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ON STRONG CHAINS OF SETS AND FUNCTIONS

TANMAY C. INAMDAR

Abstract. Shelah has shown that there are no chains of length ω3 increasing
modulo finite in ω2ω2. We improve this result to sets. That is, we show
that there are no chains of length ω3 in [ω2]ℵ2 increasing modulo finite. This
contrasts with results of Koszmider who has shown that there are, consistently,
chains of length ω2 increasing modulo finite in [ω1]ℵ1 as well as in ω1ω1. More
generally, we study the depth of function spaces κµ quotiented by the ideal
[κ]<θ where θ < κ are infinite cardinals.

1. Introduction

Throughout this paper θ, κ, λ are infinite cardinals with θ ≤ κ and µ is a (possibly
finite) cardinal.

An important part of set theory has been the study of ωω and [ω]ω quotiented
by the ideal [ω]<ω of finite subsets of the natural numbers, the area of cardinal
characteristics of the continuum (see for example [2]). Another area, recently re-
ceiving more attention than previously, is a similar study performed for an arbitrary
infinite cardinal κ, perhaps with the addition of extra cardinal arithmetic assump-
tions. That is, the study of κκ and [κ]κ quotiented by the ideal [κ]<κ, the area
of higher cardinal invariants(see for example [12] and its extensive bibliography).
Another natural ideal to consider for κ an uncountable regular cardinal is the ideal
of non-stationary subsets of κ (see for example [8]).

In this paper we focus on ideals of the form [κ]<θ where θ and κ are infinite
cardinals, and θ is strictly less than κ. Before we describe our results, let us
mention some other results in the literature on this topic.

Baumgartner in his thesis proved the following.

Theorem 1.1 ([3]). Assume GCH. Let θ ≤ κ ≤ λ be infinite cardinals with
θ regular. Then there is a cardinal-preserving forcing P such that in the generic
extension by P we have a (< θ)-almost disjoint family {Aα | α < λ} contained in
[κ]κ: for every α < β < λ, |Aα ∩ Aβ | < θ.

Baumgartner’s proof in particular shows that it is consistent that there there
are arbitrarily large families in [ω1]

ℵ1 and even in [ω2]
ℵ2 which are (< ℵ0)-almost

disjoint, that is, almost disjoint modulo finite.
Using the Erdős-Rado-Kurepa Theorem (also sometimes called the Erdős-Rado

Theorem), we see that for example, a λ-sized (< ℵ0)-almost disjoint family in [ω1]
ℵ1

implies that 2ℵ0 ≥ λ. In [4] it is also shown that a generic extension obtained by
adding arbitrarily many Cohen reals to a model of 2ℵ0 = ℵ1 does not contain an
(< ℵ0)-almost disjoint family in [ω1]

ℵ1 of size ℵ2.
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2 TANMAY C. INAMDAR

Zapletal in his thesis (see [34]) proved a related result about such ‘strongly’
almost disjoint families with some additional properties, but we do not go into the
details here. We do however mention the motivation for Zapletal as it will allow us
to introduce the next result we shall discuss.

The result of Baumgartner’s suggests a general investigation of the possible qua-
siorders contained within spaces of the form [κ]κ or κκ modulo the ideal [κ]<θ.
Hechler’s Theorem (see [10]) solves this question completely for the usual Baire
space and see [5] and [7] for similar results for the other spaces we have mentioned.

Then Baumgartner’s result can be interpreted as a result about the ‘width’ of
such spaces, so Hajnal and Szentmiklóssy asked the next natural question, what
about their ‘depth’? In order to make things precise we need to introduce some
notation which we shall use throughout this article.

Let X,Y be sets of ordinals, X infinite, and let θ be an infinite cardinal such
that θ < |X |. For f, g ∈ XY , let f ≪θ g denote that |{ξ ∈ X | f(ξ) ≥ g(ξ)}| < θ.
Note that in this case |{ξ ∈ X | f(ξ) < g(ξ)}| = |X |.

The question of Hajnal and Szentmiklóssy which motivated Zapletal was the
following.

Question 1.2 (pg. 435 of [24]). Is it consistent that there is a chain in (ω1ω1,≪ℵ0)
of length ω2? That is, is it consistent that there is a sequence 〈fα | α < ω2〉 of
elements in ω1ω1 such that α < β < ω2 implies that fα ≪ℵ0 fβ?

Note that while we use the term ‘chain’ above and throughout the paper as it
is more intuitively clear, the term ‘depth’ is also used for a related concept, for
example in [32]. To translate between the two, the depth is the supremum of the
length of well-ordered chains in a partially ordered set. In particular, the above
question could be phrased as asking if it is consistent that the depth of the partial
order (ω1ω1,≪ℵ0) is greater than ω2. We shall however always use the term ‘chain’
but since we shall only be interested in well-ordered chains, it is straightforward to
translate between our terminology and Shelah’s.

Hajnal also mentions another related question.

Question 1.3 (pg. 435 of [24]). Is it consistent that there is a chain of sets
〈Xα | α < ω2〉 in [ω1]

ℵ1 such that for α < β < ω2, Xα\Xβ is finite, and |Xβ\Xα| =
ℵ1?

As pointed out by Hajnal, given a family as above, {Xβ+1 \Xβ | β < ω2} is an
almost disjoint modulo finite family in [ω1]

ℵ1 as in Baumgartner’s Theorem 1.1.
In order to see the relation between the two questions, consider the following

weakening of ≪θ: for f, g ∈ XY , let f <θ g denote that |{ξ ∈ X | f(ξ) > g(ξ)}| < θ
and |{ξ ∈ X | f(ξ) < g(ξ)}| = |X |. It is clear then that f ≪θ g implies that
f <θ g, and that Question 1.3 asks about the consistent existence of an ω2-chain
in (ω12, <ℵ0).

In [13] Koszmider was able to answer Question 1.3 affirmatively.

