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Abstract

We study reaction-diffusion processes with multi-species of particles and hard-core interaction.
We add boundary driving to the system bymeans of external reservoirs which inject and remove
particles, thus creating stationary currents. We consider the condition that the time evolution
of the average occupation evolves as the discretized version of a system of coupled diffusive
equations with linear reactions. In particular, we identify a specific one-parameter family of
such linear reaction-diffusion systems where the hydrodynamic limit behaviour can be obtained
by means of a dual process. We show that partial uphill diffusion is possible for the discrete
particle systems on the lattice, whereas it is lost in the hydrodynamic limit.
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1 Introduction

1.1 Motivation and description of results

The aim of this paper is to study ‘uphill diffusion’ in multi-species interacting particle systems
with hard-core interaction. We analyse systems consisting of n types of particles and add bound-
ary reservoirs injecting and removing particles. Here, uphill diffusionmeans that mass flows from
regions with lower density to regions with higher density. Uphill diffusion is thus a violation of
Fick’s law. This phenomenon has been reported in a single-species system in the presence of a
phase transition (see [1, 2, 3, 4, 5] for 1D particle systems with Kac potentials and [6] for 2D lattice
gases related to the Ising model). In multicomponent systems, uphill diffusion arises as a result of
the competition between the gradients of each species [7, 8]. The phenomenon whereby current
in a stationary system is in a direction opposite to an external driving field has also been named
‘absolute negative mobility’ in [9]. Multi-species particle systems have been much studied in the
recent literature, especially in relation to the notion of duality [10, 11, 12, 13, 14, 15, 16, 17, 18].

For diffusive models with a partial uphill, transport of mass on a finite volume (here assumed
to be the unit d-dimensional cube) is often described by the continuity equation

∂

∂t
ρ = −∇ · J (1)

and the Fick’s law
J = −σ∇ρ (2)

Here ρ : [0,1]d×R+→ [0,1] is the density ofmass, J : [0,1]d×R+→ R is the current, and σ > 0 is the
constant diffusivity coefficient. Equations (1) and (2) can be obtained as the hydrodynamical limit
of diffusive interacting particle systems of “gradient type” [19], such as the simple symmetric
exclusion process or the Kipnis-Marchioro-Presutti model [20]. Fick’s law (2) tells us that the
total flow is opposite to the density gradient.

For multi-component systems with n species, considering the vectors ρ = (ρ(1), . . . ,ρ(n)) and

J = (J (1), . . . , J (n)), where ρ(i)(x,t) and J (i)(x,t) denote the density and the current of the ith species,
the generalization of (1) and (2) is

∂

∂t
ρ = −∇ · J (3)

and
J = −Σ · ∇ρ. (4)

where Σ is now the n × n matrix of diffusion and ’cross-diffusion’ coefficients. When Σ is non-
diagonal, then uphill diffusion is possible [7]. We distinguish between the case of ‘partial’ uphill,
which is obtained when the current of one of the species has the same sign of the gradient of that
species, and ‘global’ uphill, which arises when the total mass flows from a region of lower total
density to a region of higher total density.

In this paper, we shall investigate partial uphill diffusion for hard-core multi-species interact-
ing particle systems. Our analysis will have two targets: on one hand, we would like to under-
stand conditions on the rates defining the microscopic dynamics so that the system is described
by a linear reaction-diffusion structure on a regular lattice; on the other hand, we aim to under-
stand if and how such particle systems display partial uphill diffusion in the large scale limit. To
achieve those targets we will consider the average occupation of each species, which is a proxy for
the true density. In the spirit of [21] and [22] we shall impose that the equations for the average
occupation of the species are closed. Furthermore, we shall require that the evolution of the aver-
age occupation is described by the a discretized version of (3) and (4). Actually, besides diffusion,
we shall further include the possibility of reaction terms, as described in the next subsection. Our
main results can be summarized as follows:

• We show that the request of a linear reaction-diffusion structure on a regular lattice im-
poses constraints on the values of the “diffusivity matrix” and the reaction coefficient (see
Theorem 4.1).

• We identify a specific multi-species interacting particle system (see again Theorem 4.1) for
which the closure of correlation functions is accompanied by duality (see Section 5). To
our knowledge, this is the first multi-species interacting particle system with reaction and
diffusion for which one can prove the existence of a dual process (see [19] for a perturbative
treatment of reaction-diffusion in the presence of duality for the sole diffusive dynamics).
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• Duality then leads to the proof of the hydrodynamic limit with the standard correlation
functions method [19]. Surprisingly, we shall see that – although the microscopic dynamics
has non-zero ‘cross-diffusivity’ terms – macroscopically the empirical mass distribution of
each species satisfies hydrodynamic PDE’s where the species are coupled only by the re-
action term. In other words, after a suitable space/time diffusive scaling, the diffusivity
matrix is necessarily diagonal and therefore partial uphill is absent. This is consistent with
[23, 24] where it has been observed that the densities of eq. (3) and (4) remain positive if
and only if the cross diffusivity terms are null.

We conclude this introduction with a discussion about uphill diffusion for equations (3) and
(4) plus a linear reaction term.

1.2 Steady state uphill diffusion in multi-component systems

Without loss of generality, we restrict ourselves to the case of two species diffusing on the unit
interval. Let us call ρ(α)(x,t) : [0,1] × [0,∞) → [0,1] the density of the species α ∈ {0,1,2}. We

impose the constraint ρ(0) + ρ(1) + ρ(2) = 1, which will represent later the hard-core interaction

of the associated interacting particle system. It is then enough to study the evolution of ρ(1) and

ρ(2), which will be assumed to be smooth functions. We consider a Cauchy problem with Dirichlet

boundary conditions, where each density is endowed with an initial datum ρ(α)(x,0) = ρ
(α)
0 (x) and

boundary conditions ρ(α)(0, t) = ρ
(α)
L and ρ(α)(1, t) = ρ

(α)
R for α = 1,2. We are interested in the

stationary properties. We consider

∂tρ
(1) = σ11∂

2
xρ

(1) +σ12∂
2
xρ

(2) +Υ

(
ρ(2) − ρ(1)

)

∂tρ
(2) = σ21∂

2
xρ

(1) +σ22∂
2
xρ

(2) +Υ

(
ρ(1) − ρ(2)

) (5)

where Σ is a constant positive definite matrix

Σ =

(
σ11 σ12
σ21 σ22

)
(6)

The stationary diffusive currents are given by

J (1)(x) = −σ11∂xρ(1)(x)−σ12∂xρ(2)(x)
J (2)(x) = −σ21∂xρ(1)(x)−σ22∂xρ(2)(x) (7)

We distinguish two cases:

• global uphill: this happens when the boundary values of the total boundary density ρL =

ρ
(1)
L + ρ

(2)
L and ρR = ρ

(1)
R + ρ

(2)
R and the total current J(x) = J (1)(x) + J (2)(x) are such that either

ρL < ρR and J(x) > 0 ∀x ∈ [0,1], or ρL > ρR and J(x) < 0 ∀x ∈ [0,1].

• partial uphill for the ith species: for boundary values ρ
(1)
L ,ρ

(2)
L ,ρ

(1)
R ,ρ

(2)
R ≥ 0, the system has

stationary partial uphill diffusion for the species i ∈ {1,2} if ρ(i)L < ρ
(i)
R and J (i)(x) > 0 ∀x ∈

[0,1], or if ρ
(i)
L > ρ

(i)
R and J (i)(x) < 0 ∀x ∈ [0,1].

Clearly, in the case where each density simply obeys a one dimensional heat equation

∂tρ
(1)(x,t) = σ11∂

2
xρ

(1)(x,t)

∂tρ
(2)(x,t) = σ22∂

2
xρ

(2)(x,t)
(8)

no uphill diffusion (neither global nor partial) is possible.
Global uphill diffusion can be obtained by keeping the matrix Σ diagonal and adding a reac-

tion term, i.e.

∂tρ
(1) = σ11∂

2
xρ

(1) +Υ

(
ρ(2) − ρ(1)

)

∂tρ
(2) = σ22∂

2
xρ

(2) +Υ

(
ρ(1) − ρ(2)

) (9)

This has been shown in [8] where the above equations have been obtained as the hydrodynam-
ical limit of a switching interacting particle system, and the region with global uphill has been
explicitly characterized.
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To obtain partial uphill diffusion one needs to consider the more general case (5) with a non-
diagonal matrix Σ. In Appendix A we give the stationary solution of (5) from which the existence
of partial uphill can be ascertained. Here we plot in Figure 1 the stationary densities and currents
for a specific choice of the boundary values and of the diffusivity matrix and reaction term. From
the picture one can clearly see partial uphill diffusion (in the absence of global uphill).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6
J(1)(x)

J(2)(x)
(1)(x)
(2)(x)

Figure 1: Density profile (dashed lines) and currents (continuous line). The red color is for species

1 and the blue color for species 2. The boundary values are (ρ
(1)
L ,ρ

(2)
L ,ρ

(1)
R ,ρ

(2)
R ) = (0.2,0.6,0.3,0.1).

The diffusivity matrix and the reaction term are σ11 = σ22 =Υ = 1 and σ12 = σ21 = 1/2.

1.3 Organization of the paper

Our paper is organized as follows. In Section 2 we describe the generic form of a multi-species
Markov process with constant rates allowing at most one particle per site. We define the process
on a spatial structure given by a graph G and we compare to other models that have been studied
in the literature. We then compute in Section 3 the evolution equation for the average occupation
variables of each species.

From Section 4 onward we specialize to the case of two species on one-dimensional chains. We
start, in Section 4, by imposing that the average occupations evolve as the discretized version
of (5). This leads to a linear algebraic system, which can be solved. As a result, sufficient and
necessary conditions on the diffusivity matrix Σ and the reaction coefficient Υ in order to have
the discrete structure of a linear reaction-diffusion are identified in Theorem 4.1. Furthermore,
it is shown in the same theorem an explicit example of a one-parameter family of symmetric
processes having such linear and discrete reaction-diffusion structure. This specific model is
further analyzed in Section 5, where we prove duality and the hydrodynamic limit. Section 6
draws the conclusions of our analysis.

2 Hard-core multi-species particles on a graph G = (V,E)

Notation: In what follows, we use greek letters (α,β,γ,δ, . . .) to denote the species of the particles
and latin letters (x,y,z, . . .) to denote the sites of the graph.

