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ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. In this article we characterize the range of the attenuated and non-attenuated X-ray

transform of compactly supported symmetric tensor fields in the Euclidean plane. The characteriza-

tion is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. INTRODUCTION

We consider here the problem of the range characterization of (non)-attenuated X-ray transform

of a real valued symmetric m-tensors in a strictly convex bounded domain in the Euclidean plane.

As the X-ray and Radon transform [38] for planar functions (0-tensors) differ merely by the way

lines are parameterized, the m = 0 case is the classical Radon transform [38], for which the range

characterization has been long established independently by Gelfand and Graev [13], Helgason

[14], and Ludwig [22]. Models in the presence of attenuation have also been considered in the

homogeneous case [21, 2], and in the non-homogeneous case in the breakthrough works [3, 32, 33],

and subsequently [28, 6, 5, 17, 25]. The references here are by no means exhaustive.

The interest in the range characterization problem in the 0-tensors case stems out from their

applications to data enhancement in medical imaging methods such as Single Photon Emission

Computed Tomography or Positron Emission Computed Tomography [27, 12]. The X-ray trans-

form of 1-tensors (Doppler transform [29, 46]) appears in the investigation of velocity distribution

in a flow [7], in ultrasound tomography [47, 44], and also in non-invasive industrial measurements

for reconstructing the velocity of a moving fluid [30, 31]. The X-ray transform of second order

tensors arises as the linearization of the boundary rigidity problem [46]. The case of tensor fields of

rank four describes the perturbation of travel times of compressional waves propagating in slightly

anisotropic elastic media [46, Chapters 6,7]. Thus, due to the various applications the range char-

acterization problem has been a continuing subject of research.

Unlike the scalar case, the X-ray transform of tensor fields has a non-zero kernel, and the null-

space becomes larger as the order of the tensor field increases. For tensors of orderm ≥ 1, it is easy

to check that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors,

and it is possible to reconstruct uniquely (without additional information of moment ray transforms

[46]) only the solenoidal part of a tensor field. The non-injectivity of the X-ray transform makes

the range characterization problem even more interesting.

For the attenuating media in planar domains, interesting enough, the 1-tensor field can be recov-

ered in the regions of positive absorption as shown in [18, 5, 48, 40], without using some addi-

tional data information [45, 9, 23]. It is due to a surprising fact that the two-dimensional attenuated

Doppler transform with positive attenuation is injective while the non-attenuated Doppler transform

is not.
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The systematic study of tensor tomography in non-Euclidean spaces originated in [46]. On sim-

ple Riemannian surfaces, the range characterization of the geodesic X-ray of compactly supported

0 and 1-tensors has been established in terms of the scattering relation in [37], and the results were

extended in [4, 11, 20] to symmetric tensors of arbitrary order. Explicit inversion approaches in the

Euclidean case have been proposed in [17, 10, 24]. In the attenuating media, tensor tomography was

solved for the cases m = 0, 1 in [43]. Inversion for the attenuated X-ray transform for solenoidal

tensors of rank two and higher can be found in [35], with a range characterization in [36, 25, 4].

The original characterization in [13, 14, 22] was extended to arbitrary symmetric m-tensors in

[34]; see [10] for a partial survey on the tensor tomography in the Euclidean plane. The connection

between the Euclidean version of the characterization in [37] and the characterization in [13, 14, 22]

was established in [24]. Recently, in [41] the connection between the range characterization result

in [39] and the original range characterization in [13, 14, 22] has been established.

In here we build on the results in [39, 40, 42], and extends them to symmetric tensor fields

of any arbitrary order. In particular, the range characterization therein are given in terms of the

Bukhgeim-Hilbert transform [39] (the Hilbert-like transform associated with A-analytic maps in

the sense of Bukhgeim [8]). The characterization in here can be viewed as an explicit description

of the scattering relation in [35, 36] particularized to the Euclidean setting. In the sufficiency part

we reconstruct all possible m-tensors yielding identical X-ray data; see (43) and (69) for the non-

attenuated case and (94) and (122) for the attenuated case.

This article is organized as follows: All the details establishing notations and basic properties

of symmetric tensor fields needed here are in Section 2. In Section 3 we briefly recall existing

results on A-analytic maps that are used in the proofs. In Section 4 and Section 5, we provide

range characterization of symmetric tensor field f of even order, respectively, odd order in the non-

attenuated case. In Section 6 and Section 7, we provide range characterization of symmetric tensor

field f of even order, respectively, odd order in the attenuated case.

2. PRELIMINARIES

Given an integer m ≥ 0, let Tm(R2) denote the space of all real-valued covariant tensor fields of

rank m:

f(x1, x2) = fi1···im(x
1, x2)dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxim , i1, · · · , im ∈ {1, 2},(1)

where ⊗ is the tensor product, fi1···im are the components of tensor field f in the Cartesian basis

(x1, x2), and where by repeating superscripts and subscripts in a monomial a summation from 1 to

2 is meant.

We denote by Sm(R2) the space of symmetric covariant tensor fields of rank m on R2. Let

σ : Tm(R2) → Sm(R2) be the canonical projection (symmetrization) defined by (σf)i1···im =
1

m!

∑

π∈Πm

fiπ(1)···iπ(m)
, where the summation is over the group Πm of all permutations of the set

{1, · · · , m}.

A planar covariant symmetric tensor field of rank m has m + 1 independent component, which

we denote by

f̃k := f1 · · · 1
︸ ︷︷ ︸

m−k

2 · · ·2
︸ ︷︷ ︸

k

, (k = 0, · · · , m),(2)
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in connection with this, a symmetric tensor f = (fi1···im, i1, · · · , im = 1, 2) of rank m will be given

by a pseudovector of size m+ 1

f = (f̃0, f̃1, · · · , f̃m−1, f̃m).

We identify the plane R2 by the complex plane C, z1 ≡ z = x1 + ıx2, z2 ≡ z̄ = x1 − ıx2. We

consider the Cauchy-Riemann operators

∂

∂z1
≡

∂

∂z
:=

1

2

(
∂

∂x1
− ı

∂

∂x2

)

,
∂

∂z2
≡

∂

∂z̄
:=

1

2

(
∂

∂x1
+ ı

∂

∂x2

)

,(3)

and the inverse relation by
∂

∂x1
=

∂

∂z
+

∂

∂z̄
,

∂

∂x2
= ı

∂

∂z
− ı

∂

∂z̄
.

Let f = (fi1···im(x
1, x2), i1, · · · , im = 1, 2) be real valued symmetricm-tensor field in Cartesian

coordinates (x1, x2), then in complex coordinates (z1, z2) it will have new components (Fi1···im(z, z̄)),
which are formally expressed by the covariant tensor law:

(4)
Fi1···im(z, z̄) =

∂xs1

∂zi1
· · ·

∂xsm

∂zim
fs1···sm(x

1, x2), and

fi1···im(x
1, x2) =

∂zs1

∂xi1
· · ·

∂zsm

∂xim
Fs1···sm(z, z̄),

where the Jacobian matrix has the form

J :=

(
∂x1

∂z1
∂x1

∂z2
∂x2

∂z1
∂x2

∂z2

)

=
1

2

(
1 1
−ı ı

)

, and J−1 =

(
∂z1

∂x1
∂z1

∂x2
∂z2

∂x1
∂z2

∂x2

)

=

(
1 ı
1 −ı

)

.

Adopting the notation in [17], we shall write the transformations (4) as

(5)
f = {fi1···im(x

1, x2)}  F = {Fi1···im(z, z̄)}, and

F = {Fi1···im(z, z̄)}  f = {fi1···im(x
1, x2)}.

A symmetric tensor F of rank m, obtained from the real symmetric tensor f by passing to com-

plex variables, we also define a pseudovector (F0, F1, · · · , Fm−1, Fm) with components

Fk = F1 · · ·1
︸ ︷︷ ︸

m−k

2 · · ·2
︸ ︷︷ ︸

k

, k = 0, · · · , m,(6)

and subject to the conditions

Fk = Fm−k, k = 0, · · · , m.(7)

Taking into account the tensor law (4), we obtain formulas relating the components of pseudovec-

tors in (2) and pseudovectors in (6):

Fk =
(−ı)m−k

2m

m−k∑

q=0

k∑

p=0

(
m− k

q

)(
k

p

)

ık−p+qf̃p+q, k = 0, 1, · · · , m,(8)

f̃k = ık
m−k∑

q=0

k∑

p=0

(
m− k

q

)(
k

p

)

(−1)k−pFp+q, k = 0, 1, · · · , m.(9)

In Cartesian coordinates covariant and contravariant components are the same, and thus con-

travariant components of the tensor field f coincide with its corresponding covariant components,

fi1···im = f i1···im . The dot product on Sm(R2) induced by the Euclidean metric is defined by

〈f ,h〉 := fi1···imh
i1···im .(10)
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Note that if f1  F1 and f2  F2, then the pointwise inner product of tensors is invariant:

〈f1, f2〉 = 〈F1,F2〉.(11)

For θ = (θ1, θ2) = (cos θ, sin θ) ∈ S
1, we denote by θm the tensor product θm := θ ⊗ θ ⊗ · · · ⊗ θ

︸ ︷︷ ︸

m

and θm will be an m-contravariant tensor in Cartesian coordinates. According to the tensor law for

contravariant components its representation in complex coordinates will look like

θ  Θ, Θk =
∂zk

∂xs
θs, Θ = (Θ1,Θ2) = (eıθ, e−ıθ),

and Θm := Θ⊗Θ⊗ · · · ⊗Θ
︸ ︷︷ ︸

m

be an m-contravariant tensor, and we also have θm  Θm.

Using (11), we get

(12)

〈f , θm〉 = 〈F,Θm〉 =

m∑

k=0

(
m

k

)

Fk e
ıθ(m−k)e−ıθk =

m∑

k=0

(
m

k

)

Fke
ı(m−2k)θ

=







q
∑

k=0

f−2ke
ı(2k)θ +

q
∑

k=1

f2ke
−ı(2k)θ, (if m = 2q, q ≥ 0),

q
∑

k=0

f−(2k+1)e
ı(2k+1)θ + f2k+1e

−ı(2k+1)θ, (if m = 2q + 1, q ≥ 0),

where

f−2k =

(
2q

q − k

)

Fq−k, 0 ≤ k ≤ q, q ≥ 0,
(

q =
m

2
, m even

)

,(13)

f−(2k+1) =

(
2q + 1

q − k

)

Fq−k, 0 ≤ k ≤ q, q ≥ 0,

(

q =
m− 1

2
, m odd

)

,(14)

and fn = f−n and Fn = Fm−n, for 0 ≤ n ≤ m.

Let f be a real valued symmetric m-tensor, with integrable components of compact support in

R2, and a ∈ L1(R2) a real valued function. The attenuated X-ray transform of f is given by

(15) Xaf(x, θ) :=

∫ ∞

−∞

〈f(x+ tθ), θm〉 exp

{

−

∫ ∞

t

a(x+ sθ)ds

}

dt,

where x ∈ R2, θ ∈ S1, and 〈·, ·〉 is the inner product in (10). For the non attenuated case (a ≡ 0),
we use the notation Xf .

