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BOUNDEDNESS OF SOME OPERATORS ON GRAND GENERALIZED

WEIGHTED MORREY SPACES ON RD-SPACES

SUIXIN HE AND SHUANGPING TAO∗

Abstract. The aim of this paper is to obtain the boundedness of some operator on

grand generalized weighted Morrey spaces L
p),φ
ϕ (ω) over RD-spaces. Under assump-

tion that functions ϕ and φ satisfy certain conditions, the authors prove that Hardy-

Littlewood maximal operator and θ-type Calderón-Zygmund operator are bounded on

grand generalized weighted Morrey spaces L
p),φ
ϕ (ω). Moreover, the boundedness of

commutator [b, Tθ] which is generated by θ-type Calderón-Zygmund operator Tθ and

b ∈ BMO(µ) on spaces L
p),φ
ϕ (ω) is also established. The results regarding the grand

generalized weighted Morrey spaces is new even for domains of Euclidean spaces.

1. Introduction

The study of the spaces of homogeneous type, first introduced by Coifman and Weiss

[2, 3], is a general framework for studying the Calderón-Zygmund operators and functions

spaces. Around 1970s, Coifman and Weiss started to investigate the some harmonic analy-

sis problems on the metric spaces called space of homogeneous type (X, d, µ) equipped with

a metric d and a regular Borel measure µ satisfying the doubling condition, i.e., if there

exists a positive constant C0 > 1 such that, for any ball B(x, r) := {y ∈ X : d(x, y) < r}

with x ∈ X and r > 0 ,

µ(B(x, 2r)) ≤ C0µ(B(x, r))(1.1)

holds. Since then, many experts have extended some classical results to spaces of ho-

mogeneous type in the sense of Coifman and Weiss. However, some harmonic analysis

results have so far obtained only on the RD-spaces, which means that (X, d, µ) is a space

of homogeneous type if there exists positive constants a, b > 1 such that,

bµ(B(x, r)) ≤ µ(B(x, ar));(1.2)
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holds for all x ∈ X and r ∈ (0, diam(X)/a). On the development and research of the

operators over RD-spaces, we refer readers see, e.g. [23, 29, 30].

Morrey spaces were introduced in 1938 by Morrey [25] in relation to local regular-

ity problems of solutions of the second order elliptic partial differential equations. In

2009, Komori and Shirai [21] introduced the weighted Morrey spaces on the Euclidean

space. Since 2000, there are many papers focusing on Morrey spaces and weighted Morrey

spaces on different setting, see,e.g.,[1, 5, 14, 26, 27, 13]. The generalized weighted Morrey

spaces over RD-spaces were introduced in [4], where boundedness was established for the

Hardy-Littlewood maximal operator and Calderón-Zygmund operator. Very recently, the

boundedness of commutators the generalized by the θ-Calderón-Zygmund operator and

the BMO functions in generalized weighted Morrey spaces over RD-spaces was already

treated by Li et. al. [22].

Nowadays the theory of grand Lebesgue space introduced by Iwaniec and Sbordone

[15] is one of the intensively developing directions in Modern analysis. It was realized

the usefull in applications to partial differential equations, in geometric function theory,

Sobolev spaces theory, see [7, 9, 10, 11]. Since then, Some classical operator of harmonic

analysis have been intensively studied in recent years. For instance, Kokilashvili [16]

established criteria for the boundedness of several well-known operators in the generalized

weighted grand Lebesgue space. In 2019, Kokilashvili et. al established the weighted

extrapolation results in grand Morrey spaces and obtained some applications in PDE

[19]. Recently, the authors [12] have obtained the boundedness of some operator on

grand generalized Morrey space over non-homogeneous spaces. The more research on the

boundedness of operators in grand spaces, we mention e.g. [17, 18, 20, 24] and references

therein.

