 for q 6= 0, 1, 2, 3.

Proof. The case r < 0 follows from Proposition 8.4. For r = 0, the statement
follows from the distinguished triangle

RΓc(US ,Λn)→ RΓ(X,Λn)→
⊕

p∈S

RΓ(Âp,Λn)

and Propositions 5.9 and 8.1. �

Proposition 8.8. Let n ≥ 1 and r ≥ 2. Then Γ(US ,Tn(r)) and H3(US ,Tn(r))
are finite, H1(US ,Tn(r)) and H2(US ,Tn(r)) are pro-algebraic inWF and Hq(US ,Tn(r)) =
0 for q 6= 0, 1, 2, 3.

Proof. This follows from the distinguished triangle
⊕

p∈S

RΓc(Âp,Tn(r))→ RΓ(X,Tn(r))→ RΓ(US ,Tn(r))

and Propositions 5.9 and 8.1 (or from Proposition 8.7 by duality). �

Proposition 8.9. Let n ≥ 1. Then Γ(US ,Tn(1)) is finite, H1(US ,Tn(1)) and
H2(US ,Tn(1)) are pro-algebraic in WF , H3(US ,Tn(1)) is ind-algebraic in WF

and Hq(US ,Tn(1)) = 0 for q 6= 0, 1, 2, 3.

Proof. Let S0 be the set of all primes dividing p. We may assume that S ⊂ S0.
Let U0 = US0 . The finiteness of Γ(US ,Tn(1)) is obvious. Denote the distinguished
triangles

⊕

p∈S

RΓc(Âp,Tn(1))→ RΓ(X,Tn(1))→ RΓ(US ,Tn(1)),

⊕

p∈S0\S

RΓc(Âp,Tn(1))→ RΓ(US ,Tn(1))→ RΓ(U0,Tn(1)),

by

D → CX → CUS
,

E → CUS
→ CU0 ,

respectively.
In the exact sequence

0→ H1CX → H1CUS
→ H2D,

the first term is pro-algebraic in WF and the third term is finite. Hence H1CUS

is pro-algebraic inWF . SinceH
3CX is ind-algebraic inWF , the surjectionH3CX ։

H3CUS
and Proposition 2.2 imply thatH3CUS

∈ IAlgu/F . The morphismH2CU0 →
H3E is a morphism from a pro-algebraic group inWF to an object ofWF . Hence its
image and kernel are pro-algebraic. Applying Proposition 2.7 to the exact sequence

0→ Im(H2CU0 → H3E)→ H3E → H3CUS
→ 0,
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we know that H3CUS
∈ WF . In the exact sequence

H2E → H2CUS
→ Ker(H2CU0 → H3E)→ 0,

the first term is finite and the third term is pro-algebraic. Hence H2CUS
is pro-

algebraic. In the exact sequence

H2CX → H2CUS
→ H3D → H3CX ,

the first term is in Algu/F , the second in PAlgu/F , the third inWF and the fourth
ind-algebraic in WF . Applying Proposition 2.7, we know that H2CUS

∈ WF . �

Proposition 8.10. Let n ≥ 1. Then Γc(US ,Tn(1)) is finite, H1
c(US ,Tn(1)) is

pro-algebraic in WF , H
2
c(US ,Tn(1)) and H3

c(US ,Tn(1)) are ind-algebraic in WF

and Hq
c(US ,Tn(1)) = 0 for q 6= 0, 1, 2, 3.

Proof. This follows from Proposition 8.9 by duality. �

Theorem 1.2 follows from the above results. With Proposition 2.8, we obtain
Theorem 1.4.

9. Hasse principles

In this section, we prove Theorem 1.5.

Definition 9.1. Assume F = F .

(1) Let U ⊂ X be a dense open subscheme. Let p ∈ P ∩ U . A finite étale
covering U ′/U is said to be completely split at p if the κ(p)-scheme U ′ ×U

κ(p) is isomorphic to a disjoint union of copies of Spec κ(p).
(2) A finite étale covering X ′/X is said to be completely split if it is completely

split at all elements of P .
(3) For n ≥ 1, define H1

cs(X,Λn) to be the subgroup of H1(X,Λn) consisting
of completely split coverings.

Proposition 9.2. Assume that F = F and A satisfies the assumptions of Propo-
sition 7.1 and Condition (3a). Write p = (π) and m = (π, t). Let U = SpecA[1/p].
Let n ≥ 1 and U ′ ∈ H1(U,Λn). Then, if U

′ is completely split at the primes (tm−π)
for all m ≥ 1, then it is trivial.

Proof. We may assume that n = 1. Identifying Λ with Λ(1) over U , we want to
show that the kernel of the natural map

ϕ : A[1/p]×/A[1/p]×p →
∏

m≥1

κ(tm − π)×/κ(tm − π)×p

is zero. This kernel is contained in G := (1 +m)/(1 +m)p. Let eA be the absolute

ramification index of Âp and set fA = peA/(p− 1). For non-negative integers c, d
not both zero, let Gc,d be the image of 1 + πctdA in G. Then Gc,d = 0 if c ≥ fA.
Also Gc,d ⊂ Gc+1,d +Gc,d+1 if c < fA and p | gcd(c, d). Hence it is enough to show
that Gc,d∩Ker(ϕ) ⊂ Gc+1,d+Gc,d+1 if c < fA and p ∤ gcd(c, d). Let m > d/(fA−c)
be an integer such that p ∤ mc + d. For a positive integer l, let Gl

m be the image
of 1 + tlA in κ(tm − π)×/κ(tm − π)×p. Since meA is the absolute ramification
index of A/(tm − π) and p ∤ mc + d < mfA, we have Gmc+d

m /Gmc+d+1
m

∼= F via
1 + tmc+dx 7→ x mod t. Hence the kernel of the composite Gc,d → Gmc+d

m ։ F is
contained in Gc+1,d +Gc,d+1. �
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As in Section 7, we take a resolution X → SpecA such that X ×A A/pA ⊂ X

is supported on a strict normal crossing divisor. For any n ≥ 1, the natural map
H1(X,Λn)→ H1(X,Λn) is injective and the natural map H1(X,Λn)→ H1(Y,Λn)
is an isomorphism. We view H1(Y,Λn) as a subgroup of H1(X,Λn).

Proposition 9.3. Assume F = F . Let n ≥ 1 and X ′ ∈ H1(X,Λn). Then X ′

is completely split if and only if X ′ ∈ H1(Y,Λn). In particular, the subgroup
H1(Y,Λn) of H

1(X,Λn) is independent of the resolution X.