In here, we consider the tensor field f be defined on a strongly convex bounded set Ω ⊂ R2 with

vanishing trace at the boundary Γ; further regularity and the order of vanishing will be specified in

the theorems. In the statements below we use the notations in [46]:

Cµ(Sm; Ω) = {f = (fi1···im) ∈ Sm(Ω) : fi1···im ∈ Cµ(Ω)}

0 < µ < 1, for the space of real valued, symmetric tensor fields of order m with locally Hölder

continuous components. Similarly, L1(Sm; Ω) denotes the tensor fields of order m with integrable

components.

For any (x, θ) ∈ Ω× S1, let τ(x, θ) be length of the chord passing through x in the direction of

θ. Let also consider the incoming (−), respectively outgoing (+) submanifolds of the unit bundle
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restricted to the boundary

Γ± := {(x, θ) ∈ Γ× S
1 : ±θ · ν(x) > 0},(16)

and the variety

Γ0 := {(x, θ) ∈ Γ× S
1 : θ · ν(x) = 0},(17)

where ν(x) denotes outer normal.

The a-attenuated X-ray transform of f is realized as a function on Γ+ by

Xaf(x, θ) =

∫ 0

−τ(x,θ)

〈f(x+ tθ) , θm〉 e−
∫ 0
t
a(x+sθ)ds dt, (x, θ) ∈ Γ+.(18)

We approach the range characterization via the well-known connection with the transport model

as follows: The boundary value problem

θ · ∇u(x, θ) + a(x)u(x, θ) = 〈f(x), θm〉, (x, θ) ∈ Ω× S
1,(19a)

u|Γ−
= 0,(19b)

has a unique solution in Ω× S1 and

u|Γ+(x, θ) = Xaf(x, θ), (x, θ) ∈ Γ+.(20)

The range characterization is given in terms of the trace

g := u|Γ×S1=

{
Xaf , on Γ+,
0, on Γ− ∪ Γ0.

(21)

We note that from (12), the expression 〈f , θm〉 in the transport equation (19a) is represented in

the Fourier decomposition in θ as in terms of the following Fourier modes:

〈f , θm〉 =

{

f0 + f±2e
∓2ıθ + f±4e

∓4ıθ + · · ·+ f±me
∓mıθ (m even),

f±1e
∓ıθ + f±3e

∓3ıθ + · · ·+ f±me
∓mıθ (m odd).

3. INGREDIENTS FROM A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later.

For 0 < µ < 1, p = 1, 2, we consider the Banach spaces:

(22)

l1,p∞ (Γ ) :=

{

g = 〈g0, g−1, g−2, ...〉 : ‖g‖l1,p∞ (Γ ) := sup
ξ∈Γ

∞∑

j=0

〈j〉p|g−j(ξ)| <∞

}

,

Cµ(Γ ; l1) :=






g = 〈g0, g−1, g−2, ...〉 : sup

ξ∈Γ
‖g(ξ)‖l1

+ sup
ξ,η∈Γ
ξ 6=η

‖g(ξ)− g(η)‖l1
|ξ − η|µ

<∞






,

Yµ(Γ ) :=






g : g ∈ l1,2∞ (Γ ) and sup

ξ,η∈Γ
ξ 6=η

∞∑

j=0

〈j〉
|g−j(ξ)− g−j(η)|

|ξ − η|µ
<∞






,

where l∞(, l1) is the space of bounded (, respectively summable) sequences, and for brevity, we use

the notation 〈j〉 = (1 + |j|2)1/2. Similarly, we consider Cµ(Ω; l1), and Cµ(Ω; l∞).
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A sequence valued map Ω ∋ z 7→ v(z) := 〈v0(z), v−1(z), v−2(z), ...〉 in C(Ω; l∞) ∩ C1(Ω; l∞)
is called Lk-analytic (in the sense of Bukhgeim), k = 1, 2, if

(23) ∂v(z) + Lk∂v(z) = 0, z ∈ Ω,

where L is the left shift operator L〈v0, v−1, v−2, · · · 〉 = 〈v−1, v−2, · · · 〉, and L2 = L ◦ L.

Bukhgeim’s original theory in [8] shows that solutions of (23), satisfy a Cauchy-like integral

formula,

v(z) = B[v|Γ ](z), z ∈ Ω,(24)

where B is the Bukhgeim-Cauchy operator acting on v|Γ . We use the formula in [12], where B is

defined component-wise for n ≥ 0 by

(25)

(Bg)−n(z) :=
1

2πı

∫

Γ

g−n(ζ)

ζ − z
dζ +

1

2πı

∫

Γ

{
dζ

ζ − z
−

dζ

ζ − z

} ∞∑

j=1

g−n−j(ζ)

(
ζ − z

ζ − z

)j

, z ∈ Ω.

The following regularity result in [39, Proposition 4.1] is needed.

Proposition 3.1. [39, Proposition 4.1] Let µ > 1/2 and g = 〈g0, g−1, u−2, ...〉 be the sequence

valued map of non-positive Fourier modes of g.

(i) If g ∈ Cµ(Γ ;C1,µ(S1)), then g ∈ l1,1∞ (Γ ) ∩ Cµ(Γ ; l1).
(ii) If g ∈ Cµ(Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), then g ∈ Yµ(Γ ).

Similar to the analytic maps, the traces of L-analytic maps on the boundary must satisfy some

constraints, which can be expressed in terms of a corresponding Hilbert-like transform introduced

in [39]. More precisely, the Bukhgeim-Hilbert transform H acting on g,

Γ ∋ z 7→ (Hg)(z) = 〈(Hg)0(z), (Hg)−1(z), (Hg)−2(z), ...〉(26)

is defined component-wise for n ≥ 0 by

(27)

(Hg)−n(z) =
1

π

∫

Γ

g−n(ζ)

ζ − z
dζ +

1

π

∫

Γ

{
dζ

ζ − z
−

dζ

ζ − z

} ∞∑

j=1

g−n−j(ζ)

(
ζ − z

ζ − z

)j

, z ∈ Γ,

and we refer to [39] for its mapping properties.

Note that the Bukhgeim-Cauchy integral formula in (25) above is restated in terms of L-analytic

maps as opposed to L2-analytic as in [39]. The only change is the index relabeling. In particular,

the index g−n−j will change to g−n−2j therein to account for L2-analytic. Moreover, the same index

relabelling in the Bukhgeim-Hilbert transform formula (27) is made to account for the difference

between L-analytic and L2-analytic.

The following result recalls the necessary and sufficient conditions for a sufficiently regular map

to be the boundary value of an Lk-analytic function, k = 1, 2.

Theorem 3.1. Let 0 < µ < 1, and k = 1, 2. Let B be the Bukhgeim-Cauchy operator in (25).

Let g = 〈g0, g−1, g−2, ...〉 ∈ Yµ(Γ ) for µ > 1/2 be defined on the boundary Γ, and let H be the

Bukhgeim-Hilbert transform acting on g as in (27).

(i) If g is the boundary value of an Lk-analytic function, then Hg ∈ Cµ(Γ ; l1) and satisfies

(I + ıH)g = 0.(28)
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(ii) If g satisfies (28), then there exists an Lk-analytic function v := Bg ∈ C1,µ(Ω; l1)∩C
µ(Ω; l1)∩

C2(Ω; l∞), such that

v|Γ= g.(29)

For the proof of Theorem 3.1 we refer to [39, Theorem 3.2, Corollary 4.1, and Proposition 4.2]

and [40, Proposition 2.3].

Another ingredient, in addition to L2-analytic maps, consists in the one-to-one relation between

solutions u := 〈u0, u−1, u−2, ...〉 satisfying

∂u−n(z) + ∂u−n−2(z) + a(z)u−n−1(z) = 0, z ∈ Ω, n ≥ 0,(30)

and the L2-analytic map v = 〈v0, v−1, v−2, ...〉 satisfying

∂v−n(z) + ∂v−n−2(z) = 0, z ∈ Ω, n ≥ 0;(31)

via a special function h, see [42, Lemma 4.2] for details. The function h is defined as

h(z, θ) := Da(z, θ)−
1

2
(I − ıH)Ra(z · θ⊥, θ⊥),(32)

where θ⊥ is the counter-clockwise rotation of θ by π/2, Ra(s, θ⊥) =

∫ ∞

−∞

a
(
sθ⊥ + tθ

)
dt is the

Radon transform in R2 of the attenuation a, Da(z, θ) =

∫ ∞

0

a(z + tθ)dt is the divergent beam

transform of the attenuation a, and Hh(s) =
1

π

∫ ∞

−∞

h(t)

s− t
dt is the classical Hilbert transform [26],

taken in the first variable and evaluated at s = z· θ⊥. The function h appeared first in [27] and

enjoys the crucial property of having vanishing negative Fourier modes yielding the expansions

e−h(z,θ) :=

∞∑

k=0

αk(z)e
ıkθ, eh(z,θ) :=

∞∑

k=0

βk(z)e
ıkθ, (z, θ) ∈ Ω× S

1.(33)

Using the Fourier coefficients of e±h, define the integrating operators e±Gu component-wise for

each n ≤ 0, by

(e−Gu)n = (α ∗ u)n =

∞∑

k=0

αkun−k, and (eGu)n = (β ∗ u)n =

∞∑

k=0

βkun−k,(34)

where α and β is given by

Ω ∋ z 7→ α(z) := 〈α0(z), α1(z), α2(z), ..., 〉, Ω ∋ z 7→ β(z) := 〈β0(z), β1(z), β2(z), ..., 〉.

Note that e±G can also be written in terms of left translation operator as

e−Gu =
∞∑

k=0

αkL
ku, and eGu =

∞∑

k=0

βkL
ku,(35)

whereLk is the k-th composition of left translation operator. It is important to note that the operators

e±G commute with the left translation, [e±G, L] = 0. We refer [42, Lemma 4.1] for the properties of

h, and we restate the following result [39, Proposition 5.2] to incorporate the operators e±G notation

used in here.
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Proposition 3.2. [39, Proposition 5.2] Let a ∈ C1,µ(Ω), µ > 1/2. Then α, ∂α,β, ∂β ∈ l1,1∞ (Ω),
and the operators

(36)

(i) e±G : Cµ(Ω; l∞) → Cµ(Ω; l∞);

(ii) e±G : Cµ(Ω; l1) → Cµ(Ω; l1);

(iii) e±G : Yµ(Γ ) → Yµ(Γ ).

Lemma 3.1. [40, Lemma 4.2] Let a ∈ C1,µ(Ω), µ > 1/2, and e±G be operators as defined in (34).

(i) If u ∈ C1(Ω, l1) solves ∂u + L2∂u + aLu = 0, then v = e−Gu ∈ C1(Ω, l1) solves ∂v +
L2∂v = 0.

(ii) Conversely, if v ∈ C1(Ω, l1) solves ∂v + L2∂v = 0, then u = eGv ∈ C1(Ω, l1) solves

∂u+ L2∂u+ aLu = 0.