In this section we define our microscopic model on a generic graph G = (V ,E). Here, the set
V = {1,2, . . . ,N } is a collection ofN vertices. The set of edges E is such that the graph is connected,
directed and without self-edges. On this graph G we consider a system of interacting particles,
each of which has its own type/species. We assume there are n species. Furthermore, on each
vertex of the graph there is at most one particle (hard-core exclusion rule). Thus, the occupation
variable at each vertex takes values in {0,1,2, . . . n}, with type 0 denoting the empty site.

The dynamical rule is due to a one-body interaction and a two-body interaction:

- on each site x ∈ V the occupation of type γ changes to type α at rate axW
α
γ (x);

- on each edge (x,y) ∈ E the occupations of type (γ,δ) changes to type (α,β) at rate ax,yΓ
αβ
γδ .

Here the non-negative numbers {ax,y}(x,y)∈E and {ax}x∈V are, respectively, edge weights (conduc-
tances) and site weights (local inhomogeneities) of the graph. For a visual representation of the
process with two species see Figure 2.
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x

y

ax,y

ay,x

z
az

Species 1 Empty (species 0)Species 2

Figure 2: Hard-core two-species particles on a graph with 8 vertices and 2 reservoirs. Grey
squares identify the species 1, green triangles the species 2, and white circles the empty state.
The reservoirs are represented by rectangles, where the interior colours denote the density of
species.

2.1 Process definition

On the graph G = (V ,E), we consider the Markov process {η(t); t ≥ 0} with state space Ω =
{0,1,2, . . . ,n}V . A configuration of the process is denoted by η = (ηx)x∈V , where each component
can take the values ηx ∈ {0,1, ...,n} and where ηx = α means the presence of the species α at the site
x. We recall that ηx = 0 is interpreted as an empty site. The process is defined by the generator L
working on functions f :Ω→R as

(Lf )(η) = (Ledgef )(η) + (Lsitef )(η), (10)

where
(Ledgef )(η) =

∑

(x,y)∈E
ax,y · (Lx,y f )(η)

and
(Lsitef )(η) =

∑

x∈V
ax · (Lxf )(η)

We shall explain the two generators Ledge and Lsite in the following subsections.

2.1.1 The edge generator

We introduce the (n+1)2 × (n+1)2 matrix Γ whose elements are rates of transition for the particle

jumps on each edge. More precisely, we denote by Γ
αβ
γδ the rate to change the configuration η with

ηx = γ,ηy = δ to the configuration η ′ with η ′x = α,η ′y = β, while η ′z = ηz for all z , x,y. Thus, the
single-edge generator is given by

Lx,yf (η1, . . . ,γ, . . . ,δ, . . . ,ηN )

=
n∑

α,β=0

Γ
αβ
γδ [f (η1, . . . ,α, . . . ,β, . . . ,ηN )− f (η1, . . . ,γ, . . . ,δ, . . . ,ηN )] (11)
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where

Γ
αβ
γδ ≥ 0 if (α,β) , (γ,δ)

∑

(γ,δ)∈{0,1,2,...,n}2 : (γδ),(α,β)
Γ
αβ
γδ = −Γαβαβ ∀(α,β) ∈ {0,1,2, . . . ,n}2 .

2.1.2 The site generator

Having in mind that the site generator will describe a ‘boundary’ driving leading the system to a
non-equilibrium steady state, we assume that on each site there is a process which injects and re-
moves particles at a rate which is space-dependent. Thus, for each vertex x ∈ V , we introduce the
(n+1)× (n+1) matrixW (x) whose elements are rates of transitions on that vertex. More precisely,
we denote by Wα

γ (x) the rate to change the configuration η with ηx = γ into the configuration η ′

with η ′x = α, while η ′z = ηz for all z , x. The single-vertex generator is given by

Lxf (η1, . . . ,γ, . . . ,ηN ) =
∑n

α=0W
α
γ (x) [f (η1, . . . ,α, . . . .,ηN )− f (η1, . . . ,γ, . . . ,ηN )] (12)

where

Wα
γ (x) ≥ 0 if α , γ

∑

γ∈{0,1,2,...,n}:γ,α
Wα

γ (x) = −Wα
α (x) ∀α ∈ {0,1,2, . . . ,n} .

2.2 Comparison to other processes

Here, we discuss the relation of the general dynamics described above to some multi-species pro-
cesses considered in the past literature (we consider here the case of homogeneous conductances
and inhomogeneities ax,y = ax = 1). We shall mostly limit the discussion to symmetric systems (for
asymmetric models there is also a large literature, see for instance [10] and references therein). In
most cases, previous analyses have been restricted to a regular lattice or a one-dimensional chain.

• General multi-species models. The edge dynamics of the reaction-diffusion particle system
in Section 2.1 has been considered on a d-dimensional lattice in [21] for the case n = 1
species and in [22] for the case of an arbitrary number of species. In those papers, sufficient

conditions on the rates Γ
αβ
γδ to guarantee the existence of dual process have been identified.

• Multi-species exclusion processes. The edge dynamics of multi-species simple symmetric ex-
clusion processes on a d-dimensional lattice, with at most one-particle per site, has been
considered in [25]. It corresponds to the model of Section 2.1 with Γ

α0
0α = Γ

0α
α0 , 0 for all

α = 0,1, . . . ,n, while all other off-diagonal elements of the matrix Γ vanish, as well as the
elements of the matrices W (x). For this model, the hierarchy of equations for the corre-
lations does not close, and the hydrodynamic limit has been shown in [25] to be given by
two coupled non-linear heat equations. An open boundary version of the model with sim-
ple symmetric exclusion dynamic in the bulk has been presented in [26]. It corresponds to
the model of Section 2.1 with Γ

0b
b0 = Γ

b0
0b = Db and with boundary rates W b

0 (1) = αb ,W
0
b =

γb ,W
b
0 (N ) = βb ,W

0
b (N ) = δb (here b labels the species). All the other off-diagonal elements Γ

and W (z) vanish.

• Multi-species stirring process. In the stirring process [27, 28], every couple of types is ex-
changed in position with the same rate, which can be taken equal to 1 without loss of gener-

ality. Thus, the bulk dynamics of the stirring process corresponds to the case Γ
δγ
γδ = 1 for all

γ,δ = 0,1, . . . ,n, while all other off-diagonal elements of the matrix Γ vanish. The hydrody-
namic limit of the stirring process on a lattice is given by n independent diffusions, i.e. the
generalization of (8) to n types. The multi-species stirring process on a chain with bound-
ary driving has been studied in [29] with the choice W b

γ (1) = αb and W b
γ (N ) = βb. With this

particular choice of the boundary rates the model is solvable and correlation functions in
the non equilibrium steady state have been computed using the matrix product ansatz.

• Multi-species switching process: A different set-up for multi-species particle systems has been
recently proposed in [8, 30]. One considers n “piled” copies of the graph G, each with its
own single-type dynamics. The possibility of changing type is described by a switching rate
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between layers. This set-up eliminates the constraint of one particle per site, in the sense
that the projection of the dynamics on the columns of the piled graph allows the presence
of several particle of different types on the same “base” site. In the case where each layer is
a one-dimensional chain and two-layers are considered, the hydrodynamic limit has been
shown to be given by the “weakly” coupled reaction diffusion equation (9). When boundary
reservoirs are added, global uphill diffusion and boundary layers are possible [8].

3 Evolution equations for the average occupation

For the model introduced in Section 2.1, we define the average of the occupation variable of each
species ζ ∈ {0,1, . . . ,n} at time t ≥ 0 and at the vertex z ∈ V

µ
(ζ)
z (t) = E

[
1{Iζz }(η(t))

]
. (13)

Similarly, we consider the time-dependent correlations between species ζ,ζ′ ∈ {0,1, . . . ,n} at points
z,z′ ∈ V

c
(ζ,ζ′)
z,z′ (t) = E

[
1{Iζz }(η(t))1{Iζ

′
z′ }

(η(t))
]
. (14)

Here Iζz = {η ∈ Ω : ηz = ζ} and 1I denotes the indicator function of the set I . The notation
E [f (η(t))] =

∫
ν0(dη)Eη [f (η(t))] denotes the expectation in the process {η(t)}t≥0 started from the

initial measure ν0. The evolution equation of the density of the ζ-species can be obtained by
acting with the generator. We have

dE
[
1{Iζz }(η(t))

]

dt
= E

[(
L1{Iζz }

)
(η(t))

]
. (15)

In the following section we evaluate the right hand side of this equation by considering first edge
contributions and then site contributions.

3.1 Action of Lx,y
If z < {x,y} then obviously

(
Lx,y1{Iζz }

)
(η) = 0. Otherwise, recalling that the graph G is directed

and the notation of [22], we have the following: when we fix z = x then

(
Lz,y1{Iζz }

)
(η) = Aζ

1 +
n∑

δ=1

Fζδ
+11{I δy }(η) +

n∑

γ=1

B
ζγ
1 1{Iγz }(η) +

n∑

γ,δ=1

G
ζγδ
+1 1{Iγy }(η)1{I δz }(η) (16)

and when we fix z = y then

(
Lx,z1{Iζz }

)
(η) = Aζ

2 +
n∑

γ=1

F
ζγ
−11{Iγx }(η) +

n∑

δ=1

Cζδ
2 1{I δz }(η) +

n∑

γ,δ=1

G
ζγδ
−1 1{Iγz }(η)1{I δx }(η) (17)

where the constants are defined as follows:

1. zero-order terms:

Aζ
1 =

n∑

β=0

Γ
ζβ
00 Aζ

2 =
n∑

β=0

Γ
βζ
00

7



2. first-order terms:

B
ζγ
1 =



∑n
β=0(Γ

ζβ
γ0 − Γ

ζβ
00 ) if ζ , γ

−∑n
β=0

(
∑n

ζ′=0 : ζ′,ζ
Γ
ζ
′
β

ζ0 + Γ
ζβ
00

)
if ζ = γ

Cζδ
2 =



∑n
β=0(Γ

βζ
0δ − Γ

βζ
00 ) if ζ , δ

−∑n
β=0

(
∑n

ζ′=0 : ζ′,ζ
Γ
βζ
′

0ζ + Γ
βζ
00

)
if ζ = δ

F
ζγ
−1 = B

ζγ
2 =

n∑

β=0

(Γ
βζ
γ0 − Γ

βζ
00 )

Fζδ
+1 = Cζδ

1 =

n∑

β=0

(Γ
ζβ
0δ − Γ

ζβ
00 )

