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Abstract. In route selection problems, the driver’s personal preferences will determine

whether she prefers a route with a travel time that has a relatively low mean and high

variance over one that has relatively high mean and low variance. In practice, however,

such risk aversion issues are often ignored, in that a route is selected based on a single-

criterion Dijkstra-type algorithm. In addition, the routing decision typically does not take

into account the uncertainty in the estimates of the travel time’s mean and variance. This

paper aims at resolving both issues by setting up a framework for travel time estimation.

In our framework, the underlying road network is represented as a graph. Each edge is

subdivided into multiple smaller pieces, so as to naturally model the statistical similarity

between road pieces that are spatially nearby. Relying on a Bayesian approach, we construct

an estimator for the joint per-edge travel time distribution, thus also providing us with

an uncertainty quantification of our estimates. Our machinery relies on establishing limit

theorems, making the resulting estimation procedure robust in the sense that it effectively

does not assume any distributional properties. We present an extensive set of numerical

experiments that demonstrate the validity of the estimation procedure and the use of the

distributional estimates in the context of data-driven route selection.
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1. Introduction

A central problem drivers in a road network are faced with concerns the choice between mul-

tiple possible routes in order to travel from their current location to some desired destination.

The analysis of such shortest-path problems on a network has a long tradition in operations

research. A typical procedure is to consider the per-edge mean travel times, and to apply a

Dijkstra-type [8] algorithm to find the fastest route from origin to destination, i.e., the route

that minimizes the expected travel time. A conceptual drawback of this approach, however,

is that travel times are inherently stochastic. This means that the route that has the shortest

expected travel time could also have a substantial standard deviation – in fact, there may be

a route with a higher expected travel time with virtually no variability. In such a situation

it is up to the driver to make a choice: depending on her personal preferences (in terms of

risk aversion) and the importance of the planned trip, she will choose the best alternative. A

convenient framework facilitating making such decision uses the concept of utility functions

[32]; see also e.g., [25, 33]. Such a utility function could encompass both mean and standard

deviation of the travel time, but in principle any distribution-based quantity. A risk averse

driver could for instance pick the route that minimizes the 95%-quantile of the travel time.

A second conceptual difficulty concerns the way statistical uncertainty is dealt with. If one

would aim at identifying the route that optimizes the utility, expressed in terms of a given

distribution-based feature of the travel time, it is implicitly assumed that one knows the

underlying distribution with certainty. In reality, however, the travel times pertaining to

the various routes have to be estimated from historic data, necessarily leaving us with some

amount of uncertainty. Ignoring this uncertainty, the objective would be to find the route the

optimizes the chosen utility function. In a framework accounting for parameter uncertainty,

however, the ambition would be to add an uncertainty quantification to this claim. In this

context a meaningful statement could be of the type ‘The probability is x% that the travel

time distribution of route A corresponds to a higher utility than the one of route B.’

The main contribution of this paper lies in the development of a broadly applicable framework

for travel time estimation in any road traffic network, which is rich enough to also assess the

inherent estimation uncertainty. In addition, the performance of our estimation procedure is

quantified through a series of numerical experiments, some of them featuring (data-driven)

route selection. Evidently, to determine the optimal route, one has to have a good description

of the current state of the road network in terms of the congestion level. As is commonly done,

we will treat the network as an undirected graph, where the vertices denote intersections

and where the edges connecting these vertices imply the existence of a road between these

intersections. In this case, describing the state of the network amounts to estimating the

joint per-edge travel time distribution. It is clear that one should not assume that on an edge

the level of congestion is evenly spread. Instead, within edges one expects a strong similarity

between the congestion levels of spatially nearby road pieces. Moreover, as drivers typically

slow down when approaching an intersection, it is to be expected that the velocities near

an intersection will be similar for all roads that cross at this intersection but may otherwise

vary along the roads represented by those edges. It is part of our approach to incorporate

these basic features into our estimation procedure, so as to obtain more accurate estimates

of the travel time distribution.
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There is a vast body of literature on estimation techniques for the travel time distribution.

Clearly, mean travel times (of a path in the graph, that is) can be derived directly from the

mean travel times of the constituent edges, but a major complication is that this property

does not carry over to the full travel time distribution or to higher moments. As a con-

sequence, one cannot straightforwardly use techniques for per-edge travel time distribution

estimation, such as those discussed in e.g. [19, 20, 38], to develop an estimation procedure for

the path-level travel time distribution. This issue has been resolved in e.g. [22, 30, 36], but

typically at the expense of imposing relatively firm assumptions on the functional form of

the per-edge travel time distributions as well as the underlying correlation structure. In [26]

a generalized Markov chain approach has been proposed that estimates the path-level travel

time distribution incorporating correlations in time and space. In [29] a non-parametric

method is developed that is particularly suited to scenarios in which the travel time dis-

tributions vary over time. Ideally, one would like to have a method of (i) relatively low

computational complexity, that is (ii) robust in the sense that it does not rely on heavy

distributional assumptions, that is (iii) applicable to graphs of any form, also exploiting ev-

ident intrinsic properties (such as the ones discussed in the preceding paragraph), and that

(iv) provides us with an uncertainty quantification of the resulting estimates.

Shortest-path problems have a long history in the operations research and combinatorics

literature, with Dijkstra’s seminal contribution [8] as an important landmark. Various ex-

tensions followed. Without aiming at providing an exhaustive overview, we mention a few

important contributions; for an in-depth account see e.g. [1]. A notable generalization, due

to Bellman and Ford [4, 10], concerns graphs with negative edge weights (assuming, for

obvious reasons, no negative cycle can be reached from the source vertex). The so-called

A? algorithm aims at reducing the subgraph that must be explored [17]. In e.g. [16, 28] the

focus is on networks in which the edges have a time-dependent length. Variants in which

the edge lengths attain random values can be found in for instance [5, 18]. In [3] the focus

is on adapting Dijkstra’s algorithm to the setting of so-called and-or graphs.

We proceed with a more detailed account of our contributions. In our modeling framework we

represent the road network as a graph, but in our estimation approach we use a version of this

graph that is endowed with a higher resolution, i.e., a graph in which each edge is broken up

into multiple smaller pieces, each representing a segment of a road. The idea behind working

with this high-resolution graph is that it allows us to naturally model the statistical similarity

between road pieces that are spatially nearby. Following a Bayesian approach, we construct

an estimator for the joint per-edge travel time distribution, thus also providing us with

an uncertainty quantification of our estimates. The framework used relies on establishing

various limit theorems, making the estimation procedure robust (in the sense that it only

very mildly relies on distributional assumptions). The underlying numerics involve basic

computational algorithms, predominantly standard routines stemming from linear algebra.

Our proposed estimation procedure thus fulfils the desirable properties (i)–(iv). The paper

also includes an extensive set of numerical experiments by which we thoroughly validate our

approach. In addition, we demonstrate the use of the distributional estimates in the context

of data-driven route selection: in a series of examples we determine the optimal route from

a set of given potential routes, and illustrate how this route is affected by the choice of the

utility function, and hence by the driver’s preferences.
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The remainder of this paper has been organized as follows. Section 2 introduces our nota-

tion and model, and defines what our dataset is. Then, in Section 3 we detail our inference

procedure, subsequently considering the mean, covariance structure, and a smoothing pa-

rameter λ. As pointed out in Section 4 assumptions on the mean, covariance, and graph

Laplacian need to be imposed to make sure that the procedure of Section 3 is consistent.

Section 5 discusses an extensive set of numerical experiments that have been set up so as

to validate the estimation procedure. Then in Section 6 it is pointed out how our approach

can be applied in the context of route selection. Finally, Section 7 includes a discussion and

concluding remarks. Technical proofs are collected in an appendix.

2. Notation, model, observations

In this section we introduce the road traffic network considered, including the notation that

we use throughout this paper. In addition, we provide a model for the data collected from

this network.

2.1. Some notation. In this subsection we introduce the graph representation of our road

network, including its high-resolution version.

2.1.1. Notation for the traffic network. We represent the road network by an undirected

graph, consisting of vertices that are connected by edges. This graph is, as usual, denoted by

G = (V,E) with V = {v1, . . . , vp} being the set of p = |V | ∈ N vertices and E = {e1, . . . , eq}
the set of q = |E| ∈ N edges, where | · | denotes the cardinality of the underlying set. For

obvious reasons, we throughout assume that the graph G is connected. We order the vertices

and edges so that we can also identify each vertex vi and edge ej with their indices i and j,

respectively, with i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. If this is convenient we sometimes write

V = {1, . . . , p} so that E ⊆ {{i, j} ∈ V 2}, but we also use the notation E = {1, . . . , q}.
For an edge e = {i, j} ∈ E we write va(e) = min{i, j} and vo(e) = max{i, j} for the

corresponding vertices of the edge.

We denote by A ∈ {0, 1}p×p the adjacency matrix of the graph G, i.e., a p × p matrix

whose entries indicate whether the corresponding pair of vertices is adjacent or not. More

concretely, for i, j = 1, . . . , p,

Ai,j =

{
1 if {i, j} ∈ E,

0 otherwise.
(1)

We write d = {d1, . . . , dp} = {dv : v ∈ V } ∈ Np to represent the degrees of the vertices in

V , so that

di =

p∑
j=1

Ai,j, (2)

and define D = diag{d}. The Laplacian matrix of the graph G is defined by L = D−A ∈
Zp×p. The diagonal of this matrix consists of the vertices’ degrees, and the (i, j)-th non-

diagonal entry is −1 if vertices i and j are adjacent and 0 otherwise. At several occasions we

want to emphasize in the notation the dependence of certain objects on the underlying graph

in the notation. We then write V = V (G), E = E(G), A = A(G), d = d(G), D = D(G)

or D = diag{d(G)}, and L = L(G) = D(G)−A(G).
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For a graph G we define the line graph of G as another graph Ḡ = (V̄ , Ē), where each vertex

in V̄ now corresponds to an edge in G, and where two vertices in Ḡ are connected by an

edge if, and only if, the corresponding edges in G are incident. Quantities relating to the

line graph of G are denoted with a bar above the quantities; for instance, in our approach

we intensively make use of the Laplacian matrix of the line graph of G which we denote as

L̄.

The graph G represents a traffic network across which particles, to be thought of as cars,

are flowing. In this network, each particle enters the system at some vertex v ∈ V , follows

a path to some v′ ∈ V , and then leaves the system. Each particle takes a certain amount of

time to cross each edge e ∈ E on its path, reflecting the current congestion level of that edge.

As pointed out in the introduction it is our objective to infer the travel time distribution

pertaining to a given route. Importantly, we wish to do so without a priori assuming that

all edges have the same level of congestion and that particles traverse edges at a constant

velocity. In addition we wish to work in a framework by which we can naturally model

the statistical similarity between road pieces that are spatially nearby. To facilitate these

requirements it is convenient to subdivide the edges in the traffic network into smaller pieces.

For this we consider a higher resolution version of the traffic network.

2.1.2. The traffic network in higher resolution. We proceed by pointing out how we increase

the resolution of the edges. To this end, for the graph G = (V,E) we consider a collection

r = {re : e ∈ E} = {r1, . . . , rq} ∈ Nq
0 of user specified resolution parameters. For each such

collection r, consider the graph Gr = (Vr, Er) where

Vr := V ∪
⋃

i:ei∈E

{
vi,1, . . . , vi,ri

}
and Er :=

⋃
i:ei∈E

{
ei,1, . . . , ei,ri+1

}
, (3)

where the edges ei,j in Er are given by, for j = 2, . . . , ri and i = 1, . . . , q,

ei,1 =
{
va(ei), vi,1

}
, ei,j =

{
vi,j−1, vi,j

}
, ei,ri+1 =

{
vi,ri , vo(ei)

}
. (4)

We also denote the vertices of Gr by Vr = {v1, . . . , vp} ∪ {vi,j : j = 1, . . . , ri, i = 1, . . . , p}
and its edges by Er = {ei,j : j = 1, . . . , ri + 1, i = 1, . . . q}. In the graph Gr we define the

cardinalities

pr := |Vr| = |V |+
∑
e∈E

re = p+

q∑
i=1

ri,

qr := |Er| =
∑
e∈E

(re + 1) = |E|+
∑
e∈E

re = q +

q∑
i=1

ri.

(5)

We think of the graph Gr as a higher resolution version of G: Gr is constructed from G by

replacing each edge e ∈ E from G by a path graph with re + 1 new edges connecting the

original vertices va(e) and vo(e) from G. We also assume that r is such that the lengths

of the road segments corresponding to any edge in Gr is (approximately) the same; it will

become clear in Section 4.1 why we impose this requirement. Figure 1 provides a conceptual

illustration of the graph G and its high-resolution version Gr. The higher resolution traffic

network Gr thus allows us to model the time that a particle takes to traverse each edge e in

G in more detail by breaking it down into re + 1 smaller travel times. The number re + 1

encodes the number of measurements we can collect while the particle moves along e, and

so we can think of it as a resolution parameter.
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Figure 1. Graph G (left) and a higher resolution version Gr of G (right). In this example

re = 2, for all e ∈ E.

Finally, in order to translate results for the higher resolution graph into results for the

original graph, define a matrix Sr ∈ {0, 1}q×qr where, for i = 1, . . . , q and j = 1, . . . , ri+1,

Sr,i,j :=

{
1 if vi,j ∈ Er,
0 otherwise.

(6)

2.2. The data format. Consider, for some resolution instance r ∈ Nq, the corresponding

graph Gr. We assume to have access to the average time to traverse each edge in Gr. More

explicitly, we assume that we know

X(ne)
e =

1

ne

ne∑
i=1

Xe,i, ne ∈ N, e ∈ Er, (7)

where, for each e ∈ Er, Xe,i represents the amount of time it took some arbitrary particle

to traverse edge e, and ne is the total number of measurements collected at edge e ∈ Er.

