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THE ENDOMORPHISM RING OF THE TRIVIAL MODULE IN A

LOCALIZED CATEGORY

JON F. CARLSON

Abstract. Suppose that G is a finite group and k is a field of characteristic p > 0.
LetM be the thick tensor ideal of finitely generated modules whose support variety
is in a fixed subvariety V of the projectivized prime ideal spectrum ProjH∗(G, k).
Let C denote the Verdier localization of the stable module category stmod(kG)
at M. We show that if V is a finite collection of closed points and if the p-
rank every maximal elementary abelian p-subgroups of G is at least 3, then the
endomorphism ring of the trivial module in C is a local ring whose unique maximal
ideal is infinitely generated and nilpotent. In addition, we show an example where
the endomorphism ring in C of a compact object is not finitely presented as a
module over the endomorphism ring of the trivial module.

1. Introduction

Suppose that G is a finite group and that k is a field of characteristic p > 0. The
stable category stmod(kG) of finitely generated kG-modules is a tensor triangulated
category. A thick tensor ideal in stmod(kG) is determined by the support variety
of its objects. Hence, for any closed subvariety V in VG(k) = Proj H∗(G, k), the
full subcategory MV of all finitely generated kG-modules M with VG(M) ⊂ V , is
a thick subcategory that is closed under tensor product with any finitely generated
kG-module. Moreover, every thick tensor ideal can be defined in this or a similar
way. Associated to MV is a distinguished triangle

// EV // k // FV
//

where EV and FV are idempotent kG-modules that are almost always infinitely
generated. In addition, EV ⊗M ∼=M in the stable category if and only if VG(M) ⊆
V . Tensoring with FV is the localizing functor to the Verdier localization CV of
stmod(kG) at MV . Thus the localized category CV is embedded in the stable
category StMod(kG) of all kG-modules.

In the localized category CV , the trivial module k is identified with FV and the
ring EndCV (k) is isomorphic to EndStMod(kG)(FV ). For kG-modules M and N , the
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2 JON F. CARLSON

group HomCV (M,N) is a module over EndCV (k). This suggests that modules in
the category CV can be distinguished by invariants such as the annihilators of their
endomorphism rings or cohomology rings. Such is the essence of the support variety
theory that classifies the thick tensor ideals in stmod(kG). In subsequent work [10],
we show that there is such a theory that is nontrivial in the case of the colocalized
category generated by EV . However, in the localized category, there are additional
complications, as we see in this paper.

In this paper, we complete the task of characterizing EndCV (k) in the case that
the maximal elementary abelian subgroups of G have sufficiently large p-rank and
the variety V is a finite collection of closed points. We prove in such cases that
the ring EndCV (k) is a local ring whose maximal ideal is infinitely generated and
nilpotent.

Our study relies on earlier results in [11] that proves the special case in which V
is a single closed point in VG(k) and G is elementary abelian. More generally, that
paper shows that the nonpositive Tate cohomology ring of any finite group H can
be realized as the endomorpism ring of the trivial module in the Verdier localization
CV where V is a single point in the spectrum of the cohomology ring of G = C ×H
for C a cyclic group of order p. The proof of our main theorem also requires the fact
that nilpotence in cohomology can be detected on restrictions to elementary abelian
p-subgroups of a finite group [9]. This theorem does not hold for G a general finite
group scheme, and hence the proof of our main theorem does not extend to that
realm.

The next section presents an introduction and references to the categories and
recalls some theorems on support varieties. In the three sections that follow, we
review the main theorem of [11] and extend the result to the case in which the variety
V is a finite collection of more than one closed points. In section 5, we prove the main
theorem for any finite group whose maximal elementary abelian p-subgroups have
p-rank at least three. In section 6, we look at the restriction of the module FV from
an elementary abelian group to one of its proper subgroup. This result is used in the
final section to show by example that even for a compact object M in stmod(kG),
it is possible that EndCV (M) is not finitely generated over EndCV (k). In the other
direction, we show also in Section 7 that if V is the subvariety of all homogeneous
prime ideals that contain a single non-nilpotent element of cohomology, then for
any compact object M , EndCV (M) is finitely generated over EndCV (k). In the final
section we present an example that shows more of the stucture of the idempotent
module FV in the case of groups that are not elementary abelian p-groups.

We would like to thank Paul Balmer for helpful conversations and information.
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2. Background

In this section, we review some background. As references, we refer the reader to
[12] or [3] for information on the cohomology of finite groups and support varieties
in this context. For information on triangulated categories see [14]. A lot of the
background material is summarized very well in the paper [2] of Balmer and Favi.

Throughout the paper, we let G be a finite group and k a field of characteristic
p > 0. For convenience, we assume that k is algebraically closed. Recall that kG is
a Hopf algebra so that if M and N are kG-modules, then so is M ⊗k N . In general,
we write ⊗ for ⊗k.

Letmod(kG) denote the category of finitely generated kG-modules andMod(kG)
the category of all kG-module. Let stmod(kG) be the stable category of finitely
generated kG-module modulo projectives. The objects in stmod(kG) are the same
as those inmod(kG). IfM andN are finitely generated kG-modules, then the group
of morphisms from M to N in the stable category is the quotient HomkG(M,N) =
HomkG(M,N)/PHomkG(M,N) where PHomkG(M,N) is the set of homomorphisms
that factor through projective modules. The definition of the stable category of all
modules StMod(kG) is similar.

The stable categories stmod(kG) and StMod(kG) are tensor triangulated cate-
gories. The tensor is the one given by the Hopf algebra structure on kG as mentioned
above. Triangles correspond roughly to exact sequences in the module categories.
The translation functor for both is Ω−1, so that a triangle looks like

A // B // C // Ω−1(A)

where for some projective module P there is an exact sequence 0 → A→ B ⊕ P →
C → 0. Here, Ω−1(M) is the cokernel of an injective hull M →֒ I for I Injective.

The cohomology ring H∗(G, k) is a finitely generated, graded-commutative algebra
over k. Let VG(k) = Proj(H∗(G, k) be its projectivized prime ideal spectrum, the
collection of all homogeneous prime ideals with the Zariski topology. The support
variety of a finitely generated kG-moduleM is the closed subvariety consisting of all
homogeneous prime ideals that contain the annihilator of Ext∗kG(M,M) in H∗(G, k).
The support variety of an infinitely generated kG-module is a subset of VG(k), not
necessarily closed (see [6]).

