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ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. In this article we characterize the range of the attenuated and non-attenuated X -ray
transform of compactly supported symmetric tensor fields in the Euclidean plane. The characteriza-
tion is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. INTRODUCTION

We consider here the problem of the range characterization of (non)-attenuated X -ray transform
of a real valued symmetric m-tensors in a strictly convex bounded domain in the Euclidean plane.
As the X-ray and Radon transform [38]] for planar functions (O-tensors) differ merely by the way
lines are parameterized, the m = 0 case is the classical Radon transform [38]], for which the range
characterization has been long established independently by Gelfand and Graev [13], Helgason
[14], and Ludwig [22]. Models in the presence of attenuation have also been considered in the
homogeneous case [21, 2], and in the non-homogeneous case in the breakthrough works [3,132,133]],
and subsequently [28,16, 5, 17, 25]. The references here are by no means exhaustive.

The interest in the range characterization problem in the O-tensors case stems out from their
applications to data enhancement in medical imaging methods such as Single Photon Emission
Computed Tomography or Positron Emission Computed Tomography [27, [12]. The X-ray trans-
form of 1-tensors (Doppler transform [29, 46]]) appears in the investigation of velocity distribution
in a flow [7], in ultrasound tomography [47, 44], and also in non-invasive industrial measurements
for reconstructing the velocity of a moving fluid [30, 31]. The X-ray transform of second order
tensors arises as the linearization of the boundary rigidity problem [46]]. The case of tensor fields of
rank four describes the perturbation of travel times of compressional waves propagating in slightly
anisotropic elastic media [46, Chapters 6,7]. Thus, due to the various applications the range char-
acterization problem has been a continuing subject of research.

Unlike the scalar case, the X -ray transform of tensor fields has a non-zero kernel, and the null-
space becomes larger as the order of the tensor field increases. For tensors of order m > 1, it is easy
to check that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors,
and it is possible to reconstruct uniquely (without additional information of moment ray transforms
[46]]) only the solenoidal part of a tensor field. The non-injectivity of the X -ray transform makes
the range characterization problem even more interesting.

For the attenuating media in planar domains, interesting enough, the 1-tensor field can be recov-
ered in the regions of positive absorption as shown in [18} 5, 48}, 140], without using some addi-
tional data information [45, (9, 23]. It is due to a surprising fact that the two-dimensional attenuated
Doppler transform with positive attenuation is injective while the non-attenuated Doppler transform
is not.
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The systematic study of tensor tomography in non-Euclidean spaces originated in [46]]. On sim-
ple Riemannian surfaces, the range characterization of the geodesic X -ray of compactly supported
0 and 1-tensors has been established in terms of the scattering relation in [37], and the results were
extended in [4} 11, 20] to symmetric tensors of arbitrary order. Explicit inversion approaches in the
Euclidean case have been proposed in [[17,10,24]. In the attenuating media, tensor tomography was
solved for the cases m = 0, 1 in [43]. Inversion for the attenuated X -ray transform for solenoidal
tensors of rank two and higher can be found in [35]], with a range characterization in [36} 25, 4].

The original characterization in [[13} 14, 22]] was extended to arbitrary symmetric m-tensors in
[34]]; see [10] for a partial survey on the tensor tomography in the Euclidean plane. The connection
between the Euclidean version of the characterization in [|37]] and the characterization in [[13, 14, 22]
was established in [24]. Recently, in [41] the connection between the range characterization result
in [39] and the original range characterization in [[13} 14, 22] has been established.

In here we build on the results in [39, 40, 42], and extends them to symmetric tensor fields
of any arbitrary order. In particular, the range characterization therein are given in terms of the
Bukhgeim-Hilbert transform [39] (the Hilbert-like transform associated with A-analytic maps in
the sense of Bukhgeim [8]). The characterization in here can be viewed as an explicit description
of the scattering relation in [335} [36] particularized to the Euclidean setting. In the sufficiency part
we reconstruct all possible m-tensors yielding identical X -ray data; see and for the non-
attenuated case and and for the attenuated case.

This article is organized as follows: All the details establishing notations and basic properties
of symmetric tensor fields needed here are in Section 2l In Section [3] we briefly recall existing
results on A-analytic maps that are used in the proofs. In Section 4] and Section 5] we provide
range characterization of symmetric tensor field f of even order, respectively, odd order in the non-
attenuated case. In Section[6and Section [7l we provide range characterization of symmetric tensor
field f of even order, respectively, odd order in the attenuated case.

2. PRELIMINARIES

Given an integer m > 0, let T™(R?) denote the space of all real-valued covariant tensor fields of
rank m:

(D f('rIPTQ) :fil...im($1,$2)d$il ®d$Z2 ®®d$lm7 1, 5 lm € {172}7

where ® is the tensor product, f;,..;,, are the components of tensor field f in the Cartesian basis
(x!, 2%), and where by repeating superscripts and subscripts in a monomial a summation from 1 to
2 is meant.

We denote by S™(IR?) the space of symmetric covariant tensor fields of rank m on R?. Let
o : T™(R?) — S™(R?) be the canonical projection (symmetrization) defined by (of)

11 tm
) Z Jiniryinemy» Where the summation is over the group I, of all permutations of the set
w€lly,
{1’ - ’m}_
A planar covariant symmetric tensor field of rank m has m + 1 independent component, which
we denote by

2) fk:=f1...12...2, (k=0,---,m),
— —

m—k k
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in connection with this, a symmetric tensor f = (f;,..;. , i1, , i, = 1,2) of rank m will be given
by a pseudovector of size m + 1

f=(fo,fr fnets i)

We identify the plane R? by the complex plane C, 2! = z = 2! + 122,22 = 7 = 2! —12%. We
consider the Cauchy-Riemann operators

@  Ded (0 0y 0 0 10 0
oz' 0z dat o2 022~ 0z 2\0zt  0x2)’
. . 9, a 0 s, 0 0
and the inverse relation by ErSimie + 55 92 1£ — 1£.
Letf = (fi,..i, (21, 2?), 41, i, = 1,2) be real valued symmetric m-tensor field in Cartesian

coordinates (!, 2%), then in complex coordinates (z!, 2?) it will have new components (F},..;, (z, 2)),
which are formally expressed by the covariant tensor law:

S1 s
oz Ox®m 1

F; zt, 2?), and

Zl"'i7rL(Z7 Z) = azil e azlm f51 Sm(
0z 0z%m
1,2 _
411 "'+Fs1~~~s ) )
fl m(x x ) a'l:'“ (9$2m m(z Z)
where the Jacobian matrix has the form
ozt Ozl 1 9z 9zt
Ji=1%2 95 )= L ., and J!'= gzl ng = Lo )
5T 92 2\t 1 agzcl 8;2 1 =
Adopting the notation in [[17]], we shall write the transformations ) as
f= {flllm (Ilv xz)} — F= {Ellm (Zv 2)}7 and
F={F .22} — f={fi. 2%}

A symmetric tensor F of rank m, obtained from the real symmetric tensor f by passing to com-

)

®)

plex variables, we also define a pseudovector (Fy, Fi, - -+, F,,,_1, F};,) with components
m—k k

and subject to the conditions
(7) Fk:Fm—ka k:O7"'7m

Taking into account the tensor law (), we obtain formulas relating the components of pseudovec-
tors in (2)) and pseudovectors in (6):

mkm k k
®) Z( )()k_p+qu+q> k=0,1,---,m,
q=0 p=0
m—k k
©) n#ZZ( )(p)(—l)’f‘pFw k=0,1,m
q=0 p=

In Cartesian coordinates covariant and contravariant components are the same, and thus con-
travariant components of the tensor field f coincide with its corresponding covariant components,
firi,, = f2im_ The dot product on S™(R?) induced by the Euclidean metric is defined by

(10) (£,h) = fiy.a, B
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Note that if f; — F; and f; — F,, then the pointwise inner product of tensors is invariant:
(11) <f17f2> = <F1,F2>-
For @ = (0',60%) = (cosf,sinf) € S', we denote by 8™ the tensor product 0™ =0 R 0®---® 6

m

and 0™ will be an m-contravariant tensor in Cartesian coordinates. According to the tensor law for
contravariant components its representation in complex coordinates will look like

B 02k
o Oxs
and ©" := O ® O ® - - - ® O be an m-contravariant tensor, and we also have 0" — O™,

00, o 0°,  ©=(0',02) =/( "),

Using (L)), we get

m\ __ m\ __ - m 10(m—k) ,—10k __ - m 1(m—2k)0
(f,0™) = (F,0 >_Z<k)er e _Z<k)er
k=0 k=0
q q
(12) Z foope' @ 4 Z fore @0 (if m =2q, ¢ > 0),
— k;o k=1
Z f—(2k+1)€1(2k+1)9 + foppre DO (ifm=2¢+1, ¢=>0),
k=0
where
2
(13) f—2k: <q—qk’> Fq—ka OSkS%CIEQ (q:%ﬂneven)a
2qg+1 m—1
(14) f—(2k+1) = (qq—]{?) Fq—ka OSkqu 9207 (q:TymOdd) )

and f, = f_,and F,, = F,,_,,for0 < n <m.
Let f be a real valued symmetric m-tensor, with integrable components of compact support in
R?, and a € L'(RR?) a real valued function. The attenuated X -ray transform of f is given by

(f(x +10),0™) exp {— /too a(z + sH)ds} dt,

o

(15) X.f(x,0) ::/
where z € R?, 0 € S', and (-, -) is the inner product in (I0). For the non attenuated case (a = 0),
we use the notation Xf.