Thus, each X
(ne)
e represents the average time it takes particles to cross the edge e ∈ Er. In

the sequel we abbreviate

n = {ne : e ∈ Er} and X(n) = {X(ne)
e : e ∈ Er}. (8)

For each r and n, our modeling assumption on the corresponding data vector X(n) is that,

with N (a, b) denoting a normally distributed random variable with mean vector a and

variance-covariance matrix b,

X(n) ∼ N
(
µr, Σ(n)

r

)
. (9)

Thus, the unknown model parameters are the non-negative vector µr and the positive-

definite matrix Σ(n)
r ,

µr = {µr,e : e ∈ Er} ∈ Rqr , Σ(n)
r ∈ Rqr×qr . (10)

We are in the setting that we have ample observations, in that the entries of n are fairly

large. In case the dependence between the observations is not excessively strong, the use

of the proposed Gaussian model is justified due to a central-limit type argumentation; we

provide more discussion on this issue in Section 7. Each entry µr,e of µr represents the

expected time for an arbitrary particle to traverse a small segment in the traffic network,

corresponding to the edge e ∈ Er. These µr,e constitute our main objects of interest, in that



ROAD TRAFFIC ESTIMATION AND DISTRIBUTION-BASED ROUTE SELECTION 7

we develop a technique to estimate them. In our setup, the variance-covariance matrix Σ(n)
r

plays an important role as well, and is also estimated from the data.

Note that what we would like to infer is actually the travel times in the original graph

G (rather than those in the high-resolution graph Gr). This means that we want to find

µ = Sr µr = {µe : e ∈ E}, where µe is the expected time for an arbitrary particle to traverse

edge e ∈ E. In the next sections we explain in great detail why it is convenient to collect data

at a higher resolution. We also outline a procedure to infer the model parameters in (10)

using a Bayesian approach.

3. Inference on the model parameters

In this section we develop a method to infer the model parameters in (10) from the ob-

servations in (7) using a Bayesian approach. We do so by putting an appropriate prior on

µr conditional on Σ(n)
r , and then estimate Σ(n)

r from the corresponding marginal likelihood

for Σ(n)
r using the empirical Bayes approach. In Sections 3.1–3.3 we give a detailed, step-

by-step outline of the estimation procedure, which is then summarized in Section 3.4. The

assessment of the performance of this estimation procedure requires some delicate analysis;

this is done in Theorem 1. Numerical illustrations of features of the estimation procedure

can be found in Section 5.

3.1. Estimation of the expected travel times. The objective of this subsection is to

propose an estimator for the mean travel times (the vector µr, that is), and provide an

appealing interpretation of it.

3.1.1. A Bayesian estimator. To estimate µr we follow a so-called frequentist Bayes ap-

proach, in that we assume that the data X(n) | (µr,Σ(n)
r ) comes from a Bayesian model.

This means that we endow µr with a prior distribution, and we use the respective posterior

(which is the conditional distribution of µr, given the data) to produce estimates for µr.

However, we still see (9) as the actual data generating mechanism for fixed µr and Σ(n)
r

when we study the behavior of the resulting estimates. Concretely, we endow µr |
(
λ,Σ(n)

r

)
with the following improper1 prior:

µr |
(
λ,Σ(n)

r

)
∼ N

(
0,

1

λ
L̄
−
r

)
, λ > 0, (11)

where L̄r = L(Ḡr) is the Laplacian matrix of the line graph of Gr, and where M− denotes

a pseudo-inverse of a matrix M . As for the prior parameter λ > 0, for now it suffices to

mention that it can be considered as a quantity that controls the concentration of the prior,

but in the following section we make the role that it plays in the inference procedure more

explicit.

In Proposition 1 (see Appendix A) we show that the posterior distribution for µr |
(
λ,Σ(n)

r

)
corresponding to the prior in (11) is normal:

µr |
(
λ,Σ(n)

r ,X(n)
)
∼ N

(
µ̂r,

(
{Σ(n)

r }−1 + λL̄r
)−1
)
, λ > 0, (12)

1An improper prior is one whose density integrates to infinity. The corresponding posterior is, however,

a proper distribution. See [34] for more details on such priors.
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where the posterior mean of µr |
(
λ,Σ(n)

r ,X(n)
)

is

µ̂r(λ,Σ
(n)
r ) := H(λ,Σ(n)

r )X(n), (13)

for a so-called smoother matrix H(λ,Σ(n)
r ) defined by

H(λ,Σ(n)
r ) =

(
{Σ(n)

r }−1 + λL̄r

)−1

{Σ(n)
r }−1 =

(
Iqr + λΣ(n)

r L̄r

)−1

. (14)

For the moment, λ can be thought of as being fixed, and later we estimate it via generalized

cross-validation, as will be pointed out in Section 3.3.

Since the distribution of the prior and the distribution of the posterior belong to the same

family of distributions (namely multivariate normal distributions), we say that the prior and

the posterior are conjugate. It is also common to phrase this as saying that the prior is

conjugate for the likelihood of X(n) | (µr,Σ(n)
r ). Conjugacy is a desirable property, since it

leads to closed-form expressions for the estimator of µr.

3.1.2. Interpretation of the estimator. The estimator µ̂r(λ,Σ
(n)
r ), being the expectation of a

Gaussian distribution, maximizes the posterior density corresponding to (12). This posterior

distribution, which is the product of the likelihood and the prior, is proportional (as a

function of µr) to

exp

{
−1

2

(
X(n) − µr

)>{
Σ(n)
r

}−1(
X(n) − µr

)
− λ

2
µ>r L̄rµr

}
. (15)

As such, we conclude that the µr that maximizes (15) solves

min
µr∈Rqr

(
X(n) − µr

)>{
Σ(n)
r

}−1(
X(n) − µr

)
+ λµ>r L̄rµr.

The estimator µ̂r(λ,Σ
(n)
r ) thus solves a so-called penalized weighted least squares criterion.

The criterion above, being quadratic in µr, can be easily solved to yield the estimator

µ̂r(λ,Σ
(n)
r ) that is defined in (13). The so-called penalty term, which we call P (µr) from

now on, can be rewritten as

P (µr) = µ>r L̄rµr =
∑
i!j

(
µr,i − µr,j

)2
, µr ∈ Rqr ,

where i! j denotes that vertices i and j in the line graph Ḡ are neighbors, which is equiv-

alent to saying that the corresponding edges in the high-resolution graph Gr are incident.

Informally, a vector µr for which P (µr) is small is a vector that is smooth in the sense

that entries of µr corresponding to incident edges in the network graph Gr are of a similar

magnitude. In Section 4.1 we explicitly define the class of signals µr that we consider.

For a fixed value of λ > 0, it is clear that among two solutions that fit the data equally

well, we always prefer the smoothest solution and, reciprocally, for the solutions that are

equally smooth, we always prefer the solution that fits the data best. The parameter λ of

the estimator is therefore meant to control the tradeoff between fitting the data well and

producing a solution that is smooth in the sense specified above.

The penalized optimization above can be seen as the dual to the (primal) constrained mini-

mization problem

min
µr∈Rqr :P (µr)6`

(
X(n) − µr

)>{
Σ(n)
r

}−1(
X(n) − µr

)
.
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It is known that the two problems are equivalent for an appropriate correspondence between

λ and `. This formulation gives another interpretation for µ̂r(λ,Σ
(n)
r ): it is an estimate that

optimally fits the data subject to a maximal ‘smoothness budget’ ` > 0 (depending on λ.)

The prior distribution in (11) can be interpreted in light of the above discussion. The prior

density, being proportional to

exp

{
−λ

2

∑
i!j

(
µr,i − µr,j

)2

}
, µr ∈ Rqr ,

assigns more mass to vectors µr that are smooth in terms of the topology of the network.

The larger the smoothing parameter λ is, the stronger this effect is: as λ grows, the prior

density becomes more tightly concentrated around vectors µr in Rqr that are smooth.

Note that the posterior in (12) provides us with more information than just the estimate µ̂r,

as it can also be used to quantify the uncertainty in the produced estimate. More concretely,

the extent up to which the posterior measure is concentrated around µ̂r reflects lack of

statistical uncertainty. This useful information is further exploited in Section 6, where we

consider path selection problems relying on the information contained in the posterior (12).

3.2. Inferring the covariance structure. We proceed by specifying how the variance-

covariance matrix Σ(n)
r can be estimated from the data in a convenient way.

3.2.1. The empirical Bayes approach for the covariance structure. It turns out to be conve-

nient to parametrize the variance-covariance matrix Σ(n)
r in terms of its eigenvalues. The

matrix Σ(n)
r , which is real and symmetric, is rewritten as

Σ(n)
r = Σ(n)

r (θ) =

qr∑
i=1

θi eie
>
i =

qr∑
i=1

θiEi, (16)

where ei is the i-th (column) eigenvector of Σ(n)
r , and θ = (θ1, . . . , θqr) are the eigenvalues of

Σ(n)
r . This entails that we can (trivially) re-parametrize the prior in terms of the eigenvalues

θ as

µr |
(
λ,θ

)
∼ N

(
0,

1

λ
L̄
−
r

)
, λ > 0, θ ∈ Rqr . (17)

Combined with the model in (9), this leads to the posterior

µr |
(
λ,θ,X(n)

)
∼ N

(
µ̂r(λ,θ),

(
Σ(n)
r (θ)−1 + λL̄r

)−1
)
, λ > 0, θ ∈ Rqr . (18)

In the full Bayes approach we endow θ |λ with a prior, which together with the (conditional)

prior µr |
(
λ,θ

)
results in a joint prior (µr,θ) |λ. Unfortunately, no conjugate priors are

known for this parametrization of the model. In this case, one can still make inference from

the respective posterior on (µr,θ) |λ via sampling methods such as Markov Chain Monte

Carlo (MCMC); see e.g. [11]. However, this might not be computationally attractive since

it may require that we have to perform this MCMC procedure for a substantial number of

values of λ. We therefore opt for an alternative approach.

The empirical Bayes method works in the following way. Suppose that one has an estimator

of the eigenvalues, say θ̂(λ), that depends on X(n) and (eventually) on λ. We can obtain a
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so-called empirical marginal posterior distribution by plugging the estimator θ̂(λ) into θ in

the posterior distribution for µr |
(
λ,θ

)
, so as to obtain

µr |
(
λ,X(n)

)
∼ N

(
µ̂r(λ, θ̂(λ)),

(
Σ(n)
r (θ̂(λ))−1 + λL̄r

)−1
)
, λ > 0; (19)

cf. the posterior (18). Note that (19) is not the marginal posterior distribution for µr |λ,

but rather a proxy for it.

From this empirical marginal posterior distribution, which is based on θ̂(λ), we can obtain

the estimators

Σ̂
(n)

r (λ) = Σ(n)
r (θ̂(λ)),

for Σ(n)
r and

µ̂r(λ) = µ̂r(λ, θ̂(λ)),

for µr; one could think of µ̂r(λ) as an empirical marginal posterior mean. For an appropri-

ate choice of the estimator θ̂(λ), one should still expect the empirical posterior in (19) to

provide good uncertainty quantification for µr; we refer to e.g. [31] for a general account of

uncertainty quantification for Bayesian estimators based on empirical posteriors.

In the empirical Bayes approach we work with a particular estimator of the eigenvalues

θ. We estimate θ as the maximizer of the marginal likelihood for θ. With p
(
X(n) |µr,θ

)
representing the likelihood of the data and p

(
µr |λ,θ

)
being the density of the prior on

µr |
(
λ,θ

)
, the marginal likelihood for θ is

p
(
X(n) |λ,θ

)
= Eµr | (λ,θ) p

(
X(n) |µr,θ

)
=

∫
· · ·
∫
p
(
X(n) |µr,θ

)
p
(
µr |λ,θ

)
dµr. (20)

(Note that (20) is simply the normalizing constant for the marginal posterior for µr.) It is

straightforward to check that in our case the marginal likelihood p
(
X(n) |λ,θ

)
for θ can be

written as

(2π)−qr/2
∣∣∣Σ(n)

r (θ) +
1

λ
L̄
−
r

∣∣∣−1/2

exp

{
−1

2

{
X(n)

}>(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n)

}
, (21)

so that the empirical Bayes estimate of θ minimizes −2 ln p
(
X(n) |λ,θ

)
. As a consequence,

it satisfies

θ̂(λ) = arg min
θ

{
X(n)

}>(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n) + ln
∣∣∣Σ(n)

r (θ) +
1

λ
L̄
−
r

∣∣∣. (22)

The empirical marginal posterior distribution corresponding to plugging in this particular

estimator of θ is called the empirical Bayes marginal posterior distribution for µr; likewise,

all of the resulting empirical quantities that we mentioned before just take on the extra

qualifier ‘empirical Bayes’ instead of ‘empirical’.

3.2.2. Computing the empirical Bayes estimate. In Proposition 2 (see Appendix A) we show

that the solution θ̂(λ) in (22) satisfies a certain identity. Note that the proof of that propo-

sition relies only on the fact that Σ(n)
r is linear in θ, and not on the fact that the entries of θ

are the eigenvalues of Σ(n)
r . It means that we can as well conclude that the empirical Bayes



ROAD TRAFFIC ESTIMATION AND DISTRIBUTION-BASED ROUTE SELECTION 11

estimate Σ̂
(n)

r of Σ(n)
r satisfies the fixed point equation

Σ̂
(n)

r =

(
X(n) −H(λ, Σ̂

(n)

r )X(n)
)(
X(n) −H(λ, Σ̂

(n)

r )X(n)
)>

tr
(
Iqr −H(λ, Σ̂

(n)

r )>
) . (23)

As a pragmatic way to solve this matrix-valued equation, we approximate the solution to (23)

by starting with an arbitrary guess Σ̂
(n)

r,0 (for instance Σ̂
(n)

r,0 = Iqr), and then iterating

Σ̂
(n)

r,i =

(
X(n) −H(λ, Σ̂

(n)

r,i−1)X(n)
)(
X(n) −H(λ, Σ̂

(n)

r,i−1)X(n)
)>

tr
(
Iqr −H(λ, Σ̂

(n)

r,i−1)>
) , i ∈ N.

We continue until a given stopping criterium is met. If we stop at iteration N , then we

approximate the solution to (23) by Σ̂
(n)

r,N .

The above (approximate) solution to (23) is typically problematic: a completely unspecified

variance-covariance matrix is simply a positive-semi-definite matrix and, as such, it requires a

substantial dataset to reliably estimate Σ(n)
r ’s many entries simultaneously. To deal with this

complication, a natural remedy is to impose some structure on Σ(n)
r . A convenient way to do

this is by using a (relatively) low-dimensional parametric model for the variance-covariance

matrix. We thus assume that Σ(n)
r belongs to a low-dimensional family of matrices, say

{Σ(n)
r (θ) : θ ∈ Rτ , τ ∈ N}. We can then solve (23) subject to Σ(n)

r belonging to this family;

see Section 4.2 for a discussion of this approach for our model on Σ(n)
r .