Proof. We may assume that ζp ∈ K by the natural exact sequences

0→ H1
cs(X,Λn)→ H1(K,Λn)→

∏

p∈P

H1(Kp,Λn),

0→ H1(Y,Λn)→ H1(K,Λn)→
∏

p∈P

H1(Kp,Λn)

H1(κ(p),Λn)
×

∏

η∈Y1

H1(Kη,Λn)

H1(κ(η),Λn)
.

The “if” part is easy. Assume X ′ is completely split. For any non-singular point
x ∈ Y0 that is not the specialization of any element of P dividing p, the covering
X ′ ×X R̂x of Spec R̂x is trivial by Propositions 9.2. Hence X ′ extends to a finite
étale covering of X minus finitely many closed points and hence to a finite étale
covering of X by the purity of branch locus ([Sta22, Tag 0BMA]). �

Define

H1
cs(X,Λn) := H1(Y,Λn),

the finite étale group scheme over F with group of F -points given byH1(Y(F ),Λn),
where Y(F ) = Y ×F F . It is an F -subgroup scheme of H1(X,Λn) independent of
X by Proposition 9.3. Also define

π0(H
2(K,Λn(2))) := lim

−→
S

π0(H
2(US ,Λn(2))),

where S runs through all finite subsets of P . It is an étale group over F . Applying
π0 to the exact sequences

H2(US ,Tn(2)))→
⊕

p∈S

H3
c(Âp,Tn(2))→ H3(X,Tn(2))→ 0

for S ⊂ P and using (5.3) (for p dividing p and [Suz24, Theorem 7.2.4] otherwise)
induce an exact sequence

(9.1) π0(H
2(K,Λn(2)))→

⊕

p∈S

RFp/F Λn → Λn → 0.

Proposition 9.4. The kernel of the first morphism in (9.1) is canonically isomor-
phic to the Pontryagin dual of H1

cs(X,Λn).

Proof. Let S ⊂ P be finite and non-empty. The distinguished triangle

RΓc(US ,Λn)→ RΓ(X,Λn)→
⊕

p∈S

RΓ(Âp,Λn)

induces an exact sequence

0→ Λn →
⊕

p∈S

RFp/F Λn → H1
c(US ,Λn)→ H1(X,Λn)→

⊕

p∈S

H1(κ(p),Λn)
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Hence we have an exact sequence

0→ Λn →
∏

p∈P

RFp/F Λn → lim
←−
S

H1
c(US ,Λn)→ H1

cs(X,Λn)→ 0

of pro-finite-étale groups over F . Taking the Pontryagin dual and applying Theorem
1.4, we get the result. �

Let ΓY be the dual graph of Y(F ). It has a continuous action of Gal(F/F ).
Let H1(ΓY ,Λn) be the first cohomology of ΓY with coefficients in Λn. It is a finite
étale group scheme over F .

Proposition 9.5. We have an exact sequence

0→ H1(ΓY ,Λn)→ H1(Y,Λn)→
⊕

η∈Y1

H1(Yη,Λn)→ 0.

Proof. This follows from the distinguished triangle

RΓ(Y,Λn)→
⊕

η∈Y1

RΓ(Yη,Λn)→
⊕

x∈Ysin

RFx/F Λn,

where Ysin denotes the set of singular points of Y . �

This finishes the proof of Theorem 1.5.

10. Lemmas on localization over resolutions

In the next section, we prove some finiteness statement about Br(X) (Proposition
11.7). This uses some arguments local over a resolution of singularities of A, which
we deal with in this section.

We give a Hasse principle for Brauer groups of tubular neighborhoods:

Proposition 10.1. Let K̂η be a complete discrete valuation field with ring of integer

ÔKη
and residue field κ(η). Assume that K̂η has characteristic zero, ζp ∈ K̂η and

κ(η) is the function field of a proper smooth geometrically connected curve Yη over

F = F . Let η0 be the set of closed points of Yη. For each x ∈ η0, let κ̂(ηx) be

the complete local field of Yη at x. Let ÔKηx
be the Kato canonical lifting of the

relatively perfect κ(η)-algebra κ̂(ηx) to ÔKη
. Let K̂ηx

be the fraction field of ÔKηx
.

Then the kernel of the natural map

(10.1) Br(K̂η)[p]→
∏

x∈η0

Br(K̂ηx
)[p]

is canonically isomorphic to H1(Yη,Λ).

Proof. Let eη be the absolute ramification index of K̂η and set fη = peη/(p − 1).

We have the usual filtrations by symbols on Br(K̂η)[p] ∼= K2(K̂η)/pK2(K̂η). Let

grm Br(K̂η)[p] be the m-th graded piece. Let grm Br(K̂ηx
)[p] similarly for each

x ∈ η0. We have

grm Br(K̂η)[p] ∼=































κ(η)×/κ(η)×p if m = 0,

κ(η)/κ(η)p if 0 < m < fη, p | m,

Ω1
κ(η) if 0 < m < fη, p ∤ m,

κ(η)/℘(κ(η)) if m = fη,

0 else.
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Similarly,

grm Br(K̂ηx
)[p] ∼=































κ̂(ηx)
×/κ̂(ηx)

×p if m = 0,

κ̂(ηx)/κ̂(ηx)
p if 0 < m < fη, p | m,

Ω1
κ̂(ηx)

if 0 < m < fη, p ∤ m,

κ̂(ηx)/℘(κ̂(ηx)) if m = fη,

0 else.

The map Br(K̂η)[p]→ Br(K̂ηx
)[p] preserves the filtration. The induced map on

the m-th graded piece is injective except for the case m = fη. In the case m = fη,
the map can be identified with the natural mapH1(κ(η),Λ)→ H1(κ̂(ηx),Λ). Hence
the intersection of the kernels over all x is isomorphic to H1(Yη,Λ). �

Next, we study trace (or transfer) maps. Assume that ζp ∈ A and take S ⊂ P
to be the set of primes dividing p. Let X → SpecA, Wη ⊂ X and T ⊂ Y be as
in Section 7. By [Suz24, (10.4.7), (10.5.1)], we have a morphism of distinguished
triangles

(10.2)

RΓc(US ,Λ) −−→ RΓ(US ,Λ) −−→
⊕

p∈S RΓ(K̂p,Λ)
∥

∥

∥





y





y

RΓc(US ,Λ) −−→

⊕

x∈T RΓ(R̂x,S,Λ)

⊕
⊕

η∈Y1
RΓ(R̂η,T ,Λ)

−−→

⊕

x∈T
ηx∈Y x

1

RΓ(K̂ηx
,Λ)

⊕
⊕

p∈S RΓ(K̂p,Λ)

in D(F indrat
proet ). In particular, we have canonical morphisms

(10.3) H1(K̂ηx
,Λ)→ H2

c(US ,Λ)→ H2(X,T(1))

for each pair x ∈ T and ηx ∈ Y x
1 (where the second morphism comes from

ζp : Λ → T(1)). Hence for any algebraically closed field F ′ ∈ F perar, we obtain
a homomorphism

(10.4) H1(K̂ηx
(F ′),Λ)→ H2(X(F ′),T(1)).