3. second-order terms:

G
ζγδ
+1 =D

ζ,γ,δ
1 =



∑n
β=0(Γ

ζβ
γδ − Γ

ζβ
γ0 − Γ

ζβ
0δ + Γ

ζβ
00 ); if ζ , γ

−∑n
β=0

(
∑n

ζ
′
=0 : ζ

′
,ζ

Γ
ζ
′
β

ζδ + Γ
ζβ
0δ

)
+
∑n

β=0

(
∑n

ζ
′
=0 : ζ

′
,ζ

Γ
ζ
′
β

ζ0 + Γ
ζβ
00

)
if ζ = γ

G
ζγδ
−1 =D

ζ,γ,δ
2 =



∑n
β=0(Γ

βζ
γδ − Γ

βζ
γ0 − Γ

βζ
0δ + Γ

βζ
00 ) if ζ , δ

−∑n
β=0

(
∑n

ζ
′
=0 : ζ

′
,ζ

Γ
βζ
′

γζ + Γ
βζ
γ0

)
+
∑n

β=0

(
∑n

ζ
′
=0 : ζ

′
,ζ

Γ
βζ
′

0ζ + Γ
βζ
00

)
if ζ = δ

3.2 Action of Lx
If z , x then obviously

(
Lx1{Iζz }

)
(η) = 0. Otherwise

(
Lz1{Iζz }

)
(η) = Aζ(z) +

n∑

β=1

Fζβ(z)1{Iβz }
(η) (18)

where now the constants are defined as:

1. zero-order term:

Aζ(z) =W ζ
0 (z)

2. first-order term:

Fζβ(z) =


W ζ

β (z)−W
ζ
0 (z) if ζ , β

−∑n
ζ
′
=0 : ζ

′
,ζ

W ζ
′

ζ (z)−W ζ
0 (z) if ζ = β

.

3.3 Action of L
We now collect the results of the previous sections. We may write

(
L1{Iζz }

)
(η) =

∑

x,y : (x,y)∈E
ax,y

(
Lx,y1{Iζz }

)
(η) +

∑

x

ax
(
Lx1{Iζz }

)
(η)

=
∑

y : (z,y)∈E
az,y

(
Lz,y1{Iζz }

)
(η) +

∑

x : (x,z)∈E
ax,z

(
Lx,z1{Iζz }

)
(η) + az

(
Lz1{Iζz }

)
(η).

Substituting (16), (17), (18) in the above expression we obtain

(
L1{Iζz }

)
(η) =

∑

y : (z,y)∈E
az,y


A

ζ
1 +

n∑

δ=1

Fζδ
+11{I δy }(η) +

n∑

γ=1

B
ζγ
1 1{Iγz }(η) +

n∑

γ,δ=1

G
ζγδ
+1 1{Iγy }(η)1{I δz }(η)




+
∑

x : (x,z)∈E
ax,z


A

ζ
2 +

n∑

γ=1

F
ζγ
−11{Iγx }(η) +

n∑

δ=1

Cζδ
2 1{I δz }(η) +

n∑

γ,δ=1

G
ζγδ
−1 1{Iγz }(η)1{I δx }(η)




+ az


A

ζ(z) +
n∑

β=1

Fζβ(z)1{Iβz }
(η)


 . (19)
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3.4 Evolution equations

Using equation (19) for the right hand side of (15) we obtain the evolution equation for the average
occupation. Recalling the notation in (13) and (14) (for the sake of space we do not write the
explicit t-dependence) we arrive to

d

dt
µ
(ζ)
z =

∑

y : (z,y)∈E
az,y


A

ζ
1 +

n∑

δ=1

Fζδ
+1 µ

(δ)
y +

n∑

γ=1

B
ζγ
1 µ

(γ)
z +

n∑

γ,δ=1

G
ζγδ
+1 c

(γ,δ)
y,z




+
∑

x : (x,z)∈E
ax,z


A

ζ
2 +

n∑

γ=1

F
ζγ
−1 µ

(γ)
x +

n∑

δ=1

Cζδ
2 µ

(δ)
z +

n∑

γ,δ=1

G
ζγδ
−1 c

(γ,δ)
z,x




+ az


A

ζ(z) +
n∑

β=1

Fζβ(z) µ
(β)
z


 . (20)

We notice that the equations for the time-dependent averages µ
(ζ)
z (t) are not closed, as they involve

the correlations c
(ζ,ζ′)
z,z′ (t).

Remark 3.1 (The process on the lattice) The generator (10) is an generalization of the lattice gener-
ator studied in [22] to a general graph with the addition of open boundaries. Indeed, take as a special
graph the d-dimensional regular lattice Zd and ignore the boundaries. Then, calling e(k) the unit vector
in the kth direction (k = 1, . . . ,d) and defining

Eζ = Aζ
1 +Aζ

2

F
ζβ
0 = C

ζβ
2 +B

ζβ
1

(21)

equation (19) becomes

(
L1{Iζz }

)
(η) =

d∑

k=1


Eζ +

n∑

β=1

+1∑

j=−1
F
ζβ
j 1{Iβ

z+je(k)
}(η) +

n∑

β,β
′
=1

∑

j=±1
G
ζββ

′

j 1{Iβ
z+je(k)

}(η)1{Iβ
′

z }
(η)


(22)

which is equation (3.12) in [22].

4 Boundary-driven chains with linear reaction-diffusion

In this and the following sections we specialize to the case with only two species, labelled by 1
and 2. Furthermore, we specialize to the one-dimensional geometry by considering a undirected
linear chain.

More precisely, the graph has N vertices labelled by {1,2, . . . ,N } with a distinguish role of the
sites {1,N }which model two reservoirs. The interaction is of nearest neighbor type, i.e.

ax,y =


1 if |x − y| = 1

0 otherwise
ax =


1 if x ∈ {1,N }
0 otherwise

It is convenient to call the sites {2, . . . ,N −1} as “bulk” and the two end sites {1,N } as “boundary”.
The generator of the process thus reads as:

L = L1 +
N−1∑

z=1

Lz,z+1 +LN (23)

We specialize the result of Eq. (20) to the boundary-driven chain. Introducing ∀ζ,β = 1,2:

F
ζβ
0 = B

ζβ
1 +C

ζβ
2 Eζ = Aζ

1 +Aζ
2

Aζ
L = Aζ(1) Aζ

R = Aζ(N )

F
ζβ
L = Fζβ(1) F

ζβ
R = Fζβ(N )

9



the evolution equations for the densities of the two species at site z ∈ {1,2, . . . ,N } are given by:

d

dt
µ
(ζ)
1 = Aζ

L +Aζ
1 +

2∑

β=1

((
B
ζβ
1 + F

ζβ
L

)
µ
(β)
1 + F

ζβ
+1µ

(β)
2

)

+

2∑

β,β
′
=1

G
ζββ

′

+1 c
(β,β

′
)

1,2

(24)

d

dt
µ
(ζ)
z = Eζ +

2∑

β=1

(
F
ζβ
−1µ

(β)
z−1 + F

ζβ
0 µ

(β)
z + F

ζβ
+1µ

(β)
z+1

)
if z ∈ {2, . . . ,N − 1}

+
2∑

β,β′=1

(
G
ζββ

′

−1 c
(β,β

′
)

z−1,z +G
ζββ

′

+1 c
(β,β

′
)

z,z+1

} (25)

d

dt
µ
(ζ)
N = Aζ

R +Aζ
2 +

2∑

β=1

((
C
ζβ
2 + F

ζβ
R

)
µ
(β)
N + F

ζβ
−1µ

(β)
N−1

)

+
2∑

β,β
′
=1

G
ζββ

′

−1 c
(β,β

′
)

N−1,N

(26)

In the next section, we simplify the evolution equations for the average density by selecting a
subclass of processes with closed equations and a linear structure.

4.1 Imposing the matching

One could go further and compute the hierarchy of equations for higher-order correlation func-
tion [22]. For general choices of the rate matrices Γ and W , the equations do not close. In the
following, we shall focus on those choices of rates that satisfy the following two requirements:

1. Closure of the correlation equations. This amounts to requiring that the correlation terms in
(24), (25), (26) vanish. It is shown in [22] that the vanishing of correlations actually implies
closure of the multi-point correlation function at all orders.

2. The average occupations follow the discretization of the reaction diffusion equation. Considering
the reaction diffusion system (5), we approximate the laplacians with the central difference

operators. We call ρ
(α)
i the density of species α ∈ {0,1,2} at vertex i ∈ {1, . . . ,N } with the

constraint ρ
(0)
i + ρ

(1)
i + ρ

(2)
i = 1. Furthermore we fix the densities at the left end (vertex 1) to

the values of ρ
(1)
L , ρ

(2)
L and similarly at the right end (vertex N ) we impose ρ

(1)
R , ρ

(2)
R . Then

the discretization of the two component reaction diffusion equations (5), reads as

d

dt
ρ
(1)
1 =σ11

(
ρ
(1)
L − 2ρ

(1)
1 + ρ

(1)
2

)
+σ12

(
ρ
(2)
L − 2ρ

(2)
1 + ρ

(2)
2

)
+Υ

(
ρ
(2)
1 − ρ

(1)
1

)

d

dt
ρ
(2)
1 =σ21

(
ρ
(1)
L − 2ρ

(1)
1 + ρ

(1)
2

)
+σ22

(
ρ
(2)
L − 2ρ

(2)
1 + ρ

(2)
2

)
+Υ

(
ρ
(1)
1 − ρ

(2)
2

) (27)

d

dt
ρ
(1)
z = σ11

(
ρ
(1)
z−1 − 2ρ

(1)
z + ρ

(1)
z+1

)
+σ12

(
ρ
(2)
z−1 − 2ρ

(2)
z + ρ

(2)
z+1

)
+Υ

(
ρ
(2)
z − ρ

(1)
z

)

d

dt
ρ
(2)
z = σ21

(
ρ
(1)
z−1 − 2ρ

(1)
z + ρ

(1)
z+1

)
+σ22

(
ρ
(2)
z−1 − 2ρ

(2)
z + ρ

(2)
z+1

)
+Υ

(
ρ
(1)
z − ρ

(2)
z

)

∀z = 2, . . . ,N − 1

(28)

d

dt
ρ
(1)
N =σ11

(
ρ
(1)
N−1 − 2ρ

(1)
N + ρ

(1)
R

)
+σ12

(
ρ
(2)
N−1 − 2ρ

(2)
N + ρ

(2)
R

)
+Υ

(
ρ
(2)
N − ρ

(1)
N

)

d

dt
ρ
(2)
N =σ21

(
ρ
(1)
N−1 − 2ρ

(1)
N + ρ

(1)
R

)
+σ22

(
ρ
(2)
N−1 − 2ρ

(2)
N + ρ

(2)
R

)
+Υ

(
ρ
(1)
N − ρ

(2)
N

) (29)

We impose that the evolution equations for the averaged occupations given in (24), (25),
(26) do coincide with the discretized reaction-diffusion equations (27), (28), (29).