Theorem 1.4 ([13]). Assuming �ω1 , there is a ccc forcing which adds an ω2 length
chain in (ω12, <ℵ0) which is to say, adds a sequence of sets 〈Xα | α < ω2〉 in [ω1]

ℵ1

such that for α < β < ω2, Xα \Xβ is finite, and |Xβ \Xα| = ℵ1. In particular, it
is consistent that there is an ω2 length chain in (ω1ω1, <ℵ0).

We do not give the definition of �ω1 here as we will not require it in what follows.
Later, Koszmider was able to answer Question 1.2 as well.
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Theorem 1.5 ([14]). It is consistent that (ω1ω1,≪ℵ0) contains an ω2 length chain.

We point out that Mitchell [20], and Veličković [33] following Mitchell, have given
alternate presentations of the result of Koszmider using the method of ‘models of
two types’ (see [21]). The former starting from L, the latter assuming the negation
of a weak form of Chang’s Conjecture (we do not define this exact weak form as
we will not require it, but in Definition 3.1 we define Chang’s Conjecture).

In contrast to the results of Baumgartner, the results of Koszmider are specific
to the ideal [ℵ1]

<ℵ0 , so in particular an ideal of the form [κ]<θ when θ+ = κ. Is
it possible to prove a result as general as Baumgartner’s for chains without the
assumption of θ+ = κ?

All the results in this paper are negative answers to questions in this spirit. Our
starting point was a result of Shelah which implies that one cannot have ≪θ-chains
in situations where the size of the gap between θ and κ is finite but larger than
one. Focusing on the smallest case where Shelah’s theorem applies we have the
following.

Theorem 1.6 ([32]). For every infinite cardinal θ, there are no chains in
(

θ++

θ++,≪θ

)

of length θ+++.

We strengthen this result to <θ-chains and hence to sets.

Theorem A. Let θ be an infinite cardinal.

(i) There are no chains in (θ
++

θ++, <θ) of length θ+++.

(ii) In particular, there is no sequence 〈Sα | α < θ+++〉 of sets in [θ++]θ
++

such that, for all α < β < θ+++:
(a) |Sα \ Sβ | < θ;
(b) |Sβ \ Sα| = θ++.

Taking θ = ℵ0 this tells us that there cannot be an ω3 chain of sets in [ω2]
ℵ2

strongly increasing modulo finite. Shelah’s result implies that there are no ω3 chains
of functions in (ω2ω2,≪ℵ0).

We prove some related results. As we have hinted above, one can phrase a
general form of the question of Hajnal and Szentmiklóssy.

Question 1.7. Let θ < κ be infinite cardinals. What are the possible lengths of
chains in (κκ,≪θ)?

In response, we have the following.

Theorem B. Let θ < κ be infinite cardinals with κ a limit cardinal but not a
cardinal fixed point. Then there are no chains in (κκ,≪θ) of length κ+.

We point out that the hypotheses in this theorem imply that in fact θ+ < κ, and
this is crucial. Except for one case each in Theorem 3.3 and Theorem 3.4, none of
the results proved in this article apply to the situation when θ+ = κ, and about
these two exceptions see the discussion of Theorem 3.2.

Shelah has made the following conjecture.

Conjecture 1.8 ([32]). Let θ be an infinite successor cardinal. For every µ ≥ θ,

there are no chains in (θ
++

µ,≪θ) of length µ+.

Here our progress is quite meagre and in particular does not apply to the situation
from PCF Theory which possibly motivated Shelah, when µ is the limit of an
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increasing θ++-sequence of regular cardinals greater than θ. We remind the reader
that for θ a cardinal and ν an ordinal, θ+ν denotes the νth cardinal after θ. That
is, if θ = ℵξ, then θ+ν := ℵξ+ν .

Theorem C. Let θ ≤ µ be infinite cardinals with µ < θ+(θ++). Then there are no

chains in (θ
++

µ,≪θ) of length µ+.

Apart from the remaining cases of Question 1.7 and Conjecture 1.8, whether
Koszmider’s results can be improved upon by constructing longer chains in (ω12, <ℵ0)
and (ω1ω1,≪ℵ0) remains open as well. In [34] and [32] one may find more open
problems. Two other papers on topics related to this paper which we have not
mentioned are [17] and [15]. In the former, Laver shows, among other things, why
one cannot approach the question of Hajnal and Szentmiklóssy in the usual way
as in the Baire space, which is to say, by iteratively adding functions dominating
modulo finite. In the latter, Koszmider studies the morasses which he used to prove
Theorem 1.5 in greater detail.

We now describe the organisation of the paper. In Section 2 we collect the tools
we will use throughout the paper. In Section 3 we shall focus on the space (κµ,<θ)
and prove Theorem A. In Section 4 we focus on the space (κµ,≪θ) and prove
Theorem B and Theorem C.

2. Preparatory lemmata

Our notation is standard for set theory. We shall use the Greek letters θ, κ, µ,
λ, κ, ρ, χ, ϑ for cardinals, of which we remind the reader that the letters κ and
ϑ are, respectively, variants of κ and θ. Except for µ which may occasionally be
finite, all the others will always denote infinite cardinals, and of these λ will always
denote an infinite regular cardinal. We shall use the Greek letter π, possibly with
subscripts, for bijections, and all other Greek letters (save for ω) as well as i and j
for ordinals, possibly finite.

For f a function and X a subset of its domain, f ↾ X denotes the function
obtained by restricting the domain of f to X . If f, f ′ are two functions with the
same domain, when we say that f ≤ f ′ everywhere we mean that for every element
x of their common domain, f(x) ≤ f ′(x).

2.1. Cardinal invariants. We introduce some cardinal invariants we shall use in
what follows.

Definition 2.1. Let θ, χ, ρ, κ be infinite cardinals with θ < χ and θ ≤ ρ and θ ≤ κ.
Let m(κ, χ, ρ, θ) denote the least size of a family B in [κ]<χ such that for every
A ∈ [κ]≥ρ there is some B ∈ B such that |B ∩ A| ≥ θ. As important special
cases, let m−(κ, θ) denote m(κ, θ+, κ, θ), let m(κ, ρ, θ) denote m(κ, θ+, ρ, θ), and let
m(κ, θ) denote m(κ, θ+, θ, θ).