Proposition 10.2. Under the above setting, let x ∈ T and ηx ∈ Y x
1 . Then the

image of (10.4) is contained in the subgroup H1(X(F ′),Gm)⊗ Λ of the target.

Proof. We may assume that F = F ′ = F . We want to show that the image of
H1(K̂ηx

,Λ) → H2(X,T(1)) is contained in the subgroup H1(X,Gm) ⊗ Λ of the
target.

Let RS = A[1/p]. We first briefly recall the construction of the diagram (10.2)

on F -points. Let RS,Et be the big étale site of RS . View Γ(RS , · ), Γ(K̂p, · ),

Γ(K̂ηx
, · ) Γ(R̂x,S , · ) and Γ(R̂η,T , · ) as the section functors Ab(RS,Et) → Ab

at the objects RS , K̂p, K̂ηx
, R̂x,S and R̂η,T , respectively. We have a commutative

diagram

Γ(RS , · ) −−→
⊕

p∈S Γ(K̂p, · )




y





y

⊕

x∈T Γ(R̂x,S, · )

⊕
⊕

η∈Y1
Γ(R̂η,T , · )

−−→

⊕

x∈T
ηx∈Y x

1

Γ(K̂ηx
, · )

⊕
⊕

p∈S Γ(K̂p, · )
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of functors Ab(RS,Et)→ Ab, where the left vertical map is the diagonal

a 7→
(

(a|R̂x,S
)x∈T , (a|R̂η,T

)η∈Y1

)

,

the lower horizontal map is

((ax)x∈T , (aη)η∈Y1) 7→
(

(ax|K̂ηx
− aη|K̂ηx

)x∈T,ηx∈Y x
1
, (ax|K̂p

)p∈S

)

,

the upper horizontal map is the diagonal and the right vertical map is the inclusion
into the second summand. This diagram induces a commutative diagram of functors
Ch(RS,Et) → Ch of additive categories with translation in the sense of [KS06,
Definition 10.1.1] (where Ch is the category of complexes in Ab). By taking the
right derived functors ([KS06, Sections 13.3, 14.3]), it induces a morphism

R



Γ(RS , · )→
⊕

p∈S

Γ(K̂p, · )



 [−1]

→ R





⊕

x∈T Γ(R̂x,S, · )

⊕
⊕

η∈Y1
Γ(R̂η,T , · )

→

⊕

x∈T
ηx∈Y x

1

Γ(K̂ηx
, · )

⊕
⊕

p∈S Γ(K̂p, · )



 [−1]

of triangulated functors D(RS,Et) → D(Ab). It becomes an isomorphism when
precomposed with the natural functor D+

tor(RS,et) → D(RS,Et) from the bounded
below derived category of complexes with torsion cohomology, and the resulting
isomorphic functors D+

tor(RS,et) ⇒ D(Ab) are further isomorphic to RΓc(RS , · ).
In particular, we have a morphism of distinguished triangles

RΓc(RS ,Λ) −−→ RΓ(RS ,Λ) −−→
⊕

p∈S RΓ(K̂p,Λ)
∥

∥

∥





y





y

RΓc(RS ,Λ) −−→

⊕

x∈T RΓ(R̂x,S,Λ)

⊕
⊕

η∈Y1
RΓ(R̂η,T ,Λ)

−−→

⊕

x∈T
ηx∈Y x

1

RΓ(K̂ηx
,Λ)

⊕
⊕

p∈S RΓ(K̂p,Λ),

which is the F -points of the diagram (10.2).4

Let PT ⊂ P be the set of prime ideals p ∈ P that specializes to an element of T
in X. Let S′ ⊂ PT be an arbitrary finite subset containing S. Let RS′ = O(US \S′).
We have a commutative diagram

(10.5)

Γ(RS , · ) −−→
⊕

p∈S Γ(K̂p, · )




y





y

Γ(RS′ , · ) −−→

⊕

p∈S Γ(K̂p, · )

⊕
⊕

p∈S′\S Γc(Âp, · )[1],

4The original construction in [Suz24, Section 4.6] uses fibered sites. For the purpose of proving
Proposition 10.2 here, it is enough to use big étale sites, which gives the same diagram on F -points.
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of functors Ch(US,Et)→ Ch of additive categories with translation, where Γc(Âp, · )[1]

is the mapping cone of Γ(Âp, · )→ Γ(K̂p, · ). The induced morphism

R



Γ(RS , · )→
⊕

p∈S

Γ(K̂p, · )



 [−1]

→ R

[

Γ(RS′ , · )→

⊕

p∈S Γ(K̂p, · )

⊕
⊕

p∈S′\S Γc(Âp, · )[1],

]

[−1]

of triangulated functors D(RS,Et) → D(Ab) precomposed with D+
tor(RS,et) →

D(RS,Et) is an isomorphism by excision.
Similarly, we have a commutative diagram

(10.6)

⊕

x∈T Γ(R̂x,S, · )

⊕
⊕

η∈Y1
Γ(R̂η,T , · )

−−→

⊕

x∈T
ηx∈Y x

1

Γ(K̂ηx
, · )

⊕
⊕

p∈S Γ(K̂p, · )




y





y

⊕

x∈T Γ(R̂x,S′ , · )

⊕
⊕

η∈Y1
Γ(R̂η,T , · )

−−→

⊕

x∈T
ηx∈Y x

1

Γ(K̂ηx
, · )

⊕
⊕

p∈S Γ(K̂p, · )

⊕
⊕

p∈S′\S Γc(Âp, · )[1].

The induced morphism

R





⊕

x∈T Γ(R̂x,S , · )

⊕
⊕

η∈Y1
Γ(R̂η,T , · )

→

⊕

x∈T
ηx∈Y x

1

Γ(K̂ηx
, · )

⊕
⊕

p∈S Γ(K̂p, · )



 [−1]

→ R









⊕

x∈T Γ(R̂x,S′ , · )

⊕
⊕

η∈Y1
Γ(R̂η,T , · )

→

⊕

x∈T
ηx∈Y x

1

Γ(K̂ηx
, · )

⊕
⊕

p∈S Γ(K̂p, · )

⊕
⊕

p∈S′\S Γc(Âp, · )[1].