In here, we consider the tensor field f be defined on a strongly convex bounded set 2 C R? with
vanishing trace at the boundary I'; further regularity and the order of vanishing will be specified in
the theorems. In the statements below we use the notations in [46]:

CH(S™; Q) ={f = (fir-in.) € 8™(Q) = firoi, € CH(Q)}

0 < p < 1, for the space of real valued, symmetric tensor fields of order m with locally Holder
continuous components. Similarly, L*(S™; Q) denotes the tensor fields of order m with integrable
components.

For any (z,0) € Q x S', let 7(z, §) be length of the chord passing through z in the direction of
0. Let also consider the incoming (—), respectively outgoing (+) submanifolds of the unit bundle
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restricted to the boundary

(16) Iy :={(2,0) el xS": 40 -v(x) >0},
and the variety

17) [y :={(z,0) €T xS":0-v(z) =0},

where v(x) denotes outer normal.
The a-attenuated X -ray transform of f is realized as a function on I, by
0
(18) X,£(z,0) / (F(z + 10), ™) ¢~ ale+s0)ds gt (1 9) ¢ ..
—7(x,0)
We approach the range characterization via the well-known connection with the transport model
as follows: The boundary value problem

(19a) 0 -Vu(zr,0) + a(z)u(z,0) = (f(x),0™), (2,0) € QxS
(19b) ulp. =0,
has a unique solution in 2 x S* and
(20) ulr, (z,0) = X f(z,0), (z,0)¢cl}.
The range characterization is given in terms of the trace
(21) g = u|pys1= { gfaf’ 22 ICJ_”U I,

We note that from (I12)), the expression (f, ™) in the transport equation (I9a) is represented in
the Fourier decomposition in € as in terms of the following Fourier modes:

(£,6™) = fo+ froeT0 4 fre™0 oo fo ™9 (m even),
’ fe1€P? + fige™0 4oy fy el (m odd).

3. INGREDIENTS FROM A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later.
For 0 < u < 1, p = 1,2, we consider the Banach spaces:

() = {g = {g0.9-1.9-2,) < el = 50 D 00)lg-0)] < oo},
eri5

lg(€) — gl
C“F’l = = ,0-1,9-92,...) : + !
22) (I50) g=(90,9-1,9-2, ) iggHg(S)Hll %iepp €=l
n

o

VuI) =g g e () and sup 3 (jyl=8) =950
ggfnrjzo &=l

<00y,

where I (, [1) is the space of bounded (, respectively summable) sequences, and for brevity, we use
the notation (j) = (1 + ||?)*/2. Similarly, we consider C*(Q; 1), and C*(2; I.,).
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A sequence valued map Q 3 2 — v(2) := (vo(2),v_1(2),v_2(2),...) in C(; 1) N CH(Q; 1)
is called L*-analytic (in the sense of Bukhgeim), k = 1,2, if
(23) Ov(z)+ L*ov(z) =0, z€Q,

where L is the left shift operator L{vg,v_1,v_o, ) = (v_1,v_9,-+-),and L?> = Lo L.
Bukhgeim’s original theory in [8] shows that solutions of (23)), satisfy a Cauchy-like integral
formula,

(24) v(z) = B[v|r](z), z€Q,

where B is the Bukhgeim-Cauchy operator acting on v|,. We use the formula in [12]], where B is
defined component-wise for n > 0 by
(25)

Bg)n(e) = o [ £ L[ LS (g%_) seq

i=1

The following regularity result in [39, Proposition 4.1] is needed.

Proposition 3.1. [39 Proposition 4.1] Let o > 1/2 and g = (go,g—1, U2, ...) be the sequence
valued map of non-positive Fourier modes of g.

(i) If g € CH(I"; CHH(SY)), then g € 1LY N CH(T;1y).

(ii) If g € CH(I'; CH#(SY)) N C(I"; C*#(SY)), then g € Y, (I').

Similar to the analytic maps, the traces of L-analytic maps on the boundary must satisfy some
constraints, which can be expressed in terms of a corresponding Hilbert-like transform introduced
in [39]. More precisely, the Bukhgeim-Hilbert transform # acting on g,

(26) I's 2= (Hg)(2) = (Hg)o(2), (Hg)-1(2), (Hg)-2(2), ...)

is defined component-wise for n > 0 by

27 .

and we refer to [39] for its mapping properties.

Note that the Bukhgeim-Cauchy integral formula in (23)) above is restated in terms of L-analytic
maps as opposed to L2-analytic as in [39]. The only change is the index relabeling. In particular,
the index g_,,; will change to g_,,_»; therein to account for L?-analytic. Moreover, the same index
relabelling in the Bukhgeim-Hilbert transform formula (27)) is made to account for the difference
between L-analytic and L>?-analytic.

The following result recalls the necessary and sufficient conditions for a sufficiently regular map
to be the boundary value of an L*-analytic function, k = 1, 2.

Theorem 3.1. Let 0 < pu < 1, and k = 1, 2. Let B be the Bukhgeim-Cauchy operator in (23)).
Let g = (90, 9-1,9-2,-..) € Y, (I') for n > 1/2 be defined on the boundary I, and let H be the
Bukhgeim-Hilbert transform acting on g as in (27).

(i) If g is the boundary value of an L*-analytic function, then Hg € C*(I';1,) and satisfies

(28) (I +1H)g =
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(ii) If g satisfies (28), then there exists an L*-analytic function v := Bg € CY*(Q; 1) NCH(Q;11) N
C?(; 1), such that

(29) vir=g.

For the proof of Theorem we refer to [39, Theorem 3.2, Corollary 4.1, and Proposition 4.2]
and [40, Proposition 2.3].

Another ingredient, in addition to L?-analytic maps, consists in the one-to-one relation between
solutions u := (ug, u_1,u_s, ...) satisfying

(30) Ou_p(2) + Ou_p—2(2) + a(2)u_p_1(2) =0, z€Q, n>0,
and the L2-analytic map v = (v, v_1,v_o, ...) satisfying
(31) O_p(2) +0v_p 2(2) =0, 2€Q, n>0;

via a special function h, see [42, Lemma 4.2] for details. The function A is defined as

(32) h(z,80) := Da(z,0) — % (I —1H) Ra(z - 6+,07),

o0

where 7 is the counter-clockwise rotation of 8 by 7/2, Ra(s,8") = / a (s6 + 1) dt is the

—00
[e.e]

Radon transform in R? of the attenuation a, Da(z,0) = / a(z + t@)dt is the divergent beam
0

1 [ h(t
transform of the attenuation a, and Hh(s) = — / ( )t dt is the classical Hilbert transform [26]],
T ) o 8—

taken in the first variable and evaluated at s = z- . The function / appeared first in [27] and
enjoys the crucial property of having vanishing negative Fourier modes yielding the expansions

(33) e =0 .= Z ap(z)et? =0 Zﬁ e (2,0) € Q x Sh
k=0

Using the Fourier coefficients of e*", define the integrating operators e*¢

eachn <0, by

u component-wise for

(34) (e %), = (a*u), Z Qpn_, and (e“u), = (B*u), Z Brtp—r,

where a and (3 is given by
Q320 alz) = {ap(2),01(2), a2 (2),...,), Q32 B(2) = (Bo(2), Bi(2), Ba(2), ..., ).

Note that e*“ can also be written in terms of left translation operator as
oo [e.e]

35 e Cu= Z apL*u, and e%u= Z BpLru,
k=0 k=0

where L* is the k-th composition of left translation operator. It is important to note that the operators
e commute with the left translation, [e*“, L] = 0. We refer [42, Lemma 4.1] for the properties of
h, and we restate the following result [39} Proposition 5.2] to incorporate the operators e*“ notation

used in here.
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Proposition 3.2. [39, Proposition 5.2] Let a € C'*(Q), pn > 1/2. Then o, dcv, 3,08 € 111(D),
and the operators

(1) €5 CF(Q o) = CH(Q 1c);
(36) (ii) €9 : M 1) — CH(Q;1y);
(i1) €= 1 Y, (I") — Y, (I).

Lemma 3.1. [40, Lemma 4.2] Leta € C Li(Q), > 1/2, and e*C be operators as defined in (34).
(i) Ifu € CY (1) solves Ou + L*0u + aLu = 0, then v = ¢ “u € CY(Q, 1) solves Ov +

L?0v = 0.

_ (i) Conversely, if v € C'(,1,) solves Ov + L?0v = 0, thenu = e%v € C'(Q,1;) solves

ou + L*du+ alLu = 0.

4. EVEN ORDER m-TENSOR - NON-ATTENUATED CASE

We establish necessary and sufficient conditions for a sufficiently smooth function on I" x S* to
be the non-attenuated X -ray data of some sufficiently smooth real valued symmetric tensor field f
of even order m = 2¢, ¢ > 0. In this non-attenuated case, the transport equation (19a) becomes

(37) 0 - Vu(z,0) Z For(x)e @00 g e Q)
k=—q

where fy, defined in (I3), and for, = f_or, for —¢ < k < ¢, ¢ > 0. Note that f; is real-valued
while other modes are complex conjugates.

For z = z; + 175 € €, the advection operator 8 - V in complex notation becomes e ™0 + ¢'%0,
where @ = (cos 6, sin #), and 9, 9 are the Cauchy-Riemann operators in (3)).

It Z un(2)e 0 i5 the Fourier series expansion in the angular variable 8 of a solution u of (37),

nez
then, provided some sufficient decay (to be specified later) of u,, to allow regrouping, the equation

(37) reduces to the system:

(38) u_(an-1)(2) + Ou_(2n11)(2) = fan(2), 0<n<gq, q>0,
(39) O (2n-1)(2) + Ou_(2n11)(2) =0, n>qg+1,¢=>0,
(40) Ou_2,(2) + Ou_(an42)(2) =0, n > 0.

