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COMPLETE PLURIPOLAR SETS AND REMOVABLE SINGULARITIES

OF PLURISUBHARMONIC FUNCTIONS

XIEPING WANG

To Li and Rui’an

Abstract. Inspired by Chen-Wu-Wang (Math. Ann. 362: 305–319, 2015), we prove a
Hartogs type extension theorem for plurisubharmonic functions across a compact complete
pluripolar set, which is complementary to a classical theorem of Shiffman.

1. Introduction

Let Ω be a domain in Cn, n ≥ 2, and let K be a compact subset of Ω such that Ω\K is
connected. The famous Hartogs extension theorem states that every holomorphic function
on Ω\K extends holomorphically to the whole domain Ω. An analogue for pluriharmonic
functions is also valid, as recently discovered by Chen in [Che17] (see also [Wan22]). When
it comes to plurisubharmonic (psh for short) functions the situation, however, is quite
different; for instance, every bounded domain in Cn with smooth boundary is the domain
of existence of a psh function (see [BT88]). Thus it is meaningful to prove the following

Theorem 1.1. Let Ω be a domain in Cn, n ≥ 2, and let K be a compact complete pluripolar

subset of Ω. Then every psh function on Ω\K admits a unique psh extension to Ω.

This somewhat surprising result is complementary to a classical theorem of Shiffman
[Shi72] that every psh function on a domain in Cn extends plurisubharmonically across a
closed set of Hausdorff (2n− 2)-measure zero. It is also worth noting that Theorem 1.1 is
of global nature, while Shiffman’s theorem is of local nature.

The special case of Theorem 1.1 where Ω is the unit polydisc ∆n ⊂ Cn is already
contained in the beautiful work of Chen-Wu-Wang [CWW15], who also dealt with the
more general case of K being a closed complete pluripolar subset of ∆n under certain
reasonable conditions. Chen-Wu-Wang proved their result by using an Ohsawa-Takegoshi
type extension theorem for a single point in bounded complete Kähler domains, which is
also one of the main results in [CWW15] and seems to be highly nontrivial due to its
connection with an open problem posed by Ohsawa in [Ohs95]. We observe that Theorem
1.1 can be proved by combining this powerful result with an idea of Shiffman.

One may naturally ask whether Theorem 1.1 remains true when Cn is replaced by a
generic Stein manifold of dimension n ≥ 2. Since it is not clear to us at this moment
whether the Ohsawa-Takegoshi type extension theorem by Chen-Wu-Wang applies to this
more general case, we instead use other techniques, namely the recently proved Hartogs
extension theorem for pluriharmonic functions in [Wan22] and the Skoda-El Mir extension
theorem for closed positive currents, to prove the following
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Theorem 1.2. Let X be a Stein manifold of dimension n ≥ 2. Suppose Ω is a domain

in X such that H1(Ω, O) = 0 and H2(Ω, R) = 0, and K is a compact complete pluripolar

subset of Ω. Then every psh function on Ω\K admits a unique psh extension to Ω.

Remark. Since K is holomorphically convex in X , there always exists a Stein neighbor-
hood of K contained in a given domain Ω ⊂ X so that the assumption H1(Ω, O) = 0 is
nonessential for the theorem. Also, it seems that the additional condition H2(Ω, R) = 0 is
superfluous (and this is the case at least when X = Cn, as shown by Theorem 1.1).

After recalling a fundamental result concerning closed complete pluripolar sets in Stein
manifolds in Section 2, we prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

Acknowledgements. The author would like to thank Professor Bo-Yong Chen for kindly
explaining his joint work with Wu and Wang [CWW15]. The author would also like to
thank Doctors Yong-Xin Gao and Zhi Li for patiently listening to his lectures on the basic
parts of pluripotential theory and related topics at the seminar they organized when all
three of them were at the Institute of Mathematics, AMSS, Chinese Academy of Sciences
from 2017 to 2019.

2. Complete pluripolar sets and their defining functions

We begin by recalling the notion of complete pluripolarity. Let X be a complex manifold
and PSH(X) denote the set of all psh functions on X .

Definition. A subset E ⊂ X is called complete pluripolar if for every point z ∈ E there
exists a neighborhood U of z and a function ϕ ∈ PSH(U) such that

E ∩ U = ϕ−1(−∞).

The set of all complex subvarieties of X forms a particularly important class of (closed)
complete pluripolar sets, but complete pluripolar sets are much more general: for instance,
the Cartesian product of finitely many (possibly different) Cantor type sets in the complex
plane of logarithmic capacity zero is a compact complete pluripolar set in the corresponding
complex Euclidean space (see, e.g., [Ran95]), but far from being complex-analytic; see also
[ElM84] for some other nontrivial examples.

