
ar
X

iv
:2

21
0.

01
52

4v
1 

 [
m

at
h.

PR
] 

 4
 O

ct
 2

02
2

Fulgence EYI OBIANG et al. (2022)

A new class of stochastic processes with great potential for interesting appli-
cations.

Fulgence EYI OBIANG1,a, Paule Joyce MBENANGOYE1,b, Magloire Yorick NGUEMA MBA1,c and Octave

MOUTSINGA1,d
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Abstract

This paper contributes to the study of a new and remarkable family of stochastic processes that we will term

class Σr(H). This class is potentially interesting because it unifies the study of two known classes: the class (Σ)
and the class M(H). In other words, we consider the stochastic processes X which decompose as X = m+v+A,

where m is a local martingale, v and A are finite variation processes such that dA is carried by {t ≥ 0 : Xt = 0}
and the support of dv is H , the set of zeros of some continuous martingale D. First, we introduce a general

framework. Thus, we provide some examples of elements of the new class and present some properties. Second,

we provide a series of characterization results. Afterwards, we derive some representation results which permit

to recover a process of the class Σr(H) from its final value and of the honest times g = sup{t ≥ 0 : Xt = 0} and

γ = supH . In final, we investigate an interesting application with processes presently studied. More precisely,

we construct solutions for skew Brownian motion equations using stochastic processes of the class Σr(H).
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Introduction

In this paper, we investigate the family of stochastic processes of the form:

X = m+ v +A, (1)

where m is a local martingale, v and A are finite variation processes such that dv is carried by H , the set of zeros of

a given continuous martingale D and the support of the signed measure dA is the set {t ≥ 0 : Xt = 0}. We shall

term this family, class Σr(H). This class is potentially interesting because such processes play a central role in several

probabilistic studies. Moreover, two important subclasses of this family of stochastic processes are already known and

studied in the literature. They are classes (Σ) and M(H). Specifically, the first one is the set of stochastic processes

X of the form: X = m+A, where m and A satisfy conditions given in Identity (1). This notion of class (Σ) was first
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defined by Yor and has been studied extensively by several authors, including Yor, Najnudel, Nikeghbali, Cheridito,

Platen, Ouknine, Bouhadou, Sakrani, Eyi Obiang, Moutsinga, and Trutnau (see [2, 3, 8, 7, 11, 12, 13, 14, 15, 16, 18]).

Some well-known examples of such processes include càdlàg local martingales, the absolute value of a continuous

martingale, the positive and negative parts of a continuous martingale, solutions of skew Brownian motion equations

starting from zero, and the drawdown of a càdlàg local martingale with only negative jumps. In addition, this class is

very suitable for applications. For example: Nikeghbali in [15], uses them to construct solutions for the Skorokhod’s

imbedding problem. Additionally, Eyi Obiang et al. in [7], construct weak solutions of certain differential stochastic

equations from such processes.

By contrast, the class M(H) is the family of stochastic processes X taking the form: X = m+ v, where m and

v are defined as in Identity (1). Well-known examples include relative martingales defined by Azema and Yor (class

R(H)) [1] and local martingales. In addition, if D is a Brownian motion, an another example is the geometric Itô-

Mckean skew Brownian motion process with Azzalini skew normal distribution Xδ =
√
1− δ2B + δ|D|, where B is

a Brownian motion independent of D. This last-mentioned example plays a capital role in many studies. For instance,

Corns and Satchell [4] and Zhu and He [19] worked on this type of skew Brownian motion and priced European style

options. In fact, this class was recently defined and studied in [6], where the authors provide a general framework,

investigate stochastic differential equations driven by such processes and construct solutions for homogeneous and

inhomogeneous skew Brownian motion equations by using processes of the last-mentioned class.

However, remark that the class Σr(H) contains also elements which are not in (Σ)∪M(H). An example of such

processes is |Xδ|, the absolute value of the above geometric Itô-Mckean skew Brownian motion process Xδ. There

no already exist references studying processes of this part of the class Σr(H).
The aim of this paper consists in two points. The first one, is to propose a unified study for all stochastic processes

of the class Σr(H). Thus, we provide a general framework and methods for dealing with such processes. The second

point, is to show that processes of the presently considered class can be useful to develop some applications. Hence,

the remaining parts of this work are structured in the following manner: In Section 1, we define notations and recall

some useful preliminaries. In Section 2, we provide some interesting examples and prove some structural properties

satisfied by processes of the class Σr(H). In Section 3, we derive a series of characterization results for the class

Σr(H). In Section 4, we obtain some formulas which permit to recover a process X of the class Σr(H) from its final

value X∞ and of honest times γ = sup{s ≤ t : s ∈ H} and g = sup{t ≥ 0 : Xt = 0}. These formulas are inspired

of the one Azema and Yor have obtained for relative martingales (Theorem of [1]) and the one Cheridito et al. have

derived for processes of the class (Σ) (Theorem of [3]). More precisely, we shall prove that under some assumptions,

processes of the class Σr(H) can be written as follows:

Xt = E
[

X∞1{g<t}|Ft

]

+ E
[

(vt − vdt
)1{γ>t}|Ft

]

and

Xt = E
[

X∞1{γ<t}|Ft

]

+ E
[

(At −A
d
′

t

)1{g>t}|Ft

]

,

where, dt = inf{s > t : Xs = 0} and d
′

t = inf{s > t : s ∈ H}. In fact, we shall obtain corollaries which show

that Proposition 2.2 of [1] and Theorem 3.1 of [3] are particular cases of the above representation results. Finally

in Section 5, we show that processes of the class Σr(H) can also have good applications. For this, we propose

to construct solutions for homogeneous and inhomogeneous skew Brownian motion equations. More precisely, we

construct solutions from continuous processes of the class Σr(H) for the following equations:

Xt = x+Bt + (2α− 1)L0
t (X) (2)

and

Xt = x+Bt +

∫ t

0

(2α(s)− 1)dL0
s(X), (3)

where B is a standard Brownian motion and x = 0. It must be remarked that solutions had already been built from

the processes of the class (Σ) (see [7]). This should not be seen as a redundancy because some processes of the class

Σr(H) are not elements of the class (Σ). For instance, Xδ and |Xδ| are such examples.
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1 Recalling of useful preliminaries

1.1 Notations and some useful definitions

In this work, we fix a filtered probability space (Ω, (Ft)t≥0,F ,P) satisfying the usual conditions. Throughout,

H denotes the zero’s set of a continuous martingale that we shall always term D. Thus, we shall use the following

notations:

γ = sup{t ≥ 0 : t ∈ H} = sup{t ≥ 0 : Dt = 0} and γt = sup{s ≤ t : s ∈ H} = sup{s ≤ t : Ds = 0}.

And for any other process X , we shall denote g = sup{t ≥ 0 : Xt = 0} and gt = sup{s ≤ t : Xs = 0}. Remark

that γ and g are not stopping time with respect to the filtration (Ft)t≥0 since they depend on the future. Such random

variables are called honest times. And according to the enlargement filtration theory, there exist larger filtrations under

which these random variables become stopping times. Thus, we will denote (Gγ
t )t≥0 and (Gg

t )t≥0 to represent the

smaller filtrations under which γ and g are respectively stopping times and such that ∀t ≥ 0, Ft ⊂ Gγ
t and Ft ⊂ Gg

t .