Recall that the trace u|pysi:= g as in ,withg=XfonI'yandg=0onI_UI[y.
The range characterization is given in terms of the Fourier modes of g in the angular variables:

[e.e]

9(¢,0) = D gu(Q)em™, (e

n=—oo

Since the trace g is also real valued, its Fourier modes will satisfy g_,, = g,,, forn > 0.
From the non-positive Fourier modes, we built the sequences

41) gV == (g0, 9-2,9-4,-), and g :=(g1,9.395,...).
From the negative odd modes starting from mode (2¢g + 1), we built the sequence

(42) ngOdd = <g—(2q+1)7g—(2q+3)7g—(2q+5)7 >= q=>0,

where L9 is the ¢g-th composition of left translation operator.
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We characterize next the non-attenuated X -ray data ¢ in terms of the Bukhgeim-Hilbert Trans-
form H in (27). We will construct the solution u of the transport equation (37), whose trace matches
the boundary data g, and also construct the right hand side of the (37). The construction of solution
w 1s in terms of its Fourier modes in the angular variable. We first construct the non-positive Fourier
modes and then the positive Fourier modes are constructed by conjugation. For even m = 2gq,
q > 1, apart from ¢ many Fourier modes u_;,u_3, - - - _(24—1), all non-positive Fourier modes are
defined by Bukhgeim-Cauchy integral formula (23) using boundary data. Other than having the
traces u_(zj_l)}r = g-(2j-1), 1 < 7 < ¢, ¢ = 1, on the boundary, the ¢ many Fourier modes
u_@2j-1), 1 < j < ¢q, ¢ > 1, are unconstrained. They are chosen arbitrarily from the class \I/eg"e“ of
functions of cardinality ¢ = % with prescribed trace on the boundary I defined as

Wever = {(¢—17¢—37 e 7¢—(2q—1)) S (Cl’“(@ C))qa2l~b >1:
(43) w—(zj—l)}p =g-@2j-1), 1 <3<q, q= 1} .

Remark 4.1. In the O-tensor case (m = 0), there is no class, and the characterization of the X -ray
data g is in terms of the Fourier modes g.

Theorem 4.1 (Range characterization for even order tensors). (i) Let f € Cy"(S™;Q), > 1/2,
be a real-valued symmetric tensor field of even order m = 2q, q > 0, and

g=Xftonl'yandg=0o0onI_U Iy.

Then g®", g°d € [LY(T) N CH(T; 1y) satisfy
(44) [I + IH]geven — 07
(45) [I +1H]L? g% = 0,
where g, g°% are sequences in (@1), and H is the Bukhgeim-Hilbert operator in 27).

(ii) Let g € C*(I'; CH#(SY)) N C(I7; C*#(S")) be real valued with g|r_or,= 0. For q = 0,
if the corresponding sequences g, g*" € Y, (I') satisfies @) and [@3), then there is a unique
real valued symmetric O-tensor £ such that g|r, = Xf. Moreover, for ¢ > 1, if g, g* € Y,,(I")

satisfies and @3, and for each element (Y_1,v_3, - ,_(24-1)) € Wven, then there is a
unique real valued symmetric m-tensors fy € C*(S™; Q) such that g|r, = Xfy.

Proof. (i) Necessity: Let f = (f;,..;. ) € Cy*(S™: Q). Since all components f; ..;, € Co* (1)
are compactly supported inside {2, then for any point at the boundary there is a cone of lines which
do not meet the support. Thus ¢ = 0 in the neighborhood of the variety [ which yields g €
CHH(I" x S'). Moreover, g is the trace on I" x S' of a solution u € C**(Q x S') of the transport
equation (37). By [39} Proposition 4.1] g&*e» g € [LY(T) N CH(T';1y).

If u solves (37) then its Fourier modes satisfy (38)), (39), and (d0). Since the negative even Fourier
modes u,,, for n < 0, satisfies the system (40), then the sequence valued map

Q3 2= u™"(2) = (up(2),u_2(2), u_a(2), u_g(2),---)

is L-analytic in €2 and the necessity part in Theorem [3.1] yields the condition :
The equation for negative odd Fourier modes starting from negative 2q + 1 mode, yield that
the sequence valued map
2 (U (2g41)s U (2048) U (2045) )
is L-analytic in 2 and the necessity part in Theorem [3.1] gives the condition (43]).
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(i) Sufficiency: Let g € C* (I'; CH#(S')) N C(I"; C*#(S')) be real valued with g|r_,r,= 0.
Since g is real valued, its Fourier modes in the angular variable occurs in conjugates

(46) 9-n(C) =79,(C), for n=>0, el

Let the corresponding sequences g satisfying (@4) and g°% satisfying (@3)). By Proposition (3.1)),
geven’ godd c YH(F)

Let m = 2q, ¢ > 0, be an even integer. To prove the sufficiency we will construct a real valued
symmetric m-tensor f in ) and a real valued function u € C*(Q x S') N C(Q x S') such that
u|rywst= g and u solves (37) in 2. The construction of such w is in terms of its Fourier modes in
the angular variable and it is done in several steps.

Step 1: The construction of even modes u,,, for n € Z.

Apply the Bukhgeim-Cauchy Integral operator (23)) to construct the negative even Fourier modes:

47) (up(2),u_2(2),u_y4(2),u_g(2),...) := Bg™"(2), =z€N.
By Theorem [3.1] the sequence valued map

20 {ug(2), u_a(2), u_y(2),...) € CH(Q;11) N CH(Q; 1),
is L-analytic in 2, thus the equations
(48) OU_gy + OUu_9p_9 = 0,

are satisfied for all n > 0. Moreover, the hypothesis (@4)) and the sufficiency part of Theorem [3.1]
yields that they extend continuously to I" and u_s, | = g_2,, forall n > 0.

Construct the positive even Fourier modes by conjugation: us, := U_s,, foralln > 1.

By conjugating (48)) we note that the positive even Fourier modes also satisfy

Otgnis + Otgy =0, n > 0.
Moreover, by reality of g in (46)) they extend continuously to I" and
Ugn|r = Ugn|r = G—2n = Gon, n 2> 1.
Thus, as a summary from above equations, we have shown that the even modes u,,, satisfy
(49) gy + Ougn—z =0, and  ugy|, = gsn, foralln € Z.

Step 2: The construction of odd modes us,, 1 for [n| > ¢, ¢ > 0.
Apply the Bukhgeim-Cauchy Integral operator (23)) to construct the other odd negative modes:

(50) (U (2g+1)(2), U—(2q49)(2), -+ ) == BLIg™(2), 2 € Q.
By Theorem [3.1] the sequence valued map
2 (U (2g41)(2), U= (2g43) (2), U(2g45) (2), ey ) € CPH(Q 1) N CH(Qs 1),
is L-analytic in €2, thus the equations
(51 Ou_(2n+1) + Ou_(2n43) = 0,

are satisfied for all n > ¢, ¢ > 0. Moreover, the hypothesis (43]) and the sufficiency part of Theorem
3.1l yields that they extend continuously to I" and

(52) U_(on41)| 1 = J—@2nt1), VN 2>¢q, ¢ > 0.

Construct the positive odd Fourier modes by conjugation: ug, 11 := U_(2,41), foralln > ¢, ¢ > 0.
By conjugating (31)) we note that the positive odd Fourier modes also satisfy

(53) oy + Ouzpyr =0, Vn>q, ¢ > 0.
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Moreover, by (46)) they extend continuously to I” and

(54) Ugns1|r = U-@nt1)|r = T_@nt1) = G2ns1, 1 >¢, ¢ > 0.

Step 3: The construction of the tensor field f in the ¢ = 0 case. In the case of the O-tensor,
f = fy, and f is uniquely determined from the odd Fourier mode u_; in (30), by

(55) fo:=2Redu_y, (forq=0case).

We consider next the case ¢ > 1 of tensors of order 2 or higher. In this case the construction of
the tensor field fy is in terms of the Fourier mode u_(2441) in (30) and the class Wever in #“3).

Step 4: The construction of odd modes v 2,1y, for 1 <n <gq, ¢ > 1.

Recall the non-uniqueness class W5 in (43).

For (w_l, Vg, - ,w_(Qq_l)) € \Ilgven arbitrary, define the modes w1, U3, ..., Ut (24—1) in 2 by
(56) U_(2n—1) = V—(2n—1) and Uy, _; 1= @—(%—1)’ I<n<gq q=>1

By the definition of the class (43)), and the reality of ¢ in (46), we have
(57) U_(n-1)|r = 9g—(@n-1), and  Ugy 1[r=7_(9p_1) = g2n-1, 1<n<gq, ¢>1.

Step 5: The construction of the tensor field f; whose X -ray data is g.

The components of the m-tensor fy are defined via the one-to-one correspondence between the
pseudovectors (fo, f1,- - - , fm) and the functions { fo, : —q < n < ¢} as follows.

For ¢ > 1, we define f5, by using 1_(5,_1) from the non-uniqueness class (43)), and Fourier mode
U_(24+1) from the Bukhgeim-Cauchy formula (50). Then, define { f5, : 0 < n < g—1} solely from
the information in the non-uniqueness class. Finally, define {f_5, : 1 < n < ¢} by conjugation.

f2q = 5¢—(2q—1) + au—(2q—|—1)7 q > 1a
f2n = 5'l/)—(Zn—l) + a'l/)—(Zn-i-l)a I<n< q— 1, q= 2,

58
(>8) fo:=2Redy_q, q>1, and
f—2n::E7 1§n§q7q217
By construction, fo, € C*(Q), for —¢ < n < q, a8 ¥_q, -+, 9,01 € CY#(2). We use these

Fourier modes fo, f+2, fia,- -+, fi2q for ¢ > 1, and equations (13), and (9)) to construct the
pseudovectors (fo, fi, e ,fm), and thus the m-tensor field fy € C*(S™; Q).