4. EVEN ORDER m-TENSOR - NON-ATTENUATED CASE

We establish necessary and sufficient conditions for a sufficiently smooth function on Γ × S
1 to

be the non-attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field f

of even order m = 2q, q ≥ 0. In this non-attenuated case, the transport equation (19a) becomes

θ · ∇u(x, θ) =

q
∑

k=−q

f2k(x)e
−ı(2k)θ, x ∈ Ω,(37)

where f2k defined in (13), and f2k = f−2k, for −q ≤ k ≤ q, q ≥ 0. Note that f0 is real-valued

while other modes are complex conjugates.

For z = x1 + ıx2 ∈ Ω, the advection operator θ · ∇ in complex notation becomes e−ıθ∂ + eıθ∂,

where θ = (cos θ, sin θ), and ∂, ∂ are the Cauchy-Riemann operators in (3).

If
∑

n∈Z

un(z)e
ınθ is the Fourier series expansion in the angular variable θ of a solution u of (37),

then, provided some sufficient decay (to be specified later) of un to allow regrouping, the equation

(37) reduces to the system:

∂u−(2n−1)(z) + ∂u−(2n+1)(z) = f2n(z), 0 ≤ n ≤ q, q ≥ 0,(38)

∂u−(2n−1)(z) + ∂u−(2n+1)(z) = 0, n ≥ q + 1, q ≥ 0,(39)

∂u−2n(z) + ∂u−(2n+2)(z) = 0, n ≥ 0.(40)

Recall that the trace u|Γ×S1:= g as in (21), with g = Xf on Γ+ and g = 0 on Γ− ∪ Γ0.
The range characterization is given in terms of the Fourier modes of g in the angular variables:

g(ζ, θ) =

∞∑

n=−∞

gn(ζ)e
ınθ, ζ ∈ Γ.

Since the trace g is also real valued, its Fourier modes will satisfy g−n = gn, for n ≥ 0.
From the non-positive Fourier modes, we built the sequences

geven := 〈g0, g−2, g−4, ...〉, and godd := 〈g−1, g−3, g−5, ...〉.(41)

From the negative odd modes starting from mode (2q + 1), we built the sequence

Lqgodd := 〈g−(2q+1), g−(2q+3), g−(2q+5), ...〉, q ≥ 0,(42)

where Lq is the q-th composition of left translation operator.
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We characterize next the non-attenuated X-ray data g in terms of the Bukhgeim-Hilbert Trans-

form H in (27). We will construct the solution u of the transport equation (37), whose trace matches

the boundary data g, and also construct the right hand side of the (37). The construction of solution

u is in terms of its Fourier modes in the angular variable. We first construct the non-positive Fourier

modes and then the positive Fourier modes are constructed by conjugation. For even m = 2q,

q ≥ 1, apart from q many Fourier modes u−1, u−3, · · ·u−(2q−1), all non-positive Fourier modes are

defined by Bukhgeim-Cauchy integral formula (25) using boundary data. Other than having the

traces u−(2j−1)

∣
∣
Γ

= g−(2j−1), 1 ≤ j ≤ q, q ≥ 1, on the boundary, the q many Fourier modes

u−(2j−1), 1 ≤ j ≤ q, q ≥ 1, are unconstrained. They are chosen arbitrarily from the class Ψeven
g of

functions of cardinality q = m
2

with prescribed trace on the boundary Γ defined as

Ψeven
g :=

{(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈
(
C1,µ(Ω;C)

)q
, 2µ > 1 :

ψ−(2j−1)

∣
∣
Γ
= g−(2j−1), 1 ≤ j ≤ q, q ≥ 1

}

.(43)

Remark 4.1. In the 0-tensor case (m = 0), there is no class, and the characterization of the X-ray

data g is in terms of the Fourier modes g.

Theorem 4.1 (Range characterization for even order tensors). (i) Let f ∈ C1,µ
0 (Sm; Ω), µ > 1/2,

be a real-valued symmetric tensor field of even order m = 2q, q ≥ 0, and

g = Xf on Γ+ and g = 0 on Γ− ∪ Γ0.

Then geven, godd ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) satisfy

[I + ıH]geven = 0,(44)

[I + ıH]L
m
2 godd = 0,(45)

where geven, godd are sequences in (41), and H is the Bukhgeim-Hilbert operator in (27).

(ii) Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. For q = 0,

if the corresponding sequences geven, godd ∈ Yµ(Γ ) satisfies (44) and (45), then there is a unique

real valued symmetric 0-tensor f such that g|Γ+= Xf . Moreover, for q ≥ 1, if geven, godd ∈ Yµ(Γ )
satisfies (44) and (45), and for each element

(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψeven

g , then there is a

unique real valued symmetric m-tensors fΨ ∈ Cµ(Sm; Ω) such that g|Γ+= XfΨ.

Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C1,µ

0 (Ω)
are compactly supported inside Ω, then for any point at the boundary there is a cone of lines which

do not meet the support. Thus g ≡ 0 in the neighborhood of the variety Γ0 which yields g ∈
C1,µ(Γ × S1). Moreover, g is the trace on Γ × S1 of a solution u ∈ C1,µ(Ω × S1) of the transport

equation (37). By [39, Proposition 4.1] geven, godd ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1).
If u solves (37) then its Fourier modes satisfy (38), (39), and (40). Since the negative even Fourier

modes u2n for n ≤ 0, satisfies the system (40), then the sequence valued map

Ω ∋ z 7→ ueven(z) := 〈u0(z), u−2(z), u−4(z), u−6(z), · · · 〉

is L-analytic in Ω and the necessity part in Theorem 3.1 yields the condition (44).

The equation (39) for negative odd Fourier modes starting from negative 2q + 1 mode, yield that

the sequence valued map

z 7→ 〈u−(2q+1), u−(2q+3), u−(2q+5), ...〉

is L-analytic in Ω and the necessity part in Theorem 3.1 gives the condition (45).
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(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0.

Since g is real valued, its Fourier modes in the angular variable occurs in conjugates

g−n(ζ) = gn(ζ), for n ≥ 0, ζ ∈ Γ.(46)

Let the corresponding sequences geven satisfying (44) and godd satisfying (45). By Proposition (3.1),

geven, godd ∈ Yµ(Γ ).
Let m = 2q, q ≥ 0, be an even integer. To prove the sufficiency we will construct a real valued

symmetric m-tensor f in Ω and a real valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such that

u|Γ×S1= g and u solves (37) in Ω. The construction of such u is in terms of its Fourier modes in

the angular variable and it is done in several steps.

Step 1: The construction of even modes u2n for n ∈ Z.

Apply the Bukhgeim-Cauchy Integral operator (25) to construct the negative even Fourier modes:

〈u0(z), u−2(z), u−4(z), u−6(z), ...〉 := Bgeven(z), z ∈ Ω.(47)

By Theorem 3.1, the sequence valued map

z 7→ 〈u0(z), u−2(z), u−4(z), ...〉 ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1),

is L-analytic in Ω, thus the equations

∂u−2n + ∂u−2n−2 = 0,(48)

are satisfied for all n ≥ 0. Moreover, the hypothesis (44) and the sufficiency part of Theorem 3.1

yields that they extend continuously to Γ and u−2n|Γ = g−2n, for all n ≥ 0.

Construct the positive even Fourier modes by conjugation: u2n := u−2n, for all n ≥ 1.

By conjugating (48) we note that the positive even Fourier modes also satisfy

∂u2n+2 + ∂u2n = 0, n ≥ 0.

Moreover, by reality of g in (46) they extend continuously to Γ and

u2n|Γ = u−2n|Γ = g−2n = g2n, n ≥ 1.

Thus, as a summary from above equations, we have shown that the even modes u2n satisfy

(49) ∂u2n + ∂u2n−2 = 0, and u2n
∣
∣
Γ
= g2n, for all n ∈ Z.

Step 2: The construction of odd modes u2n−1 for |n| ≥ q, q ≥ 0.

Apply the Bukhgeim-Cauchy Integral operator (25) to construct the other odd negative modes:

〈u−(2q+1)(z), u−(2q+3)(z), · · · 〉 := BLqgodd(z), z ∈ Ω.(50)

By Theorem 3.1, the sequence valued map

z 7→ 〈u−(2q+1)(z), u−(2q+3)(z), u−(2q+5)(z), ..., 〉 ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1),

is L-analytic in Ω, thus the equations

∂u−(2n+1) + ∂u−(2n+3) = 0,(51)

are satisfied for all n ≥ q, q ≥ 0. Moreover, the hypothesis (45) and the sufficiency part of Theorem

3.1 yields that they extend continuously to Γ and

u−(2n+1)|Γ = g−(2n+1), ∀n ≥ q, q ≥ 0.(52)

Construct the positive odd Fourier modes by conjugation: u2n+1 := u−(2n+1), for all n ≥ q, q ≥ 0.

By conjugating (51) we note that the positive odd Fourier modes also satisfy

∂u2n+3 + ∂u2n+1 = 0, ∀n ≥ q, q ≥ 0.(53)
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Moreover, by (46) they extend continuously to Γ and

u2n+1|Γ = u−(2n+1)|Γ = g−(2n+1) = g2n+1, n ≥ q, q ≥ 0.(54)

Step 3: The construction of the tensor field f in the q = 0 case. In the case of the 0-tensor,

f = f0, and f0 is uniquely determined from the odd Fourier mode u−1 in (50), by

f0 := 2Re ∂u−1, (for q = 0 case).(55)

We consider next the case q ≥ 1 of tensors of order 2 or higher. In this case the construction of

the tensor field fΨ is in terms of the Fourier mode u−(2q+1) in (50) and the class Ψeven
g in (43).

Step 4: The construction of odd modes u±(2n−1), for 1 ≤ n ≤ q, q ≥ 1.

Recall the non-uniqueness class Ψeven
g in (43).

For
(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψeven

g arbitrary, define the modes u±1, u±3, ..., u±(2q−1) in Ω by

(56) u−(2n−1) := ψ−(2n−1) and u2n−1 := ψ−(2n−1), 1 ≤ n ≤ q, q ≥ 1.

By the definition of the class (43), and the reality of g in (46), we have

(57) u−(2n−1)|Γ = g−(2n−1), and u2n−1|Γ= g−(2n−1) = g2n−1, 1 ≤ n ≤ q, q ≥ 1.

Step 5: The construction of the tensor field fΨ whose X-ray data is g.

The components of the m-tensor fΨ are defined via the one-to-one correspondence between the

pseudovectors 〈f̃0, f̃1, · · · , f̃m〉 and the functions {f2n : −q ≤ n ≤ q} as follows.

For q ≥ 1, we define f2q by using ψ−(2q−1) from the non-uniqueness class (43), and Fourier mode

u−(2q+1) from the Bukhgeim-Cauchy formula (50). Then, define {f2n : 0 ≤ n ≤ q−1} solely from

the information in the non-uniqueness class. Finally, define {f−2n : 1 ≤ n ≤ q} by conjugation.