On another hand, remark that for any continuous semi-martingale Y , the set W = {t ≥ 0;Yt = 0} cannot be

ordered. However, the set R+ \W can be decomposed as a countable union ∪n∈NJn of intervals Jn. Each interval Jn
corresponds to some excursion of Y . In other words, if Jn =]gn, dn[, Yt 6= 0 for all t ∈]gn, dn[ and Ygn = Ydn

= 0.

For any constant α ∈ [0, 1], we consider a sequence (ζn) of i.i.d. Bernoulli variables such that

P(ζn = 1) = α and P (ζn = −1) = 1− α.

Now, let us define some progressive processes which will play a capital role in some parts of the present work (Section

3 and Section 5).

ZY
t =

+∞
∑

n=0

ζn1]gn,dn[(t). (4)

and

kYt =

+∞
∑

n=0

ζn1[gn,dn[(t). (5)

If we assume that α is a piecewise constant function associated with a partition (0 = t0 < t1 < · · · < tn−1 < tm),
i.e., α is of the form

α(t) =

m
∑

i=0

αi1[ti,ti+1)(t),

where αi ∈ [0, 1] for all i = 0, 1, · · · ,m, then we shall consider the processes

ZY
t =

+∞
∑

n=0

m
∑

i=0

ζin1]gn,dn[∩[t−i,ti+1)(t), (6)

and

KY
t =

+∞
∑

n=0

m
∑

i=0

ζin1[gn,dn[∩[t−i,ti+1)(t), (7)

where (ζin)n≥0, i = 1, 2, · · · ,m, are m independent sequences of independent variables such that

P(ζin = 1) = αi and P(ζin = −1) = 1− αi.

1.2 Useful results

Balayage formulas are important tools in this work. We recall some formulas in next:
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Proposition 1. Let Y be a continuous semi-martingale and gt = sup{s ≤ t : Ys = 0}. Let k be a bounded progressive

process, where pk· denotes its predictable projection. Then,

kgtYt = k0Y0 +

∫ t

0

pkgsdYs +Rt, (8)

where R is an adapted, continuous process with bounded variations such that dRt is carried by the set {Ys = 0}.

Remark 1.1. If the progressive process k is càdlàg, we get pkgs = pks = ks−. Hence, according to the continuity of

Y , (8) becomes:

kgtYt = k0Y0 +

∫ t

0

ksdYs +Rt.

Proposition 1 is a powerful and interesting tool. However, the fact that we know nothing about the form of the

process R can be limiting. Bouhadou and Ouknine [2] identified the process R of Proposition 1 when the progressive

process k is equal to progressive processes ZY and ZY respectively defined in (4) and (6). We recall these results

below.

Proposition 2 (Ouknine and Bouhadou [2]). Let Y be a continuous semi-martingale and ZY be the process defined

in (4). Then,

ZY
t Yt =

∫ t

0

ZY
s dYs + (2α− 1)L0

t (Z
Y Y ),

where L0
· (Z

Y Y ) is the local time of the semi-martingale ZY Y .

Proposition 3 (Ouknine and Bouhadou [2]). Let Y be a continuous semi-martingale and ZY be the process defined

in (6). Then,

ZY
t Yt =

∫ t

0

ZY
s dYs +

∫ t

0

(2α(s)− 1)dL0
s(ZY Y ),

where L0
· (ZY Y ) is the local time of the semi-martingale ZY Y .

2 Preliminary study of the new class

Now, we start the study of processes of the class Σr(H). The goal of this section is to provide a general framework

for stochastic processes of this class. Thus, we define correctly the class Σr(H). Afterwards, we give some examples

which are not necessarily in the known classes (Σ) and M(H). In final, we will end this section by exploring some

general properties satisfied by elements of the class Σr(H).

2.1 Definition and examples

We start this subsection by giving properly the definition of the class Σr(H). Thus, we shall consider the following

definition:

Definition 2.1. We say that a process X is of the class Σr(H) if it decomposes as X = m+ v +A, where

1. m is a càdlàg local martingale, with m0 = 0 ;

2. v and A are adapted continuous finite variation processes such that v0 = 0 and A0 = 0;

3.
∫

1Hcdvs = 0 and
∫

1{Xs 6=0}dAs = 0.

Now, we shall show that processes of the class Σr(H) decompose otherwise. To do this, we first define an other

class that we term class Σr(H).

Definition 2.2. We say that a process X is of the class Σr(H) if it decomposes as X = M +A, where

4
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1. M ∈ M(H), with M0 = 0 ;

2. A is an adapted continuous process with finite variations such that A0 = 0;

3.
∫

1Hc∩{Xs 6=0}dAs = 0.

The following proposition allows us to see that Σr(H) and Σr(H) are identical.

Proposition 4. The following are equivalent:

1. X ∈ Σr(H);

2. X ∈ Σr(H);

Proof. Let X = m+ v + A be a process of the class Σr(H). That is, m is a local martingale, v and A are processes

with finite variations such that dv and dA are respectively carried by H and {t ≥ 0 : Xt = 0}. Thus, let Γ = v + A.

We have ∀t ≥ 0,

∫

1Hc(s)1{Xs 6=0}dΓs =

∫

1{Xs 6=0}1Hc(s)dvs +

∫

1Hc(s)1{Xs 6=0}dAs.

But, 1Hc(s)dvs = 0 and 1{Xs 6=0}dAs = 0 since dv and dA are respectively carried by H and {t ≥ 0 : Xt = 0}.

Hence,
∫

1Hc(s)1{Xs 6=0}dΓs = 0.

Then, X ∈ Σr(H).
On another hand, consider a process X = M + Γ of the class Σr(H). That is, M ∈ M(H) and Γ is a finite

variation process such that
∫

1Hc∩{Xs 6=0}dΓs = 0.

Firstly, M decomposes as M = m+ v
′

where m is a local martingale and v
′

is a finite variation process such dv
′

is

carried by H . In addition, we have ∀t ≥ 0,

Γt = v
′′

t +At,

where

v
′′

t =

∫ t

0

1{Xs 6=0}dΓs and At =

∫ t

0

1{Xs=0}dΓs.

However, we have:
∫ t

0

1Hc(s)dv
′′

s =

∫ t

0

1Hc(s)1{Xs 6=0}dΓs = 0

and
∫ t

0

1{Xs 6=0}dAs =

∫ t

0

1{Xs 6=0}1{Xs=0}dΓs = 0.

Then, dv
′′

and dA are respectively carried by H and {t ≥ 0 : Xt = 0}. Which proves that X ∈ Σr(H). This

completes the proof.

We recall that the class Σr(H) contains classes (Σ) and M(H). In the following, we provide some processes of

the class Σr(H) which are not in both last mentioned classes. We start with examples inspired by those known on the

class (Σ).

Examples 2.1. For any continuous process M of the class M(H) with M0 = 0, the following hold:

• X = |M | =
∫ ·

0 sign(Ms)dMs + L0
· (M) ∈ Σr(H);

• ∀α, β ∈ [0, 1], Y = αM+ + βM− ∈ Σr(H);

5
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In next, we provide other interesting examples.

Examples 2.2. If D is a continuous martingale such that H = {t ≥ 0 : Dt = 0}. Hence,

• For any continuous local martingale m null at zero, Z = |max {m−D,m+D} − |D0|| ∈ Σr(H);

• If D0 = 0, hence ∀α, β ∈ R, Y = |αm+ β|D|| ∈ Σr(H);

• Let M be a continuous process of M(H) such that M0 = 0 and k be a bonded progressive process k. Define

gt = sup{s ≤ t : Ms = 0}. The process T defined by Tt = kgtMt is in Σr(H).