If H is a subgroup of G, the restriction functor mod(kG) → mod(kH) induces
a map on cohomology ring resG,H : H∗(G, k) → H∗(H, k) and also a map on sectra
res∗G,H : VH(k) → VG(k).

For much of the next few sections, we assume that G = 〈g1, . . . , gr〉 is an elemen-
tary abelian p-group of order pr. In this case, we set Xi = gi−1 ∈ kG for i = 1, . . . , r.
Then Xp

i = 0 and kG ∼= k[X1, . . . , Xr]/(X
p
1 , . . . , X

p
r ). With this structure in mind,

we make the following definition.
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Definition 2.1. Suppose that kG is the group algebra of an elementary abelian p-
group. A flat subalgebra of kG is the image in kG of a flat map α : k[t1, . . . , ts]/(t

p
1, . . . , t

p
s) →

kG. We say a flat subalgebra is maximal if s = r − 1 where r is the p-rank of G.

By definition, a map α, as above, is flat if kG is a projective module over the
image of the ring k[t1, . . . , ts]/(t

p
1, . . . , t

p
s). This happens if and only if the images

α(t1), . . . , α(ts), in Rad(kG)/Rad2(kG) are k-linearly independent. In particular,
we have the following.

Lemma 2.2. Suppose that G is an elementary abelian p-group of p-rank r. Let
α : k[t1, . . . , ts]/(t

p
1, . . . , t

p
s) → kG be a flat map. Then there exists another flat map

β : k[t1, . . . , tr−s]/(t
p
1, . . . , t

p
r−s) → kG such that kG is the internal tensor product

kG = A⊗B, where A and B are the images of α and β, respectively.

Proof. Choose elements m1, . . . , mr−s in kG, such that the classes modulo Rad2(kG)
of α(t1), . . . , α(ts), m1, . . . , mr−s form a basis for Rad(kG)/Rad2(kG). Then let β
be defined by β(ti) = mi for i = 1, . . . , s. Then AB = kG, by Nakayama’s Lemma
and a dimension argument. �

If α, as above, is a flat map, then the multiplicative subgroup generated by the
images α(1+ti) is called a shifted subgroup of kG in other papers. It is an elementary
abelian p-subgroup of the group of units of kG. In the case that s = 1, we have an
example of a π-point.

Definition 2.3. [13] A π-point is a flat map αK : K[t]/(tp) → KGK where K
is an extension of the field k. If G is a finite group scheme that is not elemen-
tary abelian, then we assume also that αK factors by flat maps through a unipo-
tent abelian subgroup scheme of KGK . Two π-points αK : K[t]/(tp) → KGK and
βL : L[t]/(tp) → LGL are equivalent if for any finitely generated kG-module M , the
restriction α∗

K(K ⊗M) is projective if and only if β∗
L(L⊗M) is projective.

The set of equivalence classes of π-point has a partial order coming from special-
izations, and that ordering gives the set a topology. With this in mind we have the
following, which holds for any finite group scheme G.

Theorem 2.4. [13] The space of equivalence classes of π-points is homeomorphic
to VG(k) = Proj H∗(G, k).

The point is that if A = K[t]/(tp), then H∗(A,K)/Rad(H∗(A,K)) is a polynomial
ring in one variable. So, if α : A → KG is a π-point, then the kernel of the
composition

H∗(G, k)
α∗

// H∗(A,K) // H∗(A,K)/Rad(H∗(A,K))

is a prime ideal. Equivalent π-points determine the same prime ideal.
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With the identification given by the theorem, we can define the support variety
VG(M) of any kG-module M to be the set of all equivalence classes of π-point
αK : K[t]/(tp) → KGK such that the restriction α∗

K(K ⊗ M) is not a free KG-
module. In the case that M is finitely generated, VG(M) ≃ VG(M) is a closed
set.

Remark 2.5. If G is a finite group that is not elementary abelian, then the
Quillen Dimension Theorem (see [15] or [12, Theorem 8.4.6]) says that VG(k) =
Proj H∗(G, k) = ∪ res∗G,E(VE(k)), where the union is over the elementary abelian
p-subgroups E of G. This assures us that every π-point is equivalent to one that
factors through the inclusion of the group algebra of some elementary abelian p-
subgroup E of G into kG. Or, stated another way, every homogeneous prime ideal
in H∗(G, k) contains the kernel of the restriction resG,E : H∗(G, k) → H∗(E, k), for
some elementary abelian p-subgroup E.

3. Point varieties

A subcategory M of a triangulated category C is thick if it is triangulated and
closed under taking direct summands. It is a thick tensor ideal if it is thick and
if, for any X ∈ C and Y ∈ M, X ⊗ Y is in M. For V a closed subset of VG(k),
let MV be the thick tensor ideal in stmod(kG) consisting of all finitely generated
kG-modules M with VG(M) ⊆ V . More generally, let V be a collection of closed
subsets VG(k) that is closed under taking finite unions and specializations (meaning
that if U ⊆ V ∈ V then U ∈ V). Then the subcategory MV of all finitely generated
modules M with VG(M) ∈ V is a thick tensor ideal. Indeed, this is the story.

Theorem 3.1. [7] If M is a thick tensor ideal in stmod(kG), then M = MV for
some collection V of closed subsets of VG(k) that is closed under finite unions and
specializations.

Corresponding to a thick tensor ideal MV in stmod(kG) is a triangle of idempo-
tent modules in StMod(kG) having the form

SV : // EV
σV

// k
τV

// FV
// .

See [16] for proofs and details. The modules EV and FV are idempotent in the stable
category, meaning that EV ⊗ EV ∼= EV and FV ⊗ FV

∼= FV in StMod(kG), i. e.
ignoring projective summands. In addition, EV⊗FV

∼= 0 in the stable category. The
support variety VG(EV) is the set of all equivalences classes of π-points corresponding
to irreducible closed subsets in V, and VG(FV) = VG(k) \ VG(EV).

For any finitely generated kG module X , the triangle

X ⊗ SV : EV(X)
µX

// X
νX

// FV(X) //
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has a couple of universal properties [16]. Let M⊕ denote the closure of M in
StMod(kG) under taking arbitrary direct sums. The map µX is universal for maps
from objects in M⊕

V to X , meaning that if Y is in M⊕
V , then any map Y → X

factors through µX . The map νX is universal for maps from X to MV-local objects,
meaning objects Y such that HomkG(M,Y ) = {0} for all M in MV . The universal
property says that for an MV-local module Y , any map X → Y factors through νX .