By imposing the closure condition 1. and the discrete linear reaction-diffusion condition 2. we
get the set of equations described below.
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Conditions from the bulk. We first consider equation (25) which we require to have the form
of (28). We obtain the following conditions:

• Closure conditions: equation (28) has no second order terms, thus:

G
αββ

′

+1 = 0 G
αββ

′

−1 = 0 ∀α,β,β ′ = 1,2 (30)

The above requirement leads to 16 conditions on the transition rates Γ
αβ
γδ .

• Laplacian conditions: the one point correlation function should evolve as the coupled dis-
crete Laplacian in (28) with linear reaction. This is accomplished by imposing:

F11
−1 = F11

+1 = σ11 F12
−1 = F12

+1 = σ12 F21
−1 = F21

+1 = σ21 F22
−1 = F22

+1 = σ22

F11
0 = −2σ11 −Υ F12

0 = −2σ12 +Υ F21
0 = −2σ21 +Υ F22

0 = −2σ22 −Υ (31)

The above requirement leads to 12 conditions on the transition rates Γ
αβ
γδ .

• Zero-order terms: equation (28) has no zero-order term, thus:

E1 = 0 E2 = 0 (32)

The above requirement leads to 2 conditions on the transition rates Γ
αβ
γδ .

Our task is to determine the 81 transition rates Γ
αβ
γδ ∀α,β,γ,δ = 0,1,2 that define the bulk in-

finitesimal generator. By exploiting the stochasticity properties of the generator (sum of the ele-
ments on the rows must be zero), the problem reduces to finding 72 transition rates. By consider-
ing (30), (31), (32), only 16+12+2 = 30 conditions are available. This means that the problem to
solve is under-determined.

For the analysis that will follow, it is convenient to introduce an unknown vector u ∈R72
+ that

contains the desired 72 transition rates, and an appropriate matrix K ∈R30×72 and vector b ∈R30.
Then, it is possible (for details see Appendix C) to rewrite (30), (31), (32) as:

Ku = b. (33)

The matrix K is full rank, thus there exists a family of solutions with 42 free parameters. Fur-
thermore we have to guarantee the non-negativity of the solution, as the transition rates are non-
negative. For later use, recalling the definitions of F,G,E’s, we observe that the conditions (30),
(31), (32) actually only involve sums of three transition rates.

Conditions from the boundaries. We now want to find conditions to match (24) and (26) with
(27) and (29), respectively. We consider the conditions on the left boundary; the right boundary
is treated similarly. We get:

• Closure conditions: the vanishing of correlation in (24) is already guaranteed by (30).

• Laplacian conditions:

F11
L +B11

1 = −2σ11 −Υ F12
L +B12

1 = −2σ12 +Υ F11
+1 = σ11 F12

+1 = σ12

F22
L +B22

1 = −2σ22 −Υ F21
L +B21

1 = −2σ21 +Υ F21
+1 = σ21 F22

+1 = σ22

Since the equations that involve Fζ,δ
+1 are already imposed in (31), inserting the definition of

the Fζ,δ
L , the above conditions reduce to

−W 1
0 (1)−W 0

1 (1)−W 2
1 (1) +B11

1 = −2σ11 −Υ B12
1 +W 1

2 (1)−W 1
0 (1) = −2σ12 +Υ

W 2
1 (1)−W 2

0 (1) +B21
1 = −2σ21 +Υ −W 0

2 (1)−W 2
0 (1)−W 1

2 (1) +B22
1 = −2σ22 −Υ

(34)

• Zero-order terms:

A1
L +A1

1 = σ11ρ
(1)
L +σ12ρ

(2)
L A2

L +A2
1 = σ21ρ

(1)
L +σ22ρ

(2)
L

As a consequence of (32), Aζ
2 are zero. Therefore, the above conditions reduce to

W 1
0 (1) = σ11ρ

(1)
L +σ12ρ

(2)
L W 2

0 (1) = σ21ρ
(1)
L +σ22ρ

(2)
L (35)
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All in all, combining (34) and (35) we see that the rates of the boundary generators are uniquely
determined by the bulk rates. Indeed, for a choice of the bulk rates (which in turn appear in the

Bζ,δ
1 ), we have:

W 1
0 (1) = σ11ρ

(1)
L +σ12ρ

(2)
L W 2

0 (1) = σ21ρ
(1)
L +σ22ρ

(2)
L

W 1
0 (1) +W 0

1 (1) +W 2
1 (1) = 2σ11 +Υ +B11

1 W 1
2 (1)−W 1

0 (1) = −2σ12 +Υ −B12
1 (36)

W 2
1 (1)−W 2

0 (1) = −2σ21 +Υ −B21
1 W 0

2 (1) +W 2
0 (1) +W 1

2 (1) = 2σ22 +Υ +B22
1

On the right boundary, a similar argument yields:

W 1
0 (N ) = σ11ρ

(1)
R +σ12ρ

(2)
R W 2

0 (N ) = σ21ρ
(1)
R +σ22ρ

(2)
R

W 1
0 (N ) +W 0

1 (N ) +W 2
1 (N ) = 2σ11 +Υ +C11

2 W 1
2 (N )−W 1

0 (N ) = −2σ12 +Υ −C12
2 (37)

W 2
1 (N )−W 2

0 (N ) = −2σ21 +Υ −C21
2 W 0

2 (N ) +W 2
0 (N ) +W 1

2 (N ) = 2σ22 +Υ +C22
2

Let us notice that (36) and (37) are determined systems of algebraic equations in the unknowns
W ·· (1),W

·
· (N ).

4.2 Determination of the rates

Our first main result is contained in Theorem 4.1. It identifies a necessary and sufficient condi-
tion (in terms of two parameters h,m ≥ 0) on the diffusivity matrix Σ and the reaction coefficient
Υ such that the one-dimensional boundary driven chain with two-species has averaged densities
satisfying the discrete linear reaction-diffusion equations (27), (28), (29). Furthermore, by set-
ting h = m, it provides the example of a one-parameter family of symmetric models with such a
property. To state the example it is convenient to introduce the mutation map α 7→ ᾱ defined by:

1→ 2

2→ 1

0→ 0 .

(38)

Theorem 4.1 Let Σ be a 2×2 positive definite diffusion matrix and Υ > 0 be a reaction coefficient. Let

ρ
(1)
L and ρ

(2)
L (respectively, ρ

(1)
R and ρ

(2)
R ) be the densities of the species 1 and 2 at the left (respectively,

right) boundary. Then, for any choice of h,m ≥ 0 there exist boundary-driven interacting particle
systems on the chain {1, . . . ,N } such that their evolution equations of the average occupation variable
are (27), (28), (29) if and only if the diffusion matrix coefficients σ11,σ12,σ21,σ22 and the reaction
coefficient Υ are non-negative and fulfill the conditions

σ11 +σ21 = σ12 +σ22 σ12 ≤
Υ −m

2
σ21 ≤

Υ − h
2

. (39)

Moreover, an explicit example of a symmetric generator (parameterized by h =m ≥ 0) is given by

L = L1 +
N−1∑

x=1

Lx,x+1 + LN (40)

with edge generator

Lx,x+1f (η) = σ11(f (η1, . . . ,ηx+1,ηx , . . . ,ηN )− f (η))
+ σ12(f (η1, . . . , η̄x+1, η̄x , . . . ,ηN )− f (η))
+ (Υ − 2σ12 −m)(f (η1, . . . , η̄x ,ηx+1, . . . ,ηN )− f (η))
+ m(f (η1, . . . ,ηx , η̄x+1, . . . ,ηN )− f (η)) . (41)

The site generator at the left boundary is given by

L1f (η) = (σ11ρ
(1)
L +σ12ρ

(2)
L )1{I01 }

(η)
[
f (η1 + δ1, . . . ,ηN )− f (η1, . . . ,ηN )

]

+ (σ12ρ
(1)
L +σ11ρ

(2)
L )1{I01 }

(η)
[
f (η1 + δ2, . . . ,ηN )− f (η1, . . . ,ηN )

]

+ (σ11 +σ12)ρ
(0)
L 1{I11 }

(η)
[
f (η1 − δ1, . . . ,ηN )− f (η1, . . . ,ηN )

]

+ (σ11 +σ12)ρ
(0)
L 1{I21 }

(η)
[
f (η1 − δ2, . . . ,ηN )− f (η1, . . . ,ηN )

]

+ (m+σ12ρ
(1)
L +σ11ρ

(2)
L )1{I11 }

(η)
[
f (η1 + δ2 − δ1, . . . ,ηN )− f (η1, . . . ,ηN )

]

+ (m+σ11ρ
(1)
L +σ12ρ

(2)
L )1{I21 }

(η)
[
f (η1 − δ2 + δ1, . . . ,ηN )− f (η1, . . . ,ηN )

]
(42)
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Rate

Rate

Rate Rate

Rate

Ratem

σ12

σ11

m

Υ− 2σ12 −m

σ11

Species 1 Species 2 Empty (species 0)

Figure 3: The boundary driven process with generator (41), (42) . Grey squares identify species
1, green triangles species 2, and white circles the empty state. The reservoirs are represented by
rectangles, where the interior colours denote the particles or vacuum densities. In the boxes, we
give two examples of allowed bulk transition with the corresponding rates.

where ρ
(0)
L := 1− ρ(1)L − ρ

(2)
L . Here ±δα denotes the addition/removal of species α. The site generator at

the right boundary is defined similarly (now with parameters ρ
(1)
R and ρ

(2)
R ).

Before discussing the proof of the theorem, a few comments are collected in the following re-
marks.

Remark 4.2 The theorem is in agreement with the previous literature results stating that in the
absence of the reaction term, for the existence of the two dimensional coupled heat equations the
cross diffusivities must vanish ([24], [23]). Here we find the corresponding statement at the level
of the particle process. Indeed, by assuming Υ = 0, then the condition (39) can be satisfied iff
σ12 = σ21 = h =m = 0 and σ11 = σ22.