Once a particular parametric form Σ(n)
r (θ) and some initial guess θ̂0 has been picked, we

can evaluate the following iteration scheme until a given stopping criterium is met:

Σ(n)
r (θ̂i) =

(
X(n) −H(λ, θ̂i−1)X(n)

)(
X(n) −H(λ, θ̂i−1)X(n)

)>
tr
(
Iqr −H(λ, θ̂i−1)>

) , i ∈ N,

where

H(λ,θ) :=
(
Σ(n)
r (θ)−1 + λL̄r

)−1

Σ(n)
r (θ)−1.

Importantly, for a specific relevant choice of Σr(θ), the underlying fixed point can be solved

explicitly, as pointed out in Corollary 1 (see Appendix A).

3.3. Estimation of the parameter λ. Now that we have specified how the parameters µr
and Σ(n)

r can be estimated, it remains to estimate the smoothing parameter λ > 0; observe

that µr and Σ(n)
r were estimated for a given value of λ.

The procedure from the previous section provides us with estimates θ̂(λ) for each choice of

λ. Since our estimator of µr is linear in the data, the generalized cross-validation criterion

[14] for λ > 0 can be written as

GCV(λ) =
qr
−1 ·

(
X(n) −H

(
λ, θ̂(λ)

)
X(n)

)>(
X(n) −H

(
λ, θ̂(λ)

)
X(n)

)(
qr−1 · tr

(
Iqr −H(λ, θ̂(λ))

))2 . (24)

This criterium is known to provide an unbiased estimator of the risks λ 7→ E‖µ̂r(λ)− µr‖2

of the estimator µ̂r(λ) = µ̂r(λ, θ̂(λ)) and is fully data-driven. As such, we can use the λ

that minimizes the criterion (24) as an estimate for the λ that minimizes the risk.
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3.4. Summary of the procedure. We conclude this section by summarizing the estimation

procedure outlined above, combining the elements from the previous three subsections.

◦ Our model is

X(n) ∼ N
(
µr, Σ(n)

r (θ)
)
, µr ∈ Rqr , θ ∈ Rτ , τ ∈ N,

where {Σ(n)
r (θ) : θ ∈ Rτ , τ ∈ N} is some user-specified model for the covariance

structure of the data.

◦ We endow µr with the prior (11) with density p(µr |λ,θ) leading to the marginal

posterior

µr |
(
λ,θ,X(n)

)
∼ N

(
µ̂r(λ,θ),

(
Σ(n)
r (θ)−1 + λL̄r

)−1
)
, λ > 0, θ ∈ Rqr .

◦ The parameter λ can be estimated using generalized cross-validation as a minimizer

of (24). For each λ, to obtain θ̂(λ) we start from some θ̂0(λ) and iterate

Σ(n)
r (θ̂i(λ)) =

(
X(n) −H(λ, θ̂i−1(λ))X(n)

)(
X(n) −H(λ, θ̂i−1(λ))X(n)

)>
tr
(
Iqr −H(λ, θ̂i−1(λ))>

) ,

until convergence, where H(λ,θ) :=
(
Σ(n)
r (θ)−1 + λL̄r

)−1

Σ(n)
r (θ)−1. For specific

choices of the model for Σ(n)
r (θ), the underlying fixed point may admit an explicit

solution (see Corollary 1).

◦ At this point the estimates λ̂, and θ̂(λ̂) can be plugged into the marginal posterior

distribution for µr, so as to obtain the empirical Bayes marginal posterior distribution

for µr:

µr |
(
λ̂, θ̂(λ̂),X(n)

)
∼ N

(
H(λ̂, θ̂(λ̂))X(n),

(
Σ(n)
r (θ̂(λ̂))−1 + λ̂L̄r

)−1
)
.

◦ Finally, we should translate results for the higher resolution graph into results for the

original graph, so as to translate the estimates for µr into estimates for µ. Trivially,

the empirical Bayes marginal posterior distribution for µ is given by

µ |
(
λ̂, θ̂(λ̂),X(n)

)
∼ N

(
SrH(λ̂, θ̂(λ̂))X(n), Sr

(
Σr(θ̂(λ̂))−1 + λ̂L̄r

)−1
S>r

)
. (25)

◦ Note that based on this posterior distribution we can compute the posterior distri-

bution of the expected travel time for any path in G.

4. Assumptions on the mean, covariance, and graph Laplacian

Since the number of parameters that we have to estimate grows with the entries of r, the

model presented in Section 2 is in a sense too general. Indeed, the procedures presented

in Section 3 can only possibly be consistent if we impose some more constraints on our

parameters µr and Σ(n)
r ; we do this in Sections 4.1–4.2. In Section 4.3 we specify the

spectrum of L̄r and its relation with that of Σ(n)
r .
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4.1. A model for µr. The vectors µ and µr represent the expected travel times for each

edge in the graphs G and Gr, respectively. Intuitively, it is clear that the expected times

necessary to traverse road segments corresponding to two incident edges in Gr are likely to

be close since we assume that the lengths of these road segments are (approximately) the

same. We model this by considering only signals µr in the family, for some C > 0,

Mr(C) =

{
µr : max

i=1,...,q
ri P (µr,i) 6 C2

}
,

where µr,i corresponds to the entries of the vector µr associated with the i-th edge of G.

The interpretation is the following. We think of splitting the edge ei into sub-edges ei,j,

j = 1, . . . , ri + 1, as corresponding to splitting the interval [0, 1] into ri + 1 sub-intervals of

equal length. Suppose that associated with each edge ei ∈ E we have a function mi : [0, 1] 7→
R+, i = 1, . . . , q. If we then see each expected travel time µi,j as being obtained from the

respective function mi, then, recognizing a Riemann sum,

ri P (µr,i) = ri

ri∑
j=1

(
µi,j+1 − µi,j

)2
= ri

ri∑
j=1

{
mi

( j
ri

)
−mi

(j − 1

ri

)}2

≈ 1

ri

ri∑
j=1

m′i

( j
ri

)2

≈
∫ 1

0

{
m′i(t)

}2
dt.

For any µr ∈Mr(C) it is then the case that

P (µr) 6 2

q∑
i=1

P (µr,i) 6
2q C2

mini=1,...,q ri
. (26)

Upon combining the above, we conclude that assuming that our signal µr ∈Mr(C) amounts

to requiring that the underlying travel times for the different edges in Gr are well represented

by a smooth function, meaning a differentiable function whose derivative is square integrable.

A similar class of functions has been relied upon in [24].

4.2. A simple model for Σ(n)
r . In the sequel we partition the variance-covariance matrix

into blocks according to the entries in r. More concretely, this means that we write

Σ(n)
r =

 Σ
(n)
r,1,1 · · · Σ

(n)
r,1,q

...
. . .

...

Σ
(n)
r,q,1 · · · Σ(n)

r,q,q

 ,

with the (k, `)-th entry of the (i, j)-th block being(
Σ

(n)
r,i,j

)
k,`

= V
(
X(ni)
ei,k

, X(nj)
ej,`

)
, k = 1, . . . , ri + 1, ` = 1, . . . , rj + 1,

where V(X, Y ) denotes the covariance between X and Y . As mentioned before, the resulting

model for Σ(n)
r is too high-dimensional (and so not amenable to inference) without further

assumptions on these covariances.

The structure of Σ(n)
r can be simplified by making more assumptions, thus reducing the

dimension of the model on the variance-covariance matrix. Such assumptions can be moti-

vated in different ways. For example: a) a priori knowledge, may allow us to make certain

(auto-)covariance assumptions for the particles traversing the network; b) practical consider-

ations, may lead us to work with a model for which the fixed point equation (23) admits an
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explicit solution; c) the observation scheme that is used to collect the data may also validate

certain independence assumptions. Below we mention a few concrete examples.

If we assume that measurements collected at (sub-edges of) edge i are uncorrelated with

measurements collected at (sub-edges of) edge j (with i 6= j), then off-diagonal blocks in

Σ(n)
r are zero. If we assume that the travel time of each particle is being measured at

every sub-edge of edge i, then we can model the situation of constant autocorrelations in

these travel times by taking each block Σ
(n)
r,i,i equal to a Toeplitz matrix. If we assume

that measurements collected at different sub-edges of edge i are uncorrelated (because, for

instance, at edge ei,k we measure ni particles at random among all those that pass that

edge), then (
Σ

(n)
r,i,i

)
k,`

=
1

n2
i

ni∑
s=1

ni∑
t=1

V
(
Xei,k,s, Xei,`,t

)
, k, ` = 1, . . . , ri + 1,

where Xei,k,s represents the s-th measurement collected at edge ei,k.

In the sequel, to derive an asymptotic result, we make a few choices ultimately leading to

the form (27) for Σ(n)
r . Asymptotic results for other choices can be worked out in a similar

manner (but at the expense of more involved computations.) Nonetheless, the form in (27)

should be appropriate in many circumstances. With δi,j := 1{i = j}, we assume

V
(
Xei,k,s, Xej,l,t

)
=
δi,jδk,lδs,t
ri + 1

σ2
i .

This means that all measurements Xe,i, for e ∈ Er and i = 1, . . . , ne, are uncorrelated. The

scaling 1/(ri + 1) ensures that, with Xei representing the total time for a particle to traverse

all of the sub-edges Xei,j of some edge ei ∈ E, by assumption,

V
(
Xei

)
= V

( re+1∑
i=1

Xe,i

)
=

re+1∑
i=1

V
(
Xe,i

)
= σ2

e .

We also assume that n = (n, . . . , n)>, so that, upon combining the above,

Σ(n)
r =

1

n
Σr, for Σr := diag{σ2

11r1+1, . . . , σ
2
q1rq+1}, (27)

where 1r := (1, . . . , 1)> ∈ Rr represents an all-ones vector of length r.

This model for Σ(n)
r arises in a situation where we assume that the different particles in

the network behave independently, where at each edge the travel times being measured

correspond to a random subset of n particles traversing that edge, while allowing the travel

times for each edge in E to have different variances.

4.3. The spectra of L̄r and Σ(n)
r . Establishing asymptotic results for the estimators pre-

sented in Section 3 relies heavily on understanding the spectrum of L̄r and of Σ(n)
r . In this

section we specify these.

4.3.1. Decomposition of L̄r. By construction, in Gr there are two different types of vertices.

This is illustrated in the middle plot in Figure 2: red vertices corresponding to vertices of G,

and white vertices corresponding to vertices that are not present in G. In the corresponding

line graph Ḡr, which is depicted in the right plot in Figure 2, there are two types of vertices:
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pink vertices corresponding to edges in Gr that connect a red vertex and a white vertex, and

white vertices that correspond to edges in Gr that connect white vertices.

Figure 2. The graph Gr (middle), where re = 4 for all e ∈ E, corresponding to the graph

G (left) from Figure 1, and the respective line graph Ḡr (right). In the middle plot, red

vertices correspond to vertices in G, and white vertices correspond to vertices that are not

in G. In the right plot, pink vertices correspond to edges connecting red and white vertices

in Gr, and white vertices correspond to edges connecting white vertices in Gr.

The structure of the line graph Ḡr is rather simple: to each red vertex of degree d in the

original graph corresponds a clique of size d in Ḡr, and these cliques are connected via path

graphs (the one corresponding to edge e having re − 1 vertices). Recall that qr, the number

of edges of Gr, can be written as
∑q

i=1(ri − 1) + 2q.

In the following we make extensive use of the following property. Since L̄r is a real, symmetric

matrix of dimension qr × qr, there exists a matrix Ω̄ of the same dimension such that

Ω̄
>
L̄r Ω̄ = diag{`},

where

` = (`1, . . . , `qr) = (`1,1, . . . , `1,r1−1, `2,1, . . . , `2,r2−1, . . . , `q+1,1, . . . , `q+1,2q).

Proposition 3 (see Appendix A) tells us, in particular, that if r := min{r1, . . . , rq} is large,

then `i,j is well approximated by 4 sin(π(j − 1)/(2 ri))
2, j = 1, . . . , ri, i = 1, . . . , q, with the

remaining 2q eigenvalues being bounded by the maximal degree of a vertex in G. In other

words, the matrix Ω̄
>
L̄r Ω̄ and the matrix Ω>L̄r Ω, with Ω as defined in Proposition 3, are

close. Informally, this means that the eigenvalues of L̄r are asymptotically (as r →∞, that

is) going to coincide with eigenvalues specified above.

4.3.2. Decomposition of Σ(n)
r . The spectrum of Σ(n)

r is highly dependent on the structure

of the variance-covariance matrix Σ(n)
r . Here, we consider the model specified in (27) in

Section 4.2, where Σ(n)
r = n−1diag{σ2

11r1 , . . . , σ
2
q1rq}; alternative models can be handled as

well at the expense of a substantial amount of additional notation and computations but

this model should be flexible enough for any situation where we can think of the n travel

times being collected at each edge as being collected from a random subset of all particles

traversing that edge.
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It can immediately be seen that, by definition of the matrices Ω that feature in the proof of

Proposition 3,

Ω>Σ(n)
r Ω = diag{D1, . . . ,Dq,Dq+1},

where the first blocks are given by Di := n−1 σ2
i Iri−1, for i = 1, . . . , q, and where the last

block is Dq+1 := n−1 diag{σ2
s(1), . . . , σ

2
s(q)}, with s(·) denoting some given permutation of the

edges {1, . . . , q}.

4.3.3. Decomposition of H(λ,θ). Based on the decompositions from the previous two sec-

tions, we can now also (approximately) diagonalize our smoother matrix H(λ,θ). More

concretely, up to a controllable error, H(λ,θ) ≈ Ω diag{h}Ω>, where

hi,j := hi,j(λ, n) =
1

1 + 4
λ

n
σ2
i sin

(π(j − 1)

2 ri

)2
, j = 1, . . . , ri, i = 1, . . . , q + 1,

are the entries of h. We refer to Lemma 1 (see Appendix A) for the precise statement.

4.4. Performance of the estimation procedure. We conclude this section by presenting

our main result. It addresses the consistency of the estimators for the expected travel times

and for the variances that we proposed in Section 3. The proof of Theorem 1 can be found

in Appendix B.

Theorem 1. Suppose that

X(n) ∼ N
(
µ0,r, n

−1diag
(
σ2

0,11r1 , . . . , σ
2
0,q1rq

))
(28)

for some µ0,r ∈Mr(C). Consider then n ∈ N, and r ∈ Nq
0 such that n = o

(
mini=1,...,q ri

)2

and define the collection

Λn,r :=
{
λ > 0 : n = o(λ), λ = o

(
min
i=1,...,q

ri
)2
}
.