In 1990, Colţoiu proved the following important result concerning the existence of a
global defining function for a closed complete pluripolar set.

Theorem 2.1 (see [Col90, Corollary 1]). Let X be a Stein manifold and E ⊂ X be a closed

complete pluripolar set. Then there exists a function ρ ∈ PSH(X) ∩ C∞(X\E) such that

ρ−1(−∞) = E and
√
−1∂∂̄ρ > 0 on X\E.

As we shall see later, this result plays a fundamental role in the proofs of Theorems 1.1
and 1.2.

3. Proof of Theorem 1.1

The idea of the proof is due to Chen-Wu-Wang [CWW15], which in turn was more or
less inspired by the celebrated work of Demailly [Dem92]. The key ingredient here is an
Ohsawa-Takegoshi type extension theorem for a single point in bounded complete Kähler
domains in Cn (see [CWW15, Theorem 1.3] for details). In order to make use of this
theorem, we first need to prove the following result:

Theorem 3.1. Let X be a Stein manifold and E ⊂ X be a closed complete pluripolar set.

Then X\E carries a complete Kähler metric.
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The important special case of E ⊂ X being a complex subvariety is well-known and due
to Grauert [Gra56].

Proof. The result is an easy consequence of Theorem 2.1. Let ϕ be a C∞ strictly psh
exhaustion function for X and let ψ : X\E → R be a C∞ function such that

ψ = − log(−ρ) on U \E,
where ρ is a psh function as in Theorem 2.1 and U := {ρ < −1}. Then one can construct
a C∞ convex, rapidly increasing function χ on R such that

ω :=
√
−1∂∂̄(χ ◦ ϕ) +

√
−1∂∂̄ψ ≥ ω0 on X\E

for some complete Kähler metric ω0 on X .
We claim that ω is complete on X\E. For this, we may assume without loss of generality

that X itself is connected (and so is X \E). Suppose {zj}j≥1 is a bounded sequence
in the metric space (X \E, ω). Then there is a sequence of smooth curves {γj}j≥1 ⊂
C∞([0, 1], X \E) with uniformly bounded lengths with respect to ω, joining each zj to a
(fixed) reference point in X \U . Since ω ≥ ω0 on X \E and ω0 is complete on X , we
may assume that the sequence {zj}j≥1 itself converges in X by passing to a subsequence if
necessary. What now remains is to show that the limit of {zj}j≥1 lies outside E. Suppose
the contrary and set

tj := inf
{
t ∈ [0, 1] : γj([t, 1]) ⊂ U

}
, j ≥ 1.

Clearly 0 < tj < 1 and γj(tj) ∈ ∂U = {ρ = −1} for all sufficiently large j. Observe also
that

ω ≥
√
−1∂∂̄

(
− log(−ρ)

)
≥

√
−1∂ log(−ρ) ∧ ∂̄ log(−ρ) on U.

It then follows that
√
2 lengthω(γj) ≥

∫ 1

tj

∣∣(d log(−ρ)
)
(γ′(t))

∣∣dt ≥
∫ 1

tj

(
d log(−ρ)

)
(γ′(t))dt

= log(−ρ(zj)) → ∞ as j → ∞,

contradicting the boundedness of {lengthω(γj)}j≥1. Therefore the limit of {zj}j≥1 lies
outside E, and hence ω is complete on X\E. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The uniqueness for extension is clear, since two psh functions on Ω
which coincide almost everywhere are actually equal everywhere. So it suffices to prove
the existence part of the theorem.

We first observe that the problem can be reduced to the case when Ω ⊃ K is a bounded
pseudoconvex domain. To see this, let ρ be a psh function on C

n, continuous on C
n\K

and satisfying ρ−1(−∞) = K (see Theorem 2.1). Choose an open set U ⊂ Cn such that
K ⊂ U ⊂⊂ Ω, and set

ρ̃ :=

{
max

{
ρ, inf

∂U
ρ
}

on Cn\U ;
ρ on U.

Then ρ̃ is a psh function on Cn with ρ̃−1(−∞) = K. Replacing Ω by any connected com-
ponent of {ρ̃ < inf

∂U
ρ}, we may assume in what follows that Ω is a bounded pseudoconvex

domain in Cn.
Let ϕ ∈ PSH(Ω\K). To prove the plurisubharmonic extendibility of ϕ across K, it

suffices to show that every point of K admits a small neighborhood on which ϕ is bounded
above. Observe that Ω\K is a bounded complete Kähler domain, in view of Theorem
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3.1. We can therefore invoke [CWW15, Theorem 1.3] to assign to every point z ∈ Ω\K a
holomorphic function fz on Ω\K with the property that fz(z) = eϕ(z)/2 and

(3.1)

∫

Ω\K

|fz|2e−ϕ ≤ constn,diamΩ.