In the event that V is a closed subset of VG(k), let EV = EV and FV = FV where
V is the collection of all closed subsets of V .

Lemma 3.2. Suppose that V is a closed subvariety of VG(k). Suppose that L is a
kG-module such that U ∩ V = ∅ for all U ∈ VG(L). Then HomkG(EV , L) = {0}.

Proof. The point is that EV can be constructed as the direct limit of finitely generated
modules having variety equal to V . So L is MV -local. �

Suppose that M = MV is a thick tensor ideal of stmod(kG) for an appropriate
collection V. The Verdier localization C = CV of stmod(kG) with respect to M is
the category whose objects are the same as those of stmod(kG). The collection of
morphisms from an objectM to an object N is obtained by inverting any morphism
with the property that the third object in the triangle of that morphism is in M.
Thus, objects in M are equal to the zero object in C. One of the motivations for
this work is that End(FV ) is isomorphic to the ring of endomorpisms of the trivial
module k in the localized category C.

Proposition 3.3. Suppose that V = V1∪V2 where V1 and V2 are closed subvarieties
such that V1 ∩ V2 = ∅. Then FV is the pushout of the diagram

k
τV1

//

τV2
��

FV1

��

FV2
// FV

That is, FV
∼= (FV1 ⊕ FV2)/N where N = {(τV1(a),−τV2(a)) | a ∈ k}.

Proof. The thing to note is that EV ∼= EV1 ⊕ EV2 . That is, because, V1 ∩ V2 = ∅, if
M ∈ MV , then M ∼= M1 ⊕M2 where Mi ∈ MVi for i = 1, 2. So in particular, the
map EV1⊕EV2 → k sending (u, v) to σV1(u)+σV2(v) has the desired universal property.
The third object in the triangle of the map is the pushout, and it also satisfies the
desired universal property. Moreover, we know that EV1 ⊗ EV2 is projective because
the varieties of the two modules are disjoint [6]. So EV1 ⊕ EV2 is an idempotent
module. This is sufficient to prove the proposition. �

Lemma 3.4. Let G be an elementary abelian group of order pr. Suppose that H is
a subgroup of G or that kH is the image of a flat map γ : k[t1, . . . , ts]/(t

p
1, . . . , t

p
s) →
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kG. Let V be a closed subvariety of VG(k). Then the restriction of the exact triangle
SV to kH is the triangle

SV ′ : // EV ′

σV ′
// k

τV ′
// FV ′

// ,

where V ′ = (res∗G,H)
−1(V ), the inverse image of V under the restriction map.

Proof. The proof is a straightforward matter checking that the varieties are correct.
�

In the case of G an elementary abelian groups, one of the main theorem in [11] is
the following.

Theorem 3.5. Suppose that G is an elementary abelian p-group having p-rank at
least 3. Suppose that V is a subvariety of VG(k) consisting of a single closed point.
Let kH be the image of a flat map γ : k[t1, . . . , tr−1]/(t

p
1, . . . , t

p
r−1) → kG with the

property that V is not in res∗G,H(VH(k)). Suppose that Z = α(t) where α : k[t]/(tp) →
kG is a π-point whose equivalence class is the point in V . Then, the idempotent
module FV has a decomposition (as a direct sum of kH-modules)

FV = k ⊕ P p−1
0 ⊕ P1 ⊕ P p−1

2 ⊕ P3 ⊕ . . .

where

. . . // P2
∂

// P1
∂

// P0
ε

// k // 0

is a projective kH-resolution of the trivial kH-module. Multiplication by the element
Z is zero on the summand k. For m ∈ P2i−1, i > 0,

Zm = −(∂(m), 0, . . . , 0) ∈ P p−1
2i−2.

For m = (m1, . . . , mp−1) ∈ P p−1
2i ,

Zm =

{
−ε(mp−1) + (0, m1, . . . , mp−2) ∈ k ⊕ P p−1

0 if i = 0,

−∂(mp−1) + (0, m1, . . . , mp−2) ∈ P2i−1 ⊕ P p−1
2i if i > 0.

The map τV : k → FV has image the summand k in the decomposition. Moreover,
HomkG(k,FV ) =

∑
i≥0Hi is a graded ring with

Hi
∼=

{
kτV (1) for i = 0,

HomkH(k, Pi) for i > 0

A homogeneous element θ : k → FV lifts to a homomorphism θ̂ : FV → FV that
is induced by a kH-chain map θ∗ : (P∗, ε) → (P∗, ε) of the augmented projective
resolution to itself, that lifts θ.
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Proof. Let kC denote the image of α. Because γ is a flat map, the classes modulo
Rad2(kG) of γ(t1), . . . , γ(tr−1) span a subspace of Rad(kG)/Rad2(kG) of dimension
r−1. The fact that V is not in res∗G,H(VH(k)) implies that the class modulo Rad2(kG)
of Z is not in that subspace. That is, otherwise there would be a a π-point equivalent
to α that factored through γ violating the assumption on the varieties. Thus we
have that kG ∼= kC⊗kH , is the group algebra of the direct product C×H . Now we
apply [11, Theorem 6.2], where V the point [1, 0, . . . , 0] in VG(k) corresponding to
Z. This gives the stated result. That is, for this specific choice of V and generators
Z, α(t1), . . . , α(tr−1), the module FV has a decomposition as described in [11]. �

We remark that changing the generators of kG, as we have done above, does not
preserve the Hopf algebra structure. However, as noted in [11, Remark 7.5], the
structure of the idempotent modules does not depend on the coalgebra structure.

Theorem 3.6. Assume the hypothesis of the previous theorem (Thm. 3.5). Suppose
that X = α(t) where α : k[t]/(tp) → kG is a π-point not corresponding to the point V .
Assume that θ : k → FV is a homomorphism with the property that θ(1) ∈ Xp−1FV .

Then, the image of θ̂ : FV → FV is contained in Xp−1FV .