Inspired by the above studies, in this paper, we will establish the boundedness Hardy-

Littlewood maximal operator and θ-type Calderón-Zygmund operators on grand gener-

alized weighted Morrey space over RD-spaces. For the study of maximal operators and

θ-type Calderón-Zygmund operators in grand generalized weighted Morrey space defined

on RD-spaces, we depend on the results of references [4, 22].

Let 1 < p < ∞ and ϕ be a function on (0, p − 1] which is a positive bounded and

satisfies lim
x→0

ϕ(x) = 0. The class of such functions will be simply denoted by Φp. Then

the norm of functions f in weighted grand Lebesgue space L
p)
ϕ (ω) is defined by

‖f‖
L
p)
ϕ (ω)

= sup
0<ε<p−1

[ϕ(ε)]
1

p−ε‖f‖Lp−ε(ω),(1.3)
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where Lr(ω) is the classical Lebesgue space with respect to a measure µ, and defined by

the norm:

‖f‖Lr(ω) :=

(∫

X

|f(x)|rω(x)dµ(x)

) 1
r

, 1 ≤ r < ∞.

On the base of weighted grand Lebesgue space L
p)
ϕ (ω) , we give the definition of grand

generalized weighted Morrey spaces as follows.

Definition 1.1. (Grand generalized weighted Morrey spaces) Let 1 < p < ∞, let ω be

a weight and ϕ ∈ Φp. Suppose that φ : (0,∞) → (0,∞) is an increasing function. Then

grand generalized weighted Morrey space L
p),φ
ϕ (ω) is defined by

‖f‖
L
p),φ
ϕ (ω)

:=

{
f ∈ L1

loc(ω) : ‖f‖Lp),φ
ϕ (ω)

< ∞

}
,

where

‖f‖
L
p),φ
ϕ (ω)

(1.4)

:= sup
0<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

(∫

B

|f(x)|p−εω(x)dµ(x)

) 1
p−ε

= sup
0<ε<p−1

ϕ(ε)‖f‖Lp−ε,φ(ω).

Especially, if we take ϕ(ε) = εθ with θ > 0 in (1.4), then we can denote

‖f‖
L
p),φ
ϕ (ω)

:= ‖f‖
L
p),φ
θ

(ω)
.

Remark 1.1. (1) When φ(x) = 1, L
p),φ
ϕ (ω) = L

p)
ϕ (ω). Therefore, the grand generalized

weighted Morrey space L
p),φ
ϕ (ω) is an extension of the grand weighted Lebesgue space.

(2) If ω ∈ Ap(µ), the generalized weighted Morrey space Lp,φ(ω) (see [4]), which is

defined with respect to the norm:

‖f‖Lp,φ(ω) := sup
B⊂X

(
1

φ(ω(B))

∫

B

|f(x)|pω(x)dµ(x)

) 1
p

, 1 ≤ p < ∞.(1.5)

(3) If we take function φ(t) = t
p
q
−1 for t > 0 and 1 < p ≤ q < ∞, then grand generalized

weighted Morrey space L
p),φ
ϕ (ω) defined as in (1.4) is just the grand weighted Morrey space

L
p),q
ϕ (ω) which is sightly modified in [19], that is,

‖f‖
L
p),q
ϕ (ω)

= sup
0<ε<p−1

ϕ(ε) sup
B

[ω(B)]
1
q
− 1

p−ε‖f‖Lp−ε(ω).(1.6)
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Definition 1.2. We say that a weight function ω belongs to the Muckenhoupt class Ap(µ),

1 < p < ∞, if

‖ω‖Ap := sup
B

(
1

µ(B)

∫

B

ω(x)dµ(x)

)(
1

µ(B)

∫

B

[ω(x)]1−p′dµ(x)

)p−1

< ∞,

where the supremum is taken over all balls B ⊂ X .

Further, ω ∈ A1(µ) if there is a positive constant C such that, for any ball B ⊂ X ,

1

µ(B)

∫

B

ω(x)dµ(x) ≤ C ess inf
y∈B

ω(y),

as in the classical setting, let A∞(µ) =
⋃∞

p=1Ap(µ).