Definition 2.2. Let θ and κ be infinite cardinals with θ ≤ κ. Let cof([κ]θ) denote
the least size of a family B in [κ]θ such that for every A ∈ [κ]θ there is some B ∈ B
with A ⊆ B.

The cardinal cof([κ]θ) is the cofinality of the partially ordered set ([κ]θ,⊆). It
is also sometimes in the context of PCF theory called cov(κ, θ+, θ+, 2). One may
find a detailed treatment of it in [27, Chapter II, §5]. The cardinal m(κ, χ, ρ, θ)
is somewhat less common: in the notation of [30], m(κ, χ+, ρ, θ) = ecfρ,χ,θ(κ, χ)
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(see [30, Claim 4.5(2)]); particular instances of m(κ, χ, ρ, θ) appear, for example,
in [27, Chapter IX,§5]; see also the cardinal UJ [µ] from (among others) [31]. The
cardinal m(κ, θ) is more frequently found, especially the instances of it which fol-
low from Shelah’s Revised GCH ([29])—see for example [1, Theorem 8.21] and [5,
Theorem 8]. In [16] a Galvin-Hajnal theorem for m(κ, θ) is proved. In our notation
we have followed [19] where the invariant m(κ, θ) was considered (though we order
the parameters so as to follow Shelah’s convention for the covering numbers from
[27]). In particular, the letter ‘m’ stands for ‘meeting’. In [23] a related cardinal
invariant for ‘meeting’ functions was considered.

We calculate the values of these cardinal invariants in some simple circumstances.
We were informed of the following lemma by Assaf Rinot. Below, when we talk
about a family ‘witnessing’ some instance of these cardinal invariants, we shall mean
the following: in case the value of the invariant or an upper bound for it is known
beforehand (though not necessarily specified), then the family is chosen so that it
has size equal to this invariant; in case the value of the invariant is not known (so
that we are in the process of obtaining a bound on its size), then we shall mean
that the family satisfies the properties required to be a candidate for witnessing the
invariant, so that the value of the invariant is at most the size of this family.

Recall that for θ a cardinal and ν an ordinal, θ+ν denotes the νth cardinal after
θ. That is, if θ = ℵξ, then θ+ν := ℵξ+ν .

Lemma 2.3. Let θ < µ < κ be infinite cardinals.

(i) m(κ′, χ′, ρ′, θ′) ≥ m(κ, χ, ρ, θ) for infinite cardinals κ′ ≥ κ, χ′ ≤ χ, ρ′ ≤ ρ,
and θ′ ≥ θ.

(ii) m−(θ+, θ) = m(θ+, θ) = θ+.
(iii) κ ≤ m−(κ, θ) ≤ m(κ, θ) ≤ cof([κ]θ).
(iv) Let χ be a cardinal such that m−(µ, θ) ≤ χ and m−(κ, µ) ≤ χ. Then

m−(κ, θ) ≤ χ.
(v) If ρ ∈ [θ, µ) ∩ Card, then m(µ+, ρ, θ) ≤ µ+ ·m(µ, ρ, θ).
(vi) If ρ ∈ [θ, κ) ∩ Card and κ < θ+cf(ρ), then m(κ, ρ, θ) = κ. In particular, if

κ < θ+cf(θ), then m(κ, θ) = κ.
(vii) If κ is a limit cardinal and m(χ, θ) ≤ κ for a tail of χ ∈ (θ, κ)∩Card, then

m−(κ, θ) = κ.
(viii) If there are no cardinal fixed points in (θ, κ], then m−(κ, θ) = κ.
(ix) If κ is uncountable and not a cardinal fixed point then there is some χ < κ

such that m−(κ, χ) = κ.
(x) cof([θ+]θ) = θ+.
(xi) Let χ be a cardinal such that cof([µ]θ) ≤ χ and cof([κ]µ) ≤ χ then cof([κ]θ) ≤

χ.
(xii) If κ < θ+ω, then cof([κ]θ) = κ.
(xiii) Let χ := κ<θ. Then cof([κ]θ) ≤ m(χ, θ).

Proof. (i) Clear from the definitions.
(ii) Since θ+ itself witnesses m−(θ+, θ) and m(θ+, θ).
(iii) The first inequality is the only one which does not follow automatically from

the definitions. So let 〈Si | i < κ〉 be pairwise disjoint elements of [κ]κ. Now
if B witnesses m−(κ, θ) and |B| = χ < κ then we get a contradiction since
χ · θ < κ so for some i < κ, Si has empty intersection with every element
of B.
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(iv) Let {Bξ | ξ < χ} witness m−(µ, θ) ≤ χ and let {Cν | ν < χ} witness
m−(κ, µ) ≤ χ. For each ν < χ let πν : µ ↔ Cν be a bijection. Then
{πν“[Bξ] | ν < χ, ξ < χ} witnesses m−(κ, θ) ≤ χ.

(v) Since µ+ is regular, any element of [µ+]ρ is bounded in µ+. So let χ :=
m(µ, ρ, θ) and let {Bξ | ξ < χ} witness this and for every ν ∈ [µ, µ+) let
πν : µ ↔ ν be a bijection. Then {πν [Bξ] | ν ∈ [µ, µ+), ξ < χ} witnesses
m(µ+, ρ, θ) ≤ µ+ · χ by our observation.