(58)

f2q := ∂ψ−(2q−1) + ∂u−(2q+1), q ≥ 1,

f2n := ∂ψ−(2n−1) + ∂ψ−(2n+1), 1 ≤ n ≤ q − 1, q ≥ 2,

f0 := 2Re ∂ψ−1, q ≥ 1, and

f−2n := f2n, 1 ≤ n ≤ q, q ≥ 1,

By construction, f2n ∈ Cµ(Ω), for −q ≤ n ≤ q, as ψ−1, · · · , ψ−2q+1 ∈ C1,µ(Ω). We use these

Fourier modes f0, f±2, f±4, · · · , f±2q for q ≥ 1, and equations (13), (7) and (9) to construct the

pseudovectors 〈f̃0, f̃1, · · · , f̃m〉, and thus the m-tensor field fΨ ∈ Cµ(Sm; Ω).
In order to show g|Γ+= XfΨ for q ≥ 1, with fΨ being constructed as in (58), we define the real

valued function u via its Fourier modes for q ≥ 1,

u(z, θ) =

∞∑

n=−∞

u2ne
ı2nθ +

∑

|n|≥q

u2n+1e
ı(2n+1)θ +

q
∑

n=1

ψ−(2n−1)e
−ı(2n−1)θ +

q
∑

n=1

ψ−(2n−1)e
ı(2n−1)θ.(59)

Since g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), we use Proposition 3.1 (ii) and [39, Proposition

4.1 (iii)] to conclude that u defined in (59) belongs to C1,µ(Ω×S1)∩Cµ(Ω×S1). Using (49), (52),

(54), (57), and definition of
(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψeven

g for q ≥ 1, the trace u(·, θ) in (59)

extends to the boundary,

u(·, θ)|Γ= g(·, θ).
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Since u ∈ C1,µ(Ω × S
1) ∩ Cµ(Ω × S

1), then the term by term differentiation in (59) is now

justified, and u satisfy (37):

θ · ∇u = ∂ ψ−1 + ∂ψ−1 +

q−1
∑

n=1

(∂ψ−(2n−1) + ∂ψ−(2n+1))e
−ı(2n)θ +

q−1
∑

n=1

(∂ ψ−(2n+1) + ∂ψ−(2n−1))e
ı(2n)θ

+ e−ı(2q)θ(∂ψ−(2q−1) + ∂u−(2q+1)) + eı(2q)θ(∂ψ−(2q−1) + ∂ u−(2q+1))

=

q
∑

n=−q

f2n(z)e
−ı(2n)θ = 〈f , θ2q〉,

where the cancellation uses equations (49), (51), (53), (56), and the second equality uses the defi-

nition of f2k’s in (58).

�

5. ODD ORDER m-TENSOR - NON-ATTENUATED CASE

In this section we establish necessary and sufficient conditions for a sufficiently smooth function

on Γ × S1 to be the non-attenuated X-ray data of some sufficiently smooth real valued symmetric

tensor field f of odd order m = 2q + 1, q ≥ 0.

In the non-attenuated odd m-tensor case, the transport equation (19a) becomes

θ · ∇u(z, θ) =

q
∑

n=0

(
f2n+1(z)e

−ı(2n+1)θ + f−(2n+1)(z)e
ı(2n+1)θ

)
, (z, θ) ∈ Ω× S

1,(60)

where f2n+1 defined in (14), and f2n+1 = f−2n−1, for 0 ≤ n ≤ q, q ≥ 0.

If
∑

n∈Z

un(z)e
ınθ is the Fourier series expansion in the angular variable θ of a solution u of (60),

then, by identifying the Fourier modes of the same order, the equation (60) reduces to the system:

∂u−2n(z) + ∂u−(2n+2)(z) = f2n+1(z), 0 ≤ n ≤ q, q ≥ 0,(61)

∂u−2n(z) + ∂u−(2n+2)(z) = 0, n ≥ q + 1, q ≥ 0,(62)

∂u−(2n−1)(z) + ∂u−(2n+1)(z) = 0, n ≥ 0.(63)

In the odd m-tensor case, the even and odd Fourier modes of u plays a different role, unlike

the even m-tensor case in the previous section. To emphasize this difference we separate the non-

positive even modes ueven := 〈u0, u−2, u−4...〉, and negative odd modes uodd := 〈u−1, u−3, ...〉, and

note that if 〈u0(z), u−1(z), u−2(z), ...〉 is L2-analytic, then ueven,uodd are L-analytic.

Let us consider the sequence {u2k−1}k≥1 ⊂ C(Ω; l∞) ∩ C1(Ω; l∞) given by

u2k−1 := 〈u2k−1, u2k−3, ...., u1, u−1, u−3, u−5, ...〉, k ≥ 1,(64)

obtained by augmenting the sequence of negative odd indices 〈u−1, u−3, u−5, ...〉 by k many terms

in the order u2k−1, u2k−3, ...., u1
︸ ︷︷ ︸

k

.

One of the ingredients in our characterization of the odd m-tensor is the following simple prop-

erty of L-analytic maps, shown in [39, Lemma 2.6].

Lemma 5.1. [39, Lemma 2.6] Let {u2k−1}k≥1 be the sequence of L-analytic maps defined in (64).

Assume that

u2k−1|Γ= u−(2k−1)|Γ , ∀k ≥ 1.(65)
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Then, for each k ≥ 1,

u2k−1(z) = u−(2k−1)(z), z ∈ Ω.(66)

The range characterization of data g will be given in terms of its Fourier modes:

g(ζ, θ) =

∞∑

n=−∞

gn(ζ)e
ınϕ, ζ ∈ Γ.

Since the trace g is also real valued, its Fourier modes will satisfy g−n = gn, for n ≥ 0. From the

non-positive even modes, we build the sequence

geven := 〈g0, g−2, g−4, g−6, ...〉.(67)

For each k ≥ 1, we use the odd modes {g−1, g−3, g−5, ...} to build the sequence

g2k−1 := 〈g2k−1, g2k−3, ...., g1, g−1, g−3, g−5, ...〉(68)

by augmenting the negative odd indices by k-many terms in the order g2k−1, g2k−3, ...., g1
︸ ︷︷ ︸

k

.

Similar to the non-attenuated even m-tensor case before, we will construct the solution u of the

transport equation (60), whose trace matches the boundary data g, and also construct the right hand

side of the (60). The construction of solution u is in terms of its Fourier modes in the angular

variable. Except for non-positive modes u0, u−2, · · · , u−2q, all non-positive modes are defined by

Bukhgeim-Cauchy integral formula in (25) using boundary data. Other than having the traces

u−2j

∣
∣
Γ
= g−2j, 0 ≤ j ≤ q, q ≥ 0, on the boundary, the q + 1 many Fourier modes u−2j, 0 ≤ j ≤

q, q ≥ 0, are unconstrained. They are chosen arbitrarily from the class of functions

Ψodd
g :=

{
(ψ0, ψ−2, · · · , ψ−2q) ∈ C1,µ(Ω;R)×

(
C1,µ(Ω;C)

)q
: 2µ > 1 :

ψ−2j

∣
∣
Γ
= g−2j, 0 ≤ j ≤ q, q ≥ 0

}

.(69)

Remark 5.1. In the 1-tensor case (m = 1), only Fourier mode u0 be an arbitrary function in

C1(Ω) ∩C(Ω) with u0|Γ = g0. The arbitrariness of u0 characterizes the non-uniqueness (up to the

gradient field of a function which vanishes at the boundary) in the reconstruction of a vector field

from its Doppler data.

Theorem 5.1 (Range characterization for odd tensors.). Let f ∈ C1,µ
0 (Sm; Ω), µ > 1/2, be a real-

valued symmetric tensor field of odd order m = 2q + 1, q ≥ 0, and

g = Xf on Γ+ and g = 0 on Γ− ∪ Γ0.

Then geven, g2k−1 ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) for k ≥ 1, and satisfy

[I + ıH]L
m+1

2 geven = 0,(70)

[I + ıH]g2k−1 = 0, ∀k ≥ 1,(71)

where geven is the sequence in (41), g2k−1 for k ≥ 1 is the sequence in (68), and H is the Bukhgeim-

Hilbert operator in (27).

(ii) Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. If the corre-

sponding sequence geven ∈ Yµ(Γ ) satisfies (70), g2k−1 ∈ Yµ(Γ ) for k ≥ 1, satisfies (71), and for

each element (ψ0, ψ−2, · · · , ψ−2q) ∈ Ψodd
g , then there is a unique real valued symmetric m-tensor

fΨ ∈ Cµ(Sm; Ω) such that g|Γ+= Xfψ.
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Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C1,µ

0 (Ω),
Xf ∈ C1,µ(Γ+), and, thus, the solution u to the transport equation (60) is inC1,µ(Ω×S1). Moreover,

its trace g = u|Γ×S1∈ C1,µ(Γ × S1). By [39, Proposition 4.1] geven, g2k−1 ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) for

all k ≥ 1.

If u solves (60) then its Fourier modes satisfy (61), (62), and (63). Since the negative even Fourier

modes u−2n for n ≥ m+1
2

, satisfies the system (62), then the sequence valued map

Ω ∋ z 7→ 〈u−(m+1)(z), u−(m+3)(z), u−(m+5)(z), · · · 〉

is L-analytic in Ω and the necessity part in Theorem 3.1 yields the condition (70).

The system (63) yield that the sequence valued map

Ω ∋ z 7→ u1(z) := 〈u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic in Ω with the trace satisfying u2k−1|Γ= g2k−1, for all k ≤ 1.

By Theorem 3.1 necessity part, the sequence g1 = 〈g1, g−1, g−3, ...〉 must satisfy

[I + ıH]g1 = 0.

Recall that u is real valued so that its Fourier modes occur in conjugates un = u−n for all n ≥ 0.

Consider now the equation (63) for n = 1 and take its conjugate to yield

∂u3 + ∂u1 = 0.(72)

Equation (72) together with (63) yield that the sequence valued map

Ω ∋ z 7→ u3(z) := 〈u3(z), u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic in Ω with the trace satisfying u2k−1|Γ= g2k−1 for all k ≤ 2.

By the necessity part in Theorem 3.1, it must be that g3 = 〈g3, g1, g−1, g−3, ...〉 satisfies

[I + ıH]g3 = 0.

Inductively, the argument above holds for any odd index 2k − 1 to yield that the sequence

Ω ∋ z 7→ u2k−1(z) := 〈u2k−1(z), u2k−3(z), ..., u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic in Ω. Then, again by the necessity part in Theorem 3.1, its trace u2k−1|Γ= g2k−1 must

satisfy the condition (71):

[I + ıH]g2k−1 = 0, for all k ≥ 1.

(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0.

Since g is real valued, its Fourier modes in the angular variable occurs in conjugates

g−n(ζ) = gn(ζ), for n ≥ 0, ζ ∈ Γ.(73)

Let the corresponding sequences geven satisfying (44) and godd satisfying (45). By Proposition (3.1),

geven, godd ∈ Yµ(Γ ).
Let m = 2q + 1, q ≥ 0, be an odd integer. To prove the sufficiency we will construct a real

valued symmetric m-tensor f in Ω and a real valued function u ∈ C1(Ω × S
1) ∩ C(Ω × S

1) such

that u|Γ×S1= g and u solves (60) in Ω. The construction of such u is in terms of its Fourier modes

in the angular variable and it is done in several steps.

Step 1: The construction of even modes u2n for |n| ≥ 2q + 1, q ≥ 0.