Consider also

λ̂ := arg min
λ∈Λn,r

GCV(λ),

for GCV(λ) as defined in (24), as well as θ̂ = (σ̂2
1, . . . , σ̂

2
q ) with each σ̂2

i = σ̂2
i (λ̂) defined as

in (34), and finally, define

µ̂r := µ̂r
(
λ̂,Σ(n)

r (θ̂)
)
.

Then, as long as either n→∞ or mini=1,...,q ri →∞, µ̂r is consistent in probability for µ0,r,

and each σ̂2
i is consistent in probability for σ2

0,i.

5. Numerical validation of estimation procedure

In this section we exemplify the performance and some properties of the estimation procedure

from Section 3, using a selection of illustrative network instances. Each of our examples aims

to assess a specific feature of the estimator. To simplify the interpretation of the results, we

consider relatively small networks, but we emphasize that the computational burden of our

algorithm, being linear in the data, is low.

First we outline the data generation mechanism for the numerical experiments. Each example

corresponds to
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◦ a graph G,

◦ a set of resolution parameters r,

◦ a sample size vector n,

◦ the length of each of the edges,

◦ per edge a velocity function (explained in detail below), determining the per-edge

mean travel time,

◦ the variance of the per-edge travel time.

We proceed by explaining the concept of the velocity function. This describes the expected

instantaneous velocity of particles as they traverse the corresponding edge. A velocity func-

tion is defined on the closed interval [0, 1]. It provides the expected instantaneous velocity at

the relative position x ∈ [0, 1] on the edge under consideration, for each edge e ∈ E (starting

from va(e); note that this function is not necessarily symmetric). These functions allow us

to model the expected instantaneous velocities of particles as being non-constant, which is in

line with the idea that the level of congestion will generally not be evenly spread throughout

an edge. Of course, what we are actually interested in are the travel times, but knowing

the lengths of road segments we can easily switch between velocities and travel times. The

advantage of working with velocities is that while travel times scale with the length of the

edges, instantaneous velocities do not, and are therefore more intuitive. To be clear, the

precise shape of the velocity function is not our target for inference. Instead, the velocity

functions only serve the purpose of allowing us to generate ground truths for the examples

that follow.

Combining all of the above, we can determine a vector µr and a variance-covariance matrix

Σ(n)
r that act as the ground truth for that example. We then generate a sample of travel times

(Xe,i : i = 1, . . . , ne, e ∈ Er) from a given distribution which, when averaged at each edge,

lead to a realization of a random vector X(n) with expectation µr and variance-covariance

matrix Σ(n)
r . The data vector X(n) in turn leads to an estimate µ̂r of µr and, consequently,

an estimate µ̂ of µ.

To compare the estimate with the true ground truth, we use the relative squared error:

Re(µ̂r) :=

(
µ̂r,e − µe

µe

)2

, e ∈ Er.

Since µ̂r is random, the relative squared error only measures the performance of the estimator

for a particular realization of µ̂r. What we are actually interested in is the expected relative

squared error of µ̂r:

RSEe = E
(
µ̂r,e − µe

µe

)2

, e ∈ Er.

Therefore, we carry out the estimation procedure for M independent samples X
(n)
j and

compute the average of the errors of the respective estimates µ̂r,j, j = 1, . . . ,M . It follows

from the law of large numbers that

R̄e,M =
1

M

M∑
j=1

Re(µ̂r,j)
a.s.−−→ RSEe, e ∈ Er.

For M large, we obtain accurate approximations for the true estimation errors for each

edge. In the examples that follow we have set M = 100 000. The aggregate simulation
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time, corresponding to all examples appearing in this section, was as low as two hours on an

ordinary laptop.

Example 1: A first display of the estimation procedure output. This example intro-

duces an elementary network and aims to confirm that the estimator performs as intended.

As a first graph we choose a 2 by 2 lattice with edges that each represent a road with a

length of 1 kilometer; see the left plot in Figure 3. The resolution of each edge is set to

re = 2, which means that the higher resolution graph is constructed by replacing every edge

in G by a path graph consisting of 3 edges of equal length to obtain Gr. The vertices that

are added to the higher resolution graph are colored white, whereas the red vertices were

already part of the original graph. Besides the lattice, we also consider the graph depicted

in the right plot in Figure 3. For this second graph, the scale of the figure is such that the

length of the two shortest edges of its original graph correspond to 1 kilometer. Since the

edges of the original graph do not all have equal length, we choose different resolutions for

different edges to ensure that each edge on the graph corresponds to a road segment with

approximately the same length.

In this example, we assume that particles traverse the edges with a constant expected velocity

of 30 km/h. The variance of the travel time per kilometer is 0.012 hour2, at each of the

sub-edges. Hence, the sub-edges that arise in the higher resolution graph will also each be

traversed with an expected velocity of 30 km/h. We let the travel time variance corresponding

to the sub-edges be given by 0.012 multiplied by the length of the sub-edge. Using the lengths

of the edges, we translate the expected velocities to expected travel times. Performing a

conversion from hours to seconds, each simulation for the left plot in Figure 3 therefore

consists of sampling independent Xe,i ∼ N (40, 362/3), i = 1, . . . , ne, ne = 100, e ∈ Er,

collecting these in X(n), and from this computing the estimate µ̂r as well as their respective

relative squared errors Re(µ̂r) for each edge e ∈ Er. Note that the moments of the samples

for the right plot in Figure 3 are slightly different since the lengths of the sub-edges differ.

This procedure was repeated M times to obtain a sample of M relative squared errors. These

are reported in Figure 3 where we have summarized the sample mean and sample standard

deviation of the relative squared errors at each edge of Gr.

Estimator error (x1000)
[0.33, 0.42]
[0.42, 0.5]
[0.5, 0.53]

Error variability (x1000)
[0.62, 0.8]
[0.8, 0.91]
[0.91, 0.97]

Estimator error (x1000)
[0.31, 0.81]
[0.81, 1.8]
[1.8, 8.8]

Error variability (x1000)
[0.57, 1.1]
[1.1, 1.9]
[1.9, 5.3]

Figure 3. Approximations of the expectation and standard deviation of the relative squared

errors corresponding to Example 1.
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Rather than reporting the means R̄e,M (our proxies for RSEe) for each edge in Er, we color

the respective edge based on the value of Ēe,M . Each color corresponds to a range of relative

errors, with the break points that define the ranges being three equally spaced quantiles of

the sampled {R̄e,M : e ∈ Er}. So, for instance, in the left plot in Figure 3, 0, 0.42, 0.50,

and 0.53 are respectively, the minimum, 0.33-, 0.67-quantile, and maximum of the sampled

{R̄e,M : e ∈ Er}.

In the same spirit, rather than reporting the |Er| sample standard deviations of the M

relative squared errors obtained at each of the edges in Er in our Monte Carlo simulation,

we set the thickness of the respective edge based on the values of the |Er| sample standard

deviations.

The left plot in Figure 3 shows that the edges near the center are colored green and are

thin; this means that within this graph, we conclude the relative squared error of the edges

at the center to have smaller expectation and standard deviation. In contrast, the edges in

the corners are red and thick; this indicates that within this graph, we observe the relative

squared error of the edges at the corners to have larger expectation and standard deviation.

Importantly, the above does not mean that the travel times of the corner edges are poorly

estimated, but rather that they have higher relative squared error when compared the edges

at the center. Indeed, the legend reveals that the expected relative squared errors of any

of the edges are low: in our simulation, they do not exceed 0.53 × 10−3 or 0.053% relative

squared error. Also bearing in mind the small error variability, we conclude that in this

example the mean travel times of all edges were estimated accurately. The same conclusion

holds for the right plot in Figure 3, where we see that the expected relative squared errors

do not exceed 8.8× 10−3.

A final remark is that the asymptotic result in Theorem 1 ensures that the global estimation

error for the entire graph (meaning the average error across the entire graph) is low if either

all sample sizes ne are large, or if all resolution parameters are large. It is however quite

instructive to look at the per edge errors as these reveal the effect of the topology of the

graph and the local amount of information available.

Example 2: Effect of sample size on estimation error. This example is a continuation

of Example 1. It illustrates to what extent the quality of the estimates changes as a function

of the sample size. Keeping the setting of Example 1 unaltered, we now choose a smaller

sample size of ne = 10 for each e ∈ Er. The results are shown in Figure 4.

Comparing the ranges of the quantiles in Figure 4 with those in Figure 3, we see that both

the errors and the variability of the errors are substantially lower in the experiment with the

higher sample size (i.e., the setting of Figure 3). This is in line with our asymptotic results.

We also see that the effect of the topology on the quality of the per-edge estimates remains

similar; only the magnitude of the errors (scale of the error ranges) changes, with the rel-

ative magnitude of the errors within each graph (color of the edges) remaining essentially

unaltered. Later examples focus on the effect of the topology on the estimation error, but

we first consider the effect of the amount of smoothing.

Example 3: Effect of smoothing. This example illustrates the effect of the amount of

smoothing on the resulting estimates. If we replace the smoother matrix by Iqr , then our



20 RENS KAMPHUIS, MICHEL MANDJES, AND PAULO SERRA

Estimator error (x1000)
[2.2, 2.5]
[2.5, 2.7]
[2.7, 2.8]

Error variability (x1000)
[5, 6.2]
[6.2, 6.5]
[6.5, 7.2]

Estimator error (x1000)
[1.5, 4.4]
[4.4, 5.7]
[5.7, 12]

Error variability (x1000)
[3.2, 4.8]
[4.8, 7.3]
[7.3, 11]

Figure 4. Estimation errors corresponding to the instances discussed in Example 1 but

with a smaller sample size of ne = 10 for each e ∈ Er.

estimator becomes µ̂r = X(n). This can be interpreted as not performing any smoothing at

all, as the smoother matrix becomes an identity as λ→ 0; see (13). This means that in this

no-smoothing case the expected time to cross each edge is estimated based on information

collected at the edge under consideration only, in that there is no sharing of information

across neighboring edges. Other than the different amount of smoothing, the setting remains

the same as that of Example 1. The output of the estimation procedure is shown in Figure 5.

Estimator error (x1000)
[2.7, 2.7]
[2.7, 2.7]
[2.7, 2.7]

Error variability (x1000)
[3.8, 3.8]
[3.8, 3.8]
[3.8, 3.9]

Estimator error (x1000)
[1.3, 1.4]
[1.4, 2.3]
[2.3, 2.7]

Error variability (x1000)
[1.8, 1.9]
[1.9, 3.2]
[3.2, 3.8]

Figure 5. Estimation errors corresponding to the first instance discussed in Example 1 but

with no-smoothing.

Comparing the ranges of the quantiles of the left plot in Figure 5 with those in Figure 3,

we see both drastically increased errors and a higher error variability for each quantile.

The highest relative squared error, for instance, is more than five times higher in the no-

smoothing case. This indicates that the smoother matrix, as expected, enables us to obtain

much better estimates. We also see that the redder edges are more scattered throughout the

graph, as in a no-smoothing case the topology of the graph plays no role in the estimation.

In the right plot in Figure 5, the effect of smoothing is less pronounced. Looking at the

estimated average squared error across the entire graph, however, the smoothing case (2.5

seconds squared) outperforms the no-smoothing case (2.7 seconds squared).

The reason why the smoothing parameter plays an important role, specifically in the context

of this example, is that each edge has equal constant expected velocity, so that the vector
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µr consists of equal entries whenever edges have equal length, as is the case in the left plot

in Figure 5. The GCV based procedure that gives us a data-driven choice of λ picks up on

this, and selects a large value for λ which in turn allows the estimate of the expected travel

time at each edge to pull more information from neighboring edges. This results in improved

estimates for the expected travel times. Figure 6 provides another example of the advantage

of working with a smoothing parameter.

Estimator error (x1000)
[0.66, 0.89]
[0.89, 1.1]
[1.1, 1.3]

Error variability (x1000)
[1.4, 1.9]
[1.9, 2.3]
[2.3, 2.6]

Figure 6. Illustration of the benefits of smoothing for edges with more neighbors.

We use a common scale in both plots in Figure 6 to facilitate easy comparison. We recall

that red does not necessarily indicate a large error but instead an error that is comparatively

larger; the values of R̄e,M for each edge e are rather low.

If λ is larger, then the estimated travel time of an edge incorporates the observations from

more neighboring edges, enabling information to be ‘carried over’ between these edges. The

more neighbors an edge has, the more it can benefit from this effect. This effect is demon-

strated in Figure 6, where we see that edges at the center of the graph have better estimates,

since these have more neighbors. Moving further away from the center, the edges become

more isolated, and as a consequence these edges benefit less from the smoothing effect. (This

effect was already visible when comparing the errors of the central edges and its less central

counterparts in Figure 5 with their counterparts in Figure 3.) Note also that the positive

effect of a high number of neighbors in combination with high smoothing benefits not just

the edges that share the vertex with the highest degree; the effect extends to their neighbors,

neighbors of neighbors, etc.

Example 4: Effect of over-smoothing rough signals. Of course, the carry-over effect

that was described in Example 3 will only be beneficial if neighbors of an edge have similar

expected travel times. In this example we see what happens if not all edges are traversed

with the same expected velocity. Instead of assuming an expected velocity of 30 km/h on

all edges (as we did in Examples 1-3), the SW-NE edges are now traversed with an expected

velocity of 40 km/h. Hence, at the center of the graph we have adjacent edges traversed at

different velocities. Figure 7 summarizes the results.

As the estimator carries over observations corresponding to lower expected travel times to

edges with higher expected travel times and vice versa, the bias of the estimator at these

edges increases. If we move further away from the center, we see that the relative error of
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Estimator error (x1000)
[2.9, 4.6]
[4.6, 6.7]
[6.7, 13]

Error variability (x1000)
[4.4, 6.7]
[6.7, 8.2]
[8.2, 13]

Figure 7. Illustration of the effect of lack of smoothness of the travel times. The average

squared error across the entire graph is 7.4 seconds squared.

the estimator decreases as these edges do have neighbors with the same expected velocity:

for these edges it is beneficial to share information.

While the expected travel time is not smooth close to the intersection at the middle of the

graph, it is so everywhere else. This explains the large errors in Figure 7, relative to those

in the left plot on Figure 6. While lack of smoothness runs contrary to the principle of

smoothing, its effect can be mitigated by increasing the resolution of the graph. Figure 8

shows the effect of increasing the resolution parameters from re = 2 to re = 8. Note the

smaller sample size, which makes the average squared error of Figures 7 and 8 comparable

since both graphs have a similar number of observations on each edge of the original graph G.