(vi) We prove this by induction on κ. The base case is clear by (ii) and the
successor case is clear by (v). For the limit case, as κ < θ+cf(ρ), we have
that cf(κ) < cf(ρ). It follows that if A ∈ [κ]ρ, then for some χ < κ,
|A∩χ| ≥ ρ. So now by the induction hypothesis for each χ ∈ (θ, κ)∩Card,
let {Bχ

ξ | ξ < χ} witness that m(χ, ρ, θ) = χ. So we then have that

{Bχ
ξ | χ ∈ (θ, κ) ∩ Card, ξ < χ} witnesses that m(κ, ρ, θ) = κ by the

observation.
(vii) Let a be an end segment of (θ, κ)∩Card such that for every χ ∈ a, m(χ, θ) ≤

κ as witnessed by some {Bχ
ξ | ξ < κ}. Let us verify that {Bχ

ξ | χ ∈ a, ξ < κ}

witnesses that m−(κ, θ) = κ. So let A ∈ [κ]κ. Then there is some χ ∈ a

such that |A ∩ χ| ≥ θ. So there is some ξ < κ such that |Bχ
ξ ∩ A ∩ χ| ≥ θ.

(viii) We shall prove this by induction on κ. The base case is clear by (ii) and the
successor case is clear by (iv). So suppose that κ is a limit cardinal, which
is not a cardinal fixed point by our assumptions. Suppose that κ = ℵξ > ξ.
Let χ ∈ (θ, κ) ∩ Card be a regular cardinal such that ξ < χ. So then
χ < κ < χ+χ. So for all ρ ∈ (χ, κ)∩Card we have by (vi) that m(ρ, χ) = ρ.
So, by (vii) we have that m−(κ, χ) = κ. Now, the induction hypothesis tells
us that m−(χ, θ) = χ. So we use (iii) and (iv) to conclude that m−(κ, θ) = κ
and continue the induction.

(ix) If κ is not a cardinal fixed point, then it is not a limit of cardinal fixed
points either. So we can find a χ < κ such that there are no cardinal fixed
points in (χ, κ]. Then m−(κ, χ) = κ by (viii).

(x) Again, θ+ serves as a witness.
(xi) Let {Bξ | ξ < χ} witness cof([µ]θ) ≤ χ and let {Cν | ν < χ} witness

cof([κ]µ) ≤ χ. For each ν < χ let πν : µ ↔ Cν be a bijection. Then
{πν“[Bξ] | ν < χ, ξ < χ} witnesses cof([κ]θ) ≤ χ.

(xii) By induction using (iii) and (x) and (xi).
(xiii) Let π : <θκ → χ be a bijection. Let B be a family witnessing m(χ, θ).

Define

C := {
⋃

im[π−1[B]] | B ∈ B}.

We claim that C witnesses cof([κ]θ). It is easy to see that C ⊆ [κ]θ. To
verify the rest, suppose that A ∈ [κ]θ. Let h : θ → κ be a function such
that im(h) = A. Let Y := {π(h ↾ ξ) | ξ < θ}. So then Y ∈ [χ]θ. So there is
some B ∈ B such that |B ∩ Y | ≥ θ. It follows that

Z := {ξ < θ | h ↾ ξ ∈ π−1[B]} = {ξ < θ | π(h ↾ ξ) ∈ B}

has size θ, and in particular is unbounded in θ. Now supposing that γ ∈ A,
then there is some ξ ∈ Z such that γ ∈ im(h ↾ ξ). It follows that A ⊆
⋃

im[π−1[B]]. �
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Beyond Lemma 2.3 and the other results we have hinted at, the following result
connects the cardinals m(κ, θ) and cof([κ]θ) to a standard hypothesis from PCF
Theory. Below, the equivalence between (i) and (ii) is due to Shelah [26, Theorem
6.3] and their equivalence with (iii) is due to Rinot [22]. The reader may consult
either of these papers for undefined notions.

Theorem 2.4 ([26, 22]). The following are equivalent:

(i) Shelah’s Strong Hypothesis, that is, pp(κ) = κ+ for every singular cardinal
κ;

(ii) for every pair of cardinals θ < κ, cof([κ]θ) = κ if cf(θ) > cf(κ) and κ+

otherwise;
(iii) for every pair of cardinals θ < κ, m(κ, θ) = κ if cf(θ) 6= cf(κ) and κ+

otherwise.

One may extract further bounds on these cardinals in terms of PCF-theoretic
invariants from the literature, see for example the covering numbers in [27, Chap-
ter II, §5] and [28, Claim 1.2]. Lastly, Magidor proved in [18] that assuming the
consistency of certain large cardinals, it is consistent that cof([ℵω]

ℵ0) > ℵω+1, and
Shelah proved in [25] that for every countable ordinal α, it is consistent assuming
the consistency of large cardinals that cof([ℵω ]

ℵ0) > ℵα. It is known that large
cardinals are required. See [9] for details.

2.2. Convex equivalence relations. We shall say that an equivalence relation ≡
on a linear order L is convex if its equivalence classes are convex: if x <L y <L z
are elements of L and x ≡ z, then in fact x ≡ y ≡ z. Convex equivalence relations
of the sort which appear in Lemma 2.9 are the core idea in [32] and here as well.

The following lemma is easy to prove and often occurs in PCF theory, but we
give a proof anyway. Recall that for E a set of ordinals, cl(E) denotes the closure
of E in sup(E), which is to say, cl(E) := E ∪ {α < sup(E) | α = sup(E ∩ α)}.

Lemma 2.5. Let λ be an uncountable regular cardinal.

(i) If ≡ is a convex equivalence relation on λ and there is some E ⊆ λ un-
bounded in λ and consisting of pairwise inequivalent elements (that is,
[E]2 ∩ ≡ = ∅), then there is some D ⊆ λ which is a club consisting of
pairwise inequivalent elements: [D]2 ∩≡ = ∅.

(ii) If ≡ is a convex equivalence relation on λ, then there is D ⊆ λ a club such
that either [D]2 ⊆ ≡ or [D]2 ∩ ≡ = ∅.

(iii) If E is a family of convex equivalence relations on λ of cardinality less than
λ, then there is D ⊆ λ a club such that for every ≡ ∈ E either [D]2 ⊆ ≡ or
[D]2 ∩ ≡ = ∅.