Apply the Bukhgeim-Cauchy integral formula (25) to construct the negative even Fourier modes:

〈u−2(q+1), u−2(q+2), u−2(q+3), ..., 〉 := BLq+1geven.(74)
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By Theorem 3.1, the sequence valued map

Ω ∋ z 7→ 〈u−2(q+1)(z), u−2(q+2)(z), u−2(q+3)(z), ...〉 ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1),

is L-analytic in Ω, thus the equations

∂u−2n + ∂u−(2n+2) = 0,(75)

are satisfied for all n ≥ q + 1, q ≥ 0. Moreover, the hypothesis (70) and the sufficiency part of

Theorem 3.1 yields that they extend continuously to Γ and

u−2n|Γ = g−2n, n ≥ q + 1, q ≥ 0.(76)

Construct the positive even Fourier modes by conjugation: u2n := u−2n, for all n ≥ q+1, q ≥ 0.

By conjugating (75) we note that the positive even Fourier modes also satisfy

∂u2n+2 + ∂u2n = 0, n ≥ q + 1, q ≥ 0.(77)

Moreover, by reality of g in (73), they extend continuously to Γ and

u2n|Γ = u−2n|Γ = g−2n = g2n, n ≥ q + 1, q ≥ 0.(78)

Step 2: The construction of even modes u2n, for |n| ≤ 2q, q ≥ 0.

Recall the non-uniqueness class Ψodd
g in (69).

For (ψ0, ψ−2, · · · , ψ−2q) ∈ Ψodd
g arbitrary, define the modes u0, u±2, u±4, ..., u±2q in Ω by

(79) u−2n := ψ−2n, and u2n := ψ−2n, 0 ≤ n ≤ q.

By the definition of the class (69), and reality of g in (73), we have

u2n|Γ= g−2n = g2n, 0 ≤ n ≤ q.(80)

Step 3: The construction of negative modes u2n−1 for n ∈ Z.

Use the Bukhgeim-Cauchy Integral formula (25) to construct the negative odd Fourier modes:

〈u−1(z), u−3(z), u−5(z), ...〉 := Bgodd(z), z ∈ Ω.(81)

By Theorem 3.1, the sequence valued map

Ω ∋ z 7→ 〈u−1(z), u−3(z), u−5(z), ...〉 ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1),

is L-analytic in Ω, thus the equations

∂u−2n−1 + ∂u−2n−3 = 0,(82)

are satisfied for all n ≥ 0.

Note that Lg1 = godd. By hypothesis (71), [I + ıH]g1 = 0. Since H commutes with the left

translation L, then

0 = L[I + ıH]g1 = [I + ıH]Lg1 = [I + ıH]godd.

By applying Theorem 3.1 sufficiency part, we have that each u2n−1 extends continuously to Γ:

u−2n−1|Γ = g−2n−1, n ≥ 1.

If we were to define the positive odd index modes by conjugating the negative ones (as we did

for the non-attenuated even tensor case) it would not be clear why the equation (63) for n = 0:

∂u1 + ∂u−1 = 0,

should hold. To solve this problem we will define the positive odd modes by using the Bukhgeim-

Cauchy integral formula (25) inductively.
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Let u1 = 〈u1, u
1
−1, u

1
−3, · · · 〉 be the L-analytic map defined by

u1 := Bg1.(83)

The hypothesis (71) for k = 1,

[I + ıH]g1 = 0,

allows us to apply the sufficiency part of Theorem 3.1 to yield that u1 extends continuously to Γ
and has trace g1 on Γ . However, Lu1 = uodd is also L-analytic with the same trace godd as uodd. By

the uniqueness of L-analytic maps with the given trace we must have the equality

〈u1−1, u
1
−3, · · · 〉 = 〈u−1, u−3, · · · 〉.

In other words the formula (83) constructs only one new function u1 and recovers the previously

defined negative odd functions u−1, u−3, .... In particular u1 = 〈u1, u−1, u−3, · · · 〉 is L-analytic,

and the equation ∂u1+ ∂u−1 = 0 holds in Ω. We stress here that, at this stage, we do not know that

u1 is the complex conjugate of u−1.

Inductively, for k ≥ 1, the formula

u2k−1 = 〈u2k−1, u
2k−1
2k−3, ..., u

2k−1
1 , u2k−1

−1 , · · · 〉 := Bg2k−1(84)

defines a sequence {u2k−1}k≥1 of L-analytic maps with u2k−1|Γ= g2k−1. By the uniqueness of

L-analytic maps with the given trace, a similar reasoning as above shows

Lu2k−1 = u2k−3, ∀k ≥ 2.

In particular for all k ≥ 1, the sequence

u2k−1 = 〈u2k−1, u2k−3, ..., u1, u−1, · · · 〉

is L-analytic. Note that the sequence {u2k−1}k≥1 constructed above satisfies the hypotheses of the

Lemma 5.1, and therefore for each k ≥ 1,

u2k−1(z) = u−(2k−1)(z), z ∈ Ω.(85)

We stress here that the identities (85) need the hypothesis (71) for all k ≥ 1, cannot be inferred

directly from the Bukhgeim-Cauchy integral formula (25) for finitely many k’s.

We have shown that

(86) ∂u2n−1 + ∂u2n−3 = 0, and u2n−1|Γ = g2n−1, ∀n ∈ Z.

Step 4: The construction of the tensor field fψ whose X-ray data is g.

The components of the m-tensor fΨ are defined via the one-to-one correspondence between the

pseudovectors 〈f̃0, f̃1, · · · , f̃m〉 and the functions {f±(2n+1) : 0 ≤ n ≤ q} as follows.

For q ≥ 0, we define f2q+1 by using ψ−2q from the non-uniqueness class in (69), and Fourier

mode u−(2q+2) from the Bukhgeim-Cauchy formula (74). Then, define {f2n+1 : 0 ≤ n ≤ q − 1}
solely from the information in the non-uniqueness class. Finally, define {f−(2n+1) : 0 ≤ n ≤ q}
by conjugation.

(87)

f2q+1 := ∂ψ−2q + ∂u−(2q+2), q ≥ 0,

f2n+1 := ∂ψ−2n + ∂ψ−(2n+2), 0 ≤ n ≤ q − 1, q ≥ 1, and

f−(2n+1) := f2n+1, 0 ≤ n ≤ q, q ≥ 0,
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By construction, f±(2n+1) ∈ Cµ(Ω), for 0 ≤ n ≤ q, as ψ0, ψ−2, · · · , ψ−2q ∈ C1,µ(Ω). We use

these Fourier modes f±1, f±3, · · · , f±m for m = 2q + 1, q ≥ 0, and equations (14), (7) and (9) to

construct the pseudovectors 〈f̃0, f̃1, · · · , f̃m〉, and thus the m-tensor field fΨ ∈ Cµ(Sm; Ω).
In order to show g|Γ+= XfΨ with fΨ being constructed from pseudovectors via Fourier modes as

in (87) from class Ψodd
g , we define the real valued function u via its Fourier modes

(88) u(z, θ) :=

∞∑

n=−∞

u2n−1(z)e
ı(2n−1)θ +

∑

|n|≥q+1

u2n(z)e
ı2nθ +

q
∑

n=0

ψ−2n(z)e
−ı2nθ +

q
∑

n=0

ψ−2n(z)e
ı2nθ.

Since g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), we use Proposition 3.1 (ii) and [39, Proposition 4.1

(iii)] to conclude that u defined in (88) belongs to C1,µ(Ω× S1) ∩ Cµ(Ω× S1).
Using (76), (78), (80), (86), and element (ψ0, ψ−2, · · · , ψ−2q) ∈ Ψodd

g , the u(·, θ) in (88) extends

to the boundary

u(·, θ)|Γ= g(·, θ),

Since u ∈ C1,µ(Ω × S1) ∩ Cµ(Ω × S1), then the term by term differentiation in (88) is now

justified, satisfying the transport equation (60):

θ · ∇u = 2Re
{
(∂ψ−2q + ∂u−(2q+2))e

ı(2q+1)θ
}
+ 2Re

{
q−1
∑

n=0

(∂ψ−2n + ∂ψ−(2n+2))e
ı(2n+1)θ

}

=

q
∑

n=0

(
f2n+1e

−ı(2n+1)θ + f−(2n+1)e
ı(2n+1)θ

)
= 〈f , θ2q+1〉,

where the cancellation uses equations (75), (77), (86), and the second equality uses the definition

of f2k+1’s in (87).

�

6. EVEN ORDER m-TENSOR - ATTENUATED CASE

Let a ∈ C2,µ(Ω), µ > 1/2, with min
Ω
a > 0. We now establish necessary and sufficient conditions

for a sufficiently smooth function on Γ × S
1 to be the attenuated X-ray data of some sufficiently

smooth real valued symmetric tensor field f of even order m = 2q, q ≥ 0. In this case a 6= 0, the

transport equation (19a) becomes

θ · ∇u(x, θ) + a(x)u(x, θ) =

q
∑

k=0

f−2ke
ı(2k)θ +

q
∑

k=1

f2ke
−ı(2k)θ,(89)

where f2k defined in (13), and f2k = f−2k, for −q ≤ k ≤ q, q ≥ 0.

If
∑

n∈Z

un(z)e
ınθ is the Fourier series expansion in the angular variable θ of a solution u of (89),

then by identifying the Fourier coefficients of the same order, equation (89) reduces to the system:

∂u−(2n−1)(z) + ∂u−(2n+1)(z) + au−2n(z) = f2n(z), 0 ≤ n ≤ q, q ≥ 0,(90)

∂u−2n(z) + ∂u−(2n+2)(z) + au−2n−1(z) = 0, 0 ≤ n ≤ q − 1, q ≥ 1,(91)

∂u−n(z) + ∂u−(n+2)(z) + au−(n+1)(z) = 0, n ≥ 2q, q ≥ 0.(92)
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Recall that the trace u|Γ×S1:= g as in (21), with g = Xaf on Γ+ and g = 0 on Γ− ∪ Γ0.
We expand the attenuated X-ray data g in terms of its Fourier modes in the angular variables:

g(ζ, θ) =
∞∑

n=−∞

gn(ζ)e
ınθ, ζ ∈ Γ.

Since the trace g is also real valued, its Fourier modes will satisfy g−n = gn, for n ≥ 0. From

the negative modes, we built the sequence g := 〈g0, g−1, g−2, g−3, ...〉. From the special function h
defined in (32) and the data g, we built the sequence

gh := e−Gg := 〈γ0, γ−1, γ−2, ...〉,

where e±G as defined in (34). From the negative even, respectively, negative odd Fourier modes,

we built the sequences

geven
h = 〈γ0, γ−2, γ−4, ...〉, and godd

h = 〈γ−1, γ−3, γ−5, ...〉.(93)

Next we characterize the attenuatedX-ray data g in terms of its Fourier modes g0, g−1, g−2, · · · g−(m−1)
︸ ︷︷ ︸

m

,

and the Fourier modes

Lmgh := Lme−Gg := 〈γ−m, γ−(m+1), γ−(m+2), ...〉.