Estimator error (x1000)
[4.3, 6]
[6, 8.8]
[8.8, 25]

Error variability (x1000)
[8, 9.5]
[9.5, 15]
[15, 20]

Figure 8. Estimation errors corresponding to the instance discussed in Figure 7 but with

a higher resolution and with ne = 34 for each e ∈ Er. The average squared error across the

entire graph is 1.1 seconds squared.

We see that the increase in resolution does not eliminate the problem – as is does not (and

cannot) do away with the lack of smoothness at the intersection – but it does isolate the

higher errors to just the area close to the intersection which is the area where the expected

travel time, as a function on the edges of the graph, lacks smoothness. So, increasing

resolution does not eliminate the problem but it rather concentrates it. In the following

example we illustrate how this is true for less trivial choices of the expected travel times.
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Example 5: Capturing inhomogeneous speeds. In all of the preceding examples we

assumed that particles traverse each of the edges at a constant expected velocity. This is

clearly not realistic as drivers reduce their speed as they approach curves or intersections.

In this example we return to the graph from Example 1. We model each particle to enter each

road segment (represented by an edge in the original graph G) at a relatively low velocity,

accelerate until they reach a higher velocity, and then decelerate again when approaching the

end of an edge. Specifically, at each edge we model the expected velocity using the trapezoid

function depicted in Figure 9.

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Relative position on the road corresponding to each edge

V
el

oc
ity

 (
km

/h
)

Instant velocity along each road segment

Figure 9. The non-constant velocity function used in Example 5. The relative position ‘0’

corresponds to the instantaneous velocity at the start of the road corresponding to the edge,

while the relative position ‘1’ corresponds to the instantaneous velocity at the end of the

road segment.

This function is the same for every edge in G, and is used to compute the expected travel

times needed to traverse each of the road segments represented by the edges in Gr, which

are now going to be different from edge to edge. It is noted that in fact any choice of the

expected instantaneous velocities that leads to smoothly varying expected travel times is

allowed in our setting.

In this example, adjacent edges in the higher resolution graph are, in principle, traversed

with different expected velocities. This may introduce bias into the estimator such that it

no longer performs well locally, as we have seen in Example 4. However, as also noticed

in Example 4, when increasing the resolutions in r the differences in velocities between

neighboring edges decrease, due to the fact that the velocity function is (almost everywhere)

differentiable. Overall, this results in better estimates of the expected travel times. This

effect is shown in Figure 10.

In the left plots the estimation procedure is carried out for two choices of the resolution,

namely re = 1 (top) and re = 4 (bottom). In the right hand side plots we see the ap-

proximation of the expected relative errors for the original graph G. The plots reveal that

the estimates for the original graph G improve as the resolution of its corresponding high-

resolution graph Gr increases. (Note the different scales for the errors in each plot.)
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Estimator error (x1000)
[0.62, 0.72]
[0.72, 0.76]
[0.76, 0.82]

Error variability (x1000)
[1.2, 1.3]
[1.3, 1.4]
[1.4, 1.5]

Estimator error (x1000)
[0.6, 0.68]
[0.68, 0.72]
[0.72, 0.72]

Error variability (x1000)
[1.1, 1.2]
[1.2, 1.3]
[1.3, 1.3]

Estimator error (x1000)
[24, 28]
[28, 31]
[31, 35]

Error variability (x1000)
[3.7, 4.7]
[4.7, 5.7]
[5.7, 7]

Estimator error (x1000)
[0.18, 0.21]
[0.21, 0.27]
[0.27, 0.36]

Error variability (x1000)
[0.25, 0.31]
[0.31, 0.39]
[0.39, 0.47]

Figure 10. Illustration of the effect of a higher resolution parameter on the estimation

errors corresponding to the original graph for trapezoidal-shaped velocity functions.

Example 6: Non-normal data. Our estimator relies on the modeling assumption that the

vector of averages X(n) is (approximately) normally distributed so that our normal posterior

is a good proxy for the posterior distribution of µ; see (9). In all preceding examples we

sampled the individual observations Xe,i from a normal distribution so that this assumption

is fulfilled by default. It is important to note that, bearing in mind that the entries of the data

vectors are actually averages and appealing to the central limit theorem, this assumption

is in practice by approximation fulfilled. To demonstrate that our estimation procedure

does not rely heavily on the normality assumption, in this example we simulate data from a

different distribution. Figure 11 shows the results.

More specifically, we have sampled the data from the gamma distribution with shape and

rate parameters chosen so that the observations match the expectation and variance of the

observations from Example 1. Comparing with Figure 3, we see that the errors of the

estimates effectively match with those obtained from normal data, thus corroborating the

claim that the normality assumption does not play a crucial role.

The preceding examples illustrate the performance and some properties of the estimation

procedure from Section 3. In particular, we have seen that the estimation procedure provides

us with accurate estimates of the mean travel times and that the accuracy increases with

the sample sizes and/or resolutions. We compared the estimates to those obtained from

the estimation procedure that does not use smoothing, clearly revealing the beneficial effect

of the smoothing parameter. Especially the estimates corresponding to edges with many

neighbors with similar velocities benefit substantially from the smoothing parameter. In
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Estimator error (x1000)
[0.33, 0.42]
[0.42, 0.5]
[0.5, 0.53]

Error variability (x1000)
[0.62, 0.79]
[0.79, 0.9]
[0.9, 0.97]

Estimator error (x1000)
[0.31, 0.82]
[0.82, 1.9]
[1.9, 8.8]

Error variability (x1000)
[0.58, 1.1]
[1.1, 1.9]
[1.9, 5.4]

Figure 11. Estimation errors corresponding to the instances discussed in Example 1 but

with non-normal data.

the case that neighboring edges do not have similar velocities, the smoothing parameter

results in an increased bias at these edges. However, this can be mitigated by choosing a

higher resolution. The resolution parameter also proves to be of great importance for non-

constant expected velocity functions, as the differences in velocities between neighboring

edges decrease for higher resolutions. Lastly, even though the estimator relies on a normality

assumption, we have seen that we also obtain accurate estimates for non-normal data.

6. Route selection examples

Now that we have developed an estimator and illustrated its performance, we proceed by

discussing their use in route selection. As pointed out in the introduction, a route is deemed

optimal if it aligns with preferences of the individual driver. In this section, these preferences

are expressed in terms of objective functions, which represent the routes’ ‘disutilities’. We

consider an elementary test network as well as a more sophisticated network.

We wish to identify a path ψ∗i,j in a set Ψi,j of feasible simple paths from vertex i to vertex j.

Denoting the disutility of a route by the driver’s objective function f(·), our goal is to find

the best route among the feasible paths, namely

ψ∗i,j = arg min
ψi,j∈Ψi,j

f(ψi,j), (29)

assuming uniqueness of the minimizing path.

In this section, we consider several possible choices for f ; namely:

◦ expected travel time;

◦ quantile of the posterior expectation (for instance the 0.95-quantile, i.e., the 95%-

percentile);

◦ quantile of the distribution of the estimator of the expected travel time;

◦ sum of the squared difference of the expected velocities of the consecutive edges;

◦ mean of the squared difference of the expected velocities of the consecutive edges.

Evidently, some of these choices have more practical appeal than others, but our exposition

also serves the goal of demonstrating the generality of our approach.
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Clearly, the value that the disutility f(ψi,j) takes for a given path ψi,j depends on the

distribution of the data, and is hence not known a priori to the driver, entailing that the

optimization problem described in (29) is not directly solvable. We therefore express f(ψi,j)

in terms of parameters that we can estimate, thus yielding an optimization problem that we

can solve:

ψ̂∗i,j = arg min
ψi,j∈Ψi,j

f̂(ψi,j). (30)

We think of ψ̂∗i,j as a proxy for ψ∗i,j.

In the following examples we illustrate solving the optimization problem in (30) for the

disutilities mentioned above.

We will consider an elementary traffic network with a graph as in Figure 12, where each of

the four edges has a length of 1 kilometer. Suppose a driver wants to travel from vertex 1

to vertex 4. Clearly, Ψ1,4 consists of only two possible paths, viz. the red route and the

blue route: Ψ1,4 = {(e1, e2), (e3, e4)}. The optimal route is determined by the output of the

estimation procedure and the driver’s objective function f(·).

e1 e2

e3 e4

1

2

3

4

Figure 12. The graph of the elementary traffic network. There are only two possible routes

from the origin, vertex 1, to the destination, vertex 4.

The following paragraphs show the effect of making different choices for the disutility f on

the route that gets selected. The graph in Figure 12 is rather simple so that we obtain more

direct insight into the effect of objective functions on the selected route.

Expected travel time. In case the driver wishes to minimize her expected travel time, the

optimal route clearly satisfies

ψ∗1,4 =

{
(e1, e2) if µe1 + µe2 < µe3 + µe4 ;

(e3, e4) otherwise.

Below we refer to (e1, e2) as Route 1, and to (e3, e4) as Route 2.

In this numerical experiment, we sample from a gamma distribution such that EXej = 120

and VXej = 362 for j = 1, 2, whereas EXej ≈ 109.1 and VXej = 362 for j = 3, 4. These

expectations correspond to the travel time in seconds for edges with expected velocities of
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30 km/h (for edges e1 and e2) and 33 km/h (for edges e3 and e4). For each edge we sampled 10

observations so that ne = 10 for each e ∈ E. We performed the estimation procedure 100

times and plotted the value of the objective function for the pair of routes in each run; the

results can be seen in Figure 13.
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Figure 13. The estimated expected travel time for both routes for each of the 100 simula-

tions. Route 1 corresponds to path (e1, e2) and Route 2 to path (e3, e4). The diagonal line

is added to identify the best route according to each simulation more easily; points below

this line correspond to the simulations for which Route 2 has the lowest estimated expected

travel time.

Each point in Figure 13 represents the estimated expected travel time for the two routes.

We see that Route 2 minimizes the objective function in 76 of the 100 experiments, which is

consistent with the fact that Route 2 indeed has a lower expected travel time. This means

that if we were to use our procedure to select a route, then the majority of the time the

correct route would be selected. Importantly, in this example the sample sizes are just

ne = 10, and that increasing these sample sizes per edge (or having a smaller variance for

the data at each edge) would result in Route 2 being selected even more often.

Quantile of the posterior expectation. The objective function in the previous example

relies solely on (estimates of) the expected travel times. Our estimator for µ in (25) also

provides us with an uncertainty quantification of these estimates. This fact is particularly

useful in a situation in which drivers are reluctant to traverse routes for which the estimated

mean travel times are low but carry large uncertainty. In this situation it may be more

appropriate to minimize a certain (relatively high) quantile of the posterior distribution of

the expected travel time of each of the routes. Specifically, in our numerics we choose the

0.975-quantile of the posterior distribution of the travel time for a route as the objective

function. In Figure 14 we report the average utility obtained across 10 000 replications

(which is an approximation of the expected utility) when the sample sizes for the edges in

Route 1 are fixed at ne1 = ne2 = 10, and try different sample sizes for the edges in Route 2.
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Figure 14. The expected objective value for both routes and for different sample sizes for

Route 2, while keeping the number of observations for Route 1 constant at 10.

From Figure 14 we can see that, even though the sample sizes for the edges that make up

Route 1 are kept fixed, the estimates for the 0.975-quantile of the posterior distribution of

the expected travel time for Route 1 are changing as we change the number of observations

collected at each of the edges that make up Route 2. This again illustrates how the statistical

procedure borrows information from edges that are close the each other.

The uncertainty of the estimated expected travel time of an edge heavily relies on the number

of observations for that edge. Therefore, the routing criterion that minimizes a quantile of

the posterior distribution of the expected travel time favors routes that are well-explored.

We have already seen that Route 2 is most likely to minimize the expected travel time and is

therefore expected to also minimize a quantile of the posterior mean in case of equal sample

sizes, since the variances of the observations are constant across the graph. However, this

is not necessarily the case if Route 2 is not as well-explored as Route 1, as illustrated by

Figure 14.

We see that if we have fewer than 4 observations for the edges that make up Route 2, while

still having 10 observations for the edges that make up Route 1, the objective function is (on

average) minimized by Route 1. Route 2 may very well have a lower expected travel time, but

a user who cares to optimize a quantile of the posterior distribution for the expected travel

time for their route may still prefer Route 1 if selecting this route carries less uncertainty.

Quantile of the distribution of the estimator of the expected travel time. Instead

of just focusing on expected travel times only, drivers may also want to incorporate the

variance of the travel time into their decision criterion. A higher quantile indicates that a

driver is more reluctant to traverse edges with a high travel time variance; we say that this

driver is more risk-averse. Conversely, if we consider the 0.5-quantile, this objective function

essentially reduces to the objective function of the shortest expected travel time (at least in
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a setting in which the median and mean are close, which will be the case in the central limit

type of regime that we consider).

We again sample from a gamma distribution such that EXej = 120 and VXej = 362 for

j = 1, 2, but this time let EXej ≈ 109.1 and VXej = 722 for j = 3, 4. Now, Route 2 has

smaller expected travel time but higher variance than Route 1. Again, for each edge we

obtain 10 observations so that ne = 10 for each e ∈ E.

The risk-averseness of the driver will determine which route is preferred.
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Figure 15. The objective function for the 0.5- (left), 0.8- (middle), and 0.975- (right)

quantile of the distribution of the estimator of the expected travel time.

In Figure 15, we plotted 100 realizations of the objective function of both routes for the

different quantiles of the distribution of the estimator of the expected travel time. The

quantiles are easily computed using the fact that the estimator of the travel time of a route

is approximately normal.

We see that for the median (left-most plot), Route 2 is often (correctly) selected as the

optimal route. This quantile corresponds to drivers that are risk-neutral and therefore prefer

the route that is expected to be faster without regarding the variability of the travel time for

that route. As we consider higher quantiles, Route 1 becomes more attractive for increasingly

risk-averse drivers. This route has a travel time with only a slightly higher mean, but it has

a smaller variance.

Route selection in a larger traffic network. We used the elementary traffic network

whose graph is depicted in Figure 12, with just two routes, to discuss the effect the different

disutilities have on route selection. We proceed by studying the larger network depicted

in Figure 16. This example uses all disutilities f given in the list at the beginning of this

section.