2.2 Some general properties

Now, we shall explore some general properties satisfied by processes of the class Σr(H). Therefore, we start by

inferring some properties resulting from integration by parts.

Lemma 1. Let X = M + A and Y = W + Γ be two processes of the class Σr(H) with the decomposition given in

Definition 2.2. The process

(

XtYt − [X,Y ]t −
∫ t

0

XsdΓs −
∫ t

0

YsdAs : t ≥ 0

)

is an element of the class M(H).

Proof. Through integration by parts, we obtain:

XtYt − [X,Y ]t =

∫ t

0

Xs−dYs +

∫ t

0

Ys−dXs.

Which implies that

XtYt − [X,Y ]t −
∫ t

0

Xs−dΓs −
∫ t

0

Ys−dAs =

∫ t

0

Xs−dWs +

∫ t

0

Ys−dMs.

But, we have from the continuity of A and Γ that

∫ t

0

Xs−dΓs =

∫ t

0

XsdΓs and

∫ t

0

Ys−dAs =

∫ t

0

YsdAs.

In addition, remark that
∫ ·

0 Xs−dWs and
∫ ·

0 Ys−dMs are processes of the class M(H). Hence, it entails that

(

XtYt − [X,Y ]t −
∫ t

0

XsdΓs −
∫ t

0

YsdAs : t ≥ 0

)

∈ M(H).

In next, we derive a series of corollaries of Lemma 1. Thus, we begin by those establishing conditions under which
(

XtYt − [X,Y ]t −
∫ t

0
XsdΓs −

∫ t

0
YsdAs : t ≥ 0

)

is a local martingale.

Corollary 1. If X = M +A and Y = W + Γ are two processes of the class Σr(H) null on H . Hence, the process

(

XtYt − [X,Y ]t −
∫ t

0

XsdΓs −
∫ t

0

YsdAs : t ≥ 0

)

is a local martingale.

6
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Proof. Through Lemma 1,
(

XtYt − [X,Y ]t −
∫ t

0 XsdΓs −
∫ t

0 YsdAs : t ≥ 0
)

is an element of the class M(H).

Furthermore, we have:

XtYt − [X,Y ]t −
∫ t

0

XsdΓs −
∫ t

0

YsdAs =

∫ t

0

Xs−dWs +

∫ t

0

Ys−dMs.

But, M and W decompose as M = m+ v and W = m
′

+ v
′

, where m and m
′

are càdlàg local martingales and v and

v
′

are continuous processes with finite variations such that dv and dv
′

are carried by H . Hence, we obtain that ∀t ≥ 0,

∫ t

0

Ys−dMs =

∫ t

0

Ys−dms +

∫ t

0

Ys−dvs and

∫ t

0

Xs−dWs =

∫ t

0

Xs−dm
′

s +

∫ t

0

Xs−dv
′

s.

On another hand, v and v
′

are continuous. Hence,

∫ t

0

Ys−dvs =

∫ t

0

Ysdvs and

∫ t

0

Xs−dv
′

s =

∫ t

0

Xsdv
′

s.

Therefore,
∫ t

0

Ys−dvs = 0 and

∫ t

0

Xs−dv
′

s = 0

since Y and X vanish on H and dv and dv
′

are carried by H . This completes the proof.

Remark 2.1. We retain according the above proof that for any predictable process h and a process W ∈ M(H),
the processes

∫ ·

0
hs−dWs and

∫ ·

0
hsdWs are processes of the class M(H). And they are local martingales when h

vanishes on H .

Corollary 2. If X = m + A is a process of the class (Σ) null on H . Hence, for every element Y = W + Γ of the

class Σr(H), the process
(

XtYt − [X,Y ]t −
∫ t

0

XsdΓs −
∫ t

0

YsdAs : t ≥ 0

)

is a local martingale.

Proof. According what precedes, we have:

XtYt − [X,Y ]t −
∫ t

0

XsdΓs −
∫ t

0

YsdAs =

∫ t

0

Xs−dWs +

∫ t

0

Ys−dms.

But, m is a local martingale. Hence,
∫ ·

0 Ys−dms is a local martingale. On another hand, we know from Remark 2.1

that
∫ ·

0
Xs−dWs is also a local martingale since X vanishes on H and W ∈ M(H). Which completes the proof.

Corollary 3. Let (X1
t )t≥0, · · · , (Xn

t )t≥0 be processes of the class Σr(H) such that [X i, Xj] = 0 for i 6= j. Hence,

the following hold:

1. (Πn
i=1X

i
t)t≥0 is also of class Σr(H).

2. If ∀i ∈ {1, · · · , n}, X i vanishes on H . Hence, (Πn
i=1X

i
t)t≥0 is a process of the class (Σ).

3. If ∃l ∈ {1, · · · , n} such that X l is a process of the class (Σ) which vanishes on H . Hence, (Πn
i=1X

i
t)t≥0 is a

process of the class (Σ).

Proof. 1. Let us first take n = 2. Through Lemma 1, we obtain that

(

X1
t X

2
t − [X1, X2]t −

∫ t

0

X1
sdA

2
s −

∫ t

0

X2
sdA

1
s : t ≥ 0

)

is a process of the class M(H). That is, X1X2 ∈ Σr(H) since [X1, X2] = 0. Hence, we obtain by induction

that for any family (X1
t )t≥0, · · · , (Xn

t )t≥0 of the class Σr(H) such that [X i, Xj] = 0 for i 6= j, the process

(Πn
i=1X

i
t)t≥0 is also of class Σr(H).

7
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2. We proceed in the same way as 1) by using Corollary 2 instead of Lemma 1 to show that (Πn
i=1X

i
t)t≥0 is a

process of the class (Σ).

3. Now, we assume that there exists l ∈ {1, · · · , n} such that X l is a process of the class (Σ) that is vanishing on

H . Remark that ∀t ≥ 0,

Πn
i=1X

i
t = X l

t ×Πn
i=1,i6=lX

i
t .

But, we can see from 1) that Πn
i=1,i6=lX

i
t ∈ Σr(H). Hence, we obtain the result by using Corollary 2.

Corollary 4. Let X = m+ v +A be a process of the class Σr(H). Hence, for every locally bounded Borel function

f , f(A)X is also a process of the class Σr(H) and f(A)X −
∫ ·

0 f(As)dAs is a process of the class M(H).

Proof. We obtain from Lemma 1 that f(A)X ∈ Σr(H) since for each element X = m+ v + A of the class Σr(H),
f(A) is also a process of the class Σr(H).

In next lemma, we study the negative and positive parts of processes of the class Σr(H).

Lemma 2. Let X = m+ v +A be a process of the class Σr(H). The following hold:

1. X+ −
∫ ·

0 1{Xs>0}dvs is a local submartingale;

2. if X has no positive jump. Hence, X+ ∈ Σr(H);

3. if X has no negative jump. Hence, X− ∈ Σr(H).