In order to show g|r, = Xfy for ¢ > 1, with fy being constructed as in (58], we define the real
valued function u via its Fourier modes for ¢ > 1,

o] q q
(59) u(z,0) = Z u%eane + Z u2n+161(2n+1)9 + 21/17(27171)671(2”71)9 + ZE—(zn—l)el(%*l)e-
n=-—oo [n|>q n=1 n=1
Since g € C* (I'; CH#(SY)) N C(I'; C*#(S1)), we use Proposition [3.1] (ii) and [39, Proposition
4.1 (iii)] to conclude that v defined in (39) belongs to C1#(2 x SY)NC*(Q x S*). Using @9), (32),
(34)), (57), and definition of (w_l, g, ,w_(gq_l)) € Ve for ¢ > 1, the trace u(-, 0) in (59)
extends to the boundary,

u('70>|F: g('? 0)
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Since u € CH*(Q2 x S') N CH(Q x S'), then the term by term differentiation in (39) is now
justified, and u satisfy (37):

q—1 qg—1
0-Vu=09¢-1+0¢1+ Z@w—@"—l) + 0P (o)) 4 Z@ @—(2n+1) + a@_(%_l))el@n)e
n=1 n=1

+ e (D_ o1y + Ou—iage) + €V (TP 9 1) + DU 2g4)
q

S fanl2)e V7 = (£,6%),

where the cancellation uses equations @9), (31)), (33)), (36), and the second equality uses the defi-

nition of f5;’s in (38).
]

5. ODD ORDER m-TENSOR - NON-ATTENUATED CASE

In this section we establish necessary and sufficient conditions for a sufficiently smooth function
on I" x S! to be the non-attenuated X -ray data of some sufficiently smooth real valued symmetric
tensor field f of odd order m = 2¢ + 1, ¢ > 0.

In the non-attenuated odd m-tensor case, the transport equation (19a) becomes

q
(60) 0 - VU(Z, 0) = Z (f2n+l (Z)e_l(2n+1)6 + f—(2n+1) (2)61(2n+1)9) ) (Za 0) €O x Sla
n=0
where f5,,1 defined in (I4)), and f5,11 = f_2,_1, for0 <n <gq, ¢ > 0.

If Z u,(2)e™ is the Fourier series expansion in the angular variable 6 of a solution v of (60),

nez

then, by identifying the Fourier modes of the same order, the equation (60) reduces to the system:
(61) Q9 (2) + Ou_(2042)(2) = fant1(2), 0<n<gq q=0,

(62) Ou_9,(2) + Ou_(ans2)(2) = 0, n>q+1,q¢>0,

(63) Eu_@n_l)(z) + Ou_(2n+1)(2) = 0, n > 0.

In the odd m-tensor case, the even and odd Fourier modes of u plays a different role, unlike
the even m-tensor case in the previous section. To emphasize this difference we separate the non-
positive even modes u®*®" := (ug, u_y, u_y4...), and negative odd modes u®¥ := (u_y,u_3,...), and
note that if (ug(2),u_1(2), u_»(2),...) is L2-analytic, then u®*", u®¥ are L-analytic.

Let us consider the sequence {u*~1},5; C C(; 1) N CH(Q; ) given by

2k—1
(64) u = <U2k_1,UQk_3, ey U, U1, U3, U_5, >, k 2 ]_,

obtained by augmenting the sequence of negative odd indices (u_1,u_3,u_s, ...) by k many terms
in the order uoy_1, Uok_3, ...., U71.

~~

k
One of the ingredients in our characterization of the odd m-tensor is the following simple prop-
erty of L-analytic maps, shown in [39, Lemma 2.6].

Lemma 5.1. [39, Lemma 2.6] Let {u?*~'},, be the sequence of L-analytic maps defined in (64).
Assume that

(65) Ugk—1|r= U—_zk—1)|r, Vk>1.
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Then, for each k > 1,

(66) Ugk—1(2) = u_(2k-1)(2), 2z € Q.
The range characterization of data g will be given in terms of its Fourier modes:
9(¢,0) = > gu(Q)e™, el

Since the trace g is also real valued, its Fourier modes will satisfy g_,, = g,,, for n > 0. From the
non-positive even modes, we build the sequence

(67) g 1= (0, 92, 91, G ---)-
For each k > 1, we use the odd modes {g_1,¢_3, g_5, ...} to build the sequence
(68) g%_l = (Gok—1,92k-3, -, 91,91, -3, 95, ---)

by augmenting the negative odd indices by k-many terms in the order gox_1, gor_3, ----, 91 -

-~

k
Similar to the non-attenuated even m-tensor case before, we will construct the solution u of the
transport equation (60), whose trace matches the boundary data g, and also construct the right hand
side of the (60). The construction of solution u is in terms of its Fourier modes in the angular
variable. Except for non-positive modes g, u_2, - - - , u_g,, all non-positive modes are defined by
Bukhgeim-Cauchy integral formula in (23) using boundary data. Other than having the traces
u_2j‘p = g-25, 0 < j <gq, ¢ > 0, on the boundary, the ¢ + 1 many Fourier modes u_;, 0 < j <
q, q > 0, are unconstrained. They are chosen arbitrarily from the class of functions

‘I’de = {(@50,?/)—27 e hgg) € CH(R) X (Cl’”(ﬁ; C))q (2p> 1
(69) ¢—2j‘ng—2j70§j§qaqzo}-

Remark 5.1. In the I-tensor case (m = 1), only Fourier mode uy be an arbitrary function in
CHQ) N C(Q) with ug|r = go. The arbitrariness of ug characterizes the non-uniqueness (up to the
gradient field of a function which vanishes at the boundary) in the reconstruction of a vector field
from its Doppler data.

Theorem 5.1 (Range characterization for odd tensors.). Let f € Cy*(S™;Q), pu > 1/2, be a real-
valued symmetric tensor field of odd order m = 2q + 1, ¢ > 0, and

g=Xtonl'yandg=0o0onI_U Iy.

Then g, g?~1 € [LYT) N CH(T; 1y) for k > 1, and satisfy
(70) [+ H]L"2 g =0,
(71) I +1H]g* ' =0, VE>1,
where g&'" is the sequence in (1), g2~ for k > 1 is the sequence in (68), and H is the Bukhgeim-
Hilbert operator in (27).

(ii) Let g € C*(I';CY(SY)) N C(I'; C*#(SY)) be real valued with g|r_,r,= 0. If the corre-
sponding sequence g € Y, (I') satisfies @Q), g**~' € Y,(I') for k > 1, satisfies (1), and for

each element (g, V_o, -+ ,9_9y) € \If‘g’dd, then there is a unique real valued symmetric m-tensor
fo € C*(S™; Q) such that g|p, = Xf.
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Proof. (i) Necessity: Let f = (fi,...,.) € Cy*(S™; Q). Since all components firim € Oyt (Q),
XfeC 1’“(F+), and, thus, the solution u to the transport equation (60 is in C 17“(9 xSt ). Moreover,
its trace g = u|pys1€ CV#(I" x S1). By [39, Proposition 4.1] g&*e» g?*=1 ¢ [LY(T") N C*(T'; ;) for
all k > 1.
If u solves (60) then its Fourier modes satisfy (61)), (62)), and (63). Since the negative even Fourier
modes u_s, for n > mTH, satisfies the system (62)), then the sequence valued map
Q3 z— <u—(m+1)(z)a u—(m+3)(z)> u—(m+5)(z)> o >
is L-analytic in €2 and the necessity part in Theorem [3.1] yields the condition (ZQ).
The system (63)) yield that the sequence valued map
Q3 2z ul(2) = (ui(2),u_1(2),u_s(2)---)
is L-analytic in {2 with the trace satisfying usy_1|p= gor_1, forall £ < 1.
By Theorem 3.1l necessity part, the sequence g' = (g1, 9_1, g_3, ...) must satisfy
[l +1H]g' = 0.
Recall that u is real valued so that its Fourier modes occur in conjugates u,, = u_, for alln > 0.
Consider now the equation (63)) for n = 1 and take its conjugate to yield
(72) Ouz + Ouy = 0.
Equation together with (63) yield that the sequence valued map
Q32— ud(2) = (us(2), u1(2), u_y(2), u_s(2) - - -)
is L-analytic in {2 with the trace satisfying usy_1|p= gor_1 for all & < 2.
By the necessity part in Theorem [3.1] it must be that g* = (g3, g1,9_1, g_3, ...) satisfies
[ +1H]g® = 0.
Inductively, the argument above holds for any odd index 2k — 1 to yield that the sequence
Q3207 N2) = (uge_1(2), usp—3(2), ..., ur (2), u_1(2), u_s(2) - --)

is L-analytic in €. Then, again by the necessity part in Theorem 3.1} its trace u?*~!| = g?*~! must
satisfy the condition (ZI):

[ +1H]g* =0, forall k> 1.

(i) Sufficiency: Let g € C* (I'; CH#(SY)) N C(I"; C*#(S')) be real valued with g|r_r,= 0.
Since g is real valued, its Fourier modes in the angular variable occurs in conjugates

(73) 9-n(C) =7,(), forn>0,Cel.