Notation

• C represents a positive constant which is independent of the main parameters;

• p′ stands for the conjugate exponent 1
p
+ 1

p′
= 1;

• B(x, r) = {y ∈ X : d(x, y) < r};

• For any x, y ∈ X and δ ∈ (0,∞), Let V (x, y) := µ(B(x, d(x, y))) and Vδ := µ(B(x, δ)),

it follows from doubling condition that V (x, y) = V (y, x).

Throughout the paper we assume that µ(X) < ∞,

2. Hardy-Littlewood maximal operator on L
p),φ
ϕ (ω)

2.1. Weighted boundedness of the maximal operator. In this subsection we

study the one-weighted problem for the Hardy-Littlewood maximal function M defined

by setting

Mf(x) := sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|f(y)|dµ(y), for all x ∈ X(2.1)

Lemma 2.1. [28] Let p ∈ (1,∞) and ω ∈ Ap(µ). There exist positive constants C1 and

C2 such that for any ball B ⊂ X and each measurable set E ⊆ B,

ω(E)

ω(B)
≤ C1

[
µ(E)

µ(B)

] 1
p

and
ω(E)

ω(B)
≥ C2

[
µ(E)

µ(B)

]p
.

Lemma 2.2. [4] Let (X, d, µ) be an RD-space, if ω ∈ Ap(µ), p ∈ (1,∞), then there exist

positive constants C3, C4 > 1 such that for any ball B ⊂ X ,

ω(2B) ≥ C3ω(B),(2.2)

ω(2B) ≤ C4ω(B).(2.3)
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Lemma 2.3. [4] Let 1 < p < ∞, ω ∈ Ap(µ), ϕ ∈ Φp and φ : (0,∞) → (0,∞) be an

increasing function. Assume that the mapping t 7→ φ(t)
t

is almost decreasing. Then M be

as in (2.1) is bounded on Lp,φ(ω).

Theorem 2.1. Let 1 < p < ∞, ω ∈ Ap(µ), ϕ ∈ Φp and φ : (0,∞) → (0,∞) be an

increasing function. Let M be as in (2.1). Assume that the mapping t 7→ φ(t)
t

is almost

decreasing, namely, there exists a positive constant C such that

φ(t)

t
≤ C

φ(s)

s
,(2.4)

for s ≥ t. Then there exists a positive constant C such that for any f ∈ L
p),φ
ϕ (ω),

‖M(f)‖
L
p),φ
ϕ (ω)

≤ C‖f‖
L
p),φ
ϕ (ω)

Proof. Choosing a number δ such that 0 < ε ≤ δ < p− 1, observe that

‖M(f)‖
L
p),φ
ϕ (ω)

= sup
0<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε‖M(f)‖Lp−ε(ω)

≤ sup
0<ε≤δ

ϕ(ε) sup
B

[φ(ω(B))]−
1

p−ε‖M(f)‖Lp−ε(ω)

+ sup
δ<ε<p−1

ϕ(ε) sup
B

[φ(ω(B))]−
1

p−ε‖M(f)‖Lp−ε(ω)

=: E1 + E2.

The estimates for E1 goes as follows. By applying the Lp,φ(ω)-boundedness of M (see[4])

and (1.4), we can deduce that

sup
0<ε≤δ

ϕ(ε) sup
B

[φ(ω(B))]−
1

p−ε‖M(f)‖Lp−ε(ω)

= sup
0<ε≤δ

ϕ(ε)‖M(f)‖Lp,φ(ω)

≤ C‖f‖
L
p),φ
ϕ (ω)

.