[−1]

of triangulated functors D(RS,Et) → D(Ab) precomposed with D+
tor(RS,et) →

D(RS,Et) is an isomorphism by excision.
We have a morphism of diagrams from (10.5) to (10.6). It induces a commutative

diagram

⊕
p∈S H1(K̂p,Λ)

H1(RS ,Λ) −−→
⊕

p∈S H1(K̂p,Λ)⊕
⊕

p∈S′\S H2
c (Âp,Λ),

H1(RS′ ,Λ)




y





y

⊕
x∈T

ηx∈Y x
1

H1(K̂ηx ,Λ)⊕
⊕

p∈S H1(K̂p,Λ)

⊕
x∈T H1(R̂x,S ,Λ)⊕

⊕
η∈Y1

H1(R̂η,T ,Λ)
−−→

⊕
x∈T

ηx∈Y x
1

H1(K̂ηx ,Λ)⊕
⊕

p∈S H1(K̂p,Λ)⊕
⊕

p∈S′\S H2
c (Âp,Λ).

⊕
x∈T H1(R̂x,S′ ,Λ)⊕

⊕
η∈Y1

H1(R̂η,T ,Λ)

of injective maps, with all the terms mapping injectively to H2
c (RS ,Λ). For a

ring Q, denote Q×̄ = Q×/Q×p. Let RT be the direct limit of RS′ over increasing
S′. Taking the direct limit of the above diagram in increasing S′, we obtain a
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commutative diagram
⊕

p∈S K̂×̄
p

H1(RS ,Λ) −−→
⊕

p∈S K̂×̄
p
⊕
⊕

p∈PT \S Λ,

H1(RT ,Λ)




y





y

⊕
x∈T

ηx∈Y x
1

K̂×̄
ηx

⊕
⊕

p∈S K̂×̄
p

⊕
x∈T R̂×̄

x,S⊕
⊕

η∈Y1
H1(R̂η,T ,Λ)

−−→

⊕
x∈T

ηx∈Y x
1

K̂×̄
ηx

⊕
⊕

p∈S K̂×̄
p
⊕
⊕

p∈PT \S Λ.

⊕
x∈T K̂×̄

x ⊕
⊕

η∈Y1
H1(R̂η,T ,Λ)

of injective maps, with all the terms mapping injectively to H2
c (RS ,Λ). For any

x ∈ T , the map K̂×̄
x →

⊕

ηx∈Y x
1
K̂×̄

ηx
is surjective by the approximation lemma.

Therefore the right vertical map is an isomorphism. Hence for any x ∈ T and
ηx ∈ Y x

1 , the image of the map K̂×̄
ηx
→ H2

c (RS ,Λ) is contained in the image

of the map
⊕

p∈S K̂×̄
p ⊕

⊕

p∈PT \S Λ → H2
c (RS ,Λ). Hence the image of the map

K̂×̄
ηx
→ H2(X,T(1)) is contained in the image of the map

⊕

p∈PT
Λ→ H2(X,T(1)).

The latter map factors through H1(X,Gm) ⊗ Λ via the divisor map. This proves
the proposition. �

11. Picard-Brauer duality

In this section, we prove Theorem 1.6. We deduce it basically from Theorems
1.2 and 1.4. We also give a duality result for H3(X,Gm) (Proposition 11.9) and
for π0 of Pic(X) (Proposition 11.10).

Proposition 11.1. πX,∗Gm = A× is Gm times a connected pro-algebraic group
in WF . More specifically, the natural reduction morphism A× → Gm and the
Teichmüller section gives a direct summand Gm of A×. The quotient A×/Gm is
in WF .

Proof. For F ′ ∈ F perar and n ≥ 1, let An(F
′) = A(F ′) ⊗A A/mn. Then A× =

lim
←−n

A×
n . The sheafA

×
n is represented by the perfection of the Greenberg transform

(or realization) of Gm over A/mn ([BGA18, Proposition-Definition 6.2]). The same
proof as [BGA18, Proposition 11.1] (see also [BS20, Proposition 5.6]) shows that
the kernel of the reduction morphism A×

n+1 ։ A×
n is the perfection of a vector

group over F . Hence the kernel of A× ։ Gm, or A×/Gm, is in WF . �

Given a resolution of singularities X → SpecA such that the reduced part Y of
X ×A F is supported on a strict normal crossing divisor, we have the intersection
pairing

(11.1)
⊕

η∈Y1

ZYη ×
⊕

η∈Y1

ZYη → Z, (Yη, Yη′) 7→ Yη · Yη′ ,

where Y1 is the set of generic points of Y and Yη the closure of η. See [Lip69, Section
13] for the details. This pairing is negative-definite by [Lip69, Lemma (14.1)]. Let

δY =
Hom(

⊕

η∈Y1
ZYη,Z)

⊕

η∈Y1
ZYη

be its discriminant group. Applying this construction to the resolution X ×A

A(F ) → SpecA(F ), we obtain a finite Galois module δY×FF over F . Denote
the resulting finite étale group scheme over F by δY .
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Proposition 11.2. We have R1πX,∗Gm ∈ Alg/F . For a resolution of singularities
X→ SpecA such that the reduced part Y of X×AF is supported on a strict normal
crossing divisor, we have π0R

1πX,∗Gm
∼= δY .

Proof. Let X → SpecA be as in the statement. First, assume that F = F . We
recall the constructions made in [Lip69, Section 14] and [Sai86, Proof of Lemma
(7.2)]. Let Pic(X) → Hom(

⊕

η∈Y1
ZYη,Z) be the map given by the intersection

pairing. Let Pic0(X) be its kernel. Then the resulting sequence

0→ Pic0(X)→ Pic(X)→ δY → 0

is exact. For n ≥ 1, let Xn = X ×A A/mn. Let Pic0(Xn) be the kernel of a
similar map Pic(Xn) → Hom(

⊕

η∈Y1
ZYη,Z). The group Pic0(Y ) = Pic0(X1) is

the group of F -valued points of the semi-abelian variety Pic0Y/F . The natural map

Pic0(Xn+1) → Pic0(Xn) is surjective and its kernel has a natural structure as a
finite-dimensional F -vector space. There exists a positive integer n0 such that the
natural map Pic0(X)→ Pic0(Xn) is an isomorphism for all n ≥ n0.

Next, let F be general. The above constructions are functorial in residue field
extensions. That is, for any algebraically closed field F ′ ∈ F perar, we can apply the
above constructions for X(F ′) = X ×A A(F ′) → SpecA(F ′). This gives an exact
sequence

0→ Pic0(X(F ′))→ Pic(X(F ′))→ δY(F ′) → 0

and quotients Pic0(Xn(F
′)) of Pic0(X(F ′)) functorial in F ′ (where Y(F ′) = Y ′×F

F ′ and Xn(F
′) = Xn ×A A(F ′)).