Let the corresponding sequences g®'°" satisfying and g°%¢ satisfying (@3)). By Proposition (3.1)),
geven’ godd c YH<F)

Let m = 29+ 1, ¢ > 0, be an odd integer. To prove the sufficiency we will construct a real
valued symmetric m-tensor f in ) and a real valued function u € C*(Q x S') N C(Q x S') such
that u|pg1= g and u solves (60) in §2. The construction of such wu is in terms of its Fourier modes
in the angular variable and it is done in several steps.

Step 1: The construction of even modes us,, for [n| > 2+ 1, ¢ > 0.

Apply the Bukhgeim-Cauchy integral formula (23)) to construct the negative even Fourier modes:

(74) (U—(g1), U—2(g42)s U—2(q43)s s ) 1= BLIH g™,



ON THE X-RAY TRANSFORM OF SYMMETRIC HIGHER ORDER TENSORS 15

By Theorem [3.1] the sequence valued map

Q3 2> (Uagin)(2), Uma(gra) (2), U—aiges) (2), ) € CHH(Q 1) NCH(Q 1),
is L-analytic in €2, thus the equations
(75) Ou_sy, + OU_(3n42) = 0,

are satisfied for all n» > ¢ + 1, ¢ > 0. Moreover, the hypothesis (ZQ) and the sufficiency part of
Theorem [3.1] yields that they extend continuously to I” and

(76) U_on|r = g-9n, n>q+1,¢g>0.

Construct the positive even Fourier modes by conjugation: us, := U_s,, foralln > ¢+1, ¢ > 0.
By conjugating (73) we note that the positive even Fourier modes also satisfy

) 5u2n+2 + auQn =0, n=2q+1,q=0.
Moreover, by reality of ¢ in (73), they extend continuously to I” and
(78) Ugn|r = U—gn|r = G20 = gon, N >q+1,¢2>0.

Step 2: The construction of even modes w5, for [n| < 2q, ¢ > 0.
Recall the non-uniqueness class U5 in (69).

For (1o, th—a, - -+ ,1h_a4) € W arbitrary, define the modes g, U2, Uy, ..., Uzoq in Q by
(79) U_gp = P_9p, and ug, =1 _o,, 0<n<gq.

By the definition of the class (69), and reality of g in (Z3)), we have
(80) Ugn|r=G—2n = gon, 0<n <gq.

Step 3: The construction of negative modes w5, _; for n € Z.
Use the Bukhgeim-Cauchy Integral formula (23) to construct the negative odd Fourier modes:

(81) (u_1(2),u_3(2),u_s(2),...) := Bg®¥(z), z¢€Q.
By Theorem [3.1] the sequence valued map
Q32 (u_1(2),u_3(2),u_s(2),...) € CH*(Q; 1)) N CH(Q; 1),
is L-analytic in 2, thus the equations
(82) OU_gp_1 + OUu_gy_5 = 0,

are satisfied for all n > 0.
Note that Lg' = g°. By hypothesis (ZI), [ + 1H]g' = 0. Since H commutes with the left
translation L, then

0= L[l +1H]g' = [[ +1H]Lg" = [I +1H]g"".
By applying Theorem 3.1l sufficiency part, we have that each w9, extends continuously to I':
U—on—1|r = g-on—1, n>1.

If we were to define the positive odd index modes by conjugating the negative ones (as we did
for the non-attenuated even tensor case) it would not be clear why the equation (63) for n = 0:

gul + 8u_1 = 0,

should hold. To solve this problem we will define the positive odd modes by using the Bukhgeim-
Cauchy integral formula (23) inductively.
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Letu' = (uy,u |, uls, - ) be the L-analytic map defined by
(83) u' .= Bg'.
The hypothesis for k =1,
[T +1H]g' =0,

allows us to apply the sufficiency part of Theorem [3.1] to yield that u! extends continuously to I’
and has trace g' on I". However, Lu' = u® is also L-analytic with the same trace g®¥ as u®¥. By

the uniqueness of L-analytic maps with the given trace we must have the equality

11
<u—17 U_g," > = <u—17u—37 e >

In other words the formula ([83)) constructs only one new function u; and recovers the previously
defined negative odd functions u_q,u_3, .... In particular u* = (uy,u_1,u_s,---) is L-analytic,
and the equation Ju; + du_; = 0 holds in 2. We stress here that, at this stage, we do not know that
uy 1s the complex conjugate of u_.

Inductively, for £ > 1, the formula
(84) uTh = (ugg g, uy Ty, uf T W ) = B
defines a sequence {u?*~1},~, of L-analytic maps with u**~!|,= g1,
L-analytic maps with the given trace, a similar reasoning as above shows

Lot =u?3 vk > 2

By the uniqueness of

In particular for all £ > 1, the sequence

2k—1 _ <

u u2k—1aU2k—3>---au1>u—1>'">

is L-analytic. Note that the sequence {u?*~1},; constructed above satisfies the hypotheses of the
Lemma[3.1] and therefore for each & > 1,

(85) Ugk—1(2) = U_(2p—1)(2), 2z €L

We stress here that the identities (83) need the hypothesis for all £ > 1, cannot be inferred
directly from the Bukhgeim-Cauchy integral formula (23)) for finitely many &’s.
We have shown that

(86) 5u2n—1 + Oug,—3 =0, and Uzn—1|F = Gon-1, Vn € Z.

Step 4: The construction of the tensor field f, whose X -ray data is g.

The components of the m-tensor fy are defined via the one-to-one correspondence between the
pseudovectors ( fo, f1,- -+, fm) and the functions { f1(2n41) : 0 < n < ¢} as follows.

For ¢ > 0, we define f5,.1 by using ©_5, from the non-uniqueness class in (69), and Fourier
mode u_(2442) from the Bukhgeim-Cauchy formula (74). Then, define {fo,4+1: 0 <n < ¢ —1}
solely from the information in the non-uniqueness class. Finally, define {f_(2,41) : 0 < n < ¢}
by conjugation.

Jog+1 = 5¢—2q + 0u_(2q+2)> q=>0,
(87) f2n+1 = 5¢—2n + 8¢—(2n+2)7 0<n< q— 17 q= 17 and
J=@nt1) = fons1, 0<n<gq q=0,
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By construction, fion+1) € CH(€2), for 0 < n < g, as Yo, g, - ;Y9 € CLH(Q2). We use
these Fourier modes fi1, fi3, -, fam form = 2¢ + 1, ¢ > 0, and equations (14)), (7) and (9) to
construct the pseudovectors (fo, f1, - - - , fm), and thus the m-tensor field fy € C*(S™:; Q).

In order to show g|, = Xfy with fy being constructed from pseudovectors via Fourier modes as
in (87) from class ¥°%, we define the real valued function v via its Fourier modes

> q
(88) u(z, 0) = Z Uopy— 1 1(2n 1)6 + Z . e12nd + Z Vo 2n 712n0 Z E_%l (Z)612n9'
n=0

n=-—00 In|>q+1

Since g € C* (I'; CV#(S")) N C(I"; C*#(S")), we use Proposition 3.1] (ii) and [39, Proposition 4.1
(iii)] to conclude that u defined in (88)) belongs to C1#(Q x S*) N CH(Q x St).

Using (7€), @8), ©Q), (B6), and element (1o, 1)_3, - - -, 1h_3q) € WY, the u(-, ) in (88) extends
to the boundary

u('>0)|F: g('a 9),

Since u € CH#(Q2 x SY) N CH(Q x S!), then the term by term differentiation in (88) is now
justified, satisfying the transport equation (60):

q—1

0 Vu=2Re {(D—a; + Ou_(ag4))e ™"} + 2Re {Z(Ew—m + a@D—(2n+2))‘5’1(2n+1)6}

n=0
q
_ Z (f2n+1e—1(2n+1)€ + f—(2n 1(2n+1 ) <f 02q+1>

where the cancellation uses equations (73), (77), (86), and the second equality uses the definition

of fort1’s in (87).
O
6. EVEN ORDER m-TENSOR - ATTENUATED CASE
Leta € C**(Q), u > 1/2, withmina > 0. We now establish necessary and sufficient conditions
9

for a sufficiently smooth function on I" x S! to be the attenuated X -ray data of some sufficiently
smooth real valued symmetric tensor field f of even order m = 2¢q, ¢ > 0. In this case a # 0, the
transport equation (19a) becomes

q
(89) 0 - Vu(z,0) +a(z Z o€ 137 fopem R0,
k=1

where fy, defined in (13), and fo, = f_ok, for —q < k < ¢, ¢ > 0.
If Z un(2)e 0 i5 the Fourier series expansion in the angular variable 8 of a solution u of (89),

neZ
then by identifying the Fourier coefficients of the same order, equation reduces to the system:
(90) Ou_(2n-1)(2) + Ou_(2n41)(2) + au_2,(2) = fan(2), 0<n<gq, q¢q>0,
1) Ou_on(2) + Ou_(an42)(2) + au_2,—1(2) = 0, 0<n<qg-—-1,¢>1,

92) Ou_p(2) + Ou_(ni2)(2) + au_(11y(2) = 0, n>2q, ¢ > 0.
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Recall that the trace u|pxsi:= g as in ,withg = X, fonly andg=0on1_UIj.
We expand the attenuated X -ray data g in terms of its Fourier modes in the angular variables:

oo

9(¢,0) = > gu(Q)em™, (el

n=—oo

Since the trace g is also real valued, its Fourier modes will satisfy g_,, = g,,, for n > 0. From
the negative modes, we built the sequence g := (g0, 9_1,9_2, g_3, ...). From the special function h
defined in and the data g, we built the sequence

g = G_Gg = <707/7—177—2’ >’

where ¢*¢ as defined in (34). From the negative even, respectively, negative odd Fourier modes,
we built the sequences

(93) g = (v0,v-2,7-4,-..), and gzdd = (Y_1,7-3, V=5, ---)-

Next we characterize the attenuated X -ray data g in terms of its Fourier modes go, g—1, 9—2, * * * §—(m—1)>

-

g
m

and the Fourier modes

L™gp = L™ %8 = (Vo V(1) Y—(m+2)s )

Similar to the non-attenuated case as before, we construct simultaneously the right hand side of
the transport equation (89) together with the solution u via its Fourier modes. For m = 2q, ¢ > 1,
apart from modes ug, u_1,U_, - - U_(24—1), all Fourier modes are constructed uniquely from the

J

~~

2q
data L??gj,. The modes g, U_a, U_4, - - *U_(24—2) Will be chosen arbitrarily from the class Wg'™" of
cardinality ¢ = %+ with prescribed trace and gradient on the boundary " defined as

\I]Z\:;n — {(¢07w_27 ce 7¢—2(q—1)) € 02(5, R) X (02(§; C)))q :

¢—2j‘ng—2j, 0<7<q—-1,q¢>1,
gw_z(q—l)}l“ = _8(€GB€_Gg)—QQ‘F - a}p 9—(2¢-1)s 4 > 17

(94) OM_aj| = =00 zjan) | p — a| L 9-jer), 0<j<q—2 ¢> 2}

where B be the Bukhgeim-Cauchy operator in (23), and the operators =% as defined in (34).