Proof. Assuming that we have proved (i), the proof of (ii) is easy: given ≡ a
convex equivalence relation on λ, in case there is some E ⊆ λ an unbounded
set consisting of pairwise inequivalent elements, then there is a club consisting of
pairwise inequivalent elements. If there is no unbounded subset of λ consisting of
inequivalent elements, then there must be an equivalence class of ≡ which is an end
segment of λ, and then this end segment is of course a club as well. Obtaining (iii)
from (ii) is clear. So we only need to prove (i).

So, suppose that E ⊆ λ is unbounded in λ and consists of pairwise inequivalent
elements. We can assume that if α ∈ E, then for every β < α, β 6≡ α. We shall
show that cl(E) will be a club of λ as required. So let, if possible, α ∈ cl(E) \ E.
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If β ∈ E ∩ α, then there is some γ ∈ (β, α) ∩ E. By the choice of E, β 6≡ γ. So, as
≡ is convex, for every β < α, β 6≡ α. This implies that α is not equivalent to any
element of E ∩ α. Now if β ∈ E \ α = E \ (α+ 1), then by the choice of E, α 6≡ β.
So cl(E) is a club as required. �

We note that the proof of (i) in fact tells us that if a convex equivalence relation
≡ on a regular cardinal λ has unboundedly many equivalence classes, then the
natural ‘selector’ for λ/≡, the set of least elements of each equivalence class, is in
fact a club. We shall refer to a club with a property as in (iii) as having the 0-1
property with respect to the family of convex equivalence relations E .

We come to the point at which we define the specific convex equivalence relations
we shall use. Before this, let us mention that in all that follows in this article we

shall have ~f = 〈fα | α < λ〉 a <θ-chain in κµ, which is to say that for all α < β < λ,

(i) |{ξ < κ | fα(ξ) > fβ(ξ)}| < θ;
(ii) |{ξ < κ | fα(ξ) < fβ(ξ)}| = κ.

At some points ~f will have some extra properties as well, but what follows in this

section is based on the above assumption on ~f . In particular, the convex equivalence
relations we define will be on λ, which we remind the reader by our convention is
always a regular cardinal.

Definition 2.6. Let g ∈ κµ and Y ⊆ µ. Then gY : κ → Y ∪ {µ} is the function
defined as follows:

gY (ξ) := min((Y ∪ {µ}) \ g(ξ)).

We shall use the following fact several times without mentioning.

Observation 2.7. Let g, g′ ∈ κµ be functions, X ⊆ κ and Y ⊆ µ. Suppose that
g ↾ X ≤ g′ ↾ X everywhere. Then gY ↾ X ≤ gY ↾ X everywhere.

Definition 2.8. Given X ⊆ κ and Y ⊆ µ, let ≡Y
X denote the following relation on

λ:

{(α, β) | α, β < λ & |{ξ ∈ X | fY
α (ξ) 6= fY

β (ξ)}| < θ}.

Lemma 2.9. Let X ⊆ κ and Y ⊆ µ. Then ≡Y
X is a convex equivalence relation.

Proof. As θ is an infinite cardinal, it is clear that ≡Y
X is an equivalence relation.

Suppose α < β < γ < λ and α ≡Y
X γ. Let x ∈ [κ]<θ be such that for all ξ ∈ κ \ x,

fα(ξ) ≤ fβ(ξ) ≤ fγ(ξ). As α ≡Y
X γ, we can also assume that x is large enough

that {ξ ∈ X | fY
α (ξ) 6= fY

γ (ξ)} ⊆ x. Now, for all ξ ∈ X \ x, we get that fY
α (ξ) =

fY
γ (ξ), so that the interval (fα(ξ), fγ(ξ)) has empty intersection with Y , and hence

fY
α (ξ) = fY

β (ξ) = fY
γ (ξ).

Thus {ξ ∈ X | fY
α (ξ) 6= fY

β (ξ)} and {ξ ∈ X | fY
β (ξ) 6= fY

γ (ξ)} are both subsets

of x. In particular, α ≡Y
X β and β ≡Y

X γ. �

In what follows, we shall pick B a collection of subsets of κ and C a collection of
subsets of µ, and then {≡C

B| B ∈ B, C ∈ C} will be the family of convex equivalence
families of interest to us. We end this section with a simple observation.

Observation 2.10. Let χ, ρ be infinite cardinals. Let X ∈ [κ]χ and Y ∈ [µ]ρ be
such that ≡Y

X has λ-many equivalence classes. Then χρ ≥ λ.
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3. The space (κµ,<θ)

Definition 3.1. Let λ, µ, κ be ordinals.

(i) The partition relation λ → [µ]2κ,bdd asserts that for every c : [λ]2 → κ, there

is some I ∈ [κ]µ and ǫ < κ such that c“[I]2 ⊆ ǫ.
(ii) Recall that Chang’s Conjecture, denoted CC, states that ω2 → [ω1]

2
ω1,bdd

.

We point out that our definition of CC is a little non-standard and that it is
a result of Erdős and Hajnal [6, pg. 275] (or see [11, Proposition 8.2]) that the
above formulation is equivalent to the more standard definition. Before starting
with Theorem 3.3 and Theorem 3.4, we mention the following two results, the first
due to Koszmider, the second due to Veličković, which they imply as special cases.

Theorem 3.2 ([14], [33]). (i) CC implies that there is no chain in (ω12, <ℵ0)
(that is, a chain of sets) of length ω2.

(ii) CC implies that there is no chain in (ω1ω1,≪ℵ0) of length ω2.

Theorem 3.3. Let θ, κ, µ, λ be infinite cardinals with λ being regular. Suppose also
that

(i) θ ≤ κ, µ and θ ≤ cf(κ);
(ii) m−(κ, θ) < λ;
(iii) cof([µ]θ) < λ;
(iv) one of the following occurs:

(a) θ+ < cf(κ), or
(b) λ → [θ+]2κ,bdd.

Then there are no chains in (κµ,<θ) of length λ.