The sheaf R1πX,∗Gm sends a field F ′ ∈ F perar to the Gal(F ′/F ′)-invariant part

of Pic(X(F ′)). The above shows that this sheaf has a finite filtration whose graded
pieces are sheaves that send a field F ′ ∈ F perar to the Gal(F ′/F ′)-invariant parts
of

(1) δ
Y(F ′),

(2) Pic0(Y(F ′)) or
(3) Ker

(

Pic0(Xn+1(F ′)) ։ Pic0(Xn(F ′))
)

for n < n0.

In this list, the first sheaf is a finite étale group (which is δY ), the second a semi-
abelian variety and the third a vector group. Being an extension of such groups,
the sheaf R1πX,∗Gm is in Alg/F with component group δY . �

Proposition 11.3. Let n ≥ 1. Then R0πX,∗Tn(1) is a finite étale group and
R1πX,∗Tn(1) is pro-algebraic in WF .

Proof. The sheaf R0πX,∗Tn(1) is the finite étale group of pn-th roots of unity in

A(F ). We have an exact sequence

0→ A×/A×pn

→ R1πX,∗Tn(1)→ (R1πX,∗Gm)[pn]→ 0

in Ab(F perar
et ). The fourth term (R1πX,∗Gm)[pn] is in Algu/F by Proposition 11.2.

We have an exact sequence

0→ R0πX,∗Tn(1)→ A×/Gm
p
→ A×/Gm → A×/A×pn

→ 0

in Ab(F perar
et ). The sheaf A×/Gm is pro-algebraic in WF by Proposition 11.1.

Therefore A×/A×pn

is pro-algebraic in WF . �

Proposition 11.4.
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(1) The object RπX,∗Gm is h-acyclic.
(2) Let q ≥ 2. Then the sheaf RqπX,∗Gm is torsion. We have

RqπX,∗T∞(1)
∼
→ (RqπX,∗Gm)[p∞],

where T∞(1) = lim
−→n

Tn(1). For any prime l 6= p, the sheaf (RqπX,∗Gm)[l∞]

is the étale group over F with group of F -points given by Hq(X(F ),Ql/Zl(1)).

Proof. The truncation τ≤1RπX,∗Gm is h-acyclic by Propositions 11.1 and 11.2 and
[Suz21, Proposition 7.2]. The sheaf RqπX,∗Gm is torsion for q ≥ 2 by [Gro95,
Proposition 1.4]. Since (R1πX,∗Gm)⊗Q/Z = 0 by Proposition 11.2, we have

RqπX,∗T∞(1)⊕
⊕

l 6=p

RqπX,∗Ql/Zl(1)
∼
→ RqπX,∗Gm

for q ≥ 2. For any field F ′ ∈ F perar, the map A → A(F ′) is regular and hence
ind-smooth by Popescu’s theorem. With [ILO14, Introduction, Theorem 1], we
know that RqπX,∗Z/l

nZ(1) is finite étale for all q and all primes l 6= p. This
implies that RqπX,∗Ql/Zl(1) is h-acyclic by [Suz21, Proposition 3.11]. For any
n ≥ 1, the object τ≥2RπX,∗Tn(1) is in 〈WF 〉Fperar

et
and h-acyclic by [Suz24, Propo-

sitions 10.1.5 and Proposition 3.1.4] and Proposition 11.3. Since RΓ(X,Tn(1)) ∈
Db(IPAlgu/F ) is concentrated in degrees ≥ 0 for all n by Proposition 8.3, we
know that Lh∗RπX,∗Tn(1) ∈ Db(IPAlgu/F ) is concentrated in degrees ≥ 0 by
[Suz21, Proposition 7.6]. In particular, {Lh∗RπX,∗Tn(1)}n≥1 as an object of the

derived category of the ind-category of Ab(F perf
profppf) is bounded below. On the other

hand, {Lh∗τ≤1RπX,∗Tn(1)}n≥1 is concentrated in degrees 0 and 1 by Proposition
11.3. Hence {Lh∗τ≥2RπX,∗Tn(1)}n≥1 is bounded below. The functor Rh∗ com-
mutes with lim

−→n
on the bounded below derived categories by [Suz20b, Proposition

(2.2.4)]. The functor Lh∗ commutes with lim
−→n

by [Suz22, Lemma 3.7.2] and [KS06,

Corollary 14.4.6 (ii)]. Therefore

Rh∗Lh
∗τ≥2RπX,∗T∞(1) ∼= lim

−→
n

Rh∗Lh
∗τ≥2RπX,∗Tn(1) ∼= τ≥2RπX,∗T∞(1),

showing the h-acyclicity of τ≥2RπX,∗T∞(1). Thus τ≥2RπX,∗Gm is h-acyclic. �

By Proposition 11.4 (1), for any field F ′ ∈ F perar with algebraic closure F ′ and
any q ∈ Z, we have

Hq(X,Gm)(F ′) ∼= Hq(X(F ′),Gm)Gal(F ′/F ′)

functorially in F ′.

Proposition 11.5. Γ(X,Gm) ∼= A× is Gm times a connected pro-algebraic group
in WF , H

1(X,Gm) is in Alg/F , H2(X,Gm) and H3(X,Gm) are torsion with p-
primary part in IAlgu/F and étale l-primary part for l 6= p and Hq(X,Gm) = 0
for all q 6= 0, 1, 2, 3. We have

Hq(X,T∞(1))
∼
→ Hq(X,Gm)[p∞]

for all q ≥ 2.

Proof. This follows from Propositions 2.1, 8.3, 11.1, 11.2 and 11.4. �
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Recall from [Suz20a, Section 2.1] that an object G ∈ IAlgu/F is said to be of
cofinite type if G[pn] ∈ Algu/F for all n ≥ 1. For a cofinite type G, let G0

div be
the maximal divisible and connected part of G ([Suz20a, Proposition 2.2.2]; the
notation there was G0div).

Proposition 11.6. The object H2(X,Gm)[p∞] ∈ IAlgu/F is of cofinite type.

Proof. For any n ≥ 1, we have an exact sequence

0→ H1(X,Gm)⊗ Λn → H2(X,Tn(1))→ H2(X,Gm)[pn]→ 0.

The direct limit of the first term in n is zero by Proposition 11.5. AsH2(X,Tn(1)) ∈
Algu/F by Proposition 8.3, we get the result. �

Proposition 11.7. We have H2(X,Gm)0 ∈ Algu/F .

Proof. It is enough to show that H2(X,Gm)0div = 0 by [Suz20a, Proposition 2.2.3].