Remark 6.1. In the 2-tensor case (m = 2), apart from zeroth mode uy and negative one mode
u_1, all Fourier modes are constructed uniquely from the data L*g),. The mode g will be chosen

arbitrarily from the class \I/Z"fgzz. We rewrite the above class Wg'e" explicitly for m = 2, as

(95 W= {@Do € C*(R) : |, = go, Ovo|, = —0(e“Be “g)_s|, —alr 9—1} :

In the O-tensor case (m = 0), there is no class, and the characterization of the attenuated X -ray
data q is in terms of the Fourier modes g, ‘= e~ “g.

Next, we characterize the range for even m = 2¢q, ¢ > 0, in the attenuated case.
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Theorem 6.1 (Range characterization for even order tensors ). Let a € C%*(Q), u > 1/2 with
mina > 0. (i) Let f € C’é’”(Sm; Q), be a real-valued symmetric tensor field of even order m =
Q

2q,q>0,and g = X,fon 'y and g = 0on I_UI,. Then g5, g2 € IL1(T) N CH(T;1y) satisfy
96) [ +1H]L2 g™ =0, [I+1H]LZgy=0.

where g&°", g9% are sequences in (Q3), and H is the Bukhgeim-Hilbert operator in 7).

(ii) Let g € C* (I'; CY#(SY)) N C(1; C*#(SY)) be real valued with g|r_yr,= 0. For q = 0, if
the corresponding sequences g5’ g5% € Y,,(I) satisfies (Q6), then there is a unique real valued
symmetric O-tensor f such that g|r,= X,f. Moreover, for ¢ > 1, if gi*", g8 € Y, (I") satisfies
6, and for each element (@Do, P_g, - ,Q/J_Q(q_n) € We'eh, then there is a unique real valued

symmetric m-tensor fy € C(S™; Q) such that g|r, = X.fu.

Proof. (i) Necessity: Let f = (f;,...,,) € Ca*(S™; Q). Since all components f;,..;. € Cy*(1)
are compactly supported inside {2, then for any point at the boundary there is a cone of lines which
do not meet the support. Thus ¢ = 0 in the neighborhood of the variety [ which yields g €
CHH(I" x S'). Moreover, g is the trace on I" x S' of a solution u € C**(Q x S!) of the transport
equation (89). By Proposition 3.1(i) and Proposition3.2} g, = e~“g € [LY(T") N CH(T; ;).

If u solves ([89) then its Fourier modes satisfies (9Q), (O1)) and (92). In particular, the sequence
valued map u := (ug, u_1, u_y, - - - ), satisfies OL™u + L*OL™u + aL™ 'u = 0.

Letv := ¢~ “L™u, then by Lemma[3.1] and the fact that the operators e*C commute with the left
translation, [e*“, L] = 0, the sequence v = L™e”%u solves Ov + L?0v = 0, i.e v is L? analytic.
Thus, the negative even subsequence (vg, v_s, - - - ), and negative odd subsequence (v_1,v_3, - ),

respectively, are L analytic, with traces L% g;'", respectively, L% g°%. The necessity part in Theo-

rem 3.1l yields (Q6)):
I+ 1H]L2 g™ =0, [[+1H]L?g™ =0.
This proves part (i) of the theorem.

(i) Sufficiency: Let g € C* (I'; CH#(SY)) N C(I'; C*#(S')) be real valued with g|r_r,= 0.
Let the corresponding sequences g5, go% as in satisfying (96). By Proposition [3.1(ii) and
Proposition[3.2(iii), we have g, g0 € Y, (I").

Let m = 2q, ¢ > 0, be an even integer. To prove the sufficiency we will construct a real valued
symmetric m-tensor f in © and a real valued function u € C1(2 x S') N C(Q x S!) such that
u|rxst= ¢ and u solves (89) in 2. The construction of such w is in terms of its Fourier modes in
the angular variable and it is done in several steps.

Step 1: The construction of modes vu_,, for |n| > 2¢, ¢ > 0.

Use the Bukhgeim-Cauchy Integral formula (23)) to define the L-analytic maps

v (2) = (vo(2), v-2(2),v_4(2),...) := BLIgy"*"(2), =z €,

veU(2) = (v_1(2),v_3(2),v_5(2), ...) := BLigs"(2), z¢€ Q.
By intertwining the above L-analytic maps, define also the L?-analytic map
v(z) = (vo(2),v-1(2),v_2(2),v_3(2),...), 2z €.
By Theorem [3.1] (ii),
97) v, v vl e CLH(Q 1) N CH Q1) N CH Q).



20 DAVID OMOGBHE AND KAMRAN SADIQ

Moreover, since gf'", g% satisfy the hypothesis (96)), by Theorem [3.1l sufficiency part, we have
V| L= [9g®en  and  vodd|= [9g0%,
In particular, v is L?-analytic map with trace:
98) v|r= L*g;, = L*e”“g,
where gy, is formed by intertwining g¢"*" and g9
Define the sequence valued map
(99) Q32 LP(2) = (u_99(2), u_9q-1(2), u_oq_2(2), -+ ) = e“Vv(2),
where the operator e as defined in (34). Since convolution preserves [;, by Proposition[3.2]
(100) L € CHH(Q;1,) NCH(Qs ).

Moreover, since v € C?*(Q;l) as in (@7), we also conclude from convolution that L?%u €
C?(Q;1y).
As v is L? analytic, by Lemma 3.1l L*u satisfies

OL*u + L*0L*u+ aL*u =0,

which in component form is written as:

(101) OUu_p +OU_p_g+au_,_y =0, n>2q q>0.
The trace satisfy
(102) L*M|p= eCv|p= e“L¥e Yg = L¥g,

where the second equality follows from and in the last equality we use the fact that the operators
e commute with the left translation, [e*%, L] = 0.

Construct the positive Fourier modes by conjugation: wu, = u_,, for all n > 2q, ¢ > 0.
Moreover using (I02)), the traces u, | for each n > 2¢, ¢ > 0, satisfy

(103) Un|r=T=n|r=9=0 = gn, 1 >2¢, ¢ =0.
By conjugating (I01)) we note that the positive Fourier modes also satisfy
(104) Olpio + Oup + atiyy1 =0, n>2q, ¢ >0.

Step2: The construction of the tensor field f in the ¢ = 0 case.
In the case of the O-tensor, f = fj, and f is uniquely determined from the odd Fourier mode
u_1, and the zeroth mode uq in (99), by

(105) f:=2Redu_q + auy, (for g =0 case).

We consider next the case m = 2¢,q > 1 of tensors of order 2 or higher. In this case the
construction of the tensor field fy, is in terms of the mode u_s, in (99) and the class Wever in (©4).

Step 3: The construction of modes u,, for [n| < 2¢—1¢ > 1.

Recall that a € C%#(QQ), u > 1/2 with m_éna > 0, and the non-uniqueness class ¥5'e" in (94).

For (¢o,%_a, - ,¥_g(4—1)) € V" arbitrary, define the modes ug, U4, ..., Ui (2(g—1)) in 2 by
(106) U_gj =1 95, and wuy; =1 _y;, 0<j<qg—1 ¢g>1
Using the mode u_y, from (Q9) and ¢_5(,—1), define the modes . (24—1) by

O_sg-1) + Ou_
U_(2¢g—1) ‘= — ¢ 2a 1()1, ¢ 2(1’ and U2g—1 = ﬂ_(gq_l), for allq > 1.

107)
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As g € C*(;R) and Y249y € C*(Q;C), for 0 < j < ¢ — 2, ¢ > 2, define modes
(108) -
_OYgj + 2j1)

a

U—(2j+1) ‘=

y and U541 = ﬂ_(2j+1), for all 0 S] S q— 2, q Z 2.

By the construction in (106), (107), and (108):

u_9; € C*( 1), for 0<j<qg—1,¢q>1,
(109) U_(2j4+1) € CHQls), for 0<j7<q—1,¢>1, and
gu_% + Ou_(2j42) +au_(zj41) =0, for 0<j5j<qg—1,¢>1,

are satisfied. Moreover, by conjugating the last equation in yields
(110) Ouy; +5u(2j+2) +aupjiy =0, for 0<7j<qg—-1,¢>1

By the definition of the class (94)), and reality of g, we have the trace of U_g; In (106)) satisfies
(111) U_gjlr = g_9j, and ugjlr=93; =¢25, 0<j<qg—1,¢>1

We check next that the trace of u_(;41) 18 g_(2j41) for0 < 7 <¢g—2, ¢ > 2:

= g—(2j+1),

_510—23' + OV_(2j+2)

a

(112) U—(2j+1)}p =

r

where the last equality uses the condition in class (94). Similar calculation to (I12) for mode
U_(24—1) give the trace

_Ew—%q—l) + Ou_sg

(113) U—2-1)|p = . = 9—(2g-1)-
r
Thus, from - (113)), we have the traces:

Step 4: The construction of the tensor field f; whose attenuated X -ray data is g.