Proof. Note that the hypotheses imply that µ, κ < λ. Suppose towards a contradic-
tion that 〈fα | α < λ〉 is such a chain. Let B be a family witnessing m−(κ, θ) < λ,
and since κ ≤ m−(κ, θ) we can assume that B is closed under taking end segments.
Let C be a family witnessing that cof([µ]θ) < λ. As the family {≡C

B| B ∈ B, C ∈ C}
of convex equivalence relations has size less than λ, we can find a club D ⊆ λ which
has the 0-1 property with respect to it by Lemma 2.5. Let 〈iα | α < λ〉 be the
increasing enumeration of D.

Claim 3.3.1. For any ǫ < κ, there are B ∈ B and C ∈ C such that B ⊆ κ \ ǫ and
all the elements of D are in distinct classes of ≡C

B.

Proof. As fi0 <θ fi1 the set S := {ξ ∈ κ \ ǫ | fi0(ξ) < fi1(ξ)} has size κ, so there
is some B ∈ B such that |B ∩ S| ≥ θ. Since B is closed under taking end segments
we can also assume that B ⊆ κ \ ǫ. Let C ∈ C be such that fi0“[B] ⊆ C. Then
i0 6≡C

B i1, so by the 0-1 property of D we can finish. ⊣

As θ ≤ cf(κ) we are justified in defining the following function h : [λ]2 → κ via
h(α, β) := ǫ where ǫ < κ is the least ε < κ such that

{ξ < κ | fiα(ξ) > fiβ (ξ)} ⊆ ε.

We now have to make a case distinction to finish the proof.
Case 1: cf(κ) > θ+. Let ǫ := sup{h(α, β) | α < β < θ+} which we note is

bounded below κ. By Claim 3.3.1, we can find B ∈ B and C ∈ C such that
B ⊆ κ \ ǫ and such that all the elements of D are in distinct classes of ≡C

B. This
implies that for every α < β < θ+, fC

iα
↾ B ≤ fC

iβ
↾ B everywhere but also, iα 6≡C

B iβ.
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So for each α < θ+ we can find τα ∈ B and ζα ∈ C such that

fC
iα
(τα) = ζα < fC

iα+1
(τα).

As |B × C| < θ+, for some (τ∗, ζ∗) ∈ B × C we can find α < β < θ+ such that
τα = τ∗ = τβ and ζα = ζ∗ = ζβ . But this implies that

fC
iα
(τ∗) = ζ∗ < fC

iα+1
(τ∗) ≤ fiβ (τ

∗) = ζ∗

which is not possible.
Case 2: λ → [θ+]2κ,bdd. The proof is similar. Suppose towards a contradiction

that λ → [θ+]2κ,bdd. Applying it to the function h : [λ]2 → κ, we get an ǫ < κ and

an I ∈ [λ]θ
+

such that h“[I]2 ⊆ ǫ. Appealing to Claim 3.3.1 we again find B and
C as above with B ⊆ κ \ ǫ.

The rest of the proof is similar, except that we must consider consecutive ele-
ments of I in the increasing enumeration instead of consecutive elements of θ+ as
in the previous case. That is, for each i ∈ I, let i+ := min(I \ (i + 1)). Then we
find (τi, ζi) ∈ B × C such that

fC
i (τi) = ζi < fC

i+(τi).

We reach a contradiction in the same way. �

We point out that in the above, we required the hypothesis cof([µ]θ) < λ whereas
in the forthcoming Theorem 4.2 we will be able to make do with weaker hypotheses
such as m(µ, θ) so that we suffice ourselves not with covering a set but merely with
having large intersection with it. Comparing clauses (vi) and (xii) of Lemma 2.3
makes clear the benefit of such a change. The reason we could not be as parsimo-
nious here was that in the proof above we were not able to obtain large subsets
of the image as in the forthcoming Claim 4.2.1. Indeed, a chain of sets, that is,
a chain in (κ2, <θ) is also a chain in (κµ,<θ) for any µ ≥ 2. In contrast to this,
the forthcoming Proposition 4.1 shows that if θ, µ < κ, then there are no chains
in (κµ,≪θ) of length µ + 1. Finally, if one is interested not in (κµ,<θ) but the
subspace of it consisting of increasing or even just non-decreasing functions, then
one can reduce the hypotheses from those about covering to meeting. However, as
these results are not well-motivated we do not include them here.

The difference in the previous theorem and the next theorem are the requirements
on µ. In the former, we required that θ ≤ µ and cof([µ]θ) < λ (by Definition 2.2
the first of these is required in order for cof([µ]θ) to be defined). In what follows
we replace these hypotheses by µ < cf(κ).

Theorem 3.4. Let θ, κ, µ, λ be infinite cardinals with λ being regular. Suppose also
that

(i) θ ≤ cf(κ);
(ii) m−(κ, θ) < λ;
(iii) µ < cf(κ);
(iv) one of the following occurs:

(a) θ+ < cf(κ), or
(b) λ → [θ+]2κ,bdd.

Then there are no chains in (κµ,<θ) of length λ.

Proof. The proof is almost exactly the same as that of Theorem 3.3 except the
definition of C and also Claim 3.3.1 which needs to be slightly modified. As before,
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let B be a family witnessing m−(κ, θ) < λ which is closed under taking end segments.
Let C := [µ]1. The following is the analogue of Claim 3.3.1.

Claim 3.4.1. For any ǫ < κ, there are B ∈ B and C ∈ C such that B ⊆ κ \ ǫ and
all the elements of D are in distinct classes of ≡C

B.

Proof. As fi0 <θ fi1 the set S := {ξ ∈ κ \ ǫ | fi0(ξ) < fi1(ξ)} has size κ. As
µ < cf(κ), there is a ζ < µ such that Sζ := {ξ ∈ S | fi0(ξ) = ζ} has size κ. So
there is some B ∈ B such that |B ∩ Sζ | ≥ θ and B ⊆ κ \ ǫ. Let C := {ζ}. So then
B and C are as required. ⊣

The rest of the proof is exactly the same. �

The next two corollaries together prove Theorem A.