Now let us estimate E2. Since δ < ε < p− 1, then we have p−δ

p−ε
> 1. Further, by virtue

of Hölder’s inequality and Lp,φ(ω)-boundedness of M , we get

E2 = sup
δ<ε<p−1

ϕ(ε) sup
B

[φ(ω(B))]−
1

p−ε‖M(f)‖Lp−ε(ω)

≤ sup
δ<ε<p−1

ϕ(ε) sup
B

[φ(ω(B))]−
1

p−ε‖M(f)‖Lp−δ(ω)(ω(B))
ε−δ

(p−ε)(p−δ)

= sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ) sup
B

[φ(ω(B))]−
1

p−ε [φ(ω(B))]
1

p−δ
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×[φ(ω(B))]−
1

p−δ ‖M(f)‖Lp−δ(ω)(ω(B))
ε−δ

(p−ε)(p−δ)

= sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ) sup
B

[φ(ω(B))]
1

p−δ
− 1

p−ε [ω(B)]
ε−δ

(p−ε)(p−δ)

×[φ(ω(B))]−
1

p−δ ‖M(f)‖Lp−δ(ω)

≤ C‖f‖
L
p),φ
ϕ (ω)

.

Which, together with the estimate for E1, the Theorem 2.1 is proved. �

With an argument similar to that used in the proof of Theorem 2.1, it is easy to

obtain the following result on the maximal operator M̃r.

Corollary 2.2. Let 1 < p < ∞, ω ∈ Ap(µ), ϕ ∈ Φp and φ : (0,∞) → (0,∞) be an

increasing function. Assume that the mapping t 7→ φ(t)
t

is almost decreasing function

satisfying (2.4). Then non-centered maximal operator M̃r is bounded on L
p),φ
ϕ (ω), where

M̃r is defined by

M̃r(f)(x) := sup
x∈B

(
1

µ(B)

∫

B

|f(y)|rdµ(y)

)1
r

.

2.2. Vector-valued extension. To discuss the vector-valued extension of Theorem

2.1, we need the following assumption on φ: there exists a positive constant C such that
∫ ∞

r

φ(t)

t

dt

t
≤ C

φ(r)

r
for any r ∈ (0,∞).(2.5)

Lemma 2.4. [4] Let p ∈ (1,∞), ω ∈ Ap(µ) and φ : (0,∞) → (0,∞) be an increasing

function which satisfies (2.5), assume that the mapping t 7→ φ(t)
t

satisfies (2.4). Then there

exists a positive constant C such that for any ball B ⊂ X ,

∞∑

k=1

[
φ(ω(2kB))

ω(2kB)

] 1
p

≤ C

[
φ(ω(B))

ω(B)

] 1
p

.

Lemma 2.5. [8] Let r ∈ (1,∞), p ∈ (1,∞) and ω ∈ Ap(µ). Then there exists a positive

constant C, depending on p and r, such that, for any {fi}
∞
i=1 ⊂ Lp(ω),

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp(ω)

≤ C

∥∥∥∥
{∑

j∈N

|fj |
r

} 1
r
∥∥∥∥
Lp(ω)

.

Theorem 2.2. Let 1 < p, r < ∞, ω ∈ Ap(µ), ϕ ∈ Φp and φ : (0,∞) → (0,∞) be an

increasing function that satisfies (2.5). Let M be as in (2.1). Assume that the mapping

t 7→ φ(t)
t

satisfies (2.4). Then there exists a positive constant C, depending on p and r,
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such that for any {fj}
∞
j=1 ⊂ L

p),φ
ϕ (ω),

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
L
p),φ
ϕ (ω)

≤ C

∥∥∥∥
{∑

j∈N

|fj |
r

} 1
r
∥∥∥∥
L
p),φ
ϕ (ω)

.

Proof. Choosing a small δ such that 0 < ε ≤ δ < p − 1, then, by applying Definition

1.1, observe that
∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
L
p),φ
ϕ (ω)

= sup
0<ε<p−1

ϕ(ε)

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp−ε,φ(ω)

≤ sup
0<ε<δ

ϕ(ε)

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp−ε,φ(ω)

+ sup
δ<ε<p−1

ϕ(ε)

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp−ε,φ(ω)

=: F1 + F2.