Remark 4.3 The transitions allowed by the edge generator (41) are the following:

(γ,δ) →



(δ,γ) stirring at rate σ11
(δ,γ ) stirring and mutation at rate σ12
(γ,δ) left mutation at rate Υ − 2σ12 −m
(γ,δ) right mutation at rate m

(43)

Thus we see that the rate of stirring is associated to the diffusion coefficient σ11, while the rate
of stirring with mutation is related to the cross-diffusion coefficient σ12. The rates of the left and
right mutations are precisely tuned to guarantee that, for allm ≥ 0, the evolution equations of the
average occupation variables are (27), (28), (29). A visual representation of this process is showed
in Figure 3. In particular, the choice m = 0 kills the right mutations, the choice m =Υ −2σ12 kills
the left mutations, while the choicem = Υ

2 −σ12 gives the same rate to left and right mutations. Let
us also observe that only when m = 0, the boundary generators satisfy the conditions ∀z ∈ {1,N }:

W 0
1 (z) =W 0

2 (z) W 1
0 (z) =W 1

2 (z) W 2
0 (z) =W 2

1 (z) . (44)

Remark 4.4 It is possible to exhibit a particle process with a generator having the same structure
of (41) but containing two parameters h,m ≥ 0 and depending on all the coefficients of the dif-
fusivity matrix σ11,σ12,σ21,σ22 and on the reaction coefficient Υ, provided they fulfill condition
(39). This is shown in Appendix B. When h , m the matrix associated to the generator Lx,x+1 is
generically not symmetric and the four transitions described in (43) have rates which depend on
the specific configuration values. When h =m the generator Lx,x+1 is symmetric if the diffusivity
matrix is, i.e σ12 = σ21, and thus as a consequence of (39) the elements on the diagonal are equal,
i.e. σ11 = σ22.

Remark 4.5 Considering the “color-blind” process, i.e. the process that does not distinguish be-
tween the particles of type 1 and those of type 2, we obtain a process with just occupied or
empty sites. This is indeed the classical boundary-driven simple symmetric exclusion process
[31], where in the bulk particles jump to the left or to the right at rate σ := σ11 + σ12, provided
there is space, and at the left boundary particles are created at rate σρL and removed at rate
σ(1− ρL), where ρL is the particle density (and similarly at the right boundary with density ρR).
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Proof of Theorem 4.1. We provide here the main ideas; full details of the proof are given in the
appendix C. We first consider the bulk part and then the boundary one.

• Bulk process: To find the rates of the bulk process we need to solve (33), i.e. the system
Ku = bwhere K is a matrix of size 30×72 and b is a vector described in the appendix C. This
system has a great under-determination order (72-30=42). To overcome this difficulty, we
exploit the fact that, as already noticed in the text following (33), the required conditions
(30), (31), (32) only involve sums of three rates. As a consequence, we may introduce a
new system where the unknowns are the summed triples. This new system, which will be
denoted by Ξy = b where Ξ is a matrix of size 30 × 36, has an under-determination order
equal to 6, and thus can be solved explicitly under the non-negativity constraint on y (see
Appendix B). It is precisely the request y ≥ 0 that further reduces the under-determination
order to 2 (parametrized by the parameters h,m ≥ 0) and produces the constraint (39).

Once the vector y, whose components are sum of three rates, has been found, the next step
is the identification of the transition rates themselves. This of course can be done in several
ways. To produce an explicit example we have followed the two criteria below:

– The matrix associated to the generator has the greatest number of zeros.

– Choice of the following rates:

Γ
21
12 = σ11 Γ

12
21 = σ22 Γ

22
11 = σ21 Γ

11
22 = σ12. (45)

After simple but long computations, this choice leads to the generator (77) in Appendix
B involving the two parameters h,m ≥ 0. When we set h = m and we choose a symmetric
diffusivity matrix (which in turn guarantees a symmetric particle process) the generator
(41) is obtained.

• Boundary process: to find the rates of the boundary process we need to solve (36) and (37).
Having already determined the rates of the bulk process, by direct computation we find the
boundary generators (76) and (78) reported in the appendix B, which depend on h,m ≥ 0.
When we set h = m and choose a symmetric diffusivity matrix, then the generator (42) is
obtained.

�

5 Duality and hydrodynamic limit

We aim to derive the hydrodynamic equations for the family of processes defined in (41). In this
section, we assume to work on the whole one-dimensional lattice Z. To formulate the results,
it is convenient to change notation. The state space of the Markov process defined by the edge
generator (41) on the full line can be identified with the three-dimensional simplex

Ω̃ =
{
(n0,n1,n2) ∈ {0,1}3 : n0 + n1 + n2 = 1

}Z
.

In this notation, the component nz at site z ∈Z of a configuration n ∈ Ω̃ is thus a triplet with two
0’s and a 1, whose position is associated with a hole, or with a particle of type 1, or with a particle
of type 2. For example, (nz0,n

z
1,n

z
2) = (0,1,0) indicates that in the site z ∈ Z there is one particle

of species 1. Then, recalling the notation in (38) for the mutation map, the process {n(t), t ≥ 0}
taking values in Ω̃ is defined by the following generator L working of local functions f : Ω̃→ R:

L =
∑

z∈Z
Lz,z+1 (46)

with

Lz,z+1 = σ11L
S
z,z+1 +σ12L

SM
z,z+1 + (Υ − 2σ12 −m)LLMz,z+1 +mLRMz,z+1
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where

LSz,z+1f (n) =
2∑

α,β=0

nzαn
z+1
β

[
f (n− δzα + δzβ + δz+1α − δz+1β )− f (n)

]

LSMz,z+1f (n) =
2∑

α,β=0

nzαn
z+1
β

[
f (n− δzα + δz

β
− δz+1β + δz+1α )− f (n)

]

LLMz,z+1f (n) =
2∑

α=0

nzα
[
f (n− δzα + δzα)− f (n)

]

LRMz,z+1f (n) =
2∑

β=0

nz+1β

[
f (n− δz+1β + δz+1

β
)− f (n)

]
(47)

A fundamental tool for the hydrodynamic limit is duality: usually, the hydrodynamic limit is
dictated by the scaling properties of one dual particles. We say that the Markov process with

generator (46) is self-dual with respect to the self-duality function D : Ω̃ × Ω̃ → R if for all t ≥ 0

and for all (n,ℓ) ∈ Ω̃ × Ω̃
En[D(n(t), ℓ)] = Eℓ[D(n,ℓ(t))]

where on the left hand side En denotes expectation in the process {n(t), t ≥ 0} initialized from the
configuration n and, analogously, on the right hand side Eℓ denotes expectation in {ℓ(t), t ≥ 0}
which is a copy of the process initialized from the configuration ℓ.

In this section, by abuse of notation, we denote 1{a≥b} the function defined by

1{a≥b} =


1 if a ≥ b

0 if a < b

Theorem 5.1 (Self-Duality) TheMarkov process {n(t), t ≥ 0} defined by the generator (46) is self-dual
with the self duality function

D(n,ℓ) =
∏

z∈Z

2∏

k=1

1{nzk≥ℓ
z
k } (48)

Proof: It is enough to prove that

(LD(·, ℓ)) (n) = (LD(n, ·)) (ℓ) ∀(n,ℓ) ∈ Ω̃ × Ω̃ (49)

The generator (46) is a superposition of four generators. Remarkably, the duality relation can be
verified for each of them. Indeed, one has:

(LSz,z+1D(·, ℓ))(n)

=
[
1{nz+11 ≥ℓz1}

1{nz+12 ≥ℓz2}
1{nz1≥ℓz+11 }1{nz2≥ℓz+12 } −1{nz1≥ℓz1}1{nz2≥ℓz2}1{nz+11 ≥ℓz+11 }1{nz+12 ≥ℓz+12 }

] ∏

x<{z,z+1}

2∏

k=1

1{nxk≥ℓ
x
k }

=
[
1{nz1≥ℓz+11 }1{nz2≥ℓz+12 }1{nz+11 ≥ℓz1}

1{nz+12 ≥ℓz2}
−1{nz1≥ℓz1}1{nz2≥ℓz2}1{nz+11 ≥ℓz+11 }1{nz+12 ≥ℓz+12 }

] ∏

x<{z,z+1}

2∏

k=1

1{nxk≥ℓ
x
k }

= (LSz,z+1D(n, ·))(ℓ) .

Similarly, one has

(LSMz,z+1D(·, ℓ))(n)

=
[
1{nz+12 ≥ℓz1}

1{nz+11 ≥ℓz2}
1{nz2≥ℓz+11 }1{nz1≥ℓz+12 } −1{nz1≥ℓz1}1{nz2≥ℓz2}1{nz+11 ≥ℓz+11 }1{nz+12 ≥ ℓz+12 }

] ∏

x<{z,z+1}

2∏

k=1

1{nxk≥ℓ
x
k }

=
[
1{nz1≥ℓz+12 }1{nz2≥ℓz+11 }1{nz+11 ≥ℓz2}

1{nz+12 ≥ℓz1}
−1{nz1≥ℓz1}1{nz2≥ℓz2}1{nz+11 ≥ℓz+11 }1{nz+12 ≥ℓz+12 }

] ∏

x<{z,z+1}

2∏

k=1

1{nxk≥ℓ
x
k }

= LSMz,z+1(D(n, ·)(ℓ) .
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For the generator that mutates at site z we have

(LLMz,z+1D(·, ℓ))(n) =
[
1{nz2≥ℓz1}1{nz1≥ℓz2} −1{nz1≥ℓz1}1{nz2≥ℓz2}

]∏

x,z

2∏

k=1

1{nxk≥ℓ
x
k }

=
[
1{nz1≥ℓ

z
2}1{n

z
2≥ℓ

z
1} −1{nz1≥ℓz1}1{nz2≥ℓz2}

]∏

x,z

2∏

k=1

1{nxk≥ℓ
x
k }

= (LLMz,z+1D(n, ·))(ℓ) ,

and analogously, for the generator that mutates at site z +1, we find

(LRMz,z+1D(·, ℓ))(n) =
[
1{nz+12 ≥ℓ

z+1
1 }1{nz+11 ≥ℓ

z+1
2 } −1{nz+11 ≥ℓ

z+1
1 }1{nz+12 ≥ℓ

z+1
2 }

] ∏

x,z+1

2∏

k=1

1{nxk≥ℓ
x
k }

=
[
1{nz+11 ≥ℓ

z+1
2 }1{nz+12 ≥ℓ

z+1
1 } −1{nz+11 ≥ℓ

z+1
1 }1{nz+12 ≥ℓ

z+1
2 }

] ∏

x,z+1

2∏

k=1

1{nxk≥ℓ
x
k }

= (LRMz,z+1D(n, ·)(ℓ)

�

To formulate the hydrodynamic limit, we consider a scaling parameter ǫ ≥ 0 and we introduce
the empirical density fields

Xǫ
1 (t) = ǫ

∑

z∈Z
nz1(ǫ

−2t)δǫz Xǫ
2(t) = ǫ

∑

z∈Z
nz2(ǫ

−2t)δǫz (50)

The empirical density fields {Xǫ
1(t), t ≥ 0} and {Xǫ

2(t), t ≥ 0} are measure-valued processes con-
structed from the process {n(t), t ≥ 0}. We also need to specify a good set of initial distributions.