Corollary 3.5. There are no θ+++ chains in (θ
++

θ++, <θ) for every infinite car-
dinal θ.

Proof. Suppose that there is such a chain. Then by Lemma 2.3, for (µ, κ, λ) :=
(θ++, θ++, θ+++),

θ+++ = λ > m−(κ, θ) = m−(θ++, θ) = θ++

and
θ+++ = λ > cof([µ]θ) = cof([θ++]θ) = θ++.

So by Theorem 3.3 we conclude that cf(κ) = cf(θ++) = θ++ ≤ θ+ which is absurd.
�

Corollary 3.6. For every infinite cardinal θ, there is no sequence 〈Sα | α < θ+++〉

of sets in [θ++]θ
++

such that, for all α < β < θ+++:

(i) |Sα \ Sβ | < θ;
(ii) |Sβ \ Sα| = θ++.

Proof. If there were such a sequence, then we would get a θ+++ length chain

in (θ
++

2, <θ) and hence in (θ
++

θ++, <θ) as well, which we now know to be im-
possible. Alternately, we could use Theorem 3.4 for the parameters (µ, κ, λ) :=
(2, θ++, θ+++) to get a contradiction. �

4. The space (κµ,≪θ)

The following proposition shows that when considering chains in (κµ,≪θ), the
requirement that µ ≥ κ is quite natural. This is in contrast to the space (κµ,<θ)
for which one of the most important cases is when µ = 2, that is we are considering
chains of sets. Indeed, one may compare it with Theorem 1.4 of Koszmider.

Proposition 4.1. Suppose that θ, κ are infinite cardinals, and µ is a cardinal
which is possibly finite. Suppose that µ < κ and θ < κ. Then there are no chains
in (κµ,≪θ) of length µ+ 1.

Proof. Suppose towards a contradiction that 〈fα | α ≤ µ〉 is such a chain. Then
the following set

S := {ξ < κ | ∃α, β ≤ µ [α < β & fα(ξ) ≥ fβ(ξ)]}

has size at most µ · θ, so in particular less than κ. So now let ξ ∈ κ \ S. Then
the function α 7→ fα(ξ) defined for α ≤ µ is strictly increasing in α and has image
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contained in µ. However the image of this function has ordertype µ+1 which leads
to a contradiction. �

The following theorem is the main result of this section. As it has a large number
of parameters, we mention two important instantiations of the theorem. The first
is when χ = ρ = θ+ and ϑ = θ, this being the content of Corollary 4.3. The second
is when χ = ρ = ϑ+ for some regular ϑ ∈ (θ, κ) such that κ < ϑ+ϑ, assuming such
a ϑ can be found. This is the content of Corollary 4.4.

Theorem 4.2. Suppose that µ, κ, θ, λ are infinite cardinals with θ < θ+ < κ ≤ µ
and λ being regular. Suppose also that there are infinite cardinals χ, ρ, ϑ such that

(i) θ < χ, ρ < κ;
(ii) m(κ, ρ, ϑ, θ) < λ;
(iii) m(µ, χ, κ, ϑ) < λ.

Then there are no chains in (κµ,≪θ) of length λ.

Proof. Let κ := χ+ρ, so that κ < κ. Note that the hypotheses imply that λ > µ, κ.
Suppose towards a contradiction that 〈fα | α < λ〉 is such a chain. Let S = 〈Sη |
η < κ〉 be a partition of κ into κ-many pairwise disjoint sets of size κ. Let B be a
witness to m(κ, ρ, ϑ, θ) < λ and we furthermore can assume that B is closed under
taking intersections with elements of S. Let C be a witness to m(µ, χ, κ, ϑ) < λ.
Then the family of convex equivalence relations {≡C

B| B ∈ B, C ∈ C} has size
less than λ, so let D ⊆ λ be a club with the 0-1 property with respect to it by
Lemma 2.5. Let 〈iα | α < λ〉 be the increasing enumeration of D. As κ < κ, the
set

{ξ < κ | ∃α, β < κ [α < β & fiα(ξ) ≥ fiβ (ξ)]}

has size less than κ, so we can fix an η < κ such that

Sη ∩ {ξ < κ | ∃α, β < κ [α < β & fiα(ξ) ≥ fiβ (ξ)]} = ∅.

Claim 4.2.1. There are sequences 〈j(α) | α < κ〉 and 〈ξα | α < κ〉 such that

(i) 〈j(α) | α < κ〉 consists of ordinals less than κ and possibly contains repeti-
tions;

(ii) 〈ξα | α < κ〉 are all distinct and contained in Sη;
(iii) for every α < κ, fi0(ξα) ≤ fij(α)

(ξα) < fiκ(ξα);

(iv) the function α 7→ fij(α)
(ξα) defined for α < κ is injective.

Proof. We construct the sequences 〈j(α) | α < κ〉 and 〈ξα | α < κ〉 by recursion on
α < κ. The base case is easy to perform: set j(0) = 0, and since fi0 ≪θ fiκ and
|Sη| = κ > θ we can find a ξ0 ∈ Sη such that fi0(ξ0) = fij(0)(ξ0) < fiκ(ξ0).

So suppose that ν < κ and we have constructed 〈j(α) | α < ν〉 and 〈ξα | α < ν〉
which satisfy the requirements up to ν and let Yν := {fij(α)

(ξα) | α < ν} which we

note has size |ν|. Let γ := otp(Yν) and note that γ < κ. Let Z := [0, γ + 1) ∪ {κ}.
As |Z| < κ, the set S∗ defined as follows

S∗ := {ξ ∈ Sη | ∃α, β ∈ Z [α < β & fiα(ξ) ≥ fiβ (ξ)]}

has size less than κ. In particular, we can find a ξ∗ ∈ Sη \ (Yν ∪ S∗).
Now, the function

β 7→ fiβ (ξ
∗)

defined for β < γ + 1 is strictly increasing in β and has image contained in
[fi0(ξ

∗), fiκ(ξ
∗)) by the choice of ξ∗. Since the image has ordertype γ+1, it follows
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that for some β < γ + 1 we have that fiβ (ξ
∗) /∈ Yν . So now taking j(ν) := β and

ξν := ξ∗ we can continue the recursive construction. ⊣

Let 〈j(α) | α < κ〉 and 〈ξα | α < κ〉 be as in the claim and let

Y := {fij(α)
(ξα) | α < κ}.