Similar to the non-attenuated case as before, we construct simultaneously the right hand side of

the transport equation (89) together with the solution u via its Fourier modes. For m = 2q, q ≥ 1,

apart from modes u0, u−1, u−2, · · ·u−(2q−1)
︸ ︷︷ ︸

2q

, all Fourier modes are constructed uniquely from the

data L2qgh. The modes u0, u−2, u−4, · · ·u−(2q−2) will be chosen arbitrarily from the class Ψeven
a,g of

cardinality q = m
2

with prescribed trace and gradient on the boundary Γ defined as

Ψeven
a,g :=

{(
ψ0, ψ−2, · · · , ψ−2(q−1)

)
∈ C2(Ω;R)×

(
C2(Ω;C))

)q
:

ψ−2j

∣
∣
Γ
= g−2j , 0 ≤ j ≤ q − 1, q ≥ 1,

∂ψ−2(q−1)

∣
∣
Γ
= −∂(eGBe−Gg)−2q

∣
∣
Γ
− a
∣
∣
Γ
g−(2q−1), q ≥ 1,

∂ψ−2j

∣
∣
Γ
= −∂ψ−(2j+2)

∣
∣
Γ
− a
∣
∣
Γ
g−(2j+1), 0 ≤ j ≤ q − 2, q ≥ 2

}

(94)

where B be the Bukhgeim-Cauchy operator in (25), and the operators e±G as defined in (34).

Remark 6.1. In the 2-tensor case (m = 2), apart from zeroth mode u0 and negative one mode

u−1, all Fourier modes are constructed uniquely from the data L2gh. The mode u0 will be chosen

arbitrarily from the class Ψm=2
a,g . We rewrite the above class Ψeven

a,g explicitly for m = 2, as

Ψm=2
a,g :=

{

ψ0 ∈ C2(Ω;R) : ψ0

∣
∣
Γ
= g0, ∂ψ0

∣
∣
Γ
= −∂(eGBe−Gg)−2

∣
∣
Γ
− a|Γ g−1

}

.(95)

In the 0-tensor case (m = 0), there is no class, and the characterization of the attenuated X-ray

data g is in terms of the Fourier modes gh := e−Gg.

Next, we characterize the range for even m = 2q, q ≥ 0, in the attenuated case.
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Theorem 6.1 (Range characterization for even order tensors ). Let a ∈ C2,µ(Ω), µ > 1/2 with

min
Ω
a > 0. (i) Let f ∈ C1,µ

0 (Sm; Ω), be a real-valued symmetric tensor field of even order m =

2q, q ≥ 0, and g = Xaf on Γ+ and g = 0 on Γ− ∪ Γ0. Then geven
h , godd

h ∈ l1,1∞ (Γ)∩Cµ(Γ; l1) satisfy

[I + ıH]L
m
2 geven

h = 0, [I + ıH]L
m
2 godd

h = 0.(96)

where geven
h , godd

h are sequences in (93), and H is the Bukhgeim-Hilbert operator in (27).

(ii) Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. For q = 0, if

the corresponding sequences geven
h , godd

h ∈ Yµ(Γ ) satisfies (96), then there is a unique real valued

symmetric 0-tensor f such that g|Γ+= Xaf . Moreover, for q ≥ 1, if geven
h , godd

h ∈ Yµ(Γ ) satisfies

(96), and for each element
(
ψ0, ψ−2, · · · , ψ−2(q−1)

)
∈ Ψeven

a,g , then there is a unique real valued

symmetric m-tensor fΨ ∈ C(Sm; Ω) such that g|Γ+= XafΨ.

Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C1,µ

0 (Ω)
are compactly supported inside Ω, then for any point at the boundary there is a cone of lines which

do not meet the support. Thus g ≡ 0 in the neighborhood of the variety Γ0 which yields g ∈
C1,µ(Γ × S1). Moreover, g is the trace on Γ × S1 of a solution u ∈ C1,µ(Ω × S1) of the transport

equation (89). By Proposition 3.1(i) and Proposition 3.2, gh = e−Gg ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1).
If u solves (89) then its Fourier modes satisfies (90), (91) and (92). In particular, the sequence

valued map u := 〈u0, u−1, u−2, · · · 〉, satisfies ∂Lmu+ L2∂Lmu+ aLm+1u = 0.

Let v := e−GLmu, then by Lemma 3.1, and the fact that the operators e±G commute with the left

translation, [e±G, L] = 0, the sequence v = Lme−Gu solves ∂v + L2∂v = 0, i.e v is L2 analytic.

Thus, the negative even subsequence 〈v0, v−2, · · · 〉, and negative odd subsequence 〈v−1, v−3, · · · 〉,
respectively, are L analytic, with traces L

m
2 geven

h , respectively, L
m
2 godd

h . The necessity part in Theo-

rem 3.1 yields (96):

[I + ıH]L
m
2 geven

h = 0, [I + ıH]L
m
2 godd

h = 0.

This proves part (i) of the theorem.

(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0.

Let the corresponding sequences geven
h , godd

h as in (93) satisfying (96). By Proposition 3.1(ii) and

Proposition 3.2(iii), we have geven
h , godd

h ∈ Yµ(Γ ).
Let m = 2q, q ≥ 0, be an even integer. To prove the sufficiency we will construct a real valued

symmetric m-tensor f in Ω and a real valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such that

u|Γ×S1= g and u solves (89) in Ω. The construction of such u is in terms of its Fourier modes in

the angular variable and it is done in several steps.

Step 1: The construction of modes u−n for |n| ≥ 2q, q ≥ 0.

Use the Bukhgeim-Cauchy Integral formula (25) to define the L-analytic maps

veven(z) = 〈v0(z), v−2(z), v−4(z), ...〉 := BLqgeven
h (z), z ∈ Ω,

vodd(z) = 〈v−1(z), v−3(z), v−5(z), ...〉 := BLqgodd
h (z), z ∈ Ω.

By intertwining the above L-analytic maps, define also the L2-analytic map

v(z) := 〈v0(z), v−1(z), v−2(z), v−3(z), ...〉, z ∈ Ω.

By Theorem 3.1 (ii),

v,veven,vodd ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1) ∩ C

2(Ω; l∞).(97)
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Moreover, since geven
h , godd

h satisfy the hypothesis (96), by Theorem 3.1 sufficiency part, we have

veven|Γ= Lqgeven
h and vodd|Γ= Lqgodd

h .

In particular, v is L2-analytic map with trace:

v|Γ= L2qgh = L2qe−Gg,(98)

where gh is formed by intertwining geven
h and godd

h .

Define the sequence valued map

Ω ∋ z 7→ L2qu(z) = 〈u−2q(z), u−2q−1(z), u−2q−2(z), · · · 〉 := eGv(z),(99)

where the operator eG as defined in (34). Since convolution preserves l1, by Proposition 3.2,

L2qu ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1).(100)

Moreover, since v ∈ C2(Ω; l∞) as in (97), we also conclude from convolution that L2qu ∈
C2(Ω; l∞).

As v is L2 analytic, by Lemma 3.1, L2qu satisfies

∂L2qu+ L2∂L2qu+ aL2q+1u = 0,

which in component form is written as:

∂u−n + ∂u−n−2 + au−n−1 = 0, n ≥ 2q, q ≥ 0.(101)

The trace satisfy

L2qu|Γ= eGv|Γ= eGL2qe−Gg = L2qg,(102)

where the second equality follows from (98) and in the last equality we use the fact that the operators

e±G commute with the left translation, [e±G, L] = 0.

Construct the positive Fourier modes by conjugation: un := u−n, for all n ≥ 2q, q ≥ 0.

Moreover using (102), the traces un|Γ for each n ≥ 2q, q ≥ 0, satisfy

un|Γ= u−n|Γ= g−n = gn, n ≥ 2q, q ≥ 0.(103)

By conjugating (101) we note that the positive Fourier modes also satisfy

∂un+2 + ∂un + aun+1 = 0, n ≥ 2q, q ≥ 0.(104)

Step2: The construction of the tensor field f in the q = 0 case.

In the case of the 0-tensor, f = f0, and f0 is uniquely determined from the odd Fourier mode

u−1, and the zeroth mode u0 in (99), by

f := 2Re ∂u−1 + au0, (for q = 0 case).(105)

We consider next the case m = 2q, q ≥ 1 of tensors of order 2 or higher. In this case the

construction of the tensor field fψ is in terms of the mode u−2q in (99) and the class Ψeven
a,g in (94).

Step 3: The construction of modes un for |n| ≤ 2q − 1 q ≥ 1.

Recall that a ∈ C2,µ(Ω), µ > 1/2 with min
Ω
a > 0, and the non-uniqueness class Ψeven

a,g in (94).

For
(
ψ0, ψ−2, · · · , ψ−2(q−1)

)
∈ Ψeven

a,g arbitrary, define the modes u0, u±2, ..., u±(2(q−1)) in Ω by

(106) u−2j := ψ−2j , and u2j := ψ−2j , 0 ≤ j ≤ q − 1, q ≥ 1.

Using the mode u−2q from (99) and ψ−2(q−1), define the modes u±(2q−1) by

(107) u−(2q−1) := −
∂ψ−2(q−1) + ∂u−2q

a
, and u2q−1 := u−(2q−1), for all q ≥ 1.
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As ψ0 ∈ C2(Ω;R) and ψ−(2j+2) ∈ C2(Ω;C), for 0 ≤ j ≤ q − 2, q ≥ 2, define modes

(108)

u−(2j+1) := −
∂ψ−2j + ∂ψ−(2j+2)

a
, and u2j+1 := u−(2j+1), for all 0 ≤ j ≤ q − 2, q ≥ 2.

By the construction in (106), (107), and (108):

(109)

u−2j ∈ C2(Ω; l∞), for 0 ≤ j ≤ q − 1, q ≥ 1,

u−(2j+1) ∈ C1(Ω; l∞), for 0 ≤ j ≤ q − 1, q ≥ 1, and

∂u−2j + ∂u−(2j+2) + au−(2j+1) = 0, for 0 ≤ j ≤ q − 1, q ≥ 1,

are satisfied. Moreover, by conjugating the last equation in (109) yields

(110) ∂u2j + ∂u(2j+2) + au(2j+1) = 0, for 0 ≤ j ≤ q − 1, q ≥ 1.

By the definition of the class (94), and reality of g, we have the trace of u−2j in (106) satisfies

(111) u−2j |Γ = g−2j, and u2j |Γ= g−2j = g2j , 0 ≤ j ≤ q − 1, q ≥ 1.

We check next that the trace of u−(2j+1) is g−(2j+1) for 0 ≤ j ≤ q − 2, q ≥ 2:

(112) u−(2j+1)

∣
∣
Γ
= −

∂ψ−2j + ∂ψ−(2j+2)

a

∣
∣
∣
∣
∣
Γ

= g−(2j+1),

where the last equality uses the condition in class (94). Similar calculation to (112) for mode

u−(2q−1) give the trace

u−(2q−1)

∣
∣
Γ
= −

∂ψ−2(q−1) + ∂u−2q

a

∣
∣
∣
∣
∣
Γ

= g−(2q−1).(113)

Thus, from (111) - (113), we have the traces:

(114) un
∣
∣
Γ
= gn, ∀|n| ≤ 2q − 1.

Step 4: The construction of the tensor field fΨ whose attenuated X-ray data is g.