Proof. 1. From Tanaka’s formula, we have

X+
t =

∫ t

0

1{Xs−>0}dXs +
∑

0<s≤t

1{Xs−≤0}X
+
s +

∑

0<s≤t

1{Xs−>0}X
−
s +

1

2
L0
t .

However,
∫ t

0

1{Xs−>0}dXs =

∫ t

0

1{Xs−>0}d(ms + vs) +

∫ t

0

1{Xs−>0}dAs

=

∫ t

0

1{Xs−>0}d(ms + vs) +

∫ t

0

1{Xs>0}dAs =

∫ t

0

1{Xs−>0}d(ms + vs)

because A is continuous and dA is carried by {t ≥ 0 : Xt = 0}. Then,

∫ t

0

1{Xs−>0}dXs =

∫ t

0

1{Xs−>0}dms +

∫ t

0

1{Xs>0}dvs

because dv is also continuous. Hence, we get

X+
t −

∫ t

0

1{Xs>0}dvs =

∫ t

0

1{Xs−>0}dms +
∑

0<s≤t

1{Xs−≤0}X
+
s +

∑

0<s≤t

1{Xs−>0}X
−
s +

1

2
L0
t .

Moreover,
(

∑

0<s≤t 1{Xs−≤0}X
+
s +

∑

0<s≤t 1{Xs−>0}X
−
s + 1

2L
0
t ; t ≥ 0

)

is an increasing process that is

vanishing at zero. Then, X+ −
∫ ·

0
1{Xs>0}dvs is a submartingale, since m and

∫ ·

0
1{Xs−>0}dms are local

martingales.

2. We have

X+
t −

∫ t

0

1{Xs>0}dvs =

∫ t

0

1{Xs−>0}dms +
∑

0<s≤t

1{Xs−>0}X
−
s +

1

2
L0
t (9)

8
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since X has no positive jump. Now, let us set Zt =
∑

0<s≤t 1{Xs−>0}X
−
s . Since m and

∫ ·

0
1{Xs−>0}dms are

local martingales and v + A is continuous, there exists a sequence of stopping times (Tn;n ∈ N) increasing to

∞ such that

E[(XTn
)+] = E[(mTn

+ vTn
+ATn

)+] < ∞ and E

[

∫ Tn

0

1{Xs−>0}dms

]

= 0, n ∈ N.

It follows from (9) that E[ZTn
] ≤ E

[

(XTn
)+ −

∫ Tn

0
1{Xs>0}dvs

]

< ∞ for all n ∈ N. Thus, by Theorem

VI.80 of [5], there exists a right continuous increasing predictable process V Z such that Z − V Z is a local

martingale vanishing at zero. Moreover, there exists a sequence of stopping times (Rn;n ∈ N) increasing to ∞
such that

E

[

∫ t∧Rn

0

1{X+
s 6=0}dV

Z
s

]

= E

[

∫ t∧Rn

0

1{X+
s 6=0}d(V

Z
s − Zs) +

∫ t∧Rn

0

1{X+
s 6=0}dZs

]

= E

[

∫ t∧Rn

0

1{X+
s 6=0}dZs

]

.

Hence,

E

[

∫ t∧Rn

0

1{X+
s 6=0}dV

Z
s

]

= E





∑

0<s≤t∧Rn

1{X+
s 6=0}1{Xs−>0}X

−
s



 = E





∑

0<s≤t∧Rn

1{Xs>0}1{Xs−>0}X
−
s



 .

Thus,

E

[

∫ t∧Rn

0

1{X+
s 6=0}dV

Z
s

]

= 0,

since 1{Xs>0}X
−
s = 0. This implies that

∫ t

0
1{X+

s 6=0}dV
Z
s = 0. Therefore, dV Z

t is carried by {t ≥ 0;X+
t = 0}.

Consequently,

X+
t =

(∫ t

0

1{Xs−>0}dms + (Zt − V Z
t ) +

∫ t

0

1{Xs>0}dvs

)

+

(

V Z
t +

1

2
L0
t

)

is a stochastic process of the class Σr(H).

3. It is obvious that (−X) is of the class Σr(H) and it has no positive jump. Then, from 3), X− = (−X)+ is also

of the class Σr(H).

Remark 2.2. For any non negative process X = m + v + A of the class Σr(H), X − v is a local sub-martingale.

That is, A is a non decreasing process.

Corollary 5. If X is non-negative process of the class Σr(H), hence, its decomposition of the form: X = m+ v+A

is unique.

Proof. By definition, X = m+v+A, where m is a local martingale, v and A are processes with finite variations such

that dv and dA are carried respectively by H and {t ≥ 0 : Xt = 0}. But, we know from Remark 2.2 that X − v is a

local sub-martingale. Hence, m and A are respectively the unique local martingale and the unique increasing process

such that X − v = m+A. This entails also the uniqueness of v. Which completes the proof.

Now let’s infer the properties deriving from balayage formulas.

Lemma 3. Let X = M +A be a process of the class Σr(H), and let gt = sup{s ≤ t : Xs = 0}. The following hold:

9
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1. If X is continuous. Hence, for any locally bounded predictable process k, kg·X is an element of the class

Σr(H) whose finite variations part is Γ =
∫ ·

0 kgsdAs;

2. If X is right continuous. Hence, for any bounded predictable process k, kg·X is an element of the class Σr(H)
whose finite variations part is Γ =

∫ ·

0
kgsdAs.

Proof. According to Definition 2.2, X decomposes as X = M+A, where M ∈ M(H) and A is a continuous process

with finite variations.

1. By applying the balayage’s formula in predictable case for continuous semi-martingales, we obtain the follow-

ing:

kgtXt =

∫ t

0

kgsdXs =

∫ t

0

kgsdMs +

∫ t

0

kgsdAs.

But, we know from Remark 2.1 that
∫ ·

0 kgsdMs ∈ M(H). In addition, it is obvious to see that Γ =
∫ ·

0 kgsdAs

is a continuous process with finite variations such that dΓ is carried by {t ≥ 0 : kgtXt = 0}. Consequently,

kg·X ∈ Σr(H).

2. We obtain the result by proceeding of the same thing by applying the balayage’s formula in predictable case for

right continuous semimartingales.

Lemma 4. Let X = M +A be a continuous process of the class Σr(H), and let gt = sup{s ≤ t : Xs = 0}. Hence,

the following hold:

1. for any bounded progressive process k, kg·X is an element of the class Σr(H);

2. for any càdlàg bounded progressive process k which vanishes on H , kg·X is an element of the class (Σ).

Proof. By applying the balayage’s formula for the progressive case, we obtain the following:

kgtXt =

∫ t

0

p(kgs)dXs +Rt,

where p(kgs) is the predictable projection of kgs and R is a continuous process with finite variations such dR is carried

by {t ≥ 0 : Xt = 0} and R0 = 0. This implies that:

kgtXt =

∫ t

0

p(kgs)dMs +

∫ t

0

p(kgs)dAs +Rt.

1. It can be seen at this level that kg·X is an element of the class Σr(H).

2. Since k is càdlàg, we have p(kgs) = ks−. Hence, we obtain:

kgtXt =

∫ t

0

ks−dMs +

∫ t

0

ks−dAs +Rt.

Which gives:

kgtXt =

∫ t

0

ksdMs +

∫ t

0

ksdAs +Rt

because M and A are continuous processes. However,
∫ ·

0 ksdMs is a local martingale since k vanishes on H .

This completes the proof.

Lemma 5. Let X = M + A and Y = M
′

+ A
′

be two none negative and continuous processes of the class Σr(H)
such X = Y on H . Hence, the process Z = min{X,Y } is also an element of the class Σr(H).