Now as C witnesses m(µ, χ, κ, ϑ), there is some C ∈ C such that |C ∩ Y | ≥ ϑ. Let

X := {ξα | α < κ, fij(α)
(ξα) ∈ C ∩ Y }

and we note that it is in [κ]≥ϑ. As B witnesses m(κ, ρ, ϑ, θ), there is some B ∈ B
such that |B ∩X | ≥ θ. As B is closed under intersections with Sη and X ⊆ Sη, we
can also assume that B ⊆ Sη.

Claim 4.2.2. i0 6≡C
B iκ.

Proof. For every α such that ξα ∈ X we have that

fi0(ξα) ≤ fij(α)
(ξα) < fiκ(ξα),

and since fij(α)
(ξα) ∈ C ∩ Y this implies that

fC
i0
(ξα) ≤ fij(α)

(ξα) < fC
iκ
(ξα).

Since |B ∩X | ≥ θ we finish. ⊣

By the 0-1 property of D, this tells us that all the elements of D are inequivalent
with respect to ≡C

B and in particular this is true of {iα | α < κ}. As B ⊆ Sη we
also have that for every α < β < κ, fC

iα
↾ B ≤ fC

iβ
↾ B everywhere.

So, for every α < κ we can find τα ∈ B and ζα ∈ C such that

fC
iα
(τα) = ζα < fC

iα+1
(τα).

As |B| < ρ and |C| < χ, we have that |B × C| < ρ · χ ≤ κ. This means that
for some (τ∗, ζ∗) ∈ B × C we can find α < β < κ such that τα = τ∗ = τβ and
ζα = ζ∗ = ζβ . But then

fC
iα
(τ∗) = ζ∗ < fC

iα+1
(τ∗) ≤ fC

iβ
(τ∗) = ζ∗.

This cannot be. �

Corollary 4.3. Let θ < θ+ < κ be infinite cardinals and λ an infinite regular
cardinal. Suppose that m(κ, θ) < λ. Then there are no chains in (κκ,≪θ) of length
λ.

Proof. As m−(κ, θ) ≤ m(κ, θ) < λ by Lemma 2.3(iii), we can appeal to Theorem 4.2
with χ = ρ = θ+ and ϑ = θ to obtain the desired conclusion. �

We can compare this with the analogous corollary from [32, Theorem 5] where
instead of m(κ, θ) < λ the slightly stronger hypothesis of cof([κ]θ) < λ would have
been used to obtain the same conclusion. It is also clear that proving this corollary
using Theorem 3.3 would require further assumptions.

However, glancing at Lemma 2.3 and the discussion following it, it is clear that
for the most important case of λ = κ+, assuming the consistency of enough large
cardinals there are models of set theory where the hypotheses of Corollary 4.3 may
not hold even for very small κ such as ℵω. The next result, which proves Theorem B,
remedies some of these scenarios.
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Corollary 4.4. Let θ < κ be infinite cardinals where κ is a limit cardinal which is
not a cardinal fixed point. Then there are no chains in (κκ,≪θ) of length κ+.

Proof. Suppose that ξ < κ is such that κ = ℵξ. Let ϑ ∈ (θ, κ) be a regular cardinal
such that ϑ > ξ. Then ϑ < κ < ϑ+ϑ. So by Lemma 2.3(vi) and Lemma 2.3(iii) we
have that

κ = m(κ, ϑ) = m−(κ, ϑ) = m(κ, ϑ+, κ, ϑ).

Also, as ϑ > θ, by Lemma 2.3(i) we have that

κ = m(κ, ϑ) = m(κ, ϑ+, ϑ, ϑ) = m(κ, ϑ+, ϑ, θ).

So we appeal to Theorem 4.2 with χ = ρ = ϑ+ to finish. �

While the previous two corollaries were focused on Question 1.7, the next corol-
lary focuses on the most general problem, and the one after, which proves Theo-
rem C, on Conjecture 1.8.

Corollary 4.5. Let θ < θ+ < κ ≤ µ be infinite cardinals. Suppose that

(i) κ < θ+cf(θ);
(ii) µ < θ+cf(κ).

Then there are no chains in (κµ,≪θ) of length µ+.

Proof. By Lemma 2.3(vi) the hypotheses imply that m(κ, θ) = κ and m(µ, θ+, κ, θ) =
µ hold. So we apply Theorem 4.2 with ϑ = θ and χ = ρ = θ+ to finish. �

Corollary 4.6. Let θ ≤ µ < θ+(θ++) be infinite cardinals. Then there are no chains

in (θ
++

µ,≪θ) of length µ+.

Proof. In case µ < θ++ then we can appeal to Proposition 4.1. So, we can as-
sume that θ++ ≤ µ. By Lemma 2.3(vi) we have that m(µ, θ+, θ++, θ) = µ and
m(θ++, θ+, θ, θ) = θ++ holds. So we apply Theorem 4.2 with ϑ = θ and χ = ρ = θ+

to finish. �
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[33] Veličković, B., and Venturi, G. Proper forcing remastered. In Appalachian set theory
2006–2012, vol. 406 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cam-
bridge, 2013, pp. 331–362.

[34] Zapletal, J. Strongly almost disjoint functions. Israel J. Math. 97 (1997), 101–111.

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.


	1. Introduction
	2. Preparatory lemmata
	2.1. Cardinal invariants
	2.2. Convex equivalence relations

	3. The first space
	4. The second space
	5. Acknowledgements
	References