For this traffic model, we let particles traverse the outer edges of the graph at a constant

expected velocity of 60 km/h. For the inner edges, we assume the trapezoid shaped expected

velocities as in Figure 9. Moreover, the intersection at vertex 7 has the property that drivers

are not required to decelerate when approaching this intersection (i.e., they keep driving at

40 km/h). We also assume that the travel times have a standard deviation of 72 seconds

per kilometer (i.e., 0.02 hour per kilometer) for each edge, except for the edges (2, 3), (3, 4),

(4, 16), (12, 15), and (15, 16), which have a standard deviation of 36 seconds per kilometer

(i.e., 0.01 hour per kilometer). As for sample sizes, at the outer edges – i.e., (1, 2), (1, 13),

(2, 3), (3, 4), (4, 16), (13, 14), (14, 15), and (15, 16) – we collected 100 observations, while at

the remaining edges, the inner edges, we collected 10 observations. The scale of the figure

is such that the length of the edge (1, 2) corresponds to 1 kilometer.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16. The graph of a larger traffic network. There are many possible routes from the

origin, vertex 1, to the destination, vertex 12.

We wish to find the routes from vertex 1 to vertex 12 that minimize each of the objective

functions listed above. We performed M =10 000 simulations and identified the route that

minimizes the objective function for each simulation and for each objective function. For

each objective function we report a figure with two plots; see, e.g., Figure 17 for reference.

In the left plot we report the three routes that were most frequently selected as the optimal

route across the M simulations. These are colored red (most often selected), green (second

most often selected), and blue (third most often selected); in the legend we report the fraction

of the M simulations in which each route was selected as optimal route. Note that some

edges in such plots are part of multiple routes, so we color an edge olive when the red and

green routes overlap, purple when red and blue overlap, teal when green and blue overlap,

and gray when all three routes overlap. In the right plot we report a heat-map that depicts

the frequency with which each edge is part of the optimal route. This can be thought of as

indicative of the congestion of the network, if all vehicles were to select which route to take

based on the same objective function.

First, we perform this simulation with the objective function set to the expected travel time;

cf. Figure 17 for the results. The right plot of Figure 17 shows that the edges (1, 2) and

(2, 3) are the ones that feature more often in the optimal route. This is not surprising, as

the expected velocities of these edges are relatively high, while these edges are also part

of the routes with the shortest travel distance. On the other hand, the remaining outer

edges are (almost) never used. Indeed, in this particular network, the routes consisting

of these remaining outer edges have longer expected travel times due to the longer travel

distance, and the estimator picks up on this successfully. This is in line with the left plot of

Figure 17, where we see the routes with the smallest expected travel time. Observe that the

two routes that minimize the expected travel time most frequently, utilize vertex 7. Recall

that the intersection at this vertex does not require the drivers to decelerate, which indeed

contributes to a lower expected travel time.

Next, in Figure 18, we consider the objective to minimize the 0.975-quantile of the posterior

expectation. Comparing Figure 18 (right) to Figure 17 (right), we see that the outer edges

(1, 13), (13, 14), and (14, 15) are more frequently part of the optimal route when we minimize
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Prop. of simulations 

that use route

0.56
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(0.50,0.75]
(0.75,1.00]

Figure 17. Using the expected travel time as objective function. The left picture shows

the three routes that minimize the objective function most often, whereas the right picture

shows the frequency with which each edge is part of the optimal route.

the 0.975-quantile of the posterior expectation rather than just the expected travel time.

We have seen earlier in this section that the sample sizes for the edges play a prominent

role here. As mentioned before, in our simulation we generated 100 observations for each

outer edge of the graph, whereas we only generated 10 observations for the other edges. In

other words, traversing the outer edges carries less uncertainty and, consequently, the 0.975-

quantile of the marginal posterior expectation of the routes that utilize the outer edges will

be more concentrated around their expectation, resulting in smaller 0.975-quantiles. In the

left plot of Figure 18 we see that the route that utilizes the outer edges (1, 13), (13, 14),

and (14, 15) is the second most selected route when minimizing the 0.975-quantile of the

posterior expectation. Note that this route was not yet visible in Figure 17 (left), indicating

that the lower uncertainty of this route compensates for the somewhat higher expected travel

time. The other routes in Figure 18 (left), however, coincide with routes in Figure 17 (left);

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
Prop. of simulations 

that use route

0.85
0.088
0.054

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
Prop. of simulations 

that use edge

[0.00,0.01]
(0.01,0.25]
(0.25,0.50]
(0.50,0.75]
(0.75,1.00]

Figure 18. Using the 0.975-quantile of the posterior distribution as objective function. The

left picture shows the three routes that minimize the objective function most often, whereas

the right picture shows the frequency with which each edge is part of the optimal route.
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observe that a lower expected travel time also contributes to a lower 0.975-quantile of the

marginal posterior expectation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
Prop. of simulations 

that use route

0.73
0.23
0.018

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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that use edge

[0.00,0.01]
(0.01,0.25]
(0.25,0.50]
(0.50,0.75]
(0.75,1.00]

Figure 19. Using the 0.975-quantile of the distribution of the estimator of the expected

travel time as objective function. The left picture shows the three routes that minimize the

objective function most often, whereas the right picture shows the frequency with which

each edge is part of the optimal route.

Another quantity that we may want to minimize is the 0.975-quantile of the distribution of

the estimator of the expected travel time, see Figure 19. Now, the variance of the travel

times of the edges has become an important factor. Recall that we assumed that the travel

times have a standard deviation of 72 seconds per kilometer for each edge, except for edges

(2, 3), (3, 4), (4, 16), (12, 15), and (15, 16), which have a standard deviation of 36 seconds per

kilometer. Therefore, if the objective is to minimize the 0.975-quantile, the routes consisting

of edges with a lower variance now also become attractive for the minimization. In the left

plot of Figure 19 we indeed see that the route that utilizes the previously mentioned edges

is now most frequently minimizing the 0.975-quantile, while this route was never optimal

for the previously studied utilities. This indicates that the lower variance compensates the

somewhat higher travel time.

The last two objective functions whose use we illustrate here are respectively the mean-

and the sum of the squared difference of the expected travel time at consecutive edges of

a path. These squared differences quantify the variation of speed across two neighboring

road segments. Minimizing the mean of the squared difference of the expected travel times

at consecutive edges on a path effectively amounts to keeping the velocity as constant as

possible. Figure 20 illustrates the results corresponding to this utility. From the left plot we

see that the driver favors routes that make use of the inner part of the network. Judging by

how often each of these routes is selected, there is no clearly preferred route. Because using

the mean of the squared differences does not penalize the number of road segments that are

used, we see that no optimal routes (among the top three) continue from vertex 10 to vertex

12 directly, but rather take longer routes (that apparently minimize speed variability) to

reach the destination vertex. Looking at the right plot in Figure 20, we see that the heat-

map is less concentrated than for other objective functions. Again, this is not surprising
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Figure 20. Using the mean of the squared difference of the expected travel time of the

consecutive edges as objective function. The left picture shows the three routes that minimize

the objective function most often, whereas the right picture shows the frequency with which

each edge is part of the optimal route.

since this objective function is distance-indifferent, so that there is no concentration around

routes with lower expected travel time.

When aiming at minimizing the sum of the squared differences of the expected travel times

at consecutive edges, there is now a downside to taking longer routes (since the sum will

include more terms) as well as routes through which it is more difficult to keep a constant

velocity. As a consequence of this the right plot in Figure 21 shows more concentration. In

fact, the left plot shows a clear preference for taking the red route, or otherwise traveling to

vertex 5 and then either making use of the path graph 5 − 6 − 7 − 8 or of the path graph

9− 10− 11− 12 to reach the destination.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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(0.75,1.00]

Figure 21. Using the sum of the squared difference of the expected travel time of consecutive

edges as objective function. The left picture shows the three routes that minimize the

objective function most often, whereas the right picture shows the frequency with which

each edge is part of the optimal route.
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In this section we modeled the preferences of the drivers in terms of various objective func-

tions. The experiments showed that different objective functions may lead to very different

optimal routes. Whereas the expected travel time solely relies on the point estimate of this

quantity, the quantile of the posterior expectation also takes the estimation uncertainty into

account and favors well-explored routes. Besides the expected travel time, drivers may also

want to incorporate the travel time variability into their objective function. This demand

can be fulfilled by basing the decision on the quantile of the distribution of the estimator of

the expected travel time. The precise quantile to be considered reflect the risk-averseness of

the driver. One is of course free to come up with alternative objective functions. For exam-

ple, drivers who strongly dislike velocity fluctuations (for driving comfort, or for reducing

fuel consumption) may want to minimize the sum- or mean of the squared difference of the

expected velocities of the consecutive edges.

7. Discussion and concluding remarks

In this paper we have developed a framework for estimating travel times in a road traffic

network. We have followed a Bayesian approach that produces estimates under minimal

distributional assumptions. In a series of experiments we have assessed several aspects of

the resulting estimation procedure. In addition we have argued how our framework can be

used to support route selection.

In operations research the classical paradigm is to separate the estimation phase from the

decision making phase: it is common practice to work with stochastic models assuming that

the underlying distributions and parameters are known. In this paper we depart from this

approach, in that we advocate taking into account estimation uncertainty when selecting a

route. As such, our work can be seen as part of the branch of research in which learning and

optimization are integrated; see e.g., [7, 23] for other examples. Our data-driven approach

is facilitated by the abundant travel time measurements that are available nowadays due

to GPS-based technologies. Another example of a domain in which decisions are made by

explicitly taking into account the estimation error, is that of measurement-based admission

control [9, 12, 15]: based on estimates of the bandwidth consumption of traffic streams that

are currently present, it is decided whether newly arriving streams can be accommodated.

We use a Gaussian model to represent the joint distribution of the mean travel time at each

of the different edges of a traffic network. This model provides a good approximation for

the distribution of the data under a large variety of sampling regimes, e.g., measuring travel

times of randomly chosen particles traversing each edge. The expectation is endowed with

an appropriate prior leading to a (joint) posterior distribution on the expected travel times

for the entire network.

The posterior variance-covariance matrix is estimated using the empirical Bayes approach,

while the posterior expected travel time for each edge can be estimated from respective

(empirical) posterior distribution. The empirical posterior provides not just estimates for

the expected travel times but also quantifies the uncertainty in said estimates. Furthermore,

from this posterior one can also explicitly compute the joint posterior distribution for the

expected travel time of a collection of paths on the graph. Our approach therefore provides

estimates and uncertainty quantification for expected travel times for arbitrary paths on the

network, as well as other functionals of the model parameters.
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The introduction of a higher resolution version of the network allows consistent inference as

long as either the resolution of the network (which determines at what spatial resolution data

can be collected, e.g., via GPS signal) or the number of observation collected at each edge

increases. Use of higher resolutions makes the approach robust to how traffic flows through

the network as particles are not required to keep constant velocity while traversing edges.

This notion of resolution is useful to capture features such as slowdowns at intersections or

curves.

We ran multiple simulations to illustrate the performance of our approach. We also explored

the possibility of utilizing the posterior distribution on expected travel times on the network

as a statistical tool to support finding optimal paths on the network, with the utility of the

path determined by the user.

Several directions for follow-up research can be thought of — we here provide three possible

themes. In the first place, one could focus on operationalizing the approach presented in this

paper in a practical context. Secondly, one could aim at developing systematic procedures for

route selection based on the estimates produced by our estimation framework (possibly with

an interface by which a driver can, explicitly or implicitly, reveal her utility curve). Finally,

one could try to explicitly incorporate specific features of the network at hand (such as:

including the precise locations of pedestrian crossings, knowledge of the algorithm used by

traffic lights at intersections, speed limits that are imposed on specific individual segments,

etc.).
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Appendix A. Auxiliary Results

In this appendix we present a series results that have appeared in the main text, and provide

their respective proofs.

Proposition 1. Under the modeling assumption in (9), and supposing that µr |
(
λ,Σ(n)

r

)
is endowed with the prior in (11), the corresponding posterior distribution is

µr |
(
λ,Σ(n)

r ,X(n)
)
∼ N

(
µ̂r(λ,Σ

(n)
r ),

(
{Σ(n)

r }−1 + λL̄r
)−1
)
, λ > 0. (12)

Proof. Note that
(
µr,X

(n)
)
|
(
λ,Σ(n)

r

)
has a joint Gaussian distribution since the prior

was chosen independently of X(n). Using the law of total expectation and the law of total

variance, it follows by standard algebra that(
µr,X

(n)
)
|
(
λ,Σ(n)

r

)
∼ N

((
0

0

)
,

(
1
λ
L̄
−
r

1
λ
L̄
−
r

1
λ
L̄
−
r Σ(n)

r + 1
λ
L̄
−
r

))
.

Using the well known expression for the conditional distribution of Gaussian random vectors,

we have that

µr |
(
λ,Σ(n)

r ,X(n)
)
∼ N

(
1

λ
L̄
−
r

(
Σ(n)
r +

1

λ
L̄
−
r

)−1

X(n),
1

λ
L̄
−
r −

1

λ
L̄
−
r

(
Σ(n)
r +

1

λ
L̄
−
r

)−1 1

λ
L̄
−
r

)
.

It is clear that

1

λ
L̄
−
r

(
Σ(n)
r +

1

λ
L̄
−
r

)−1

X(n) =
(
Iqr + λΣ(n)

r L̄r

)−1

X(n) = µ̂r(λ,Σ
(n)
r ).

By applying the matrix inversion lemma [21, Section 0.7.4] to the posterior variance, the

proof is complete. �

Proposition 2. Consider the variance-covariance matrix given in (16), and suppose that

θ̂ = arg min
θ

{
X(n)

}>(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n) + ln
∣∣∣Σ(n)

r (θ) +
1

λ
L̄
−
r

∣∣∣. (22)

The matrix Σ̂r = Σ(n)
r (θ̂) satisfies the relation

Σ(n)
r (θ̂) =

(
X(n) −H(λ, θ̂)X(n)

)(
X(n) −H(λ, θ̂)X(n)

)>
tr
(
Iqr −H(λ, θ̂)>

) . (31)

Proof. The i-th component of a solution θ in (22) should satisfy the first-order condition{
X(n)

}> ∂

∂θi

(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n) +
∂

∂θi
ln
∣∣∣Σ(n)

r (θ) +
1

λ
L̄
−
r

∣∣∣ = 0.