The components of the m-tensor fy are defined via the one-to-one correspondence between the
pseudovectors (fo, f1,- -+, fm) and the functions { fo, : —q < n < ¢} as follows.

We define first fo, by using ¥_5(4—1) from the non-uniqueness class, and Fourier modes u_oq, U_(2¢41) €
C?*(; 1) from (@9). Then, next define fo, o by using Y_9(g—1), Y—2(q—2) from the non-uniqueness
class, and Fourier mode u_5, from (@9). Then, define {fs, : 0 < n < g — 2} solely from the
information in the non-uniqueness class. Finally, define { f_5, : 1 < n < ¢} by conjugation.
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(115)
(0 H+0
Jog = —0( V2 = 2q> + Ou—(gr) + AUz, 21,
+ 0 O_a(g—1) + Ou_
[ ( OV _a(g—2) + OV_o(4—1) ) —8( Y_s(q 1; 2q> Fatoag . 422,
f = <a —2(=1) +a¢ QTL) — a <a¢_2n +f¢_2(n+l)> +CL¢—2TL7 1 S n S q— 27 q Z 37

_2R68<M> +aw0’ q:l7
Jo:= “

—9Red (M) + athy, q> 2,

a
foon = fon, 0<n<gq, qg>1,

By construction, fy, € C(Q),for0 < n <gq, ¢ > 1,asv¢_o, € C*(Q;ly), for 0 < n < g —1,
from (94). Note that f5, satisfy (90). We use these Fourier modes (fo, fio, fx4, ", f+m) and
equations ([13), (7) and () to construct pseudovectors ( fo, fi,eee, fm), and thus m-tensor field
fy € C(S™; Q).

In order to show g|r, = X,fy with fy being constructed from pseudovectors via Fourier modes

as in (I13)) from class weve', we define the real valued function u via its Fourier modes
(116)

51/;_2( —1) + O0u_y (90—
0) = . no IR . q q 1(2g—1)0
u(z,0) E un(2)e™ + 2Re ( - e

In|>2q
q—2 a3
_ OY_9j + O0U_(2j12) \ _
2R n( 1(2n)0 IR — J J 1(2n+1)6

and check that it has the trace g on I and satisfies the transport equation (89).

Since g € C* (I'; CH#(SY)) N C(I'; C*#(SY)), we use Proposition 3.1 (ii) and [39} Proposition
4.1 (iii)] to conclude that u defined in (IT6) belongs to C1#(Q x S') N CH(2 x SY). In particular
u(-, @) for @ = (cos 0, sin ) extends to the boundary and its trace satisfies

U( |F— Z un‘r m@_'_ Z un‘r Z gn61n€+ Z gnelTﬁ:g(_,e)7

In|>2q In|<2¢—1 In|>2q In|<2¢—1

where in the second equality above we use (O8)), (103) and (I14).

Since u € CH#(Q x S') N CH(Q x St), then using (IOT), (104), (I07), (I09), (I10), and the
definition of f5, for —qg < n < ¢, ¢ > 1 in (I13)), the real valued u defined in (116) satisfies the

transport equation (89):

0-Vu+au= (fy,0%), q¢>1.
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7. ODD ORDER m-TENSOR - ATTENUATED CASE

In this section, we establish necessary and sufficient conditions for a sufficiently smooth function
on I" x S! to be the attenuated X -ray data of some sufficiently smooth real valued symmetric tensor
field f of odd order m = 2¢ + 1, ¢ > 0.

In this case a # 0, the transport equation becomes

q
(117) 6 -Vu(z,0) + a(z)u(z, ) = Z (f2n+1(x)€—l(2n+l)9 4 f_(2n+1)(x)el(2“+1)9) Creq,

n=0
where f2n+1 f—(2n+1) 0<n< q, 4 = > 0.

It Z u,(2)e™ is the Fourier series expansion in the angular variable 6 of a solution u of (I17),

neL
then by identifying the Fourier coefficients of the same order, the equation reduces to the

system:

(118) Qo (2) + Ou_(2n42)(2) + aU_(2n41)(2) = fans1(2), 0<n<gq q=>0,
(119) Ou_(2n-1)(2) + Ou_(2n41)(2) + au_gn(2) =0, 0<n<gqg, q=0,
(120) Ou_p(2) 4+ Ou_(ni2)(2) + au_g11y(2) = 0, n>2q+1, ¢ >0,

Recall that the trace u|pygi:= g as in 1)), with g = X,fon I’y and g = 0on [_ U I.
We expand the attenuated X-ray data ¢ in terms of its Fourier modes in the angular variables:

9(¢,0) = Z gn(Q)e™?, for ¢ € I'. From the non-positive modes of g, we built the sequences

g = (g0, 91,92, ...), and gy := e g := (79, v_1,72, ...), where e** as defined in (34). From
the non-positive even, respectively, negative odd Fourier modes, we built the sequences

(121) g = (v0,v-2,7-4,-..), and g"dd (Y1, V=35 Y5y +oe)-

Next we characterize the attenuated X -ray data g in terms of its 7 many modes go, g—1,* - * §—(m—1)»
and the Fourier modes L™g), := L™e Cg := (y_,.. Y (met1)s V—(m+2)s )
As before we construct simultaneously the right hand side of the transport equation together
with the solution u. Construction of u is via its Fourier modes. We first construct the negative
modes and then the positive modes are constructed by conjugation. For m = 2q + 1 (odd inte-
ger), ¢ > 1, the modes will be chosen arbitrarily from the class \Il"dd of cardinality ¢ = ©“— L with
prescribed trace and gradient on the boundary /" defined as

WM = L (g, g, Y ag-)) € (C2(C))°

¢—(2j—1)}1” =g-(2j-1), 1L <7 <¢q, q=>1,

T2

=Y G -G
(122) aw—@q—l) ‘F = —8(6 Be g)—(2q+1) ‘F - CL‘F 9—2q, q > 17
5¢—(2j—1)‘p = —8¢—(2j+1)}p — a‘pg—% 1<j<q-1, ¢=2

2 (Red_1|,.) = —alr go, }

where B be the Bukhgeim-Cauchy operator in (23), and the operators e* as defined in (34).
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Remark 7.1. In the I-tensor case (¢ = 0), there is no class, and the characterization of the atten-
uated X -ray data g is in terms of its zero-th mode go = ¢ ¢(-,0)d0 and negative Fourier modes of

gn = e Y.

Theorem 7.1 (Range characterization for odd order tensors). Let a € C%*(Q), u > 1/2 with
mina > 0. andm =2q+1,q > 0. (i) Let f € CS’“(S’”; Q) be a real-valued symmetric m-tensor
Q
field of odd order and
g=Xgfonly andg=00n1_UIyj.
Then g, g4 € [L1(T) N C’”(F' l1) satisfy

(123) I +1H]L gl =0, [[+1H]L"T g% =0, for ¢>0,
where g2 g% qre sequences in . Additionally, in ¢ = 0 case, for each ( € I, the zero-th

Fourier mode gy of g satisfy

—2Red(e“Bg;,)_
(124) gO(C):QazI—%er ° (z(z)gh) 1(2), for q=0,

where B be the Bukhgeim-Cauchy operator in (23), and the operators e*¢ as defined in (34).

(ii) Let g € C* (I'; CY#(SY)) N C(I; C*#(SY)) be real valued with g|r_yr,= 0. For q = 0, if
the corresponding sequences g5’ g3 € Y, (I") satisfies (I23)), and g satisfies (124), then there
exists a unique real valued vector field (1-tensor) £ € C(S™; Q) such that g|r, = X, f. Moreover, for
q> 1 ifgy, g € Y, (I) satisfies (I23), and for each element (Y—1,¢_3, -+ ,¥_(24-1)) € SRV
then there is a unique real valued symmetric m-tensor fy € C(S™; Q) such that g|r, = X.fu.

Proof. (i) Necessity: Let f = (f;,.... ) € Co*(S™; Q). Since all components f;,..;., € Co*(€),
X.f € CY#(I'}), and, thus, the solution u to the transport equation is in C1#(Q) x St).
Moreover, its trace g = u|pys1€ CH#(I" x St). By Proposition 3.1i) and Proposition 3.2 g;, =
~Cg e L) N O 1Y).

If u solves then its Fourier modes satisfies (118)), and (I20). In particular, the se-
quence valued map u = (ug, u_1, u_s, ...) satisfy OL™u + L*OL™u + aL™ 'u = 0.

Letv := ¢~ “L™u, then by Lemma[3.1] and the fact that the operators e*C commute with the left
translation, [e*¢, L] = 0, the sequence v = L™e™“u solves dv + L?0v = 0, i.e v is L? analytic.
The non-positive even subsequence (v, v_ 2" -+), and negative odd subsequence (v_1,v_3,- ),

, respectively, L y g999. The necessity part in

even

respectively, are L analytic, with traces L" g

Theorem 3.1] yields (123):
I+ 1ML g =0, [[+1H]L™7 g8 =0, for m=2¢+1, ¢>0.