The components of the m-tensor fΨ are defined via the one-to-one correspondence between the

pseudovectors 〈f̃0, f̃1, · · · , f̃m〉 and the functions {f2n : −q ≤ n ≤ q} as follows.

We define first f2q by usingψ−2(q−1) from the non-uniqueness class, and Fourier modes u−2q, u−(2q+1) ∈
C2(Ω; l∞) from (99). Then, next define f2q−2 by using ψ−2(q−1), ψ−2(q−2) from the non-uniqueness

class, and Fourier mode u−2q from (99). Then, define {f2n : 0 ≤ n ≤ q − 2} solely from the

information in the non-uniqueness class. Finally, define {f−2n : 1 ≤ n ≤ q} by conjugation.
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(115)

f2q := −∂

(

∂ψ−2(q−1) + ∂u−2q

a

)

+ ∂u−(2q+1) + au−2q, q ≥ 1,

f2q−2 := −∂

(

∂ψ−2(q−2) + ∂ψ−2(q−1)

a

)

− ∂

(

∂ψ−2(q−1) + ∂u−2q

a

)

+ aψ−2(q−1), q ≥ 2,

f2n := −∂

(

∂ψ−2(n−1) + ∂ψ−2n

a

)

− ∂

(

∂ψ−2n + ∂ψ−2(n+1)

a

)

+ aψ−2n, 1 ≤ n ≤ q − 2, q ≥ 3,

f0 :=







−2Re ∂

(
∂ψ0 + ∂u−2

a

)

+ aψ0, q = 1,

−2Re ∂

(
∂ψ0 + ∂ψ−2

a

)

+ aψ0, q ≥ 2,

f−2n := f2n, 0 ≤ n ≤ q, q ≥ 1,

By construction, f2n ∈ C(Ω), for 0 ≤ n ≤ q, q ≥ 1, as ψ−2n ∈ C2(Ω; l∞), for 0 ≤ n ≤ q − 1,

from (94). Note that f2n satisfy (90). We use these Fourier modes 〈f0, f±2, f±4, · · · , f±m〉 and

equations (13), (7) and (9) to construct pseudovectors 〈f̃0, f̃1, · · · , f̃m〉, and thus m-tensor field

fΨ ∈ C(Sm; Ω).
In order to show g|Γ+= XafΨ with fΨ being constructed from pseudovectors via Fourier modes

as in (115) from class Ψeven
a,g , we define the real valued function u via its Fourier modes

(116)

u(z, θ) :=
∑

|n|≥2q

un(z)e
ınθ + 2Re

(

−
∂ψ−2(q−1) + ∂u−2q

a

)

e−ı(2q−1)θ

+ 2Re

{
q−1
∑

n=0

ψ−2n(z)e
−ı(2n)θ

}

+ 2Re

{
q−2
∑

n=0

(

−
∂ψ−2j + ∂ψ−(2j+2)

a

)

e−ı(2n+1)θ

}

and check that it has the trace g on Γ and satisfies the transport equation (89).

Since g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), we use Proposition 3.1 (ii) and [39, Proposition

4.1 (iii)] to conclude that u defined in (116) belongs to C1,µ(Ω × S1) ∩ Cµ(Ω × S1). In particular

u(·, θ) for θ = (cos θ, sin θ) extends to the boundary and its trace satisfies

u(·, θ)|Γ =
∑

|n|≥2q

un
∣
∣
Γ
eınθ +

∑

|n|≤2q−1

un
∣
∣
Γ
eınθ =

∑

|n|≥2q

gne
ınθ +

∑

|n|≤2q−1

gne
ınθ = g(·, θ),

where in the second equality above we use (98), (103) and (114).

Since u ∈ C1,µ(Ω × S1) ∩ Cµ(Ω × S1), then using (101), (104), (107), (109), (110), and the

definition of f2n for −q ≤ n ≤ q, q ≥ 1 in (115), the real valued u defined in (116) satisfies the

transport equation (89):

θ · ∇u+ au = 〈fΨ, θ
2q〉, q ≥ 1.

�
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7. ODD ORDER m-TENSOR - ATTENUATED CASE

In this section, we establish necessary and sufficient conditions for a sufficiently smooth function

on Γ ×S1 to be the attenuated X-ray data of some sufficiently smooth real valued symmetric tensor

field f of odd order m = 2q + 1, q ≥ 0.

In this case a 6= 0, the transport equation becomes

θ · ∇u(x, θ) + a(x)u(x, θ) =

q
∑

n=0

(
f2n+1(x)e

−ı(2n+1)θ + f−(2n+1)(x)e
ı(2n+1)θ

)
, x ∈ Ω,(117)

where f 2n+1 = f−(2n+1), 0 ≤ n ≤ q, q ≥ 0.

If
∑

n∈Z

un(z)e
ınθ is the Fourier series expansion in the angular variable θ of a solution u of (117),

then by identifying the Fourier coefficients of the same order, the equation (117) reduces to the

system:

∂u−2n(z) + ∂u−(2n+2)(z) + au−(2n+1)(z) = f2n+1(z), 0 ≤ n ≤ q, q ≥ 0,(118)

∂u−(2n−1)(z) + ∂u−(2n+1)(z) + au−2n(z) = 0, 0 ≤ n ≤ q, q ≥ 0,(119)

∂u−n(z) + ∂u−(n+2)(z) + au−(n+1)(z) = 0, n ≥ 2q + 1, q ≥ 0,(120)

Recall that the trace u|Γ×S1:= g as in (21), with g = Xaf on Γ+ and g = 0 on Γ− ∪ Γ0.
We expand the attenuated X-ray data g in terms of its Fourier modes in the angular variables:

g(ζ, θ) =

∞∑

n=−∞

gn(ζ)e
ınθ, for ζ ∈ Γ . From the non-positive modes of g, we built the sequences

g := 〈g0, g−1, g−2, ...〉, and gh := e−Gg := 〈γ0, γ−1, γ−2, ...〉, where e±G as defined in (34). From

the non-positive even, respectively, negative odd Fourier modes, we built the sequences

geven
h = 〈γ0, γ−2, γ−4, ...〉, and godd

h = 〈γ−1, γ−3, γ−5, ...〉.(121)

Next we characterize the attenuatedX-ray data g in terms of itsmmany modes g0, g−1, · · · g−(m−1),

and the Fourier modes Lmgh := Lme−Gg := 〈γ−m, γ−(m+1), γ−(m+2), ...〉.
As before we construct simultaneously the right hand side of the transport equation (117) together

with the solution u. Construction of u is via its Fourier modes. We first construct the negative

modes and then the positive modes are constructed by conjugation. For m = 2q + 1 (odd inte-

ger), q ≥ 1, the modes will be chosen arbitrarily from the class Ψodd
a,g of cardinality q = m−1

2
with

prescribed trace and gradient on the boundary Γ defined as

(122)

Ψodd
a,g :=

{(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈
(
C2(Ω;C)

)q
:

ψ−(2j−1)

∣
∣
Γ
= g−(2j−1), 1 ≤ j ≤ q, q ≥ 1,

∂ψ−(2q−1)

∣
∣
Γ
= −∂(eGBe−Gg)−(2q+1)

∣
∣
Γ
− a
∣
∣
Γ
g−2q, q ≥ 1,

∂ψ−(2j−1)

∣
∣
Γ
= −∂ψ−(2j+1)

∣
∣
Γ
− a
∣
∣
Γ
g−2j , 1 ≤ j ≤ q − 1, q ≥ 2,

2
(
Re ∂ψ−1

∣
∣
Γ

)
= −a|Γ g0,

}

where B be the Bukhgeim-Cauchy operator in (25), and the operators e±G as defined in (34).
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Remark 7.1. In the 1-tensor case (q = 0), there is no class, and the characterization of the atten-

uated X-ray data g is in terms of its zero-th mode g0 =
∮
g(·, θ)dθ and negative Fourier modes of

gh := e−Gg.

Theorem 7.1 (Range characterization for odd order tensors). Let a ∈ C2,µ(Ω), µ > 1/2 with

min
Ω
a > 0. and m = 2q + 1, q ≥ 0. (i) Let f ∈ C1,µ

0 (Sm; Ω) be a real-valued symmetric m-tensor

field of odd order and

g = Xaf on Γ+ and g = 0 on Γ− ∪ Γ0.

Then geven
h , godd

h ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) satisfy

[I + ıH]L
m+1

2 geven
h = 0, [I + ıH]L

m−1
2 godd

h = 0, for q ≥ 0,(123)

where geven
h , godd

h are sequences in (121). Additionally, in q = 0 case, for each ζ ∈ Γ , the zero-th

Fourier mode g0 of g satisfy

(124) g0(ζ) = lim
Ω∋z→ζ∈Γ

−2Re ∂(eGBgh)−1(z)

a(z)
, for q = 0,

where B be the Bukhgeim-Cauchy operator in (25), and the operators e±G as defined in (34).

(ii) Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. For q = 0, if

the corresponding sequences geven
h , godd

h ∈ Yµ(Γ ) satisfies (123), and g0 satisfies (124), then there

exists a unique real valued vector field (1-tensor) f ∈ C(Sm; Ω) such that g|Γ+= Xaf . Moreover, for

q ≥ 1, if geven
h , godd

h ∈ Yµ(Γ ) satisfies (123), and for each element
(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψodd

a,g ,

then there is a unique real valued symmetric m-tensor fΨ ∈ C(Sm; Ω) such that g|Γ+= XafΨ.

Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C1,µ

0 (Ω),
Xaf ∈ C1,µ(Γ+), and, thus, the solution u to the transport equation (117) is in C1,µ(Ω × S

1).
Moreover, its trace g = u|Γ×S1∈ C1,µ(Γ × S1). By Proposition 3.1(i) and Proposition 3.2, gh =
e−Gg ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1).

If u solves (117) then its Fourier modes satisfies (118), (119) and (120). In particular, the se-

quence valued map u = 〈u0, u−1, u−2, ...〉 satisfy ∂Lmu+ L2∂Lmu+ aLm+1u = 0.
Let v := e−GLmu, then by Lemma 3.1, and the fact that the operators e±G commute with the left

translation, [e±G, L] = 0, the sequence v = Lme−Gu solves ∂v + L2∂v = 0, i.e v is L2 analytic.

The non-positive even subsequence 〈v0, v−2, · · · 〉, and negative odd subsequence 〈v−1, v−3, · · · 〉,

respectively, are L analytic, with traces L
m+1

2 geven
h , respectively, L

m−1
2 godd

h . The necessity part in

Theorem 3.1 yields (123):

[I + ıH]L
m+1

2 geven
h = 0, [I + ıH]L

m−1
2 godd

h = 0, for m = 2q + 1, q ≥ 0.

Additionally, in the q = 0 case, the Fourier modes u0, u−1, u1 of u solve (119) for n = 0. Since

a > 0 in Ω, we have

u0(z) =
−2Re ∂u−1(z)

a(z)
, z ∈ Ω.(125)

Since the left hand side of (125) is continuous all the way to the boundary, so is the right hand side.