Definition 5.2 Let ρ̂(α) : R→ [0,1], with α ∈ {1,2}, be a continuous bounded real function called the

initial macroscopic profile. A sequence (µǫ)ǫ≥0 of measures on Ω̃, is a sequence of compatible initial
conditions if ∀α ∈ {1,2}, ∀δ > 0:

lim
ǫ→0

µǫ

(∣∣∣∣∣〈X
ǫ
α(0),g〉 −

∫

R

g(x)ρ̂(α)(x)dx

∣∣∣∣∣ > δ

)
= 0 (51)

where g : R→R is a smooth test function with compact support.

We then have the following theorem for the hydrodynamic limit.

Theorem 5.3 (Hydrodynamic limit of the Markov process {n(t), t ≥ 0}) . Let ρ̂(α) with α ∈ {1,2}
be initial macroscopic profiles and (µǫ)ǫ>0 be a sequence of compatible initial conditions. Let Pµǫ be the
law of the measure valued process (Xǫ

1 (t),X
ǫ
2 (t)) defined in (50). Then ∀T ,δ > 0,∀α ∈ {1,2} and for all

smooth test function with compact support g : R→ R

lim
ǫ→0

Pµǫ


 sup
t∈[0,T ]

∣∣∣∣∣〈X
ǫ
α(t),g〉 −

∫

R

g(x)ρ(α)(x,t)dx

∣∣∣∣∣ > δ


 = 0, (52)

where ρ(1),ρ(2) are the strong solutions of



∂tρ
(1) = σ11∂

2
xρ

(1) + Υ̃

(
ρ(2) − ρ(1)

)

∂tρ
(2) = σ11∂

2
xρ

(2) + Υ̃

(
ρ(1) − ρ(2)

)

ρ(α)(0,x) = ρ̂(α)(x) ∀x ∈ [0,1], ∀α ∈ {1,2}
(53)

Proof: The proof is standard and it is based on the Dynkin’s martingale and its quadratic vari-
ation. For the tightness and the uniqueness of the limiting point we refer to [19] and [32]. we
provide here some details for the computations of the Dynkin’s martingale and its quadratic vari-
ation via Carré-Du-Champ.

We introduce the following real and positive parameters:

σ̃12 = ǫ−2σ12, Υ̃ = ǫ−2Υ m̃ = ǫ−2m. (54)
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We consider the re-scaled generator

L(ǫ) =
∑

z∈Z
L
(ǫ)
z,z+1 (55)

where
L
(ǫ)
z,z+1 = σ11L

S
z,z+1 + σ̃12ǫ

2LSMz,z+1 + ǫ2(Υ̃ − 2σ̃12 − m̃)LLMz,z+1 + m̃ǫ2LRMz,z+1. (56)

By choosing ∀z ∈Z and ∀α ∈ {1,2} the action of the rescaled generator on nzα is the following:

(L(ǫ)nxα)(n) = σ11
(
nz+1α − 2nzα + nz−1α

)
+ σ̃12ǫ

2
(
nz+1α − 2nzα + nz−1α

)
+ ǫ2

(
Υ̃ − 2σ̃12

)(
nzα − n

z
α

)

By consequence considering a test function g

∫ t

0
ds ǫ−2L(ǫ)〈Xǫ

α(s),g〉 = σ11

∫ t

0
ds ǫ−2 ǫ

∑

z∈Z
nzα(s) [g ((z +1)ǫ)− 2g (zǫ) + g ((z − 1)ǫ)]

+ σ̃12

∫ t

0
ds ǫ−2ǫ3

∑

z∈Z

(
nzα(s) [g ((z +1)ǫ) + g ((z − 1)ǫ)]− 2nzα(s)g(zǫ)

)

+

∫ t

0
ds ǫ−2 ǫ3(Υ̃ − 2σ̃12)

∑

z∈Z
g (zǫ)

[
nzα − n

z
α

]

By using the Taylor expansion we rewrite the above equality as

∫ t

0
ds ǫ−2L(ǫ)〈Xǫ

α(s),g〉 = σ11

∫ t

0
ǫ
∑

z∈Z
nzα∆g (zǫ) + σ̃12

∫ t

0
ǫ3

∑

z∈Z
nzα∆g (zǫ) + Υ̃

∫ t

0
ǫ
∑

z∈Z
g (zǫ)

[
nzα − n

z
α

]
+ o(ǫ)

= σ11

∫ t

0
ǫ
∑

z∈Z
nzα∆g (zǫ) + Υ̃

∫ t

0
ǫ
∑

z∈Z
g (zǫ)

[
nzα − n

z
α

]
+ o(ǫ).

Defining the Dynkin’s martingale ∀α ∈ {1,2}

M t
g (X

ǫ
α) := 〈Xǫ

α(t),g〉 − 〈Xǫ
α(0),g〉 −

∫ t

0
ǫ−2L(ǫ)〈Xǫ

α(s),g〉ds, (57)

by the previous computations, we have

M t
g (X

ǫ
α) + o(ǫ) = 〈Xǫ

α(t),g〉 − 〈Xǫ
α(0),g〉 −σ11

∫ t

0
〈Xǫ

α(s),∆g〉ds − Υ̃
∫ t

0
〈Xǫ

α(s)−X
ǫ
α(s),g〉ds.

The right-hand side is the discrete counterpart of the weak solution of (53).
To have tightness of the law of the measure-valued processes (50) we need to show that

lim
ǫ→0

Eµǫ

[
M t

g (X
ǫ
α)

2
]
= 0. (58)

We first observe that

Eµǫ

[
M t

g (X
ǫ
α)

2
]
≤ Eµǫ


 sup
t∈[0,T ]

|M t
g (X

ǫ
α)|2


 ≤ 4Eµǫ

[
MT

g (X
ǫ
α)

2
]
= 4Eµǫ

[∫ T

0
ǫ−2Γsg (X

ǫ
α)ds

]
,

where Γsg (X
ǫ
α) is the Carré-Du-Champ operator that can be written as

Γ
s
g (X

ǫ
α) = L(ǫ)〈Xα(t),g〉2 − 2〈Xα(t),g〉L(ǫ)〈Xα(t),g〉. (59)

By using the definition of the re-scaled generator (56) we obtain the following

ǫ−2Γsg (X
ǫ
α) = σ11ǫ

2
∑

z∈Z

[
nzα(1− nz+1α ) + nzα(1− n

z+1
α )

]
(∇g(zǫ))2

+ σ̃12ǫ
2
∑

z∈Z

{
2
[
nzαn

z+1
α + nzαn

z+1
α

]
g(zǫ)g((z +1)ǫ) + nzα

[
g((z +1)ǫ)2 + g((z − 1)ǫ)2

]
+ nzα2g(zǫ)

2
}

+
(
Υ̃ − 2σ̃12

)
ǫ2

∑

z∈Z
(nzα + nzα)g(zǫ)

2 + o(ǫ2).
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Let’s introduce the set Sg as the smallest compact subset of R that contains the supports of a

fixed g and of the first two derivatives. Then, |Sg | ≤ C
′
ǫ−1, with a C

′
positive and finite constant.

Moreover, by the hard-core constraint nzα ≤ 1, ∀z ∈ Z and ∀α ∈ {1,2}. By consequence, exploiting
the smoothness of g we derive the following bound

Eµǫ

[∫ T

0
ǫ−2Γsg (X

ǫ
α)ds

]
≤ Cǫ, (60)

with C <∞. This concludes the proof.

�

Remark 5.4 Let’s define a “color-blind” density field

Xǫ(t) := ǫ
∑

z∈Z
nz(tǫ−2)δzǫ (61)

where nz(t) := nzα(t) + nzα(t). By re-scaling only the LRMz,z+1 and LLMz,z+1 terms of the generator, the same
proof of Theorem 5.3 we would give, as limiting PDE, the heat equation


∂tρ(x,t) = (σ11 +σ12)∂xxρ(x,t)

ρ(x,0) = ρ0(x)
(62)

This is in agreement with the Remark 4.5.

Remark 5.5 We observe that in order to obtain the hydrodynamic limit of the process {n(t); t ≥ 0} we
had to scale the parameters as in (54). The ‘naive’ scaling where the diffusivity parameter σ11 and σ12
are both kept constant (while the reaction parameters are scaled asΥ = ǫ2Υ̃ andm = ǫ2m̃) is not viable,
as it would lead to a violation of the maximum principle. Indeed, if we assume that the limiting PDEs
are of the form 

∂tρ
(α) = Aρ(α) ∀x ∈ [0,1], ∀α ∈ {1,2}

ρ(α)(0,x) = ρ̂(α)(x)
(63)

where the operator A is defined as

Aρ(α) := σ11∂xxρ
(α) +σ12∂xxρ

(α) + Υ̃

(
ρ(α) − ρ(α)

)
(64)

then A does not satisfy the maximum principle. Indeed, it is possible to construct smooth functions
f (α) : R→R such that, calling

f (α)(x
(α)
∗ ) := max

x∈R
f (α)(x) (65)

one obtains

Af (α)(x
(α)
∗ ) = σ11∂xxf

(α)(x
(α)
∗ ) +σ12∂xxf

(α)(x
(α)
∗ ) + Υ̃

(
f (α)(x

(α)
∗ )− f (α)(x

(α)
∗ )

)
> 0. (66)

This follows by observing that (65) guarantees that ∂xxf
(α)(x∗) ≤ 0, but the other terms of the right

hand side of (66) can be positive and arbitrary large. As a consequence of the violation of the maximum
principle it follows that A can not be the generator of a Markov process. From the microscopic point of
view, the problem with the ‘naive’ rescaling is that the rate of left mutations

(Υ̃ǫ2 − 2σ12 − m̃ǫ2) (67)

becomes negative (!) for sufficiently small ǫ.