Proof. In the statement of Theorem 3.5, the generators Yi = α(ti) of kH can be
chosen so that Y1 = X and Y2, . . . , Yr−1 are any elements so that the classes modulo
Rad2(kG) of Z,X, Y2, . . . , Yr−1 form a basis for Rad(kG)/Rad2(kG). Thus, kH ∼=
kC⊗kJ where kC ∼= k[X ]/(Xp) is the flat subalgebra of kG generated by X and kJ
is the flat subalgebra generated by Y2, . . . , Yr−1. Let (R∗, ε1) be a minimal projective
kC-resolution of kC and (Q∗, ε2), minimal projective kJ-resolution of kJ . Then
Ri

∼= kC for all i ≥ 0. The minimal kH-resolution of k can be taken to be the
tensor product of these two, so that

Pn =

n∑

i=0

Ri ⊗Qn−i

In the decomposition of FV given in Theorem 3.5, the element θ(1) ∈ Xp−1FV ⊆∑
n≥0 Pn. Because an assignment of chain maps to elements of HomkG(k,FV ) is

additive, it is sufficient to prove the theorem assuming that θ(1) ∈ Xp−1Pn for some
n. Indeed, we may assume that θ(1) ∈ Xp−1(Rm ⊗ Qn−m) = (Xp−1Rm) ⊗ Qn−m)
for some m and n. Because Rm

∼= kC, we have that θ(1) = Xp−1 ⊗ u for some
u ∈ Qn−m.

Let ϕ : k → Qn−m be given by ϕ(1) = u. Then ϕ lifts to a chain map

. . . // Q1
//

ϕ1

��

Q0
//

ϕ0

��

k

ϕ

��

// 0

. . . // Qn−m+2
// Qn−m+1

// Qn−m
// . . .
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Let µ : R0 → Xp−1Rm be given by µ(1) = Xp−1. Now define θi : Pi → Pn+i+1 as
the composition

Pi // R0 ⊗Qi
// R0/(X

p−1R0)⊗Qi
µ⊗ϕi

// Xp−1Rm ⊗Qn−m+i+1
// Pn+i+1

The first map is projection onto the direct summand R0 ⊗ Qi. The second is the
natural quotient. Then comes the chain map, and the fourth is the inclusion.

The task to finish the proof amounts to two straightforward exercises which we
leave to the reader. The first is to show that {θi} is a chain map, and the second is
to show that it lifts the map θ. �

Corollary 3.7. Assume the hypotheses and notation of Theorems 3.5 and 3.6. Let
I be the collection of all θ : k → FV such that θ(1) ∈ Xp−1FV . Then under the
correspondence HomkG(k,FV ) ∼= HomkG(FV ,FV ), I is the kernel of the restriction
map HomkG(FV ,FV ) → HomkH(FV ,FV ). In particular, I is an ideal.

Proof. The point is, in the notation of the last proof, that Xp−1FV ⊂ P∗. Thus,
θ(1) and θ̂(FV ) are in P∗ which is free as a kH-module. Hence, the map θ factors
through a kH-projective object and is zero on restriction to kH . �

Remark 3.8. We emphasize that in Theorem 3.5, the choices of the flat map γ and
also of the generators for kH are arbitrary except that kH should have rank r − 1
and the condition on the varieties must be satisfied. Similarly, in Theorem 3.6, any
π-point α satisfying the desired conditions can be chosen.

4. Endomorphisms of FV

Throughout this section, assume that G = 〈g1, . . . , gr〉 is an elementary abelian
group of order pr for r ≥ 3. We show that if V ⊂ VG(k) is a closed subvariety
of dimension 0, then the endomorphism ring of the idempotent module FV in the
stable category has a unique maximal ideal that is nilpotent and has codimension
one. We assume the notation of the previous section.

We prove the following result in more generality than is actually needed in the
later development.

Proposition 4.1. Suppose that V1 and V2 are disjoint subvarieties of VG(k). Let
kH be the image of a flat map γ : k[t1, . . . , ts]/(t

p
1, . . . , t

p
s) → kG, for s ≥ 2. Let

X = γ(t1) and let kJ be the flat subalgebra of kG generated by γ(t2), . . . , γ(ts).
Assume that we have the following two conditions.

(1) V1 ⊆ res∗G,J(VJ(k)).
(2) V2 ∩ res∗G,H(VH(k)) = ∅.
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Suppose that ϕ : k → F2 = FV2 is a homomorphism such that ϕ(1) ∈ Xp−1F2.
Then ϕ extends to a homomorphism ψ : F1 = FV1 → Xp−1F2. That is, we have a
commutative diagram

k
τ1

//

ϕ
��

F1

ψ

{{✈✈
✈✈
✈✈
✈✈
✈

��

Xp−1F2
ι

// F2

where ι is the inclusion.

Proof. By Condition (2), (E2)↓H is free as a kH-module. This implies that (F2)↓H ∼=
k ⊕ P , where P is a free kH-module. Thus, HomkH(k, (F2)↓H) has dimension one,
and the fact that ϕ(1) ∈ Xp−1F2 means that ϕ factors through a projective kH-
module, namely P . This follows because ϕ(1) ∈ Rad(kH)F2 ∩ Soc(F2) ⊂ P .

Note that X 6∈ kJ , and hence the restriction of E1 to the subalgebra generated
by X is a free module. Moreover, (Xp−1F2)↓H = Xp−1P is free as a kJ-module.
Consequently, VG(E1) ∩ VG(X

p−1F2) = ∅, and the composition

E1
σ1

// k
ϕ

// Xp−1F2

is the zero map in the stable category by Lemma 3.2. The existence of the map ψ
is implied from the distinguished triangle. �

Corollary 4.2. Suppose that G is an elementary abelian p-group having rank at
least 3. Suppose that V1, V2 ⊂ VG(k) are closed subvarieties each consisting of a
single point. Let β : k[t1, t2]/(t

p
1, t

p
2) → kG be flat map such that the following hold.

For notation, let kH be the image of β.

(1) The class of the π-point α : k[t]/(tp) → kG with α(t) = β(t1) is in V1.
(2) V2 6⊂ res∗G,H(VH(k)).

Let X = β(t2). Suppose that ϕ : k → F2 = FV2 is a map such that ϕ(1) ∈ Xp−1F2.
Then ϕ extends to a map θ : F1 → F2 such that θ(F1) ⊆ Xp−1F2.

Proof. Let kJ be the image of α. Then the conditions of Proposition 4.1 are satisfied
and the corollary follows. �

We can now prove the main theorem of the section.