The estimates for F1 is given as follows. FromDefinition 1.1 and the Lp,φ(ω)−boundedness

of M (see[4]), it follows that

sup
0<ε<δ

ϕ(ε)

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp−ε,φ(ω)

≤ C sup
0<ε<δ

ϕ(ε)

∥∥∥∥
{∑

j∈N

|fj|
r

} 1
r
∥∥∥∥
Lp−ε,φ(ω)

≤ C

∥∥∥∥
{∑

j∈N

|fj|
r

} 1
r
∥∥∥∥
L
p),φ
ϕ (ω)

.

Similar to the estimate of E2 in the proof of Theorem 2.1, By virtue of Hölder’s

inequality and Lemma 2.5, we have

sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp−ε(ω)

≤ sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

∥∥∥∥
{∑

j∈N

[
M(fj)

]r
} 1

r
∥∥∥∥
Lp−δ(ω)

(ω(B))
ε−δ

(p−ε)(p−δ)

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

∥∥∥∥
{∑

j∈N

|fj |
r

} 1
r
∥∥∥∥
Lp−δ(ω)

(ω(B))
ε−δ

(p−ε)(p−δ)
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≤ C sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ) sup
B⊂X

[φ(ω(B))]−
1

p−ε [φ(ω(B))]
1

p−δ

×[φ(ω(B))]−
1

p−δ

∥∥∥∥
{∑

j∈N

|fj |
r

} 1
r
∥∥∥∥
Lp−δ(ω)

(ω(B))
ε−δ

(p−ε)(p−δ)

≤ Cφ(p− 1)[φ(δ)]−1

∥∥∥∥
{∑

j∈N

|fj|
r

} 1
r
∥∥∥∥
L
p),φ
ϕ (ω)

≤ C

∥∥∥∥
{∑

j∈N

|fj |
r

} 1
r
∥∥∥∥
L
p),φ
ϕ (ω)

.

Which, together with the estimate for F1, is our desired result. �

3. θ-Type Calderón-Zygmund operators on L
p),φ
ϕ (ω)

In this section deal with the boundedness of the θ-type Calderón-Zygmund operators

and its commutator on grand generalized weighted Morrey space L
p),φ
ϕ (ω) over RD-spaces.

The following definition see, Duong et. al. [6].

Definition 3.1. Let θ be a non-negative and non-decreasing function on [0,∞) with

satisfying
∫ 1

0

θ(t)

t
dt < ∞.(3.1)

And the measurable function K(·, ·) on X ×X\{(x, y) : x ∈ X} is called θ-type kernel,

if for any x 6= y,

|K(x, y)| ≤
C

V (x, y)
,(3.2)

and for d(x, z) < d(x,y)
2

,

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤
C

V (x, y)
θ

(
d(x, z)

d(x, y)

)
.(3.3)

Remark 3.1. If we take the function θ(t) = tδ with t > 0 and δ ∈ (0, 1]. Then K(x, y)

defined as in Definition 3.1 is just the standard kernel.

Definition 3.2. Let b a real valued µ−measurable function on X , if b ∈ L1
loc(µ) and its

norm is

‖b‖∗ := sup
B

1

µ(B)

∫

B

|b(x)− bB |dµ(x) < ∞,
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then b is called a BMO(µ) function, where the supremum is taken over all B ⊂ X and

bB :=
1

µ(B)

∫

B

b(y)dµ(y).

Let L∞
b (µ) be the space of all L∞(µ) functions with bounded support. A linear operator

Tθ is called a θ-type Calderón-Zygmund operator with kernel K(x, y) satisfying (3.2) and

(3.3). Moreover, Tθ can be extended to a bounded linear operator on L2(X),

Tθf(x) :=

∫

X

K(x, y)f(y)dµ(y)(3.4)

for all f ∈ L∞
b (µ) and x /∈ supp(f).