Standard results from matrix calculus are that

∂M (θ)−1

∂θi
= −M(θ)−1∂M(θ)

∂θi
M(θ)−1,

∂ ln |M (θ)|
∂θi

= tr

(
M (θ)−1∂M (θ)

∂θi

)
,

so that, relying on the eigen-decomposition (16) of Σ(n)
r (θ), we conclude that for each i =

1, . . . , qr,

tr
((

Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1
Ei

)
=
{
X(n)

}>(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

Ei

(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n).
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Multiplying both sides of the i-th equation with θi and add the resulting qr equations we

get that the solution should satisfy the relation

tr
((

Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1
Σ(n)
r (θ)

)
=
{
X(n)

}>(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

Σ(n)
r (θ)

(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n).

It is straightforward to check that(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

Σ(n)
r (θ) = Iqr −H(λ,θ)>, (32)

where we parametrize the smoother matrix H in terms of θ so that

H(λ,θ) =
(
Σ(n)
r (θ)−1 + λL̄r

)−1

Σ(n)
r (θ)−1. (14)

We conclude that the solution must satisfy

tr
(
Iqr −H(λ,θ)>

)
=
(
X(n) −H(λ,θ)X(n)

)>
Σ(n)
r (θ)−1

(
X(n) −H(λ,θ)X(n)

))
.

which, using the invariance under cyclical permutations of the trace, can also be written as

tr
(
Iqr −H(λ,θ)>

)
= tr

(
Σ(n)
r (θ)−1

(
X(n) −H(λ,θ)X(n)

)(
X(n) −H(λ,θ)X(n)

)>)
. (33)

We finish the proof by noting that (31) solves the above. �

Corollary 1. Denote by H i(λ,θ) the (ri+1)× (ri+1) sub-matrix of H(λ,θ) corresponding

to the sub-edges of edge i, and by X
(n)
i the averages collected at the sub-edges of edge i.

Assume that the variance-covariance matrix of the data satisfies (27). Then empirical Bayes

estimators of the σ2
i , i = 1, . . . , q, are, for λ > 0, given by

σ̂2
i =

{
X

(n)
i

}>(
Iri+1 −H i(λ,1)

)>(
Iri+1 −H i(λ,1)

)
X

(n)
i

tr
(
Iri+1 −H i(λ,1)

)
/n

. (34)

Proof. Note that the variance-covariance matrix in (27), is of a parametric form Σ(n)
r (θ)

where θ = (σ2
1, . . . , σ

2
q )
>. As such, following the same argument as in the proof of Proposi-

tion 2, the estimate of each σ2
i , i = 1, . . . , q, must satisfy

tr
((

Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1Ei

n

)
=
{
X(n)

}>(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1Ei

n

(
Σ(n)
r (θ) +

1

λ
L̄
−
r

)−1

X(n),

since ∂Σ(n)
r (θ)/∂σ2

i = n−1Ei, where Ei := diag{0, . . . ,0, Iri ,0, . . . ,0}. Recalling the defi-

nition of H i(λ,θ) and Eqn. (32), we solve, for each i = 1, . . . , q,
n

σ2
i

tr
(
Iri+1−H i(λ/σ

2
i ,1)

)
=
n2

σ4
i

{
X

(n)
i

}>(
Iri+1 −H i(λ/σ

2
i ,1)

)>(
Iri+1 −H i(λ/σ

2
i ,1)

)
X

(n)
i ,

which, since the smoothing parameter λ is arbitrary, gives estimators of the form (34). �

Proposition 3. Consider L̄r, the Laplacian of the line graph of Gr of dimension qr × qr,
for R = (r1, . . . , rq). There exists an orthonormal matrix Ω of the form2, with rq+1 = 2q,(

ω1,1

‖ω1,1‖
, . . . ,

ω1,r1−1

‖ω1,r1−1‖
, . . . ,

ωq,1
‖ωq,1‖

, . . . ,
ωq,rq−1

‖ω1,rq−1‖
,
ωq+1,1

‖ωq+1,1‖
, . . . ,

ωq+1,rq+1

‖ωq+1,rq+1‖

)>
, (35)

2Explicit expressions for the entries of Ω can be found in the proof.
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such that for all j = 1, . . . , ri − 1, i = 1, . . . , q + 1 and j′ = 1, . . . , ri′ − 1, i′ = 1, . . . , q + 1,

ω>i,j
‖ωi,j‖

L̄r
ωi′,j′

‖ωi′,j′‖
= ˜̀

i,j δi,i′δj,j′ +
ω>i,j
‖ωi,j‖

∆
ωi′,j′

‖ωi′,j′‖
,

where for δi,j := 1{i = j} and any r 6 mini=1,...,q ri,∣∣∣∣∣ ω>i,j‖ωi,j‖
∆

ωi′,j′

‖ωi′,j′‖

∣∣∣∣∣ ≤ 4

r
δi,i′
(
1− δi,q+1

)
+

√
2

r

(
1− δi,i′

)(
1− δi,q+1δi′,q+1

)
+ δj,j′δi,q+1δi′,q+1,

and where

˜̀
i,j := 4 sin

(
π(j − 1)

2 ri

)2

, j = 1, . . . , ri, i = 1, . . . , q,

and where ˜̀
q+1,j, j = 1, . . . , 2q, are at most the highest degree of a vertex in G. In addition,

the (symmetric) matrix ∆ has at least qr−6q rows (and therefore eigenvalues) equal to 0, at

most 2q eigenvalues with norm at most 1, and at most 4q eigenvalues with norm at most 2.

Proof. Label the qr vertices in the line graph Ḡr of Gr according to the following ordering

of the edges of Gr: e1,2, . . ., e1,r1 , e2,2, · · · , e2,r2 , · · · , eq,2, . . ., eq,rq , and label the remaining

2q vertices arbitrarily. The first set of edges are those in Gr that are not incident to vertices

of G, while the remaining 2q edges are those that are.

Consider L̄r, the graph Laplacian of the line graph of Gr and define the qr × qr matrix L̃r
by the block-diagonal matrix

L̃r = diag
{
Lr1−1, . . . ,Lrq−1,L?

}
, (36)

where L? is a 2q × 2q diagonal matrix containing the degrees of the vertices in Ḡr corre-

sponding to the last 2q edges in Gr, and Lr is the r × r Laplacian matrix of a path graph

with r vertices,

Lr =



1 0 0 · · · 0

0 2 0
. . .

...

0
. . . . . . . . . 0

...
. . . 0 2 0

0 · · · 0 0 1

−


0 −1 0 · · · 0

−1 0 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 0 −1

0 · · · 0 −1 0

 =



1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1

 .

Following [6, Section 1.4.4], the eigenvalues of Lr are

2− 2 cos

(
πk

r

)
= 4 sin

(
πk

2r

)2

, k = 0, . . . , r − 1,

so that in particular the eigenvalues belong to the interval [0, 4); the eigenvector correspond-

ing to the eigenvalue 2− ζ − ζ−1 is the r-dimensional vector

ωζ =
(
1 + ζ2r−1, . . . , ζ i−1 + ζ2r−i, . . . , ζr−1 + ζr

)>
,

where ζ2r = 1 so that ζ 6= 0. Note that the norm of this eigenvector is

ω>ζ ωζ =
r−1∑
i=0

ζ2j + 2rζ2r−1 +
r−1∑
j=0

ζ−2(j+1) =
1− ζ2r

1− ζ2
+ 2rζ−1 + ζ−2 1− ζ−2r

1− ζ−2
= 2rζ−1,

where we use the fact that ζ2r = 1. It is also straightforward to see that since the ζ ∈ C
corresponding to the eigenvalue 2− ζ − ζ−1 must belong to [0, 4), then the modulus of ζ is

at most 1.
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Let ˜̀
i,j, j = 1, . . . , ri − 1, i = 1, . . . , q, represent the j-th eigenvalue of Lri−1, and define, for

j = 1, . . . , ri − 1 and i = 1, . . . , q,

ωi,j =
(
0>r1−1, . . . , 0>ri−1−1, ω

>
ζi,j
, 0>ri+1−1, . . . , 0>rq−1,0

>
2q

)> ∈ Rqr ,

where ωζi,j is the eigenvector corresponding to the eigenvalue ˜̀
i,j of Lri−1, and 0i ∈ Ri is a

the zero vector. Define also ˜̀
q+1,1, . . . , ˜̀

q+1,2q to be the diagonal elements of L?, and

ωq+1,j =
(
0>r1−1, . . . , 0>rq−1, 0, . . . , 0, 1, 0, . . . , 0

)>
, j = 1, . . . , 2q,

where the 1 is on position qr − 2q + j. We conclude that, by construction, for j = 1, . . . , ri,

i = 1, . . . , q + 1, and j′ = 1, . . . , ri′ , i
′ = 1, . . . , q + 1 where we set rq+1 := 2q,

ω>i′,j′L̃Rωi,j = ω>ζi,jLri−1ωζi′,j′ = ˜̀
i,jω

>
ζi,j
ωζi′,j′ = ˜̀

i,jω
>
i′,j′ωi,j.

Note further that

ω>i′,j′ωi,j = ω>ζi′,j′ωζi,j = 2ri ζ
−1
i,j δi,i′δj,j′ , (37)

so that the qr × qr matrix Ω, as given through (35), is an orthonormal matrix such that

Ω>Ω = Iqr = Ω Ω>. In addition, Ω diagonalizes L̃r, in that

Ω>L̃rΩ = diag
{

˜̀
1,1, . . . , ˜̀

1,r1−1, . . . , ˜̀
q+1,1, . . . , ˜̀

q+1,2q

}
.

Note also that the matrix Ω is block diagonal.

Denoting ∆ := L̄r − L̃r, this matrix has the following structure:

∆ =



D1,1 0 · · · 0 D1,q+1

0 D2,2
. . .

...
...

...
. . . . . . 0 Dq−1,q+1

0 · · · 0 Dq,q Dq,q+1

D>1,q+1 · · · D>q−1,q+1 D>q,q+1 D?


where the block structure is the same as in L̃r. As such, each of the (symmetric) matrices

Di,i, i = 1, . . . , q is of dimension (ri − 1) × (ri − 1), D? is of dimension 2q × 2q and

symmetric, and the matrices Di,q+1, i = 1, . . . , q are of dimension (ri − 1) × 2q. It is clear

that Di,i = diag{1, 0, . . . , 0, 1}, i = 1, . . . , q, because of the ordering that we picked for the

edges in Gr and since all of the vertices on which those edges are incident have degree 2

in Ḡr. The matrix D? has zeroes on its diagonal and outside the diagonals it has −1’s; in

each row, the number of −1’s is at most the maximal degree on G. Finally, each matrix

Di,q+1, i = 1, . . . , q, has exactly two entries equal to −1 (on different rows and columns), and

all other entries are equal to 0; the two −1 entries correspond to how each path subgraph

connects to some edge in the original graph G, with the exact locations of the −1’s depending

on the ordering of the path subgraphs.

Based on the description above it follows immediately from Gershgorin’s circle theorem

[13, 35], that ∆ has at least qr− 6q eigenvalues equal to zero (due to rows of zeros), at most

2q eigenvalues with norm at most 1 (due to the last 2q rows), and at most 4q eigenvalues

with norm at most 2 (due to the remaining rows.)

We now bound the absolute value of the (j, j′) entry of the (i, i′) block of Ω>∆ Ω, which is

ω>i,j
‖ωi,j‖

∆
ωi′,j′

‖ωi′,j′‖
.
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Using the symmetry of ∆, there are three relevant cases to consider corresponding to: a)

i, i′ ∈ {1, . . . , q}; b) i ∈ {1, . . . , q}, i′ = q + 1; or c) i = i′ = q + 1.

Case a): If i 6= i′, then we immediately conclude that ω>i,j∆ωi′,j′ = 0; assume then that

i = i′. Using the fact that the matrices Di,i are symmetric and idempotent in combination

with the Cauchy-Schwarz inequality,

ω>i,j∆ωi,j′ = ω>ζi,jDi,iωζi,j′ = ω>ζi,jD
T
i,iDi,iωζi,j′ 6

(
ω>ζi,jDi,iωζi,j ω

>
ζi,j′
Di,iωζi,j′

)1/2

.

Furthermore, using the fact that ζ2ri
i,j = 1, and the definition of Di,i,

ω>ζi,jDi,iωζi,j =
(
1 + ζ2ri−1

i,j

)2
+
(
ζri−1
i,j + ζrii,j

)2
=
(
1 + ζ−1

i,j

)2
+
(
ζ−1
i,j + 1

)2
= 2
(
1 + ζ−1

i,j

)2
.

Hence, using the above and (37), we conclude that

ω>ζi,jDi,iωζi,j

ω>ζi,jωζi,j
=

2
(
1 + ζ−1

i,j

)2

2ri ζ
−1
i,j

=
1 + 2ζ−1

i,j + ζ−2
i,j

ri ζ
−1
i,j

=
2 + ζi,j + ζ−1

i,j

ri
=

4

ri
,

Putting everything together we find that, irrespectively of j, j′, if i, i′ ∈ {1, . . . , q}, then∣∣∣∣∣ ω>i,j‖ωi,j‖
∆

ωi′,j′

‖ωi′,j′‖

∣∣∣∣∣ ≤ 4

ri
δi,i′ .

Case b): In this case, because of the block structure of ∆ and the two vectors,

ω>i,j∆ωq+1,j′ =
(
0, · · · ,0,ω>ζi,jDi,i,0, · · · ,0,ω>ζi,jDi,q+1

)
ωq+1,j′

= ω>ζi,jDi,q+1(. . . , 0, 1, 0, . . . )> = ω>ζi,jei,j′ ,

where the 1 is on the j′-th position in a vector from {0, 1}2q, and ei,j′ ∈ {−1, 0}ri−1 represents

the j′ column of Di,q+1 which is a vector that has at most one −1; if ei,j′ has a −1 entry,

then the location of this entry depends on i and on the ordering of the last 2q vertices in Ḡr.

From this we see that ω>i,j∆ωq+1,j′ is either 0, or it is an entry of the vector ωζi,j . Combining

the above with (37), we conclude that irrespectively of j, j′, if i ∈ {1, . . . , q} and i′ = q + 1,

then ∣∣∣∣∣ ω>i,j‖ωi,j‖
∆

ωi′,j′

‖ωi′,j′‖

∣∣∣∣∣ 6 max
i=1,...,q

max
j=1,...,ri−1

max
k=1,...,2q

∣∣ζk−1/2
i,j + ζ

−(k−1/2)
i,j

∣∣
√

2ri
6 max

i=1,...,q

√
2

ri
,

where we use the fact that the modulus of ζ is at most 1.