Remark 5.6 If we perform the hydrodynamic limit with an “Euler” re-scaling, i.e. we re-scale the time

only by a factor ǫ and we define σ̂12 = ǫ−1σ12, Υ̂ = ǫ−1Υ and m̃ = ǫ−1m we obtain the following ODE’s
system 

d
dt ρ

(1)(t) = Υ̂(ρ(2) − ρ(1))
d
dt ρ

(2)(t) = Υ̂(ρ(1) − ρ(2))
ρ(1)(0) = ρ

(1)
0 , ρ(2)(0) = ρ

(2)
0

(68)

that is a purely reacting system. The ODE’s are linear and the solution is given by

ρ(1)(t) =

ρ
(1)
0 +ρ

(2)
0

2 +
ρ
(1)
0 −ρ

(2)
0

2 e−2Υ̂t

ρ(2)(t) =
ρ
(1)
0 +ρ

(2)
0

2 − ρ
(1)
0 −ρ

(2)
0

2 e−2Υ̂t
(69)
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6 Conclusions

We considered multi-species stochastic interacting particle systems with hard-core interaction
defined on an directed graph. We also added site-generators, that allow to define the boundary-
driven version having non-zero stationary currents.

For a one dimensional chain with two species, we established that in order to have that the
average occupation evolves as the discrete counterpart of the linear reaction-diffusion equation
(5), the diffusivity matrix Σ and the reaction coefficient Υ have to fulfill condition (39) of The-
orem 4.1. As an additional result, we have identified a one-parameter family of multi-species
interacting particle systems (the one defined by the generator (41)) where the analysis can be
pushed further. In particular, due to the existence of a dual process, the hydrodynamic limit is
deduced. In the hydrodynamic regime the coupling between species due to the cross-diffusivity
coefficients disappears. The origin of this is that if the cross-diffusivities are not scaled to zero
then the Markov property is lost (see Remark 5.5). Partial uphill diffusion, although present in a
finite size system, is lost in the hydrodynamic limit.

It would be interesting to extend the analysis to a higher number of species. As observed in [7]
the uphill phenomenology of systems with three species of particles or more can be substantially
different from the ones with two species. Another open problem is the study of uphill diffusion
for systems with a non-linear reaction-diffusion structure, i.e. with diffusivity matrix whose ele-
ments are functions of the particle densities [25]. Finally, we mention that the family of models
with generator (41) includes the stirring process which is known to posses the algebraic structure
of the GL(n) group (which in fact leads to integrability of the model [33]). It would be interesting
to check if the model we have introduced preserves such algebraic structure.
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Appendix

A Steady state partial uphill diffusion

Let us consider the steady state of (5), with Dirichlet boundary conditions:

σ11
d2

dx2
ρ(1)(x) +σ12

d2

dx2
ρ(2)(x) +Υ(ρ(2)(x)− ρ(1)(x)) = 0

σ21
d2

dx2
ρ(1)(x) +σ22

d2

dx2
ρ(2)(x) +Υ(ρ(1)(x)− ρ(2)(x)) = 0

ρ(1)(0) = ρ
(1)
L ρ(2)(0) = ρ

(2)
L ρ(1)(1) = ρ

(1)
R ρ(2)(1) = ρ

(2)
R

(70)

Recalling that diffusivity matrix (6) is assumed to be positive definite we introduce the con-
stants A = Υ

σ12+σ22
σ11σ22−σ12σ21 > 0 and B = −Υ σ11+σ21

σ11σ22−σ12σ21 < 0. The solution of the above system of

ordinary differential equations is

ρ(1)(x) = E + Fx +C
(
1+

A−B
B

)
e−
√
A−Bx +D

(
1+

A−B
B

)
e
√
A−Bx

ρ(2)(x) = E + Fx +Ce−
√
A−Bx +De

√
A−Bx

(71)

where the constants C,D,E,F are determined by the boundary conditions as follows:
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E =
Aρ

(2)
L −Bρ

(1)
L

A−B C =
B
(
ρ
(1)
L e2

√
A−B − ρ(2)L e2

√
A−B − ρ(1)R e

√
A−B + ρ

(2)
R e

√
A−B

)

(A−B)
(
e2
√
A−B − 1

)

F = −
Aρ

(2)
L −Aρ

(2)
R −Bρ

(1)
L +Bρ

(1)
R

A−B D =
B
(
ρ
(1)
L − ρ

(2)
L − ρ

(1)
R e

√
A−B + ρ

(2)
R e

√
A−B

)

A−B−Ae2
√
A−B +Be2

√
A−B

We shall show that in this set up partial uphill diffusion is possible. To this aim, because of
the great number of parameters we specialize (71) to a particular choice, namely

σ11 = σ22 =Υ = 1 σ21 = σ12 =
1

2
. (72)

The stationary profiles become

ρ(ζ)(x) =
ρ
(1)
L

2
+
ρ
(2)
L

2
−
x
(
ρ
(1)
L + ρ

(2)
L − ρ

(1)
R − ρ

(2)
R

)

2

+(−1)ζ
e2−2x

(
ρ
(1)
R − ρ

(2)
R − ρ

(1)
L e2 + ρ

(2)
L e2

)

2
(
e4 − 1

) + (−1)ζ
e2x

(
ρ
(1)
L − ρ

(2)
L − ρ

(1)
R e2 + ρ

(2)
R e2

)

2
(
e4 − 1

) ∀ζ = 1,2

(73)

and the diffusive currents read

J (ζ)(x) =
3ρ

(1)
L

4
+
3ρ

(2)
L

4
−
3ρ

(1)
R

4
−
3ρ

(2)
R

4

+ (−1)ζ
e2−2x

(
ρ
(1)
R − ρ

(2)
R − ρ

(1)
L e2 + ρ

(2)
L e2

)

2
(
e4 − 1

) − (−1)ζ
e2x

(
ρ
(1)
L − ρ

(2)
L − ρ

(1)
R e2 + ρ

(2)
R e2

)

2
(
e4 − 1

) ∀ζ = 1,2

(74)

The problem of having partial uphill for, say, the species 1 is then the following: by assuming

that ρ
(1)
L < ρ

(1)
R

find (ρ
(1)
L ,ρ

(2)
L ,ρ

(1)
R ,ρ

(2)
R ) such that min

x∈[0,1]
J (1)(x) > 0. (75)

There are choices of boundary densities that allow for partial uphill diffusion of the species 1. We
give an example in Figure 1.

A similar analysis can be done for the discretized equations (27), (28), (29).

B A two-parameter family of models

In the following we report the matrices that describe the two-parameter family of generators
introduced in Remark 4.4. The matrices representing the generators Lz,z+1 are of dimension 9×9
while the matrices representing the generators L1, LN are of dimension 3 × 3. The elements of
these matrices are ordered as follows:

• for Lz,z+1, the row and the column indexes are

00,01,02,10,11,12,20,21,22

For example, the element on the 3rd row and 4th column gives the rate of transition 02→ 10

• for the site matrices L1 and LN , the rows and the columns a indexes are 0,1,2.

L1 =



−σ11ρ
(1)
L −σ12ρ

(2)
L −σ21ρ

(1)
L −σ22ρ

(2)
L σ11ρ

(1)
L +σ12ρ

(2)
L σ21ρ

(1)
L +σ22ρ

(2)
L

σ11 +σ21 −σ11ρ
(1)
L −σ12ρ

(2)
L −σ21ρ

(1)
L −σ22ρ

(2)
L σ11ρ

(1)
L −σ21 − h−σ11 +σ12ρ

(2)
L h+σ21ρ

(1)
L +σ22ρ

(2)
L

σ22 +σ12 −σ22ρ
(2)
L −σ21ρ

(1)
L −σ12ρ

(2)
L −σ11ρ

(1)
L m+σ11ρ

(1)
L +σ12ρ

(2)
L σ21ρ

(1)
L −σ12 −m−σ22 +σ22ρ

(2)
L




(76)
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Lz,z+1 =



Γ
00
00 0 0 0 0 0 0 0 0

0 Γ
01
01 h σ11 0 0 σ21 0 0

0 m Γ
02
02 σ12 0 0 σ22 0 0

0 σ11 σ21 Γ
10
10 0 0 Υ − 2σ21 − h 0 0

0 0 0 0 Γ
11
11 h 0 Υ − 2σ21 − h σ21

0 0 0 0 m Γ
12
12 0 σ11 Υ −σ12 −σ21 − h

0 σ12 σ22 Υ − 2σ12 −m 0 0 Γ
20
20 0 0

0 0 0 0 Υ −σ12 −σ21 −m σ22 0 Γ
21
21 h

0 0 0 0 σ12 Υ − 2σ12 −m 0 m Γ
22
22




(77)

Due to the stochasticity of the generator, the diagonal elements are the following

Γ
00
00 = 0 Γ

01
01 −σ11 −σ21 − h Γ

02
02 = −σ22 −σ12 −m

Γ
10
10 = −Υ −σ11 +σ21 + h Γ

11
11 = −Υ +σ21 Γ

12
12 = −σ11 −Υ +σ12 +σ21 −m+ h

Γ
20
20 = −Υ −σ22 +σ12 +m Γ

21
21 = −Υ −σ22 +σ21 +σ12 +m− h Γ

22
22 = −Υ +σ12

LN =



−σ11ρ
(1)
R −σ12ρ

(2)
R −σ21ρ

(1)
R −σ22ρ

(2)
R σ11ρ

(1)
R +σ12ρ

(2)
R σ21ρ

(1)
R +σ22ρ

(2)
R

σ11 +σ21 −σ11ρ
(1)
R −σ12ρ

(2)
R −σ21ρ

(1)
R −σ22ρ

(2)
R σ11ρ

(1)
R −σ21 − h−σ11 +σ12ρ

(2)
R h+σ21ρ

(1)
R +σ22ρ

(2)
R

σ22 +σ12 −σ22ρ
(2)
R −σ21ρ

(1)
R −σ12ρ

(2)
R −σ11ρ

(1)
R m+σ11ρ

(1)
R +σ12ρ

(2)
R σ21ρ

(1)
R −σ12 −m−σ22 +σ22ρ

(2)
R




(78)