Given a locally integrable function b and θ-type Calderón-Zygmund operator Tθ on X ,

the linear commutator [b, Tθ] is defined as

[b, Tθ]f(x) := b(x)Tθf(x)− Tθ(bf)(x) =

∫

X

[b(x)− b(y)]K(x, y)f(y)dµ(y).(3.5)

The main theorems of this section is stated as follows.

Theorem 3.1. Let p ∈ (1,∞), ω ∈ Ap(µ), ϕ ∈ Φp. Let φ : (0,∞) → (0,∞) be an

increasing function, continuous function satisfying conditions (2.4) and (2.5). Then Tθ

defined as in (3.4) is bounded on L
p),φ
ϕ (ω), that is, there exists a constant C > 0 such that,

for all f ∈ L
p),φ
ϕ (ω),

‖Tθ(f)‖Lp),φ
ϕ (ω)

≤ C‖f‖
L
p),φ
ϕ (ω)

.

Theorem 3.2. Let p ∈ (1,∞), ω ∈ Ap(µ), b ∈ BMO(µ), ϕ ∈ Φp. Let φ : (0,∞) →

(0,∞) be an increasing function, continuous function satisfying conditions (2.4) and (2.5).

Then [b, Tθ] defined as in (3.5) is bounded on L
p),φ
ϕ (ω), that is, there exists a constant C > 0

such that, for all f ∈ L
p),φ
ϕ (ω),

‖[b, Tθ]f‖Lp),φ
ϕ (ω)

≤ C‖b‖BMO(µ)‖f‖Lp),φ
ϕ (ω)

.

To formulate the above theorems we also need the following lemma.

Lemma 3.1. Let p ∈ (1,∞), ω ∈ Ap(µ). Let φ : (0,∞) → (0,∞) be an increasing

function, continuous function satisfying conditions (2.4) and (2.5) and θ be a non-negative,

non-decreasing function on (0,∞) with satisfying (3.1). Then Tθ defined as in (3.4) is

bounded on Lp,φ(ω), that is, there exists a constant C > 0 such that, for all f ∈ Lp,φ(ω),

‖Tθ(f)‖Lp,φ(ω) ≤ C‖f‖Lp,φ(ω).
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Proof. Let p ∈ (1,∞), we only need to consider that for any fixed ball B = B(x0, r) ⊂ X ,
{

1

φ(ω(B))

∫

B

[Tθf(x)]
pω(x)dµ(x)

} 1
p

≤ C‖f‖Lp,φ(ω).(3.6)

To estimate (3.6), we decompose f as f := f1+f2, where f1 := fχ2B and 2B = B(x0, 2r),

write
{

1

φ(ω(B))

∫

B

[Tθ(f)(x)]
pω(x)dµ(x)

} 1
p

≤

{
1

φ(ω(B))

∫

B

[Tθ(f1)(x)]
pω(x)dµ(x)

} 1
p

+

{
1

φ(ω(B))

∫

B

[Tθ(f2)(x)]
pω(x)dµ(x)

} 1
p

= G1 +G2.

The estimate for G1 goes as follows. From [[6], Theorem 1.3] slightly modified, we know

that the Tθ is bounded on Lp(ω) for p ∈ (1,∞). By applying (2.3) and (2.4), implies that

G1 ≤
1

[φ(ω(B))]
1
p

[ ∫

X

|f1(x)|
pω(x)dµ(x)

] 1
p

≤ C

[
1

φ(ω(2B))

∫

2B

|f(x)|pω(x)dµ(x)

] 1
p
[
φ(ω(2B))

φ(ω(B))

] 1
p

≤ C‖f‖Lp,φ(ω)

[
ω(2B)

ω(B)

] 1
p

≤ C‖f‖Lp,φ(ω).