We may assume ζp ∈ A and F = F . We have

H2(X,Gm)0[p∞] ∼= lim−→
n

Ext1F indrat
proet

(

H2(X,Tn(1)),Λ∞

)

by duality. We have a natural morphism from the right-hand side to

lim
−→
n

Ext1F indrat
proet

(

H1(X,Gm)⊗ Λn,Λ∞

)

∼= Ext1F indrat
proet

(

H1(X,Gm),Λ∞

)0
.

This final group is in Algu/F by Proposition 11.2 and hence killed by a power of
p. Hence the composite of the above two morphisms maps H2(X,Gm)0div to zero.
Let G be the inverse image of the subgroup H2(X,Gm)0div[p]

0 under the natural
morphism

H2(X,T(1))0 → H2(X,Gm)0.

The image of G0 in H2(X,Gm) is H2(X,Gm)0div[p]
0. We have natural isomorphism

and morphism

H2(X,T(1))0 ∼= Ext1F indrat
proet

(

H2(X,T(1)),Λ∞

)

→ Ext1F indrat
proet

(

H1(X,Gm)⊗ Λ,Λ∞

)

.

We have a commutative diagram

H2(X,T(1))0 −−→ Ext1F indrat
proet

(

H1(X,Gm)⊗ Λ,Λ∞

)





y





y

H2(X,Gm)0[p∞] −−→ Ext1F indrat
proet

(

H1(X,Gm),Λ∞

)

.

The image of G in the right lower term is zero. The right vertical morphism has
finite kernel. Hence the image of G0 in the right upper term is zero.

Let S ⊂ P be the set of primes dividing p. Let X→ SpecA, Wη ⊂ X and T ⊂ Y
be as in Section 7. Let x ∈ Y0 and ηx ∈ Y x

1 . Take T large enough so that x ∈ T .

We have H1(K̂ηx
,Λ) ∈ WF and H2(X,T(1)),H1(X,Gm) ⊗ Λ ∈ Algu/F . Hence

the image of H1(K̂ηx
,Λ)→ H2(X,T(1)) is in Algu/F by Propositions 2.4 and 2.2.

Therefore by Proposition 10.2, the image of the composite

H1(K̂ηx
,Λ(1))→ H2(X,T(1))

of (10.3) is contained in the subgroup H1(X,Gm) ⊗ Λ of the target. Hence the
dual morphism

Ext1F indrat
proet

(

H2(X,T(1)),Λ∞

)

→ Ext1F indrat
proet

(

H1(K̂ηx
,Λ(1)),Λ∞

)
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factors through Ext1F indrat
proet

(

H1(X,Gm) ⊗ Λ,Λ∞

)

. Therefore the image of G0 in

Ext1F indrat
proet

(

H1(K̂ηx
,Λ(1)),Λ∞

)

is zero. By the diagram in [Suz24, Section 10.6,

Proof of Proposition 10.1.5], we have a commutative diagram

H2(X,T(1))0
∼
−−→ Ext1F indrat

proet

(

H2(X,T(1)),Λ∞

)





y





y

H2(US ,Λ(1))
0 ∼
−−→ Ext1F indrat

proet

(

H2
c(US ,Λ(1)),Λ∞

)

.

By the diagram in the proof of [Suz24, Proposition 10.5.5], we have a commutative
diagram

H2(US ,Λ(1))
0 ∼
−−→ Ext1F indrat

proet

(

H2
c(US ,Λ(1)),Λ∞

)





y





y

H2(K̂ηx
,Λ(1))0

∼
−−→ Ext1F indrat

proet

(

H1(K̂ηx
,Λ(1)),Λ∞

)

.

Combining the above two diagrams, we obtain a commutative diagram

H2(X,T(1))0
∼
−−→ Ext1F indrat

proet

(

H2(X,T(1)),Λ∞

)





y





y

H2(K̂ηx
,Λ(1))0

∼
−−→ Ext1F indrat

proet

(

H1(K̂ηx
,Λ(1)),Λ∞

)

.

Hence the image of G0 in H2(K̂ηx
,Λ(1))0 is zero. The left vertical morphism on

F -valued points factors as

H2(X,T(1))→ Br(K)[p]→ Br(K̂η)[p]→ Br(K̂ηx
)[p].

By Proposition 10.1, we know that the image of G0(F ) in Br(K̂η)[p] is contained
in H1(Yη,Λ). Thus we have a homomorphism G0(F ) → H1(Yη,Λ). This is com-
patible with base field extensions. Hence we have a homomorphism G0(F ′) →
H1(Yη(F

′),Λ) for any algebraically closed field F ′ ∈ F perar functorial in F ′. Hence
we have a morphism G0 → H1(Yη,Λ). It is a morphism from a connected group

to a finite group, hence zero. Therefore the image of G0(F ) in Br(K̂η)[p] is zero.
By the purity for Brauer groups, we know that the image of G0(F ) in Br(K)[p]
is contained in Br(X)[p]. As in the final paragraph of [Sai86, Section 3], we have
Br(X) ∼= Br(Y ) by the same argument as the proof of [Gro68, Theorem (3.1)]. As
F = F , we have Br(Y ) = 0. Thus the image of G0(F ) in Br(X) is zero. The result
then follows. �

Proposition 11.8. There exists a canonical isomorphism

H2(X,Gm)[p∞] ∼= Ext1F indrat
proet

(H1(X,Gm),Λ∞).

Proof. Let n ≥ 1. We have

H2(X,Tn(1))
∼
→ Ext−1

F indrat
proet

(

RΓ(X,Tn(1)),Λ∞

)

by duality. The right-hand side is isomorphic to

Ext−1
F indrat

proet

(

τ≥1τ≤2RΓ(X,Tn(1)),Λ∞

)

.
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Let Gn be the canonical mapping cone of the natural morphism

A×/A×pn

[−1]→ τ≥1τ≤2RΓ(X,Tn(1)).

Since A×/A×pn

is connected, we have

Ext−1
F indrat

proet

(

τ≥1τ≤2RΓ(X,Tn(1)),Λ∞

)

∼= Ext−1
F indrat

proet
(Gn,Λ∞).

We have a canonical distinguished triangle

H1(X,Gm)⊗L Λn[−2]→ Gn → H2(X,Gm)[pn][−2].

Applying Ext ·
F indrat

proet
( · ,Λ∞), we obtain an exact sequence

Ext1F indrat
proet

(

H2(X,Gm)[pn],Λ∞

)

→ H2(X,Tn(1))

→ Ext1F indrat
proet

(

H1(X,Gm)⊗L Λn,Λ∞

)

→ 0.
(11.2)

All the terms are in Algu/F . By Proposition 11.7, we have

lim
−→
n

Ext1F indrat
proet

(

H2(X,Gm)[pn],Λ∞

)

= 0.