C Details of the proof of Theorem 4.1

C.1 Bulk process

To solve (33) it is useful to rewrite the system by using the following variables, that are made by
sums of three non diagonal rates:

y1 =
2∑

β=0

Γ
β1
10 y2 =

2∑

β=0

Γ
β1
00 y3 =

2∑

β=0

Γ
1β
01 y4 =

2∑

β=0

Γ
1β
00 y5 =

2∑

β=0

Γ
0β
10 y6 =

2∑

β=0

Γ
2β
10

y7 =
2∑

β=0

Γ
β0
01 y8 =

2∑

β=0

Γ
β2
01 y9 =

2∑

β=0

Γ
β1
20 y10 =

2∑

β=0

Γ
1β
02 y11 =

2∑

β=0

Γ
β1
02 y12 =

2∑

β=0

Γ
1β
20

y13 =
2∑

β=0

Γ
β2
20 y14 =

2∑

β=0

Γ
β2
00 y15 =

2∑

β=0

Γ
2β
02 y16 =

2∑

β=0

Γ
2β
00 y17 =

2∑

β=0

Γ
0β
20 y18 =

2∑

β=0

Γ
β0
02

y19 =
2∑

β=0

Γ
β2
10 y20 =

2∑

β=0

Γ
2β
01 y21 =

2∑

β=0

Γ
β0
11 y22 =

2∑

β=0

Γ
β0
21 y23 =

2∑

β=0

Γ
β1
22 y24 =

2∑

β=0

Γ
0β
11

y25 =
2∑

β=0

Γ
0β
12 y26 =

2∑

β=0

Γ
β1
12 y27 =

2∑

β=0

Γ
1β
21 y28 =

2∑

β=0

Γ
1β
22 y29 =

2∑

β=0

Γ
β2
11 y30 =

2∑

β=0

Γ
β0
12

y31 =
2∑

β=0

Γ
β2
21 y32 =

2∑

β=0

Γ
β0
22 y33 =

2∑

β=0

Γ
2β
11 y34 =

2∑

β=0

Γ
2β
12 y35 =

2∑

β=0

Γ
0β
21 y36 =

2∑

β=0

Γ
0β
22

Let us introduce the following:
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• unknown vector: y ∈R36
+

y = (yi )i=1,...36

• known term: b ∈R30 (that is exactly the one in (33))

b = (σ11,σ11,−2σ11 −Υ,σ12,σ12,−2σ12 +Υ,σ22,σ22,−2σ22 −Υ,σ21,σ21,−2σ21 +Υ,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)T

• coefficient matrix: Ξ ∈ R30×36 (that is full rank)

By using the above vectors and matrix, the system (33) can be rewritten as

Ξy = b. (79)

The systems (33) and (79) are two ways of writing the conditions (30), (31), (32). By consequence,
there exists an other full rankmatrix, sayΛ ∈R36×72, that allows to retrieve a 36 parameter family
of solutions of (33) once we know the one of (79) as follows

Λu = y. (80)

We first solve (79) and then we retrieve the specific solution (77) of (33), by solving (80) with
some specific choices of the 36 parameters.

Solution of (79): the under-determination order is 6 and thus 6 components of the vector
y are, actually, free parameters. Without any constraint (79) would have a 6 parameter family of
solutions. However, the non-negativity of the solution (the yi are sums of transition rates) will
reduce the dependence on just two free parameters.
Indeed, by direct computations and by recalling that the variables {yj }j=1,...36 must be non-negative
we find the following 12 unknowns by using just 10 equations, namely:

y1 − y2 = σ11 y3 − y4 = σ11 y9 − y2 = σ12 y10 − y4 = σ12 y13 − y14 = σ22
y15 − y16 = σ22 y19 − y14 = σ21 y20 − y16 = σ21 y2 + y14 = 0 y4 + y16 = 0

that are solved if and only if

y2 = y4 = y14 = y16 = 0 y1 = y3 = σ11 y19 = y20 = σ21
y9 = y10 = σ12 y13 = y15 = σ22.

By the non negativeness of the above yj , it follows that

σ11,σ12,σ21,σ22 ≥ 0. (81)

Now, it remains to solve a system with 20 equations and 24 unknowns. By introducing as param-
eters (y7,y8,y11,y17) := (g,h,m,s), this 20 × 24 system becomes a 20 × 20 parametric system. This
last one has the following explicit parametric solution:

(y5, y6, y12, y18, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36) =

(2σ11 +2σ21 − g, Υ − 2σ21 − h, Υ − 2σ12 −m, 2σ12 +2σ22 − s, g −σ21 −σ11, g −σ22 −σ12, σ12 +m,

σ11 +σ21 − g,2σ11 −σ12 +2σ21 −σ22 − g, σ11 +m, σ11 − 2σ12 +σ −m,Υ −σ12 −m, σ21 + h,

2σ12 −σ11 −σ21 +2σ22 − s, σ22 + h, σ12 +σ22 − s, Υ −σ21 − h, σ22 − 2σ21 +Υ − h,s −σ21 −σ11,
s −σ22 −σ12) .

(82)

Since all the yi are sums of non negative transition rates, we impose that the components of (82)
are non negative. This is true if and only if:

s = σ11 +σ21 g = σ11 +σ21 (83)

and

Υ,h,m ≥ 0 σ12 ≤
Υ −m
2

σ21 ≤
Υ − h
2

σ11 +σ21 = σ12 +σ22. (84)
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Since (83) fixes the value of two of the four parameters, the non negative solution only depends
on h,m. Putting together (81) and (84) we obtain (39). Finally, this explicit non-negative solution
of (79) is

y = (σ11, 0, σ11 0, σ11 +σ21, Υ − 2σ21 − h, σ11 +σ21, h, σ12, σ12, m, Υ − 2σ12 −m,

σ11 −σ12 +σ21, 0, σ11 −σ12 +σ21, 0, σ11 +σ21, σ11 +σ21σ21, σ21, 0, 0, σ12 +m, 0, 0, σ11 +m,

σ11 − 2σ12 +Υ −m, Υ −σ12 −m, σ21 + h, 0, σ11 −σ12 +σ21 + h, 0, Υ −σ21 − h,
σ11 −σ12 −σ21 +Υ − h, 0, 0)

(85)

Solution of (33): from (85) we know the explicit solution of (79). To find the solution of (33),
we solve (80). This last system is full rank. It has 72 unknowns in 36 equations, thus the order
of under-determination is 36. We must look for non-negative solution. To remove the under-
determination, and produce examples (77) we impose the following conditions:

i The matrix associated to the generator has the greater number of zeros;

ii Fix the following rates:

Γ
21
12 = σ11 Γ

12
21 = σ22 Γ

22
11 = σ21 Γ

11
22 = σ12. (86)

With the above two requests, the solution of (80) is unique (for fixed parameters h,m and for
fixed diffusivity matrix and reaction constant) and the bulk generator takes the form (77). Indeed,
by considering (85) we have:

• The row Γ
α,β
00 has all the elements are zero;

• The row Γ
α,β
01 is found by solving

Γ
10
01 + Γ

11
01 + Γ

12
01 = σ11 Γ

00
01 + Γ

10
01 + Γ

20
01 = σ11 +σ21

Γ
02
01 + Γ

12
01 + Γ

22
01 = h Γ

20
01 + Γ

21
01 + Γ

22
01 = σ21.

By the conditions i and ii previously required, we obtain Γ
10
01 = σ11, Γ

20
01 = σ12, Γ

02
01 = h

and all the other off-diagonal rates are equal to zero. By similar arguments, also the rows

Γ
αβ
02 ,Γ

αβ
10 ,Γ

αβ
20 are determined.

• The row Γ
αβ
11 is found by solving:

Γ
02
11 + Γ

12
11 + Γ

22
11 = σ21 + h Γ

20
11 + Γ

21
11 + Γ

22
11 =Υ −σ21 − h

Γ
00
11 + Γ

10
11 + Γ

20
11 = 0 Γ

00
11 + Γ

01
11 + Γ

02
11 = 0.

By the conditions i and ii previously required we obtain Γ
22
11 = σ21, Γ

12
11 = h, Γ2111 =Υ−2σ21−h

and all the other off-diagonal rates are equal to zero. By similar arguments, also the rows

Γ
αβ
12 ,Γ

αβ
21 ,Γ

αβ
22 are determined.

We observe that, when h =m = 0 (77) do coincide with the non negative least square solution (see
[34]) of (80). (41) is recovered from (77) when σ21 = σ12, σ22 = σ11 and h =m in (77).

C.2 Boundary processes

Once the bulk is known, the conditions for the boundaries form two determined systems of linear
algebraic equations. We solve explicitly only the left boundary; the solution of the right one is
very similar.

Left boundary: recalling the definitions of B1 and C2, we have the following

B11
1 = −y5 − y6 − y4 B12

1 = y12 − y4 B21
1 = y6 − y16 B22

1 = −y17 − y12 − y16
C11
2 = −y7 − h− y2 C12

2 =m− y2 C21
2 = h− y14 C22

2 = −y18 −m− y14;
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by consequence system (36) is rewritten as:




1 0 0 0 0 0
−1 0 −1 −1 0 0
−1 0 0 0 0 1
0 1 0 0 0 0
0 −1 0 1 0 0
0 −1 0 0 −1 −1







W 1
0 (1)

W 2
0 (1)

W 0
1 (1)

W 2
1 (1)

W 0
2 (1)

W 1
2 (1)




=




σ11ρ
(1)
L +σ12ρ

(2)
L

−σ11 −σ21 − h
m

σ21ρ
(1)
L +σ22ρ

(2)
L

h
−σ22 −σ12 −m




.

The coefficient matrix of the above system has full rank; thus there exists a unique solution.
Recalling the definition of Wα

γ (1) we obtain (76). As a consequence of (39), and in particular
σ11 +σ21 = σ12 +σ22, this generator has non negative non-diagonal transition rates if

0 ≤ ρ
(1)
L + ρ

(2)
L ≤ 1. (87)

(87) is always true since we assumed that since we assumed that the sum of the densities of the
two species in the reservoir is at most one.

Right boundary: by similar arguments we solve (37) and we obtain the right boundary, i.e.
(78). This matrix has non-negative off-diagonal rates if:

0 ≤ ρ
(1)
R + ρ

(2)
R ≤ 1. (88)

(88) is always true since we assumed that the sum of the densities in the reservoir is at most
one.
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