For term G2, notice that, for any x ∈ B and y ∈ (2B)c, we obtain d(x, y) ∼ d(x0, y) and

V (x, y) ∼ V (x0, y), by virtue of Hölder inequality and Definition 1.1 and Lemma 2.4 ,

|Tθ(f2)(x)| ≤

∫

d(y,x0)≥2r

|K(x, y)f(y)|dµ(y)

≤ C

∫

d(y,x0)≥2r

|f(y)|

V (x, y)
dµ(y)

∼ C

∫

d(y,x0)≥2r

|f(y)|

V (x0, y)
dµ(y)

≤ C

∞∑

k=1

∫

2kr≤d(y,x0)≤2k+1r

|f(y)|

V (x0, y)
dµ(y)

≤ C

∞∑

k=1

1

V2kr(x0)

[ ∫

B(x0,2k+1r)

|f(y)|pω(y)dµ(y)

]1
p
[ ∫

B(x0,2k+1r)

ω(y)1−p′dµ(y)

] 1
p′



11

≤ C

∞∑

k=1

[φ(ω(B(x0, 2
k+1r)))]

1
p

V2kr(x0)
·

V2k+1r(x0)

[ω(B(x0, 2k+1r))]
1
p

‖f‖Lp,φ(ω)

≤ C

[
φ(ω(B))

ω(B)

] 1
p

‖f‖Lp,φ(ω).

Thus
{

1

φ(ω(B))

∫

B

[Tθ(f2)(x)]
pω(x)dµ(x)

} 1
p

≤ C

[
φ(ω(B))

ω(B)

] 1
p
[

ω(B)

φ(ω(B))

] 1
p

‖f‖Lp,φ(ω)

≤ C‖f‖Lp,φ(ω).

Which, together with estimate of G1, we obtain the desired result. �

Lemma 3.2. [22] Let p ∈ (1,∞), ω ∈ Ap(µ) and b ∈ BMO(µ). Let φ : (0,∞) → (0,∞)

be an increasing function, continuous function satisfying conditions (2.4) and (2.5) and

θ be a non-negative, non-decreasing function on (0,∞) with satisfying (3.1). Then the

commutator [b, Tθ] defined as in (3.5) is bounded on Lp,φ(ω).

Proof of Theorem 3.1. Let δ be a fixed constant satisfying 0 < ε < δ < p − 1. By

applying Definition 1.1, observe that

‖Tθ(f)‖Lp),φ
ϕ (ω)

= sup
0<ε<p−1

ϕ(ε)‖Tθ(f)‖Lp−ε,φ(ω)

≤ sup
0<ε<δ

ϕ(ε)‖Tθ(f)‖Lp−ε,φ(ω) + sup
δ<ε<p−1

ϕ(ε)‖Tθ(f)‖Lp−ε,φ(ω)

= H1 +H2.

The estimates for H1 goes as follows. From Definition 1.1 and Lemma 3.1, it follows

that

H1 = sup
0<ε<δ

ϕ(ε)‖Tθ(f)‖Lp−ε,φ(ω)

≤ C sup
0<ε<δ

ϕ(ε)‖f‖Lp−ε,φ(ω)

≤ C‖f‖
L
p),φ
ϕ (ω)

.

Fix ε ∈ (δ, p−1) so that p−δ

p−ε
> 1. Using Hölder inequality with respect to the

(
p−δ

p−ε

)′
= p−δ

ε−δ

and the boundedness of Tθ in Lp(ω) for p ∈ (1,∞), we can deduce that

sup
δ<ε<p−1

ϕ(ε)‖Tθ(f)‖Lp−ε,φ(ω)

= sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

(∫

B

|Tθ(f)(x)|
p−εω(x)dµ(x)

) 1
p−ε
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≤ sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

(∫

B

|Tθ(f)(x)|
p−δω(x)dµ(x)

) 1
p−δ

ω(B)
ε−δ

(p−δ)(p−ε)

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε

(∫

B

|f(x)|p−δω(x)dµ(x)

) 1
p−δ

ω(B)
ε−δ

(p−δ)(p−ε)

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε [φ(ω(B))]
1

p−δω(B)
ε−δ

(p−δ)(p−ε)

×[φ(ω(B))]−
1

p−δ

(∫

B

|f(x)|p−δω(x)dµ(x)

) 1
p−δ

.