Moreover, the limit below exists and in the q = 0 case, we have

g0(z0) = lim
Ω∋z→z0∈Γ

u0(z) = lim
Ω∋z→z0∈Γ

−2Re ∂u−1(z)

a(z)
,

thus (124) holds. This proves part (i) of the theorem.
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(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0.

Let the corresponding sequences geven
h , godd

h as in (121) satisfying (123). By Proposition 3.1(ii) and

Proposition 3.2(iii), geven
h , godd

h ∈ Yµ(Γ ).
Let m = 2q + 1, q ≥ 0, be an odd integer. To prove the sufficiency we will construct a real

valued symmetric m-tensor f in Ω and a real valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such

that u|Γ×S1= g and u solves (117) in Ω. The construction of such u is in terms of its Fourier modes

in the angular variable and it is done in several steps.

Step 1: The construction of modes un for |n| ≥ 2q + 1, q ≥ 0.

Use the Bukhgeim-Cauchy Integral formula (25) to define the L-analytic maps

veven(z) = 〈v0(z), v−2(z), v−4(z), ...〉 := BLq+1geven
h (z), z ∈ Ω,

vodd(z) = 〈v−1(z), v−3(z), v−5(z), ...〉 := BLqgodd
h (z), z ∈ Ω.

By intertwining let also define L2-analytic map

v(z) := 〈v0(z), v−1(z), v−2(z), v−3(z), ...〉, z ∈ Ω.

By Theorem 3.1 (ii),

veven,vodd,v ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1) ∩ C

2(Ω; l∞).(126)

Moreover, since geven
h , godd

h satisfy the hypothesis (96), by Theorem 3.1 sufficiency part, we have

veven|Γ= Lq+1geven
h and vodd|Γ= Lqgodd

h , q ≥ 0.

In particular, v is L2-analytic with trace:

v|Γ= L2q+1gh = L2q+1e−Gg, q ≥ 0,(127)

where gh is formed by intertwining geven
h and godd

h .

For q ≥ 0, define the sequence valued map

Ω ∋ z 7→ L2q+1u(z) = 〈u−(2q+1)(z), u−(2q+2)(z), u−(2q+3)(z), · · · 〉 := eGv(z).(128)

By Proposition 3.2, L2q+1u ∈ C1,µ(Ω; l1) ∩C
µ(Ω; l1). Moreover, since v ∈ C2(Ω; l∞) as in (126),

we also conclude from convolution that L2q+1u ∈ C2(Ω; l∞). Thus,

L2q+1u ∈ C1,µ(Ω; l1) ∩ C
µ(Ω; l1) ∩ C

2(Ω; l∞).(129)

As v is L2 analytic, by Lemma 3.1, L2q+1u satisfies ∂L2q+1u + L2∂L2q+1u + aL2q+2u = 0, for

q ≥ 0, which in component form is written as:

∂u−n + ∂u−n−2 + au−n−1 = 0, n ≥ 2q + 1, q ≥ 0.(130)

The trace satisfy

L2q+1u|Γ= eGv|Γ= eGL2q+1e−Gg = L2q+1g, q ≥ 0,(131)

where the second equality follows from (127) and in the last equality we use [e±G, L] = 0.

Construct the positive Fourier modes by conjugation: un := u−n, for all n ≥ 2q + 1, q ≥ 0.

Moreover using (131), and the reality of g, the traces un|Γ satisfy

un|Γ= u−n|Γ= g−n = gn, n ≥ 2q + 1, q ≥ 0.(132)

By conjugating (130), and from (131) and (132), we thus have the Fourier modes satisfy

∂u−n + ∂u−n−2 + au−n−1 = 0, and un
∣
∣
Γ
= gn, ∀|n| ≥ 2q + 1, q ≥ 0.(133)

Step 2: The construction of 1-tensor (q = 0 case).
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Since a > 0 in Ω, we can define u0 (in q = 0 case) by using the Fourier mode u−1 from (128):

u0(z) := −
2Re ∂u−1(z)

a(z)
, z ∈ Ω, (for q = 0 case).(134)

Note that u0 satisfy (133) for n = −1. In particular ∂u1 + ∂u−1 + au0 = 0 holds.

From (124), u0 defined above extends continuously to the boundary Γ and

u0
∣
∣
Γ
= g0, (for q = 0 case).

Moreover, since u−1 ∈ C2(Ω) as shown in (129) and a ∈ C2(Ω) we get u0 ∈ C1(Ω).
Using the Fourier modes u−1, u−2 from (128) and u0 as in (134), we next define the real valued

vector field f ∈ C(Ω;R2) (for q = 0 case) by

f = 〈2Re f1, 2 Im f1〉, where f1 := ∂u0 + ∂u−2 + au−1.(135)

We consider next the case q ≥ 1 of tensors of order 3 or higher. In this case the construction of

the tensor field fΨ is in terms of the Fourier modes u−(2q+1), u−(2q+2) in (128) and the class Ψodd
a,g as

in (122).

Step 3: The construction of modes un for |n| ≤ 2q, q ≥ 1.

Recall the non-uniqueness class Ψodd
a,g as in (122).

For
(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψodd

a,g arbitrary, firstly define the odd modes

(136) u−(2n−1) := ψ−(2n−1), and u2n−1 := ψ−(2n−1), 1 ≤ n ≤ q, q ≥ 1.

Secondly, by using ψ−1, ψ−(2q−1) and the mode u−(2q+1) from (128), we define the modes

u0 := −
2Re ∂ψ−1

a
,(137)

u−2q := −
∂ψ−(2q−1) + ∂u−(2q+1)

a
, and u2q := u−2q for q ≥ 1.(138)

Lastly, by using ψ−(2n−1) ∈ C2(Ω;C), for 1 ≤ n ≤ q − 1, q ≥ 2, we define the even modes

(139)
u−2n := −

∂ψ−(2n−1) + ∂ψ−(2n+1)

a
, 1 ≤ n ≤ q − 1, q ≥ 2, and

u2n := u−2n, 1 ≤ n ≤ q − 1, q ≥ 2.

By the construction in (137), (138), and (139), we have

(140)

u−(2n−1) ∈ C2(Ω; l∞), for 1 ≤ n ≤ q, q ≥ 1,

u−2n ∈ C1(Ω; l∞), for 0 ≤ n ≤ q, q ≥ 1, and

∂u−(2n−1) + ∂u−(2n+1) + au−2n = 0, for 0 ≤ n ≤ q, q ≥ 1,

is satisfied. Moreover, by conjugating the last equation in (140), we have the Fourier modes satisfy

∂u−(2n−1) + ∂u−(2n+1) + au−2n = 0, for |n| ≤ q, q ≥ 1.(141)

By the class (122), and reality of g, we have the trace of u−(2n−1) in (136) satisfy

(142) u−(2n−1)|Γ = g−(2n−1), and u2n−1|Γ= g−(2n−1) = g2n−1, 1 ≤ n ≤ q, q ≥ 1.

We check next that the trace of u−2n is g−2n for 1 ≤ n ≤ q − 1, q ≥ 2:

(143) u−2n

∣
∣
Γ
= −

∂ψ−(2n−1) + ∂ψ−(2n+1)

a

∣
∣
∣
∣
∣
Γ

= g−2n,
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where the last equality uses the condition in class (122). Similar calculation to (143) for mode u0
in (137), and mode u−2q in (138), give the trace

(144) u0
∣
∣
Γ
= g0, and u−2q

∣
∣
Γ
= g−2q, q ≥ 1.

Thus, from (142), (143) and (144), we have the traces:

(145) un
∣
∣
Γ
= gn, ∀|n| ≤ 2q, q ≥ 1.

Step 4: The construction of the tensor field fΨ whose attenuated X-ray data is g.

The components of the m-tensor fΨ are defined via the one-to-one correspondence between the

pseudovectors 〈f̃0, f̃1, · · · , f̃m〉 and the functions {f±(2n+1) : 0 ≤ n ≤ q} as follows.

We first define f2q+1 by using ψ−(2q−1) from the non-uniqueness class, and the Fourier modes

u−(2q+1), u−(2q+2) in (128). Next, define f2q−1 by using ψ−(2q−1), ψ−(2q−3) from the non-uniqueness

class, and Fourier mode u−(2q+1) in (128). Then, define {f2n+1 : 0 ≤ n ≤ q − 2} solely from the

information in the non-uniqueness class. Finally, define {f−(2n+1) : 0 ≤ n ≤ q} by conjugation.

(146)

f2q+1 := −∂

(

∂ψ−(2q−1) + ∂u−(2q+1)

a

)

+ ∂u−(2q+2) + au−(2q+1), q ≥ 1,

f2q−1 := −∂

(

∂ψ−(2q−3) + ∂ψ−(2q−1)

a

)

− ∂

(

∂ψ−(2q−1) + ∂u−(2q+1)

a

)

+ aψ−(2q−1), q ≥ 2,

f2n+1 := −∂

(

∂ψ−(2n−1) + ∂ψ−(2n+1)

a

)

− ∂

(

∂ψ−(2n+1) + ∂ψ−(2n+3)

a

)

+ aψ−(2n+1), 1 ≤ n ≤ q − 2,

f1 :=







−2∂

(
Re ∂ψ−1

a

)

− ∂

(
∂ψ−1 + ∂u−3

a

)

+ aψ−1, q = 1,

−2∂

(
Re ∂ψ−1

a

)

− ∂

(
∂ψ−1 + ∂ψ−3

a

)

+ aψ−1, q ≥ 2,

f−(2n+1) := f2n+1, 0 ≤ n ≤ q, q ≥ 1,

By construction, f2n+1 ∈ C(Ω) for 0 ≤ n ≤ q, q ≥ 1, as u−(2q+1) ∈ C2(Ω; l∞) from (129),

and ψ−(2n−1) ∈ C2(Ω; l∞), for 1 ≤ n ≤ q − 1, q ≥ 1, from (122). We use these m + 1
Fourier modes 〈f±1, f±3, · · · , f±m〉, and equations (14), (7) and (9) to construct the pseudovectors

〈f̃0, f̃1, · · · , f̃m〉, and thus the m-tensor field fΨ ∈ C(Sm; Ω).
Define the real valued function u via its Fourier modes

(147)

u(z, θ) :=
∑

|n|≥2q+1

un(z)e
ınθ + 2Re

{
q
∑

n=1

ψ−(2n−1)(z)e
−ı(2n−1)θ

}

+
−2Re ∂ψ−1(z)

a

+ 2Re

(

−
∂ψ−(2q−1)(z) + ∂u−(2q+1)(z)

a

)

e−ı(2q)θ + 2Re

{
q−1
∑

n=1

u−2ne
−ı(2nθ)

}

.

Using (133) and (145), and definition of
(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψodd

a,g for q ≥ 1, the trace

u(·, θ) in (147) extends to the boundary, and its trace satisfy u(·, θ)|Γ= g(·, θ).
Moreover, by using (133), (141) and the definition of f2n−1 for |n| ≤ q, q ≥ 1 in (146), the real

valued u defined in (147) satisfies the transport equation (117):

θ · ∇u+ au = 〈fΨ, θ
2q+1〉, q ≥ 1.
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geodesic ray transform, Journal de Mathématiques Pures et Appliquées 111 (2018), 161–190.

[5] G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems 20 (2004),

399–418.
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