10
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Proof. We have:

2Zt = Xt + Yt − |Xt − Yt|

=

(

Mt +M
′

t −
∫ t

0

sign(Xs − Ys)d(Ms −M
′

s)− L0
t (X − Y )

)

+ Γt,

where Γt =
∫ t

0
[1− sign(Xs − Ys)]dAs +

∫ t

0
[1 + sign(Xs − Ys)]dA

′

s. Remark that dL0
· (X − Y ) is carried by H

because X = Y on H . In addition, we can see from Remark 2.1 that

(

Mt +M
′

t −
∫ t

0

sign(Xs − Ys)d(Ms −M
′

s)− L0
t (X − Y )

)

t≥0

∈ M(H).

On another hand, we have {t ≥ 0 : Zt = 0} = {t ≥ 0 : Xt = 0} ∪ {t ≥ 0 : Yt = 0}. Hence,

∫

1{Zs 6=0}dAs =

∫

1{Ys 6=0}1{Xs 6=0}dAs = 0

since, 1{Xs 6=0}dAs = 0. In the same way, we prove that

∫

1{Zs 6=0}dA
′

s = 0.

Consequently, we deduce that dΓ is carried by {t ≥ 0 : Zt = 0}. This concludes the proof.

3 Characterization results

Now, we shall derive a series of results characterizing processes of the class Σr(H). We start by results which

characterize continuous processes of this class.

3.1 Characterization results for continuous processes

Theorem 1. Let X be a continuous process. Then,

X ∈ Σr(H) ⇔ |X | ∈ Σr(H).

Proof. ⇒) Let X = m+ v +A be a process of the class Σr(H). We obtain from Tanaka’s formulas that:

|Xt| =
∫ t

0

Sgn(Xs)dXs + L0
t (X)

=

∫ t

0

Sgn(Xs)dms +

∫ t

0

Sgn(Xs)dvs +

∫ t

0

Sgn(Xs)dAs + L0
t (X).

Hence,

|Xt| =
∫ t

0

Sgn(Xs)dms +

∫ t

0

Sgn(Xs)dvs + L0
t (X)

since
∫ t

0 Sgn(Xs)dAs = 0 because Supp(dA) ⊂ {X = 0}. Thus, |X | ∈ Σr(H).
⇐) Now, we assume that |X | ∈ Σr(H). This means that |X | = m+ v + A where m is a local martingale and v and

A are continuous finite variation processes such dv and dA are carried respectively by H and {t ≥ 0 : Xt = 0}. Let

us put

kt = lim inf
s→t

{1Xs>0 − 1Xs<0} and gt = sup {s ≤ t : Xs = 0} .

It comes from Balayage’s formula that:

kgt |Xt| =
∫ t

0

p(kgs)d|Xs|+Rt

11
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where Ris an increasing and continuous process such as Supp(dRt) ⊂ {|Xt| = 0} = {Xt = 0}. But,

∫ t

0

p(kgs)d|Xs| =
∫ t

0

ks−d|Xs| =
∫ t

0

ksd|Xs|

since |X | is continuous and k is a càdlàg progressive process. Hence,

Xt =

∫ t

0

ksdms +

∫ t

0

ksdvs +

[∫ t

0

ksdAs +Rt

]

.

However,
∫ t

0

ksdAs = 0 because Supp(dA) ⊂ {t ≥ 0 : Xt = 0} .

This completes the proof.

Theorem 2. A continuous semi-martingale X is an element of the class Σr(H) if, and only if, there exists a process

W of the class M(H) such that |X | = |W |.

Proof. ⇒) Let us assume that X ∈ Σr(H). That is, there exist M ∈ M(H) and a finite variations process A such

that dA is carried by {t ≥ 0 : Xt = 0} and X = M + A. Now, let Zα be the process defined in (4) and constructed

with respect to X . Hence, we obtain from Proposition 2 that:

Zα
t Xt =

∫ t

0

Zα
s dXs + (2α− 1)L0

t (Z
αX)

=

∫ t

0

Zα
s dMs +

∫ t

0

Zα
s dAs + (2α− 1)L0

t (Z
αX)

=

∫ t

0

Zα
s dMs + (2α− 1)L0

t (Z
αX)

since
∫ t

0
Zα
s dAs = 0. Indeed, dA is carried by {t ≥ 0 : Xt = 0} and {Zα

s = 0} = {Xs = 0}. In particular case

where α = 1
2 , we obtain:

Zα
t Xt =

∫ t

0

Zα
s dMs.

But, we have from Remark 2.1 that W =
∫ ·

0 Z
α
s dMs ∈ M(H). Furthermore, Zα

t ∈ {−1, 0, 1} and {Zα
s = 0} =

{Xs = 0}. Consequently, |X | = |W |.
⇐) Now, consider that there exists a process W of the class M(H) such that |X | = |W |. Hence, we have according

ton Example 2.1 that |X | ∈ Σr(H). Consequently, we obtain from Theorem 1 that X ∈ Σr(H). Which completes

the proof.

Remark 3.1. According to Theorem 2, we know now that for any positive process X of the class Σr(H), there exists a

process W of the class M(H) such that X = |W |. In addition, we have also obtained in the above proof that ∀t ≥ 0,

Wt =
∫ t

0 Zα
s dXs with α = 0, 5.

Bouhadou and Ouknine have shown in Proposition 2.3 of [2], a similar result for processes of the class (Σ). We

obtain this result in next.

Corollary 6. If X is a continuous and positive process of the class (Σ), then there exists a continuous martingale W

such that X = |W |.

Proof. Indeed we have from Theorem 2 and Remark 3.1 that X = |W |, where ∀t ≥ 0, Wt =
∫ t

0 Z
α
s dXs with

α = 0, 5. However, X ∈ (Σ). Then, it decomposes as X = m + A where m is a local martingale and A is a

continuous finite variation process such that dA is carried by {t ≥ 0 : Xt = 0}. Hence, we get that Wt =
∫ t

0
Zα
s dms

since {t ≥ 0 : Xt = 0} = {t ≥ 0 : Zα
t = 0}. This concludes the proof.

12
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3.2 Characterization results for càdlàg processes

Now, we shall derive characterize results for càdlàg stochastic processes of the class Σr(H). Thus, we start with

processes whose the finite variational part is considered continuous.

Theorem 3. Let X be a càdlàg non-negative semi-martingale. The following are equivalent:

1. X ∈ Σr(H);

2. There exists a non-decreasing continuous process V such that for any locally bounded Borel function f : R+ →
R+ and defining F (x) =

∫ x

0
f(y)dy, the process (f(Vt)Xt − F (Vt))t≥0 is an element of the class M(H).

Proof. (1) ⇒ (2) Let X be a process of the class Σr(H). That is, it decomposes as X = M +A, where M ∈ M(H)
and A is a continuous finite variations process such that dA is carried by {t ≥ 0 : Xt = 0}. In fact, we have from

Remark 2.2 that A is non-decreasing. Thus, we put V = A. We obtain from balayage’s formula in the predictable

case that for any locally bounded Borel function f : R+ → R+, ∀t ≥ 0,

f(At)Xt =

∫ t

0

f(As)dXs =

∫ t

0

f(As)dMs + F (At).

That is,

f(At)Xt − F (At) =

∫ t

0

f(As)dMs.

Hence, this entails from Remark 2.1 that (f(Vt)Xt − F (Vt))t≥0 is an element of the class M(H).