Let

S = [φ(ω(B))]−
1

p−ε [φ(ω(B))]
1

p−δω(B)
ε−δ

(p−δ)(p−ε) .

Since δ < p− 1 and ε ∈ (δ, p− 1), imply that

0 <
ε− δ

(p− δ)(p− ε)
<

p− 1− δ

p− δ
.

By applying the monotonicity of φ, we can deduce that

S ≤ [φ(ω(B))]−
1

p−δ [φ(ω(B))]
1

p−δω(B)
ε−δ

(p−δ)(p−ε)

≤ ω(B)
p−1−δ

(p−δ)(p−δ) ≤ C.

Combing above the estimate, we further obtain that

sup
δ<ε<p−1

ϕ(ε)‖Tθ(f)‖Lp−ε,φ(ω)

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−δ

(∫

B

|f(x)|p−δω(x)dµ(x)

) 1
p−δ

≤ C sup
δ<ε<p−1

ϕ(ε)[φ(δ)]−1φ(δ) sup
B⊂X

[φ(ω(B))]−
1

p−δ

(∫

B

|f(x)|p−δω(x)dµ(x)

) 1
p−δ

≤ Cϕ(p− 1)[φ(δ)]−1‖f‖
L
p),φ
ϕ (ω)

≤ C‖f‖
L
p),φ
ϕ (ω)

.

Which, together with estimate of H1, we obtain the desired result. �

Proof of Theorem 3.2. First observe that the boundedness of [b, Tθ] on Lp(ω) for ω ∈

Ap(µ) (see [6]), and the Calderón-Zygmund interpolation theorem imply that there is a
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number δ, δ ∈ (0, p− 1), such that

‖[b, Tθ](f)‖Lp−ε,φ(ω) ≤ C‖b‖BMO(µ)‖f‖Lp−ε,φ(ω), ε ∈ (0, δ].

Fix ε ∈ (δ, p − 1) so that p−δ

p−ε
> 1, by virtue of Hölder’s inequality and Lemma 3.2,

observe that

‖[b, Tθ](f)‖Lp),φ
ϕ (ω)

= max

{
sup
0<ε<δ

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω), sup
δ<ε<p−1

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω)

}

≤ max

{
sup
0<ε<δ

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω),

sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−ε‖[b, Tθ](f)‖Lp−δ(ω)ω(B)
ε−δ

(p−δ)(p−ε)

}

≤ max

{
sup
0<ε<δ

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω),

sup
δ<ε<p−1

ϕ(ε) sup
B⊂X

[φ(ω(B))]−
1

p−δ ‖[b, Tθ](f)‖Lp−δ(ω)

[
ω(B)

φ(ω(B))

] ε−δ
(p−δ)(p−ε)

}

≤ max

{
sup
0<ε<δ

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω),

sup
δ<ε<p−1

[
ω(B)

φ(ω(B))

] ε−δ
(p−δ)(p−ε)

sup
0<ε<δ

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω)

}
.

Let S := sup
0<ε<δ

ϕ(ε)‖[b, Tθ](f)‖Lp−ε,φ(ω) and T := sup
δ<ε<p−1

[
ω(B)

φ(ω(B))

] ε−δ
(p−δ)(p−ε)

.

Then

‖[b, Tθ](f)‖Lp),φ
ϕ (ω)

≤ max{1, T} · S ≤ C‖b‖BMO(µ)‖f‖Lp−ε,φ
ϕ (ω).

Thus, we obtain the desired result. �
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