Theorem 4.3. Suppose that G is an elementary abelian p-group having rank r ≥ 3.
Let V ⊂ VG(k) be a closed subset consisting of a finite number of closed points. Let
kH be the image of a flat map γ : k[t1, . . . , ts]/(t

p
1, . . . , t

p
s) → kG such that s ≥ 2

and res∗G,H(VH(k)) ∩ V = ∅. Let I be the kernel of the restriction EndkG(FV ) →
EndkH(FV ). Then I is an ideal of codimension one in EndkG(FV ), and I2 = {0}.
Thus I is the unique maximal ideal in EndkG(FV ).
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Proof. We write V = ∪ni=1Vi where each Vi is a closed point in VG(k). For each i, let
αi : k[t]/(t

p) → kG be a π-point corresponding to the closed point in Vi. For i 6= j let
kHi,j be the image of the flat map βi,j : k[t1, t2]/(t

p
1, t

p
2) → kG with βi,j(t1) = αi(t)

and βi,j(t2) = αj(t). We note that for all i, j, the intersection

res∗G,Hi,j
(VHi,j

(k)) ∩ res∗G,H(VH(k))

either contains only one point or is empty. Let α : k[t]/(tp) → kG be a π-point that
factors through γ, but is not in res∗G,Hi,j

(VHi,j
(k)) for any pair i, j with 1 ≤ i < j ≤ n.

By Proposition 3.3, the idempotent module FV is the pushout of the system
{τi : k → Fi}, where Fi = FVi . For each i, there is a homomorphism νi : Fi → F ,
such that the compositions νiµi coincide. From the conditions on the choice of kH ,
we see that for each i, the restriction of Fi to kH has the form k⊕ Pi where Pi is a
projective kH-module. In addition, the component isomorphic to k is generated by
τi(1). Thus, the restriction (FV )↓H ∼= k ⊕

∑
Pi. We see that I is the subspace of

HomkG(k,FV ) spanned by all ϕ : k → FV with ϕ(1) ∈ Xp−1FV .
For any j = 1, . . . , t, let Ij be the set of all ϕ ∈ I such that ϕ(1) ∈ Xp−1Pj . Thus

I is the direct sum of the subspaces Ij.
Throughout the proof, we make the identification HomkG(k,FV ) ∼= HomkG(FV ,FV ).

If we are given two elements ϕ1 and ϕ2 in HomkG(k,FV ), their product is obtained
by first finding lifts ϕ̂i : FV → FV , for i = 1, 2, taking the composition and compos-
ing with the map τ : k → FV . Note that any lift will serve the purpose. Our aim is
to show that if ϕ1, ϕ2 ∈ I, then the product is zero. Without loss of generality we
may assume that ϕi ∈ Iji for some 1 ≤ ji ≤ t.

Letting j = j1, there is a φ1 : k → Xp−1Pj ⊂ Pj such that νjφ1 = ϕ1 : k → FV .
By Corollary 4.2, for any i 6= j there is an extension θi : Fi → νj(X

p−1Fj) extending
φ1. Likewise, by Theorem 3.6, there is such an extension also in the case that i = j.
Thus, for every i = 1, . . . , t, there is an extension θ̂i : Fi → FV of ϕ1 with the
property that θ̂i(Fi) ⊆ Xp−1FV .

The universal property of pushouts, now guarantees that there is a map ϕ̂1 :
FV → FV such that, for every i, the diagram

k
φ1

//

τ

��

ϕ1

!!❈
❈❈

❈❈
❈❈

❈❈
Fj

νj

��

FV
ϕ̂1

// FV

commutes and ϕ̂1(FV ) ⊆ Xp−1FV . There is a similar extension ϕ̂2 : FV → FV with
the same property.

Now, we see that ϕ̂2(ϕ̂1(FV ) ⊆ ϕ̂2(X
p−1FV ) ⊆ X2(p−1)FV = {0}. Hence, the

product of any two elements in I is zero. We notice that EndkH(FV ) ∼= k, implying
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that I is a maximal ideal. Because I2 = {0}, any element of EndkG(FV ) that is not
in I is invertible. �

5. The general case

The aim of this section is to extend the conclusion of Theorem 4.3 to a more
general finite group G. The arguments in the proofs depend on the fact (see Remark
2.5) that any prime ideal in H∗(G, k) contains the kernel of a restriction to an
elementary abelian p-subgroup of G. For this reason, the main results of the section
do not extend to general finite group schemes. Throughout the section we assume
the following.

Hypothesis 5.1. suppose that G is a finite group whose maximal elementary abelian
p-subgroups all have p-rank at least three. Let V be a closed subvariety of VG(k),
that is a union of a finite collection of closed points.

We make the identification HomkG(k,FV ) ∼= HomkG(FV ,FV ) = EndkG(FV ), as
before. The ideal, that we are interested in, is the following.

Definition 5.2. Assume that 5.1 holds. Suppose that E is an elementary abelian
p-subgroup of G with order pr for r ≥ 3. Let kH be the image of a flat map
γ : k[t1, . . . , ts]/(t

p
1, . . . , t

p
s) → kE, such that 1 ≤ s < r and

res∗G,H(VH(k)) ∩ V = ∅.

Let I ⊂ EndkG(FV ) be the kernel of the restriction map EndkG(FV ) → EndkH(FV ).

Given E, the existence of H follows easily from the geometry. Note that I is an
ideal, because if a kG-homomorphism factors through a kH-projective module, then
so does its composition with any other homomorphism.

Proposition 5.3. Assume that 5.1 holds. The ideal I does not depend on the choice
of E or H, as long as the above conditions are satisfied.

Proof. The first thing to notice is that the restriction of the module EV to kH is
projective, and hence, (FV )↓H ∼= k ⊕ P where P is a projective module by Lemma
3.4. Then, the independence of the choice of kH in kE follows from Theorem 4.3.

Now suppose that E1 and E2 are elementary abelian p-subgroups of G such that
F = E1 ∩ E2 has p-rank at least 2. Let Ij be the ideal defined by Ej as above
for j = 1, 2. We claim that I1 = I2. The reason is that there must be a π-point
α : k[t]/(tp) → kF ⊂ kG with the property that the equivalence class of α does not
correspond to any point of (res∗G,F )

−1(V ), the inverse image V under the restriction
map res∗G,F : VF (k) → VG(k). Let H be the image of α. Then kH is a flat subalgebra
of both kE1 and kE2, which satisfies the condition of Definition 5.2. So both I1 and
I2 are the kernel of the restriction to kH .
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Now suppose G is a p-group and that E, E ′ are any two elementary abelian p-
subgroups having p-rank at least 3. By the argument of Alperin (see the bottom
of page 8 to top of page 9 of [1]), there is a chain E = F1, F2, . . . , Fm = E ′ of
elementary abelian p-subgroups of G such that Fi∩Fi+1 has p-rank at least 2. Thus
by an easy induction and the previous paragraph, the ideal I is independent of the
choice of E.