Additionally, in the ¢ = 0 case, the Fourier modes ug, u_1, u; of u solve (I19) for n = 0. Since
a > 01in €2, we have

—2Redu_y(2)
a(z)
Since the left hand side of (123) is continuous all the way to the boundary, so is the right hand side.

Moreover, the limit below exists and in the ¢ = 0 case, we have

—2Redu_1(2)

9o(z0) Qazl—{rzloel“ uo(2) Qaz1—>HzloeF a(z) ’

thus (I24) holds. This proves part (i) of the theorem.

(125) up(z) = , z€ef.
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(i) Sufficiency: Let g € C* (I'; CY#(S')) N C(I"; C*#(S')) be real valued with g|r = 0.
Let the corresponding sequences g$*", g% as in (I21) satisfying (I23). By Proposition 3.1Xii) and
Proposition B.2Liii), g5, gidd € Y, (I).

Letm = 2¢ + 1, ¢ > 0, be an odd integer. To prove the sufficiency we will construct a real
valued symmetric m-tensor f in §2 and a real valued function u € C'(Q x S') N C(Q x S') such
that u| v s1= ¢ and u solves in €. The construction of such wu is in terms of its Fourier modes
in the angular variable and it is done in several steps.

Step 1: The construction of modes u,, for |n| > 2¢+ 1, ¢ > 0.

Use the Bukhgeim-Cauchy Integral formula (23)) to define the L-analytic maps

V() = (v9(2), v_9(2), v_4(2),...) == BLT g8 (2), 2z €Q,
voUl(2) = (v_1(2),v_3(2),v_5(2),...) := BLIgd¥(2), z€ Q.
By intertwining let also define L?-analytic map

v(z) = (vo(2),v-1(2),v_2(2),v_3(2),...), 2z €.
By Theorem [3.11(ii),
(126) veer vodd v e CVH(Q; 1) N CH Q1) N C3H D ).

even .odd

Moreover, since g§**", g9%® satisfy the hypothesis (96), by Theorem 3.1 sufficiency part, we have
Veven‘l“: Lq+1gzven and VOdd|p: ngzdd7 q 2 0.
In particular, v is L2-analytic with trace:
(127) vlp= L*"g, = L*"e ™%, q20,
where gy, is formed by intertwining g¢"*" and g9
For ¢ > 0, define the sequence valued map

(128) Q3 2= () = (u-(og41)(2), u-(2g42)(2), u—(2g) (2), -+ ) = €9V (2).

By Proposition[3.2] L?¢*tu € CY*(Q;1;) N C*(; ;). Moreover, since v € C%(Q; 1) as in (126),
we also conclude from convolution that L?¢™u € C?%(€Q;1,). Thus,
(129) L a e O (1) N CH( 1) N C3* (D o).

As v is L? analytic, by Lemma 3.1} L%**'u satisfies 0L** u 4+ L*0L*™u + aL**?u = 0, for
g > 0, which in component form is written as:

(130) Ou_y +0U_po+au_n,_1 =0 n>2¢+1, ¢>0.

The trace satisfy

(131) LT | p= eCv|p= 9?1 e % = [21Tg ¢ >0,

where the second equality follows from (I27)) and in the last equality we use [e*“, L] = 0.
Construct the positive Fourier modes by conjugation: u,, := u_,, foralln > 2¢+ 1, ¢ > 0.

Moreover using (I31)), and the reality of g, the traces u,,| satisfy

(132) Un|r=TUp|r=9=n = Ggn, n2>2¢+1, ¢=>0.
By conjugating (I30), and from and (132), we thus have the Fourier modes satisfy

(133) Ou_p +OU_p_o+au_,_1 =0, and un‘r =gn, V|n|>2¢+1, ¢>0.

Step 2: The construction of 1-tensor (¢ = 0 case).
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Since a > 0 in €, we can define ug (in ¢ = 0 case) by using the Fourier mode u_; from (128)):
2Redu_1(z)
a(z) '
Note that u satisfy (I33) for n = —1. In particular Ou; + Ju_; + aug = 0 holds.
From (124), u, defined above extends continuously to the boundary /" and

(134) uo(2) == z€Q, (forg=0 case).

UO‘F = go, (forg=0 case).

Moreover, since u_; € C?(Q) as shown in (129) and a € C?*(Q) we get ug € C*(Q).
Using the Fourier modes u_1, u_o from (I28]) and uq as in , we next define the real valued
vector field f € C(Q2;R?) (for ¢ = 0 case) by

(135) f=(2Ref,,2Im f;), where fi:= Jug+ Ou_s + au_,.

We consider next the case ¢ > 1 of tensors of order 3 or higher. In this case the construction of
the tensor field fy is in terms of the Fourier modes u_ (2441, U_(2¢+2) in ({128) and the class \Ifg‘fg as
in (122)).

Step 3: The construction of modes u,, for |n| < 2q, ¢ > 1.

Recall the non-uniqueness class W as in (122).

For (¢_1,¢_3, -+ ,1_(24-1)) € U arbitrary, firstly define the odd modes

(136) U_(2n—1) = ¢—(2n—1)> and g, = E—(2n—1)7 1<n< q, ¢ = 1.
Secondly, by using ¢)_1, ¥_(24—1) and the mode u_ 241y from (128)), we define the modes

2Re 01—
(137) o 1= — 2RO

a

OY_(2g-1) + Ou_

(138) T—— Vo) T OU-Ggr) g Usg =T 3; for gq>1.
a

Lastly, by using ¥_(2,,—1) € C?*(Q;C), for1 <n < q—1, ¢ > 2, we define the even modes

. _Ew—@n—l) + OV_(2n11)
(139) U2 == a ’
Ugp :=TU_2n, 1<n<qg—1,q9>2.
By the construction in (137), (I38)), and (139), we have
U_(2n—1) € C*Qly), for 1<n<gq, ¢>1,
(140) U_on € CHQly), for 0<n<gq ¢>1, and

]-Sngq_laq22a and

gu_(gn_l) + Ou_(an41) +au_g, =0, for 0<n<gq, g>1,
is satisfied. Moreover, by conjugating the last equation in (140), we have the Fourier modes satisfy
(141) gu_(gn_l) + Ou_(2n41) + at_s, =0, for |n| <gq, ¢>1.
By the class (122)), and reality of g, we have the trace of u_ (2,1 in (136) satisfy
(142) U_n-1)|r = g-@n-1), and Uz 1[r=F_(9p_1) = g1, 1<n<gq, ¢>1
We check next that the trace of u_q, is g_o, for1 <n <qg—1, ¢ > 2:

OU_(an_1) + OU_ (2,
(143) U= = Yooy + Moy

a
r
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where the last equality uses the condition in class . Similar calculation to for mode
in (137), and mode u_,, in (I38)), give the trace

(144) wlp =90, and u g =g-s, ¢>1
Thus, from (142)), (143)) and ({144)), we have the traces:
(145) Un| . = gn, VIn| <2¢, ¢> 1.

Step 4: The construction of the tensor field f; whose attenuated X -ray data is g.

The components of the m-tensor fy are defined via the one-to-one correspondence between the
pseudovectors (fo, f1,- - - , fm) and the functions { frent1) : 0 <n < g} as follows.

We first define fo441 by using 1_(5,_1) from the non-uniqueness class, and the Fourier modes
U_(2g+1)5 U—(2g+2) IN (128). Next, define fo,—1 by using Y_(2g—1), ¥—(24—3) from the non-uniqueness
class, and Fourier mode w_(54+1) in (I28). Then, define { fo,11 : 0 < n < ¢ — 2} solely from the
information in the non-uniqueness class. Finally, define { f_(2,41) : 0 < n < ¢} by conjugation.
(146)

ooy 1= —D <8¢ (29—1) T OU_(2g+1)
ol =

) + 8u_(2q+2) + alt_(2g+1), {4 > 1,

a
0 0 O (2g—1) + Ou_
fg—1:=—0 <¢ 2q3: - 1>—3< Y-(2q-1) + O (2q+1)>+a¢—(2q—1)7 q=>2,
— 5-71— a—n a n a n
f2n+1::—8< L 1’: ¢<2+1>> 8( L “+ L *3>+a¢_<2n+1>,1§n§q—2,
—20
fi=

—20 (%) (% 1+a¢ tap, q=2

a

f—(2n+1) = f2n+1a 0<n<gqg, qg=>1,

By construction, fo,41 € C(Q) for 0 < n < ¢, ¢ > 1, as u_(2q41) € C?(Q; 1) from (129),
and ¢Y_o,—1) € C*(Qly), for 1 < n < ¢g—1, ¢ > 1, from (I22). We use these m + 1
Fourier modes (fi1, f+3, -, f+m), and equations (I4)), (7)) and (9) to construct the pseudovectors

<f07 JE17 T fm), and thus the m-tensor field fy € C(S™; Q).
Define the real valued function « via its Fourier modes

u(Z7 0) = Z Un(z)eme + 2Re {Z w_(zn_1)<z)e—1(2n—1)e} + —2Re aw—l(z)
n=1

a
_ q—
19 Re (_0?/)—(2(1—1)(2) + 0u—(2q+1)(z) ) e—1(2q)9 +9 Re {Z u_2ne—1(2n9)} )
a n=1

Using (I33) and (143), and definition of (w_l, Yoz, ,w_(gq_l)) € \Ifg‘?g for ¢ > 1, the trace
u(+, @) in (147) extends to the boundary, and its trace satisfy u(-, 0)|r= g(-, 0).

Moreover, by using (I33), (I41)) and the definition of f, 1 for |n| < ¢, ¢ > 1 in (144), the real
valued u defined in satisfies the transport equation :

0-Vu+au= (fy, 0", ¢>1.
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