Also

lim
−→
n

Ext1F indrat
proet

(

H1(X,Gm)⊗L Λn,Λ∞

)

∼= Ext1F indrat
proet

(

H1(X,Gm),Λ∞

)

by [Suz20b, Proposition (2.4.1) (d)]. Thus we get the result by taking the direct
limit in n. �

Recall from [Suz20b, Proposition (2.4.1)] that for a group G ∈ Alg/F , the group
π0 Ext1F indrat

proet
(G,Λ∞) is the Pontryagin dual of the p-adic Tate module of the semi-

abelian part GsAb ⊂ G and the group Ext1F indrat
proet

(G,Λ∞)0 is the Serre dual of the

unipotent group G0/GsAb.
Now we define

PicX = H1(X,Gm), BrX = H2(X,Gm).

Theorem 1.6 follows from the above results.

Proposition 11.9. The group H3(X,Gm)[p∞] is connected. It is isomorphic to
the Serre dual of A×/Gm. In particular, we have H3(X,Gm)[p∞] ∈ WF .

Proof. The component group of H3(X,Gm)[p∞] is Pontryagin dual to the inverse
limit of H0(X,Tn(1)) ∼= A×[pn]. This inverse limit is zero since A contains only
finitely many p-power-th roots of unity. For any n ≥ 1, we have an exact sequence

0→ A×/A×pn

→ H1(X,Tn(1))→ H1(X,Gm)[pn]→ 0.

As H1(X,Gm) ∈ Alg/F , the inverse limit of H1(X,Gm)[pn] in n is profinite.
Hence the Serre dual of H3(X,Gm)[p∞] is the inverse limit of A×/A×pn

, which is
A×/Gm. �

Applying lim
←−n

, π0 and ( · )tor to (11.2), we obtain an isomorphism

π0H
1(X,Gm)[p∞]

∼
→ Hom(π0H

1(X,Gm)[p∞],Λ∞),

or a Pontryagin duality

(11.3) π0H
1(X,Gm)[p∞]↔ π0H

1(X,Gm)[p∞].
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On the other hand, if L ×M → Z is a non-degenerate pairing of finitely gener-
ated free abelian groups, then it induces a Pontryagin duality Hom(M,Z)/L ↔
Hom(L,Z)/M on the discriminant groups. Hence the non-degeneracy of the inter-
section pairing (11.1) on X induces a Pontryagin duality

(11.4) δY [p
∞]↔ δY [p

∞].

The following states that our duality is compatible with the intersection pairing:

Proposition 11.10. The pairings (11.3) and (11.4) are compatible under the iso-
morphism π0H

1(X,Gm) ∼= δY in Proposition 11.2.

Proof. We may assume that F = F and it is enough to compare the two pairings
on F -valued points. By construction, (11.3) is given as follows. Let n ≥ 1. The
cup product and the trace map gives a pairing

H1(X,Tn(1))×H2(X,Tn(1))→ H3(X,Tn(2))→ Λn.

With the exact sequences

0→ A× ⊗ Λn → H1(X,Tn(1))→ Pic(X)[pn]→ 0,

0→ Pic(X)⊗ Λn → H2(X,Tn(1))→ Br(X)[pn]→ 0,

since A× ⊗ Λn is connected, this pairing induces a pairing

Pic(X)[pn]× Pic(X)⊗ Λn → Λn.

Taking suitable direct and inverse limits, this factors as a pairing between compo-
nent groups, which gives (11.3). We calculate it explicitly. Let p ∈ P be arbitrary.
Consider the natural maps

H1(X,Tn(1))→ H1(K,Λn(1)),

H1(K̂p,Λn(1))→ H2
p(Âp,Tn(1))→ H2(X,Tn(1)).

We have a commutative diagram of pairings

H1(X,Tn(1)) × H2(X,Tn(1)) −→ H3(X,Tn(2)) −→ Λn






y

x







x







∥

∥

∥

∥

H1(K,Λn(1)) × H1(K̂p,Λn(1)) −→ H2(K̂p,Λn(2)) −→ Λn,

where the lower pairing is the cup product pairing and the trace map. We also have
a commutative diagram

H1(X,Tn(1)) −−→ H1(K,Λn(1))




y





y

Pic(X)[pn] −−→ (K×/A×)⊗ Λn,

where the lower horizontal map comes from the exact sequence

0→ A× → K× →
⊕

q∈P

Z→ Pic(X)→ 0,

and a commutative diagram

K̂×
p ⊗ Λn −−→ Pic(X)⊗ Λn
∥

∥

∥





y

H1(K̂p,Λn(1)) −−→ H2(X,Tn(1)),
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where the upper horizontal map factors as the valuation map K̂×
p ⊗ Λn ։ Λn

followed by the map 1 7→ [p]. Hence we have a commutative diagram of pairings

Pic(X)[pn] × Pic(X)⊗ Λn −→ Λn






y

x







∥

∥

∥

∥

(K×/A×)⊗ Λn × K̂×
p ⊗ Λn −→ Λn,

where the lower pairing is given by the tame symbol map K̂×
p × K̂×

p → κ(p)×

followed by the valuation map on κ(p)×. Hence the value of the upper pairing
at an element (D, [p]) is given as follows. Represent pnD by a rational function
f ∈ K×. Take a prime element π of the local ring of A at p. Consider the tame
symbol {f, π}p ∈ κ(p)×. Then vκ(p)({f, π}p)/p

n ∈ Λ∞ is the value of the pairing
(11.3) at (D, [p]).

The second pairing (11.4) is given as follows. Let D, p and f as above. The
divisor on X defined by f is the sum of pnD and another divisor E supported on
Y . Consider the intersection number E · [p]. Then (E · [p])/pn ∈ Λ∞ is the value of
the second pairing at (D, [p]).

Therefore it is enough to show that

vκ(p)({f, π}p) = E · [p].

Suitably replacing the resolution X, we may assume that the divisor on X defined
by f , p and Y is supported on a strict normal crossing divisor. Let η be the generic
point of the irreducible component of Y containing the specialization of p in Y .
Then we can see that these two numbers are both equal to vK̂η

(f). �

12. The case of finite residue field

In this section, we prove Theorem 1.7. We deduce it from Theorems 1.2 and 1.4
by applying RΓ(F, · ).

Assume that F = Fq. Let ∗proet be the pro-étale site of a point ([BS15, Example
4.1.10]). Identify a profinite set with the affine F -scheme having the same set of
points. This defines a morphism of sites

SpecF indrat
proet → ∗proet.