If G is not a p-group we need only notice that if E1 and E2 are conjugate ele-
mentary abelian p-subgroups, then the ideals I1 and I2 must be the same. Thus,
we may assume that any two elementary abelian p-subgroup are in the same Sylow
p-subgroup. In such a case the same proof as above works. �

Theorem 5.4. Assume that the conditions of 5.1 hold. Let FV be the idempotent
F-module corresponding to V . Then End(FV ) is a local ring whose unique maximal
ideal I is nilpotent. Moreover, there is a number B depending only on G and p such
that the nilpotence degree of I is at most B.

Proof. The proof is an easy consequence of the above Proposition, Theorem 4.3
and Theorem 2.5 of [9]. The last mentioned theorem can be interpreted as saying
that there is number N , depending only on G and p, such that for any sequence
M0, . . . ,Mn of kG-modules and maps θi ∈ HomkG(Mi−1,Mi), 1 ≤ i ≤ n, such
that n ≥ N and resG,E(θi) = 0 for every elementary abelian subgroup E of G,
the composition θn · · · θ1 = 0. In the case that Mi = FV for all i and B = 2N ,
choose elements θi ∈ I. Then, for every i, the restriction of the product θ2iθ2i−1 to
every elementary abelian p-subgroup of G vanishes, by Theorem 4.3. It follows that
θn · · · θ1 = 0 if n ≥ B. �

6. Restrctions

The aim of the section is prove a few facts about the restrictions of the endomor-
phism rings. The first result is known, but perhaps has not been written down.

Lemma 6.1. Suppose that G is an elementary abelian p-group of order pr > 1. Let
kH 6= kG be a flat subalgbra of kG. Then for all n < 0, we have that

resG,H : Ĥ
n
(G, k) → Ĥ

n
(H, k)

is the zero map.

Proof. Let γ : k[t1, . . . , ts]/(t
p
1, . . . , t

p
s) → kG be a flat map whose image is kH .

Then the classes modulo Rad2(kG) of γ(t1), . . . , γ(ts) are k-linearly independent in
Rad(kG)/Rad2(kG). Let bs+1, . . . , br be elements that are chosen so that the classes
of γ(t1), . . . , γ(ts), bs+1, . . . , br form a basis for Rad(kG)/Rad2(kG). Let kJ be the
flat subalgebra generated by bs+1, . . . , br so that kG ∼= kH ⊗ kJ (see Lemma 2.2).
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The Tate cohomology group Ĥ
n
(G, k) is isomorphic to HomkG(k, Pn+1), where

P∗ is a minimal projective kG-resolution of k. The restriction is the map ψ∗ :
HomkG(k, Pn−1) → HomkG(k,Qn−1), where Q∗ is a minimal kH-projective resolution
of k, and ψ : P∗ → Q∗ is a kH-chain map. Because of the decomposition kG ∼=
kH ⊗ kJ , we may assume that Q∗ is a complex of kG-modules on which kJ acts
trivially and that ψ is a kG-chain map. However, Pn−1 is a free kG-module, implying
that any map ζ : k → Pn−1 has its image in Rad(kJ)Pn−1. Because kJ acts trivially
on Qn−1, the image of ζ is in the kernel of ψ. �

Theorem 6.2. Suppose that G is an elementary abelian p-group of p-rank r ≥
3. Let V be a subvariety of VG(k) that is a union of a finite collection of closed
points. Suppose that kH 6= kG is a flat subalgebra of kG. Then the maximal
ideal I ⊆ EndkG(FV ) is the kernel of the restriction map resG,H : EndkG(FV ) →
EndkH((FV )↓H).

Proof. We write V = ∪ni=1Vi where each Vi is a closed point in VG(k). Recall
that by Proposition 3.3, the idempotent module FV is the pushout of the system
{τi : k → Fi}. Here, Fi = FVi and for each i, there is a homomorphism νi : Fi → F ,
such that the compositions νiτi coincide.

Let γi : k[t1, . . . , tr−1]/(t
p
1, . . . , t

p
r−1) → kG with image kJ such that

res∗G,J(VJ(k)) ∩ V = ∅

For each i, we have that the restriction of Fi = FVi to kJ has the form Fi
∼= k⊕Qi

where Qi is a projective kJ-module. It follows that

F↓J
∼= k ⊕ ν1(Q1)⊕ · · · ⊕ νn(Qn).

If ζ : k → FV is in I, then ζ(1) ∈
∑
νi(Qi) by Theorem 4.3 and Corollary 3.7 (see

also Remark 3.8).
Hence, for the remainder of the proof we fix an element ζ ∈ I, and without loss of

generality, we may assume that ζ(1) ∈ νi(Qi) for some fixed i. Our object is to show
that ζ factors through a kH-projective module. Notice that ζ must factor through
νi : Fi → FV . Consequently, it is sufficient to prove the theorem in the case that
FV = Fi. That is, we may assume that n = 1, V = Vi.

There are two cases to consider. First assume that res∗G,H(VH(k)) does not contain
the point V . In this case (EV )↓H is projective, and hence (FV )↓H ∼= k in the stable
category. In this case, the restriction of I to kH is zero and we are done.

Next, we assume that V ⊂ res∗G,H(VH(k)). There is a π-point α : k[t]/(tp) →
kH ⊂ kG whose equivalence class is the one closed point in V . Let kC be the
image of α. The flat subalgebra kH has a maximal flat subalgebra kL such that
kH ∼= kC ⊗ kL. There is a flat subalgebra kD such that kG ∼= kH ⊗ kD (see
Lemma 2.2). We may assume that the subalgebra kJ has the form kJ = kL · kD ∼=
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kL⊗ kD, because V is not contained in res∗G,J(VJ(k)). Therefore, by Theorem 4.3,
(FV )↓J ∼= k⊕P , where P is the sum of the terms (with multiplicities) of a minimal
augmented kJ-projective resolution of k such that element α(1) acts as the boundary
homomorphism on the augmented complex. Likewise, the restriction of FV to kL
has the form (FV )↓L ∼= k ⊕ Q is the sum of the terms (with multiplicities) of an
augmented minimal kL-projective resolution of k. As in the proof of Lemma 6.1,
the restriction map in the stable category is given by a chain map of augmented
complexes which can be shown to be a kG-homomorphism. Because ζ ∈ I, we have
that ζ(1) ∈ P , and as in the proof of Lemma 6.1, the chain map takes ζ(1) to zero.