Case c): By construction and by the definition of D?,

ω>q+1,j∆ωq+1,j′ = (D?)j,j′ ∈ {−1, 0}.

Using the fact that ω>q+1,jωq+1,j = 1 we conclude that if i = i′ = q + 1, then∣∣∣∣∣ ω>i,j‖ωi,j‖
∆

ωi′,j′

‖ωi′,j′‖

∣∣∣∣∣ 6 δj,j′ ,

since the diagonal elements of D? are all 0. This concludes the proof. �

Lemma 1. For any λ > 0, define

hj := hj(λ) =
1

1 + λ sin
(
π
2
j−1
r

)2 , j = 1, . . . , r − 1.
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Assume that λ = o(r2) as r →∞. Then, as λ→∞, for any s ∈ N, t ∈ N0, we have

r−1∑
j=1

hsj(1− hj)t = rλ−1/2κs,t{1 + o(1)}, where κs,t :=
Γ(s− 1

2
)Γ(t+ 1

2
)

π Γ(t+ s)
.

Proof. For 1 6 u 6 r+1, denote g(u) := hsu(1−hu)t. For each s and t there exists umax such

that g(u) is increasing on u ∈ [1, umax] and decreasing on u ∈ [umax, r + 1]. Observe that∫ r

1

g(u) du− g(umax) 6
r−1∑
j=1

hsj(1− hj)t 6
∫ r

1

g(u) du+ g(umax),

where clearly |g(umax)| 6 1. Since
∫ r+1

r
g(u)du 6 1, we conclude

r−1∑
j=1

hsj(1− hj)t =

∫ r+1

1

g(u) du+O(1), as λ→∞.

Moreover, we have∫ r+1

1

g(u) du =
rλtΓ(t+ 1

2
)

√
πΓ(t+ 1)

2F1

(
t+

1

2
, s+ t; t+ 1;−λ

)
,

where 2F1 denotes the hypergeometric function. Using that [2, Eqn. 15.3.7]

2F1

(
t+

1

2
, s+ t; t+ 1;−λ

)
= λ−t−

1
2

Γ(s− 1
2
)Γ(t+ 1)

√
πΓ(t+ s)

(1 + o(1)), as λ→∞,

we obtain ∫ r+1

1

g(u) du = rλ−1/2κs,t{1 + o(1)}.

Since λ = o(r2), the conclusion follows. �

Appendix B. Proof of main result

In the proof of Theorem 1, the following lemma is used.

Lemma 2. Suppose that (27) holds. Then, for any s, t ∈ N0, and u, v ∈ {0, 1} such that

u+ 2s > 1, ∣∣∣tr{Hu
(
H>H

)s(
Iqr −H

)v{(
Iqr −H

)>(
Iqr −H

)}t}−
1

2

(
λ

n

)−1/2

κu+2s,v+2t

q∑
i=1

ri
σi
{1 + o(1)}

∣∣∣ 6 O(q),

where H abbreviates H(λ,θ), and κu+2s,v+2t is defined in Lemma 1.

Proof. Define h := (h1,1, . . . , h1,r1+1, h2,1, . . . , h2,r2+1, . . . , )
> ∈ Rqr , where

hi,j := hi,j(λ, n) =
1

1 + 4
λ

n
σ2
i sin

(π(j − 1)

2 ri

)2
, j = 1, . . . , ri − 1, i = 1, . . . , q + 1.

We then have that for the matrices ∆ and Ω from Proposition 3, and Σ(n)
r (θ) as defined

in (27),

H(λ,θ) =
(
Iqr + λΣ(n)

r (θ)L̄r

)−1

=
(
Ω diag{h}−1Ω> + λΣ(n)

r (θ)∆
)−1

.
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Using the fact that, with A, B denoting two square matrices so that A + B and A are

invertible, (A+B)−1 = A−1 − (A+B)−1BA−1, we conclude that

H(λ,θ) = Ω diag{h}Ω> − δ,

where

δ := λH(λ,θ) Σ(n)
r (θ) ∆ Ω diag{h}Ω>.

Note that 0 6 hi,j 6 1, j = 1, . . . , ri − 1, i = 1, . . . , q + 1. Also, by definition, the singular

values of H are between 0 and 1. By Weyl’s inequalities [37] we then conclude that for

any λ > 0, the singular values of δ must be between −1 and 1. Furthermore, since by

Proposition 3 we know that ∆ (and consequently δ) has at least qr − 6q rows and columns

of zeroes, and therefore at least that many singular values equal to zero. This means that∣∣∣tr{δ(δTδ)p
}∣∣∣ =

∣∣∣tr{δT (δTδ)p
}∣∣∣ ≤ ∣∣∣tr{(δTδ)p

}∣∣∣ ≤ ∣∣∣tr{δ}∣∣∣ 6 6q, p ∈ N,

by Von Neumann’s trace inequality [27]. From this we conclude that for any s, t ∈ N0,

u, v ∈ {0, 1}, such that s+ t+ u+ v > 0,∣∣∣tr{Hu
(
HTH

)s(
Iqr −H

)v{(
Iqr −H

)T (
Iqr −H

)}t}−
q+1∑
i=1

ri−1∑
j=1

hu+2s
i,j (1− hi,j)v+2t

∣∣∣ 6 O(q),

where H abbreviates H(λ,θ). The statement now follows from the result above together

with Lemma 1, in combination with the triangle inequality. �

Theorem 1. Suppose that

X(n) ∼ N
(
µ0,r, n

−1diag
(
σ2

0,11r1 , . . . , σ
2
0,q1rq

))
(28)

for some µ0,r ∈Mr(C). Consider then n ∈ N, and r ∈ Nq
0 such that n = o

(
mini=1,...,q ri

)2

and define the collection

Λn,r :=
{
λ > 0 : n = o(λ), λ = o

(
min
i=1,...,q

ri
)2
}
.

Consider also

λ̂ := arg min
λ∈Λn,r

GCV(λ),

for GCV(λ) as defined in (24), as well as θ̂ = (σ̂2
1, . . . , σ̂

2
q ) with each σ̂2

i = σ̂2
i (λ̂) defined as

in (34), and finally, define

µ̂r := µ̂r
(
λ̂,Σ(n)

r (θ̂)
)
.

Then, as long as either n→∞ or mini=1,...,q ri →∞, µ̂r is consistent in probability for µ0,r,

and each σ̂2
i is consistent in probability for σ2

0,i.

Proof. In what follows, we make use of the following well known result: If Y ∼ N
(
y, S

)
,

and M is square matrix of appropriate dimension, then

EY >MY = y>My + tr
(
MS

)
,

VY TMY = 4y>MSMy + 2tr
(
MSMS

)
.

Suppose that X(n) is distributed according to (28), where we use the subscript ‘0’ to distin-

guish between the true underlying parameters of the distribution, and arbitrary elements of

the underlying parameter sets.
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We first derive a risk bound for the estimator of µ0,r. Using H to abbreviate H(λ,θ),

E
∥∥µ̂r − µ0,r

∥∥2
= E

∥∥H(X(n) − µ0,r)− (Iqr −H)µ0,r

∥∥2

= µ>0,r(Iqr −H)>(Iqr −H)µ0,r +
1

n
tr
(
Hdiag

(
σ2

0,11r1 , . . . , σ
2
0,q1rq

)
H>

)
6 σ2

max

λ

n
P (µ0,r) +

σ2
0,max

n
tr
(
H>H

)
since 0 6

(
Iqr −H

)>(
Iqr −H

)
6 λn−1diag

(
σ2

0,11r1 , . . . , σ
2
0,q1rq

)
L̄r 6 σ2

0,maxλn
−1L̄r, where

A 6 B means that B −A is positive semi-definite, and where P (µ0,r) = µ>0,rL̄rµ0,r.

Using Lemma 2 and the assumption that µ0,r ∈Mr(C) (implying that that (26) holds), we

conclude that the previous upper bound is majorized by

2σ2
max

q λ

nmini=1,...,q ri
C2 +

σ2
0,max

σmin

1

n

(
λ

n

)−1/2

κ2,0

q∑
i=1

ri,

for all appropriately large λ. Equating the derivative to 0, it directly follows that this upper

bound is minimized for

λ = O

{(
σ2

0,max

σminσ2
max q C

2

)2

n
(

min
i=1,...,q

ri

q∑
i=1

ri

)2
}1/3

, (38)

which, since
∑q

i=1 ri > qmini=1,...,q ri, leads to the upper bound

E
∥∥µ̂r − µ0,r

∥∥2
6 O

{(
σ2

max σ
4
0,maxC

2

σ2
min

)1/3 q∑
i=1

ri

(
n min
i=1,...,q

ri

)−2/3
}
. (39)

We conclude that if the working variances σ2
i are bounded and λ is picked as in (38), then

(
∑q

i=1 ri)
−1E

∥∥µ̂r − µ0,r

∥∥2
converges to zero as long as either n or mini=1,...,q ri converges to

infinity.

The next step is to establish a risk bound for the estimators of σ2
0,i. Using the notation that

H i is the principal sub-matrix of H(λ,1) corresponding to the sub-edges of the i-th edge

in E, and that, likewise, X
(n)
i ∼ N (µ0,i, n

−1σ2
0,iIri+1) is the data collected at sub-edges of

the i-th edge in E, we have

σ̂2
i =

{
X

(n)
i

}>(
Iri+1 −H i

)>(
Iri+1 −H i

)
X

(n)
i

tr
(
Iri+1 −H i

)
/n

, i = 1, . . . , q.

We directly have that for each i = 1, . . . , q,

Eσ̂2
i =

µ>0,i
(
Iri+1 −H i

)>(
Iri+1 −H i

)
µ0,i

tr
(
Iri+1 −H i

)
/n

+ σ2
0,i

tr
((
Iri+1 −H i

)>(
Iri+1 −H i

))
tr
(
Iri+1 −H i

) ,

so that the absolute value of the associated bias is at most∣∣Bias(σ̂2
i )
∣∣ =

∣∣Eσ̂2
i − σ2

0,i

∣∣ 6 λP (µ0,i)

tr
(
Iri+1 −H i

) + σ2
0,i

tr
(
H>i

(
Iri+1 −H i

))
tr
(
Iri+1 −H i

) , i = 1, . . . , q.

As for the variance of the estimator, after straightforward simplifications it equals, for any

i = 1, . . . , q,

Vσ̂2
i = 4σ2

0,i

λP (µ0,i)

tr
(
Iri+1 −H i

)2 + 2σ2
0,i

tr
(
{
(
Iri+1 −H i

)>(
Iri+1 −H i

)
}2
)

tr
(
Iri+1 −H i

)2 .



44 RENS KAMPHUIS, MICHEL MANDJES, AND PAULO SERRA

Using Lemma 2 and the assumption on µ from Section 4.1, we conclude that for n, r, and λ

such that n = o(λ) and λ = o
(

mini=1,...,q ri
)2

, since
∑q

i=1 ri > qmini=1,...,q ri,∣∣Bias(σ̂2
i )
∣∣ 6 O

{
λ
(

min
i=1,...,q

ri

)−2
}

+O

{
(λ/n)−1/2

mini=1,...,q ri

}
= o(1) and

Vσ̂2
i 6 O

{
λ
(

min
i=1,...,q

ri

)−3
}

+O

{(
min
i=1,...,q

ri

)−1
}

= o(1),

so that the risk of each of the estimators of σ2
0,i converges to zero.

In particular, we see that if n = o
(

mini=1,...,q ri
)2

, then choosing λ as in (38) leads to the σ̂2
i

all being consistent.

Noting that generalized cross validation provides us with a data-driven choice of λ that

is consistent for the minimizer of the risk, the statement of the theorem follows by an

application of the law of total probability.

We will make this argument explicit for µ̂r. Let λ0 denote the minimizer of the risk. Then,

for arbitrary ε, η > 0 and λ∗ ∈ [λ0(1− η), λ0(1 + η)],

P
(( q∑

i=1

ri
)−1∥∥µ̂r − µ0,r

∥∥2
> ε
)
6 2P

(( q∑
i=1

ri
)−1
(∥∥µ̂r(λ∗)− µ̂r(λ0)

∥∥2
)
>
ε

2

)
+ 2P

(( q∑
i=1

ri
)−1
(∥∥µ̂r(λ0)− µ0,r

∥∥2
)
>
ε

2

)
+ o(1),

where, besides the law of total probability, we used the consistency of λ̂ for λ0 so that

P
( λ̂
λ0

/∈ [1− η, 1 + η]
)

= o(1), and P
( λ̂
λ0

/∈ [1− η, 1 + η]
)
>

1

2

for large enough n, and using P(X + Y > ε) 6 P(X > ε
2
) + P(Y > ε

2
) for X, Y > 0. Also

note that µ̂r(·) abbreviates µ̂r
(
·,Σ(n)

r (θ̂)
)
.

We have already seen that
(∑q

i=1 ri
)−1∥∥µ̂r(λ0)−µ0,r

∥∥2
= oP (1). The conclusion follows by

noting that the remaining term also goes to zero because the eigenvalues of the two matrices

involved are close to one another for small η. �

Corollary 2. Assume the setting of Theorem 1 and define µ̂ := Srµ̂r for Sr as defined in

(6). Then, as long as either n→∞ or mini=1,...,q ri →∞, µ̂ is consistent in probability for

µ0 := Srµ0,r.

Proof. From Theorem 1, it suffices to show that
∥∥µ̂ − µ0

∥∥2
can be upper bounded by an

appropriate multiple of
∥∥µ̂r − µ0,r

∥∥2
. Specifically, observe that∥∥µ̂− µ0

∥∥2
=
∥∥Srµ̂r − Srµ0,r

∥∥2
6 |||Sr|||2

∥∥µ̂r − µ0,r

∥∥2
,

where |||·||| denotes the operator norm. Since we may write

S>r Sr = diag
{
J r1 , . . . ,J rq

}
,

where J i ∈ {1}i×i denotes the i× i matrix of ones, we have that

|||Sr|||2 = max
i=1,...,q

ri.



ROAD TRAFFIC ESTIMATION AND DISTRIBUTION-BASED ROUTE SELECTION 45

Combining this with (39), we conclude that if the working variances σ2
i are bounded and λ

is picked as in (38), then
(

maxi=1,...,q ri
∑q

i=1 ri
)−1E

∥∥µ̂ − µ0

∥∥2
converges to zero as long as

either n or mini=1,...,q ri goes to infinity. The conclusion follows by an application of the law

of total probability as can be seen in the proof of Theorem 1. �
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