(2) ⇒ (1) Let us first take F (x) = x. Thus, W = V − X ∈ M(H). Now, for F (x) = x2, we obtain that

W
′

= V 2 − 2V X ∈ M(H). An application of integration by parts entails that ∀t ≥ 0,

W
′

t = 2

∫ t

0

VsdWs − 2

∫ t

0

XsdVs.

Hence,
∫ ·

0 XsdVs ∈ M(H). That is,
∫

1{Ds 6=0}XsdVs = 0.

This implies that
∫

1{DsXs 6=0}dVs = 0.

Consequently, dV is carried by H ∪{t ≥ 0 : Xt = 0}. Hence, we obtain from Proposition 4 that X ∈ Σr(H). Which

completes the demonstration.

Remark 3.2. We have proved in the above proof that ∀t ≥ 0,

f(At)Xt − F (At) =

∫ t

0

f(As)dMs.

Hence, if X ∈ (Σ). f(A)X−F (A) is a local martingale. Which permits us to recover an interesting characterization

result for processes of the class (Σ) that Nikeghbali called characterization martingale (Theorem 2.1 of [15]).

Now, we shall extend the notion of class Σr(H) to càdlàg special semi-martingales X = m + v + A whose the

finite variational part A is càdlàg instead of continuous.

Theorem 4. let X be a càdlàg semi-martingale. The following are equivalents:

1. X ∈ Σr(H);

13
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2. There exists a càdlàg predictable process V with finite variations such that for any function f ∈ C1(R) and

defining F (x) =
∫ x

0 f(y)dy, the process



f(V c
t )Xt − F (V c

t )−
∑

0<s≤t

[f(V c
s )− f

′

(V c
s )Xs]∆Vs





t≥0

is an element of the class M(H).

Proof. (1) ⇒ (2) Let us consider V = A. Hence, through integration by parts, we get

f(Ac
t)Xt =

∫ t

0

f(Ac
s)dXs +

∫ t

0

f
′

(Ac
s)XsdA

c
s.

Hence, we have

f(Ac
t)Xt =

∫ t

0

f(Ac
s)dXs +

∫ t

0

f
′

(Ac
s)XsdAs −

∑

s≤t

f
′

(Ac
t)Xs∆As

because A = Ac+
∑

s≤t ∆As. Furthermore, we have
∫ t

0 f
′

(Ac
s)XsdAs = 0 since dA is carried by {t ≥ 0 : Xt = 0}.

Therefore, it follows that

f(Ac
t)Xt =

∫ t

0

f(Ac
s)dXs −

∑

s≤t

f
′

(Ac
t)Xs∆As

=

∫ t

0

f(Ac
s)dMs +

∫ t

0

f(Ac
s)dA

c
s +

∑

s≤t

[f(Ac
s)− f

′

(Ac
s)Xs]∆As.

Consequently,

f(Ac
t)Xt =

∫ t

0

f(Ac
s)dMs + F (Ac

t) +
∑

s≤t

[f(Ac
s)− f

′

(Ac
s)Xs]∆As.

This implies that

F (Ac
t ) +

∑

s≤t

[f(Ac
s)− f

′

(Ac
s)Xs]∆As − f(Ac

t)Xt = −
∫ t

0

f(Ac
s)dMs.

Hence, we deduce from Remark 2.1 that



f(V c
t )Xt − F (V c

t )−
∑

0<s≤t

[f(V c
s )− f

′

(V c
s )Xs]∆Vs





t≥0

is an element of the class M(H).
(2) ⇒ (1) First, let F (x) = x. Then, the process W defined by

Wt = V c
t +

∑

s≤t

∆Vs −Xt = Vt −Xt

is an element of the class M(H). Next, we take F (x) = x2. Thus, process B defined by

Bt = (V c
t )

2 − 2V c
t Xt + 2

∑

s≤t

V c
s ∆Vs − 2

∑

s≤t

Xs∆Vs

is a process of the class M(H). However, through integration by parts, it follows that

Bt = 2

∫ t

0

V c
s dV

c
s − 2

∫ t

0

V c
s dXs − 2

∫ t

0

XsdV
c
s + 2

∑

s≤t

V c
s ∆Vs − 2

∑

s≤t

Xs∆Vs

14
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= 2

∫ t

0

V c
s d



V c
s +

∑

u≤s

∆Vu −Xs



− 2

∫ t

0

Xsd



V c
s +

∑

u≤s

∆Vu





= 2

∫ t

0

V c
s dWs − 2

∫ t

0

XsdVs.

Consequently, we must have that
∫ ·

0
XsdVs ∈ M(H). That is,

∫ t

0

1{Ds 6=0}XsdVs = 0.

Which also means that
∫ t

0

1{DsXs 6=0}dVs = 0.

In other words, dV is carried by the set {t ≥ 0 : DsXt = 0}. Consequently, X ∈ Σr(H).

4 Representation results with respect to the honest times γ and g

In this section, we provide some formulas permitting to represent some processes of the class Σr(H) using honest

times γ and g. These formulas are inspired by a representation result given for relative martingales in Proposition

2.2 of [1] and of an another representation formula given in Theorem 3.1 of [3] for processes of the class (Σ). More

precisely, for all stopping time T < ∞, any process X of the class R(H) takes the form: XT = E[X∞1{γ<T}|FT ].
Whereas under some assumptions, a process X of class (Σ) is written as follows: XT = E[X∞1{g<T}|FT ].

Throughout this section, we consider γ and g such that P(γ < ∞) = 1 and P(g < ∞) = 1.

Proposition 5. Let X = m+v+A be a process of the class Σr(H) such that m is a true martingale and limt→+∞ Xt

exists. Let limt→+∞ Xt = X∞, g = sup{t ≥ 0 : Xt = 0} and dt = inf{s > t ≥ 0 : Xs = 0}. Hence, for all

stopping time T < ∞, we have:

XT = E
[

X∞1{g<T}|FT

]

+ E
[

(vT − vdT
)1{γ>T}|FT

]

. (10)

Proof. Firstly, remark that we have: X∞1{g<T} = XdT
= mdT

+vdT
+AdT

. Since dA is carried by {t ≥ 0 : Xt = 0}
and g < T , AT = AdT

. Thus, we obtain:

E
[

X∞1{g<T}|FT

]

= E [mdT
|FT ] + E [vdT

|FT ] +AT .

Hence, it follows that

E
[

X∞1{g<T}|FT

]

= mT + E [vdT
|FT ] +AT

because m is a true martingale and T and dT are stopping time such that T < dT . Therefore, this entails that

E
[

X∞1{g<T}|FT

]

= XT + E [(vdT
− vT )|FT ] .

On another hand, we have:

E [(vdT
− vT )|FT ] = E

[

(vdT
− vT )1{γ<T}|FT

]

+ E
[

(vdT
− vT )1{γ>T}|FT

]

.

However,

E
[

(vdT
− vT )1{γ<T}|FT

]

= 0

because, v is constant after γ. Consequently,we obtain:

XT = E
[

X∞1{g<T}|FT

]

+ E
[

(vT − vdT
)1{γ>T}|FT

]

.

This completes the proof.
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In next corollary, we obtain the representation formula given in Theorem 3.1 of [3] for processes of the class (Σ).

Corollary 7. If in addition of assumptions of Proposition 5, X ∈ (Σ). Hence, for all stopping time T < ∞ we have:

XT = E
[

X∞1{g<T}|FT

]

. (11)

Proof. Remark that dv is carried by {t ≥ 0 : Xt = 0} since X ∈ (Σ) and dA is already carried by {t ≥ 0 : Xt = 0}.