This proves that I is in the kernel of the restriction to EndkH(FV ). The fact that
it is the kernel is a consequence of its maximality. �

7. Finite generation

In this final section we address the issue of the finite generation of the endo-
morphism rings. Suppose that V is a closed subvariety of VG(k). Let MV be the
subcategory of all kG-modules whose support variety is contained in V , and let CV
be the localization of StMod(kG) at MV . Tensoring with FV is the localization
functor, and for kG-modules M and N , we have that

HomCV (M,N) ∼= HomkG(M ⊗FV , N ⊗ FV )

is a module over EndCV (k)
∼= EndkG(FV ). The question is whether it is a finitely

generated module?
The question is most relevant in the case that M and N are finitely generated

modules (compact objects in StMod(kG)). Of course, if the support varieties of
the finitely generated objects M and N are both disjoint from V then the finite
generation is obvious. This is because, in such a case, EV ⊗ M and EV ⊗ N are
projective modules, and hence FV ⊗ M ∼= M and FV ⊗ N ∼= N in the stable
category. Also, if the support variety of either M or N is contained in V , then the
finite generation is also clear. In other situations some proof is required. We show
that the answer is not unlike the answer to the question of the finite generation of
EndCV (k).

The proof of the following is straightforward generalization of a well used argu-
ment.

Theorem 7.1. Suppose that ζ ∈ Hd(G, k) is a non-nilpotent element. Let V =
VG(ζ), the collection of all homogeneous prime ideals that contain ζ. If M and
N are finitely generated kG-modules, then HomCV (M,N) is finitely generated as a
module over EndCV (k).

In fact, what we want to show is the following.
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Lemma 7.2. Assume the hypothesis of Theorem 7.1. Then

HomCV (M,N) ∼= (Ext∗kG(M,N)[ζ−1])0.

That is, viewing Ext∗kG(M,N) as a module over H∗(G, k), we invert the action of ζ
and take the zero grading.

Proof. Suppose that in CV , we have a morphism

φ = νµ−1 : M L
µ

oo
ν

// N

for some kG-module L such that the third object X in the triangle of µ is in MV .
This implies that for n sufficiently large, the element ζn annihilates the cohomology
of X . Consequently, we have as in the diagram

Ωdn(M)

ζn

��

θ

{{✇
✇
✇
✇
✇

L
µ

// M
γ

// X

that the composition γζn = 0. This implies the existence of the map θ, and we have
that φ = νµ−1 = (νθ)ζ−n, where νθ represents an element in ExtndkG(M,N) and any
other representative defines the same element of HomCV (M,N). Likewise, the class
of θ in ExtndkG(M,M) is the class of the cocycle θ ⊗ 1 : Ωnd(k)⊗M → k ⊗M , and
all representatives of this class define the same element of ExtndkG(M,M). �

Proof of Theorem 7.1. We now use the fact that Ext∗kG(M,N) is finitely generated
as a module over H∗(G, k) ∼= Ext∗kG(k, k). Let γ1, . . . , γs be a set of homogeneous
generators. If A =

∑
n≥0 Ext

nd
kG(k, k), then by elementary commutative algebra

H∗(G, k) is finitely generated over A. Suppose that β1, . . . , βr is a set of homogeneous
generators. Let B =

∑
n≥0 Ext

nd
kG(M,N). If θ ∈ B is a homogeneous element then

θ =
∑s

i=1 γiµi for µi ∈ H∗(G, k). But then, for each i, µi =
∑r

j=1 βjαij , for αij ∈ A.
Hence,

θ =

s,r∑

i,j=1,1

γiβjαij.

That is, we see that the products γiβj generate B as a module over A. Note that we
need really only consider those whose degree is a multiple of d = Degree(ζ). Now we
have that HomCV (M,N) is generated by elements having the form γiβjζ

−r, where
rd = Degree(γiβj). �

In the other direction we have the following. The example is far from general, but
perhaps the reader can see how other examples can be constructed.
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Theorem 7.3. Suppose that V ⊂ VG(k) is a closed subvariety such that there is an
elementary abelian p-subgroup E with

res∗G,E(VE(k)) ∩ V

a nonempty finite set of closed points. Assume that |E| ≥ p3 and that E has a

subgroup F with |F | = p2 and res∗G,F (VF (k)) ∩ V 6= ∅. Let M = k↑GF = kG ⊗kF kF
be the induced module. Then EndCV (M) is not finitely generated as a module over
EndCV (k).

Proof. First we note that, in the category CV , M ∼= FV ⊗M . By Frobenius Reci-
procity,

FV ⊗M ∼= FV ⊗ k↑GF
∼= (FV )↓F )

↑G

By Lemma 3.4, (FV )↓F ∼= FV ′ in the stable category where V ′ = (res∗G,F )
−1(V ).

From the hypothesis, we know that V ′ consists of a finite set of closed points and is
not equal to VF (k).

By the Eckmann-Shapiro Lemma, we have the usual adjointness:

HomkG(FV ⊗ k↑GF ,FV ⊗ k↑GF ) ∼= HomkF ((FV )↓F , (FV ⊗ k↑GF )↓F )

∼= HomkF ((FV ′), ((FV ′)↑G)↓F )

Now notice that ((FV ′)↑G)↓F has a direct summand isomorphic to FV ′ . That is,

(FV ′)↑G ∼=
∑

g∈G/F

g ⊗ FV ′

as k-vector spaces. Here, the sum is over a complete set of left coset represen-
tatives of F in G. The subspace 1 ⊗ FV ′ is a kF -submodule and a direct sum-
mand. This also follows from the Mackey Theorem. The implication is that
HomkF ((FV ′), ((FV ′)↑G)↓F ) has a direct sumand isomorphic to EndkF (FV ′). We
have seen in earlier sections of this paper that this has infinite k-dimension.

The action of EndCV (k) on EndCV (M) is given by

HomkG(FV ,FV )⊗ HomkG(FV ⊗ k↑GF ,FV ⊗ k↑GF )

��

HomkF ((FV )↓F , (FV )↓F )⊗ HomkF ((FV )↓F , (FV ⊗ k↑GF )↓F )

��

HomkF ((FV )↓F , (FV ⊗ k↑GF )↓F )

where the first arrow is the isomorphism given by the Eckmann-Shapiro Lemma and
the second is composition. The Eckmann-Shapiro Lemma is easily seen to hold in
the stable category.
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The main point of the proof is that in applying the Lemma, the action of EndCV (k)
factors through the restriction map to kF . However, the restriction map is transitive,
and hence must factor through the restriction to kE. By Theorem 6.2, the restriction
of the maximal ideal I in EndCV (k) is zero. That is, the image of the restriction of
EndCV (k) = HomkG(FV ,FV ) to HomkF ((FV )↓F , (FV )↓F ) is the identity subring k.