By the Hartogs extension theorem, each such fz extends holomorphically to Ω. With a
slight abuse of notation, we denote the extension still by fz.

To proceed the proof, we make use of a result of Shiffman (cf. [Har77, Lemma 2.3]
and [Dem12, Chapter 3, Lemma 4.7]). Fix an arbitrary point z0 ∈ K and recall that
being a polar subset of Cn ∼= R2n, K has Hausdorff dimension at most 2n − 2 (see, e.g.,
[AG01, Theorem 5.9.6]). By suitably selecting affine linear coordinates for Cn, we can find
a polydisc ∆′ ×∆′′ ⊂ Cn−1 × C centered at z0 =: (z′0, z

′′
0 ) such that

(∆′ × ∂∆′′) ∩K = ∅.
By shrinking ∆′ if necessary, we further arrive at

(
∆′ × (∆′′\(1− ε)∆′′)

)
∩K = ∅

for some sufficiently small ε > 0. Now choose R, r > 0 such that 1 − ε < r < R < 1 and
ball B ⊂⊂ ∆′ centered at z′0. Then the Cauchy estimate and inequality (3.1) imply

eϕ(z) = |fz(z)|2 ≤ constB,R, r, ε

∫

B×(R∆′′\r∆′′)

|fz|2

≤ constB,R, r, ε sup
B×(R∆′′\r∆′′)

eϕ
∫

B×(R∆′′\r∆′′)

|fz|2e−ϕ

≤ C sup
B×(R∆′′\r∆′′)

eϕ

for all z ∈
(
(1−ε)(B×∆′′)

)
\K, where C > 0 is a constant independent of z. Consequently,

ϕ is bounded above on (1− ε)(B ×∆′′) ∋ z0 outside K. This completes the proof. �

4. Proof of Theorem 1.2

We start with the following result, which is essentially due to Sibony [Sib85].

Proposition 4.1. Let X be a Stein manifold of dimension n ≥ 2 and K ⊂ X be a compact

complete pluripolar set. Then every closed positive (p, p)-current on X\K with p ≤ n− 1
has finite mass near K.

Proof. As in the proof of Theorem 1.1, we can construct a strongly pseudoconvex neigh-
borhood Ω ⊂⊂ X of K with C∞-boundary. Let uK denote the relative extremal function
of K in Ω, that is

uK = sup
{
u ∈ PSH(Ω) ∩ C(Ω) : u < 1 on Ω, u ≤ 0 on K

}
.

Clearly uK = 0 on K. Moreover according to [Sib85, Proposition 1.4], the product uKT
of uK and every closed positive (p, p)-current T on Ω\K with p ≤ n − 1 has finite mass
near K. (This is true for all compact sets K ⊂ Ω, regardless of the complete pluripolarity
of K.)

It remains to show that uK is no other than the characteristic function χΩ\K of Ω\K,
provided K ⊂ Ω is further assumed to be complete pluripolar. For this let ρ be a negative
psh function on Ω, continuous on Ω\K and satisfying ρ−1(−∞) = K, and set

ρt := max
{
ρ/t+ 1, 0

}
, t > 0.
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Then {ρt}t>0 forms a family of candidates for the supremum defining uK , hence ρt ≤ uK
for all t > 0. Letting t→ ∞ yields uK = χΩ\K , as desired. �

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. As pointed out in the proof of Theorem 1.1, it suffices to prove the
existence part of the theorem.

Given a function ϕ ∈ PSH(Ω\K), we consider the associated closed positive (1, 1)-
current T :=

√
−1∂∂̄ϕ on Ω\K. By virtue of Proposition 4.1 and the Skoda-El Mir

extension theorem (see [ElM84, Théorème II.1] or [Sib85, Dem12]), T extends to a closed

positive (1, 1)-current on Ω, which we denote by T̃ . Since H1(Ω, O) = 0 and H2(Ω, R) = 0,

a standard argument shows that T̃ admits a global potential ϕ̃ ∈ PSH(Ω), i.e.,
√
−1∂∂̄ϕ̃ =

T̃ . One can then write
ϕ̃ = ϕ+ h on Ω\K

with h being a pluriharmonic function on Ω\K, in view of Weyl’s lemma. On the other
hand, the Hartogs extension theorem for pluriharmonic functions (see [Wan22, Theorem

1.1]) implies that h admits a pluriharmonic extension h̃ to Ω. It now follows that ϕ̃− h̃ is
a psh function on Ω that extends ϕ. �
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