Its pushforward functor is simply denoted by Γ(F, · ) by abuse of notation. Let
Finp be the category of finite abelian p-groups. Let IPFinp be the ind-category of
the pro-category of Finp.

Definition 12.1. Define W0 ⊂ IPFinp to be the full subcategory consisting of
objects G that fit in an exact sequence

0→ G′ → G→ G′′ → 0,

where G′ = lim
←−n≥1

G′
n is profinite (with G′

n ∈ Finp) and G′′ = lim
−→n≥1

G′′
n is indfi-

nite (with G′′
n ∈ Finp) both indexed by N.

All objects of W0 are locally compact and, in particular, Hausdorff.

Proposition 12.2. Let G ∈ W0. Then RHom∗proet(G,Λ∞) is concentrated in
degree zero with cohomology given by the usual Pontryagin dual of G. In particular,
Hom∗proet(G,Λ∞) ∈ W0.
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Proof. This is obvious if G is finite. Let G = lim
←−n≥1

Gn be profinite (with Gn ∈

Finp). Then

RHom∗proet(G,Λ∞) ∼= lim
−→
n

RHom∗proet(Gn,Λ∞)

by the same argument as the proof of [Suz20b, Theorem (2.3.1) (c)] (see also the
proof of [BS20, Proposition 8.10]). Let G = lim

−→n≥1
Gn be indfinite (with Gn ∈

Finp). Then

RHom∗proet(G,Λ∞) ∼= R lim
←−
n

RHom∗proet(Gn,Λ∞)

by [Suz20b, Proposition (2.2.3)]. Combining all these, we get the result. �

Note that non-Hausdorff groups may have non-vanishing Ext1: we have

RHom∗proet(Λ
N/Λ

⊕
N,Λ∞) ∼= ΛN/Λ

⊕
N[−1].

Proposition 12.3. Let G ∈ Db(F indrat
proet ) be such that HqG ∈ WF for all q. Then

RΓ(F,G) ∈ Db(∗proet) and Hq(F,G) ∈ W0 for all q. The group Hq(F,G) is
profinite if G is pro-algebraic and indfinite if G is ind-algebraic. We have an exact
sequence

0→ H1(F, π0(H
q−1G))→ Hq(F,G)→ Γ(F,HqG)→ 0

for all q.

Proof. Let G ∈ Algu/F be finite étale. Then Hq(F,G) is finite for q = 0, 1 and zero
otherwise. Let G ∈ Algu/F be connected. Then Hq(F,G) is the finite group G(F )
for q = 0 and zero otherwise. Let G = lim

←−n
Gn ∈ WF be connected pro-algebraic

(with Gn ∈ Algu/F connected such that Gn+1 ։ Gn is surjective with connected
kernel). Then

RΓ(F,G) ∼= R lim
←−
n

RΓ(F,Gn) ∼= R lim
←−
n

(Gn(F )) ∼= G(F )

by [Suz20b, Proposition (2.2.4) (b)], and G(F ) is profinite. Let G = lim
−→n

Gn ∈ WF

be connected ind-algebraic (with Gn ∈ Algu/F connected unipotent such that
Gn →֒ Gn+1 is injective). Then

RΓ(F,G) ∼= lim
−→
n

RΓ(F,Gn) ∼= lim
−→
n

(Gn(F )) ∼= G(F )

by [Suz20b, Proposition (2.2.4) (b)], and G(F ) is indfinite. Combining all these,
we get the result. �

The composite functor

D(US,et)
RΓ(US , · )
−→ D(F indrat

proet )
RΓ(F, · )
−→ D(∗proet)

is denoted by RΓ(US, · ) by abuse of notation, with cohomologies Hq(US , · ). The
composite functor

D(US,et)
RΓc(US , · )
−→ D(F indrat

proet )
RΓ(F, · )
−→ D(∗proet)

is denoted by RΓc(US , · ) by abuse of notation, with cohomologies Hq
c (US , · ).
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Proposition 12.4. Let n ≥ 1 and q, r ∈ Z. Then the objects Hq(US ,Tn(r)) and
Hq

c (US ,Tn(r)) are in W0 for all q and zero for all but finitely many q. We have a
perfect pairing

RΓ(US ,Tn(r)) ⊗
L RΓc(US ,Tn(2− r))→ Λ∞[−4]

in D(∗proet) and a Pontryagin duality

Hq(US ,Tn(r))↔ H4−q
c (US ,Tn(2− r)).

Proof. This follows from the perfect pairing

RΓ(US ,Tn(r)) ⊗
L RΓc(US ,Tn(2− r))→ Λ∞[−3]

and [Suz20a, Proposition 4.2.1], Propositions 12.2 and 12.3. �

This proves Theorem 1.7.
Finally, we give a local version of this theorem. Let K and k be as in Section 5.

The composite functor

D(Ket)
RΓ(K, · )
−→ D(F indrat

proet )
RΓ(F, · )
−→ D(∗proet)

is denoted by RΓ(K, · ) by abuse of notation, with cohomologies Hq(K, · ). The
composite functor

D(OK,et)
RΓ(OK , · )
−→ D(F indrat

proet )
RΓ(F, · )
−→ D(∗proet)

is denoted by RΓ(OK , · ) by abuse of notation, with cohomologies Hq(OK , · ).
The composite functor

D(OK,et)
RΓc(OK , · )
−→ D(F indrat

proet )
RΓ(F, · )
−→ D(∗proet)

is denoted by RΓc(OK , · ) by abuse of notation, with cohomologies Hq
c (OK , · ).

Proposition 12.5. Let n ≥ 1 and q, r ∈ Z. Then we have

Hq(K,Λn(r)), H
q(OK ,Tn(r)), H

q
c (OK ,Tn(r)) ∈ W0.

We have perfect pairings

RΓ(K,Λn(r)) ⊗
L RΓ(K,Λn(2 − r))→ Λ∞[−3],

RΓ(OK ,Tn(r)) ⊗
L RΓc(OK ,Tn(2− r))→ Λ∞[−4]

in D(∗proet) and Pontryagin dualities

Hq(K,Λn(r))↔ H3−q(K,Λn(2 − r)),

Hq(OK ,Tn(r))↔ H4−q
c (OK ,Tn(2 − r)).

Proof. This follows from the perfect pairings

RΓ(K,Λn(r)) ⊗
L RΓ(K,Λn(2− r))→ Λ∞[−2],

RΓ(OK ,Tn(r)) ⊗
L RΓc(OK ,Tn(2− r))→ Λ∞[−3]

and [Suz20a, Proposition 4.2.1], Propositions 12.2 and 12.3. �
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