Hence, for dT = inf{s > T : Xs = 0}, we obtain that vdT
= vT . Which implies the result.

In the next proposition, we give the representation formula which generalizes Proposition 2.2 of [1].

Proposition 6. Let X = m+v+A be a process of the class Σr(H) such that m is a true martingale and limt→+∞ Xt

exists. Let limt→+∞ Xt = X∞, γ = sup{t ≥ 0 : t ∈ H} and d
′

t = inf{s > t ≥ 0 : s ∈ H = 0}. Hence, for all

stopping time T < ∞, we have:

XT = E
[

X∞1{γ<T}|FT

]

+ E
[

(AT −A
d
′

T

)1{g>T}|FT

]

. (12)

Proof. Firstly, remark that we have: X∞1{γ<T} = X
d
′

T

= m
d
′

T

+ v
d
′

T

+ A
d
′

T

. Since dv is carried by H and γ < T ,

vT = vd′

T

. Thus, we obtain:

E
[

X∞1{γ<T}|FT

]

= E
[

md
′

T

|FT

]

+ E
[

Ad
′

T

|FT

]

+ vT .

Hence, it follows that

E
[

X∞1{γ<T}|FT

]

= mT + E
[

A
d
′

T

|FT

]

+ vT

because m is a true martingale and T and d
′

T are stopping time such that T < d
′

T . Therefore, this entails that

E
[

X∞1{γ<T}|FT

]

= XT + E
[

(A
d
′

T

−AT )|FT

]

.

On another hand, we have:

E
[

(Ad
′

T

−AT )|FT

]

= E
[

(Ad
′

T

−AT )1{g<T}|FT

]

+ E
[

(Ad
′

T

−AT )1{g>T}|FT

]

.

However,

E
[

(Ad
′

T

−AT )1{g<T}|FT

]

= 0

because, A is constant after g. Consequently,we obtain:

XT = E
[

X∞1{γ<T}|FT

]

+ E
[

(AT −A
d
′

T

)1{g>T}|FT

]

.

This completes the proof.

Now, we shall deduce the representation formula given by Azema and Yor in Proposition 2.2 of [1] for relative

martingales.

Corollary 8. If in addition of assumptions of Proposition 6, X ∈ M(H). Hence, for all stopping time T < ∞ we

have:

XT = E
[

X∞1{γ<T}|FT

]

. (13)

Proof. Remark that dA is carried by H since X ∈ M(H) and dv is already carried by H . Hence, for d
′

T = inf{s >

T : s ∈ H}, we obtain that A
d
′

T

= AT . Which implies the result.

16



Fulgence EYI OBIANG et al. (2022)

Recall that γ and g are honest times. Hence, for all (Ft)t≥0 stopping time T , we have: P(γ = T ) = 0 and

P(g = T ) = 0. Let (Gγ
t )t≥0 and (Gg

t )t≥0 be predictable enlarged filtrations respectively with respect to γ and

g. On another hand, it is known that for any honest time Γ, there exists an optional random closed set H
′

such that

Γ = sup{H ′}. In the following corollary, we show that processes X·+γ and X·+g are relative martingales respectively

under filtrations (Gγ
t+γ)t≥0 and (Gg

t+g)t≥0 with respect to random sets H
′

and H
′′

satisfying g − γ = sup{H ′} and

γ − g = sup{H ′′}.

Corollary 9. Let X = m+ v+A be a process of the class Σr(H) such that m is a true martingale and limt→+∞ Xt

exists. Let limt→+∞ Xt = X∞, g = sup{t ≥ 0 : Xt = 0} and γ = sup{t ≥ 0 : t ∈ H}. Hence, for all stopping

time 0 < T < ∞, we have:

XT+γ = E
[

X∞1{g−γ<T}|Gγ
T+γ

]

(14)

and

XT+g = E
[

X∞1{γ−g<T}|Gg
T+g

]

. (15)

Proof. According to Proposition 5 and Proposition 6, we have:

XT = E
[

X∞1{g<T}|FT

]

+ E
[

(vT − vdT
)1{γ>T}|FT

]

(16)

and

XT = E
[

X∞1{γ<T}|FT

]

+ E
[

(AT −Ad
′

T

)1{g>T}|FT

]

. (17)

Hence, we obtain the following:

XT+γ = E
[

X∞1{g<T+γ}|FT+γ

]

and

XT+g = E
[

X∞1{γ<T+g}|FT+g

]

.

But we know from Lemma 5.7 of [9] that FT+γ = Gγ
T+γ and FT+γ = Gg

T+g . Which implies the result.

Corollary 10. Let M be a positive process of the class M(H) which has no negative jump such that limt→+∞ Mt =
0. Consider a real k > 0 and define gk = sup{t ≥ 0 : Mt ≥ k}. Hence, for all stopping time T < ∞, we have:

P [gk − γ > T |FT+γ] = 1 ∧
(

MT+γ

k

)

(18)

in particular

P [gk > γ|Fγ ] = 1 ∧
(

Mγ

k

)

. (19)

Proof. We have from Lemma 2 that X = (k−M)+ is a process of the class Σr(H). Hence, by applying Corollary 9,

we get:

XT+γ = E
[

X∞1{gk−γ<T}|FT+γ

]

.

That is,

(k −MT+γ)
+ = kP [gk − γ < T |FT+γ ] .

Which implies the following:

P [gk − γ > T |FT+γ ] = 1−
(

1− MT+γ

k

)+

.

Consequently, we get:

P [gk − γ > T |FT+γ ] = 1 ∧
(

MT+γ

k

)

.

This completes the proof.
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Corollary 11. Let M = m + v be a positive process of the class M(H) such that m is a uniformly integrable

martingale which has no negative jump, 〈M,D〉 = 0 and limt→+∞ Mt = 0. Consider a real k > 0 and define

gk = sup{t ≥ 0 : Mt ≥ k}. Hence, for all stopping time T < ∞, we have:

P [gk − γ > T ] = 1 ∧
(

E[Mγ ]

k

)

(20)

Proof. We obtain from Corollary 10 that

E
(

E
[

1{gk−γ>T}|FT+γ

])

= 1 ∧
(

E[MT+γ ]

k

)

.

That is,

P [gk − γ > T ] = 1 ∧
(

E[MT+γ ]

k

)

.

But, M·+γ is a martingale since M ∈ M(H). Hence, we get:

P [gk − γ > T ] = 1 ∧
(

E[Mγ ]

k

)

.

5 Interesting utilities of stochastic processes of the class Σr(H)

The purpose of the current section is to show that the stochastic processes studied in this paper could have good

applications. For this, we propose to construct solutions for skew Brownian motion equations. More precisely, we

construct solutions from continuous processes of the class Σr(H) for the following equations:

Xt = x+Bt + (2α− 1)L0
t (X) (21)

and

Xt = x+Bt +

∫ t

0

(2α(s)− 1)dL0
s(X), (22)

where B is a standard Brownian motion and x = 0. It must be remarked that solutions had already been built from

the processes of the class (Σ) (see [7]). This should not be seen as a redundancy because some processes of the class

Σr(H) are not elements of the class (Σ). For instance, if there exists a Brownian motion W which is independent of B

such that H = {t ≥ 0 : Wt = 0}, hence the geometric Itô-Mckean skew Brownian motion Xδ =
√
1− δ2B + δ|W |

and its absolute value, |Xδ| are such examples.