It follows from the above that in order for EndCV (M) to be finitely generated over
EndCV (k), it must be finite dimensional. However, we have already noted that this
is not the case. �

8. Examples

We end the paper with a couple of examples and a theorem on the structure of
the idempotent modules. For the first example and most of the section suppose that
G = SL2(p

n) for n > 2, and let k be an algebraically closed field of characteristic p.
Let a be a generator for the multiplicative group F

×
pn. The Borel subgroup B of

G is generated by the elements

t =

[
a 0
0 a−1

]
and xi =

[
1 ai

0 1

]
for i = 0, . . . , n− 1.

Then S = 〈x1, . . . , xn〉 is a Sylow p-subgroup and B is its normalizer in G.
The variety VS(k) ∼= P

n−1, projective (n − 1)-space. The group B acts on S by
conjugation and hence also on VS(k). The action of T = 〈t〉 is given by the relation

[
b 0
0 b−1

] [
1 u
0 1

] [
b−1 0
0 b

]
=

[
1 ub2

0 1

]

for u in Fpn and b in F
×
pn. The thing to notice is that if b2 is in the prime field Fp,

then this element of T operates on S (viewed as an Fp-vector space S ∼= (Z/(p))n)
by a scalar matrix with diagonal entries equal to b2. This implies that the element
of T acts trivially on the projective space VS(k). With this in mind, let

d =

{
p− 1 if p = 2 or n is odd,

2(p− 1) otherwise.

It is easily checked that d is the order of the subgroup of T that acts trivially on
VG(S). Let m = (pn − 1)/d, and let D be the subgroup of B generated by c = tm

and S.
Choose W to be any subvariety of VS(k) = VD(k) that consists of a single point

whose stabilizer in T = 〈t〉 is generated by c. Let V = res∗B,S(W ). Then the inverse
image of V under the restriction map res∗B,S is the union of the points in the orbit
of W under the action of T . Let V = V0, . . . , Vm−1 be the images under V of this
action. Let FV be the idempotent kD-module corresponding to V .
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The induced module F↑B
V = kB ⊗kD FV has the form

∑m−1
j=0 FVj on restriction

to D. We may assume that FVj = tj ⊗ FV in this context. Thus we have maps
tj ⊗ τV : tj ⊗ k → tj ⊗ FV . That is, T acts on this system and also acts on the
pushout that is obtained by identifying the images of the maps tj ⊗ τV . Explicitly,
let N be the submodule of k↑BD

∼= kB⊗kD k generated by 1⊗1− t⊗1. This is a kB-

submodule of dimension m− 1. Let N ′ be its image in F↑B
V , that is the submodule

generated by 1⊗ τV (1)− t⊗ τV (1). Then we have a triangle

// k↑GD /N // F↑B
V /N ′ // F↑B

V /k↑GD
// //

Next, a check of the varieties can be done at the level of the Sylow p-subgroup S.
In particular, the variety of EV is {V }, while that if FV is VG(k) \ {V }. Thus, by
the tensor product theorem EV ⊗ FV is projective, and zero in the stable category.
Tensoring with the triangle, we see that both EV and FV are idempotent modules.
It can be seen that the relevant universal properties of the triangle also hold.

The endomorphism ring EndkB(FV ) is the set of all element of EndkS((FV )↓S)
that are stable under the action of T . The identity element is certainly T -stable.
Let I be the maximal ideal in EndkS((FV )↓S). Because, by Theorem 4.3, I2 = {0},
any element of I that is invariant under T is an orbit sum of the T -action. These
elements form a maximal ideal of codimension one, and the product of any two
elements in this ideal is zero.

The idempotent modules for G can be obtained by using the fact that S is TI-
subgroup (trivial intersection). That is, for any element g ∈ G we have that S ∩
gSg−1 is S if g ∈ NG(S) = B and is {1} otherwise. Then by the Mackey Theorem,
we have that

((FV )
↑G)↓B ∼= FV ⊕ P

where P is projective. Consequently, the induced module (FV )
↑G) has a single

nonprojective direct summand that is FV ′ where V ′ = res∗B,G(V ). It follows that
EndkG(FV ′) is isomorphic to EndkG(FV ).

All of this has a sweeping generalization that is reminiscent of the work in [4] and
[8].

For notation we say that if S is an elementary abelian p-subgroup of a group G, its
diagonalizer D = DG(S) is the subgroup of NG(S) consisting of all elements whose
conjugation action is by a scalar matrix on the Fp-vector space of S when written
as an additive group. As in the above example, it is the subgroup of elements of
NG(S) that acts trivially on VS(k).

Theorem 8.1. Suppose that S is a normal elementary abelian p-subgroup of G and
that D = DG(S). Let U be a subvariety of VS(k) consisting of a single point and
assume that U is not contained in res∗S,R(VR(k)) for any subgroup R of S. Let W =
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res∗D,S(U). Let V = res∗G,D(W ). Let N be the kernel of the natural homomorphism

ϕ : k↑GD → k given by g ⊗ 1 7→ 1 for any g ∈ G. Then we have a triangle

// k↑GD /N
τ
// F↑G

W /τ(N) // Ω−1(EW )↑G //

where τ is the map induced on quotients by 1 ⊗ τW : k↑GD → F↑G
W . In particular, we

have that
FV

∼= F↑G
W /τ(N) and EV ∼= E↑G

W ,

and the triangle is the triangle of idempotent modules associated to V .

Proof. This follows by a very similar argument as in the above example. Note that,
by an eigenvalue argument, D is precisely the subgroup of G that fixes the point U
in VS(k). The fact that EV is induced from a kD-module follows also from Theorem
1.5 of [4], which is proved in even greater generality. �

Remark 8.2. If the group G in the theorem satisfies the Hypothesis 5.1, then Theo-
rem 5.4 assurs us that EndkG(FV ) has a unique maximal ideal I having codimension
one and that I is nilpotent. Unlike the example we may not assume that I2 = {0}.
For an example, let p = 2, and G = H × S where H is a semidihedral group and
S has order 2. So if V = res∗G,S(VS(k)), then by Theorem 7.4 of [11], EndkG(FV )
is the nonpositive Tate cohomology ring of H which by [5] has nonzero products in
its maximal ideal. Note that in this particular case DG(S) = G, so that the above
theorem says nothing new.
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