5.1 Construction of solution from Itô-Mckean skew brownian motion

First, we use the absolute value of the geometric Itô-Mckean skew Brownian process |Xδ| =
∣

∣

√
1− δ2B + δ|W |

∣

∣.

It is true that we presented this process above as an element of the class Σr(H). But in reality, it is only when the

process W cancels on H that |Xδ| ∈ Σr(H). Thus, we dissociate the construction of solutions using this process

from those using the other processes of the class Σr(H).
We will therefore consider the following notations: we shall set kW and Z1 to represent processes constructed in

(4) with respect to W and (kWgt X
δ
t ; t ≥ 0) respectively and, Z2,· will be the process defined in (6) with respect to

(kWgt X
δ
t ; t ≥ 0). We shall also set gt = sup {t ≥ 0 : Xδ

t = 0}.

Proposition 7. The process Y δ
1,· defined by ∀t ≥ 0, Y δ

1,t = Z1,tk
W
gt
|Xδ

t | is a weak solution of (21) with the parameter

α and starting from 0.
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Proof. By applying the balayage’s formula in the progressive case, we get

kWgt |X
δ
t | =

∫ t

0

p(kWgs )d|X
δ
s |+Rt,

where R is a continuous process with finite variations such that R0 = 0 and dR is carried by {t ≥ 0 : Xδ
t = 0}. Since

W is continuous, we have: p(kWgs ) = kWgs− = kWs−. Thus, it follows from the continuity of |Xδ| that

kWgt X
δ
t =

∫ t

0

kWs d|Xδ
s |+Rt.

However, we have from Tanaka’s formula that

d|Xδ
s | = sign(Xδ

s )
√

1− δ2dBs + δsign(Xδ
s )sign(Ws)dWs + δsign(Xδ

s )dL
0
s(W ) + dL0

s(X
δ).

Hence, we obtain:

kWgt |X
δ
t | =

√

1− δ2
∫ t

0

sign(Xδ
s )k

W
s dBs+δ

∫ t

0

kWs sign(Xδ
s )[sign(Ws)dWs + dL0

s(W )]+

∫ t

0

kWs dL0
s(X

δ)+Rt.

Which becomes

kWgt |X
δ
t | =

√

1− δ2
∫ t

0

sign(Xδ
s )k

W
s dBs + δ

∫ t

0

kWs sign(Xδ
s )sign(Ws)dWs +

∫ t

0

kWs dL0
s(X

δ) +Rt

since
∫ t

0

kWs sign(Xδ
s )dL

0
s(W ) =

∫ t

0

kWs−sign(X
δ
s )dL

0
s(W ) =

∫ t

0

ZW
s sign(Xδ

s )dL
0
s(W ) = 0.

Indeed, L0(W ) is continuous and dL0(W ) is carried by {t ≥ 0 : Wt = 0} = {t ≥ 0 : ZW
t = 0}. Hence, through

Proposition 2.2 of [2], we get

Y δ
1,t =

√

1− δ2
∫ t

0

sign(Xδ
s )Z1,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )Z1,sk

W
s sign(Ws)dWs +

∫ t

0

Z1,s[k
W
s dL0

s(X
δ) + dRs]

+(2α− 1)L0
t (Y

δ
1,·).

But, dR and dL0(Xδ) are carried by {t ≥ 0 : Xδ
t = 0}. In addition,

{t ≥ 0 : Xδ
t = 0} ⊂ {t ≥ 0 : kWgt X

δ
t = 0} = {t ≥ 0 : Z1,t = 0}.

Therefore, we get:

Y δ
1,t =

√

1− δ2
∫ t

0

sign(Xδ
s )Z1,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )Z1,sk

W
s sign(Ws)dWs + (2α− 1)L0

t (Y
δ
1,·).

Now, remark that the process M defined by ∀t ≥ 0,

Mt =
√

1− δ2
∫ t

0

sign(Xδ
s )Z1,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )Z1,sk

W
s sign(Ws)dWs

is a continuous local martingale. In addition, we can see that Z1,tk
W
gt
|Xδ

t | = k1,gtk
W
gt
|Xδ

t | where k1,· is the progressive

process defined in (5) with respect to the process (kWgt |Xδ
t | : t ≥ 0). Hence by applying the balayage formula in

progressive case on k1,gt [k
W
gt
|Xδ

t |], we obtain by identification that

Mt =
√

1− δ2
∫ t

0

sign(Xδ
s )k1,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )k1,sk

W
s sign(Ws)dWs
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On another hand, we have:

〈M,M〉t = (1− δ2)

∫ t

0

(

sign(Xδ
s )k1,sk

W
s

)2
ds+ δ2

∫ t

0

(

(sign(Xδ
s )k1,sk

W
s sign(Ws)

)2
ds.

Which implies: 〈M,M〉t = t because k1,s ∈ {−1, 1}, kWs ∈ {−1, 1}, sign(Xδ
s ) ∈ {−1, 1} and sign(Ws) ∈

{−1, 1}. Consequently, M is a Brownian motion. This completes the proof.

Now, we shall provide a solution for (22) when α is a piecewise constant function associated with a partition

(0 = t0 < t1 < · · · < tn−1 < tm), i.e., α is of the form

α(t) =
m
∑

i=0

αi1[ti,ti+1)(t),

where αi ∈ [0, 1] for all i = 0, 1, · · · ,m.

Proposition 8. The process Y δ
2,· defined by ∀t ≥ 0, Y δ

2,t = Z2,tk
W
gt
|Xδ

t | is a weak solution of (22) with the parameter

α and starting from 0.

Proof. We have already shown in the above last proof that

kWgt |X
δ
t | =

√

1− δ2
∫ t

0

sign(Xδ
s )k

W
s dBs + δ

∫ t

0

kWs sign(Xδ
s )sign(Ws)dWs +

∫ t

0

kWs dL0
s(X

δ) +Rt.

Hence, we get from Proposition 2.3 of [2] that

Y δ
2,t =

√

1− δ2
∫ t

0

sign(Xδ
s )Z2,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )Z2,sk

W
s sign(Ws)dWs +

∫ t

0

Z2,s[k
W
s dL0

s(X
δ) + dRs]

+

∫ t

0

(2α(s)− 1)dL0
s(Y

δ
2,·).

But, dL0
· (X

δ) and dR are carried by {t ≥ 0 : Xδ
t = 0}. However,

{t ≥ 0 : Xδ
t = 0} ⊂ {t ≥ 0 : kWgt X

δ
t = 0} = {t ≥ 0 : Z2,t = 0}.

Therefore,

Y δ
2,t =

√

1− δ2
∫ t

0

sign(Xδ
s )Z2,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )Z2,sk

W
s sign(Ws)dWs +

∫ t

0

(2α(s)− 1)dL0
s(Y

δ
2,·).

Now, remark that the process M
′

defined by ∀t ≥ 0,

M
′

t =
√

1− δ2
∫ t

0

sign(Xδ
s )Z2,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )Z2,sk

W
s sign(Ws)dWs

is a continuous local martingale. In addition, we can see that Z2,tk
W
gt
|Xδ

t | = k2,gtk
W
gt
|Xδ

t | where k2,· is the progressive

process defined in (7) with respect to the process (kWgt |Xδ
t | : t ≥ 0). Hence by applying the balayage formula in the

progressive case on k2,gt [k
W
gt
|Xδ

t |], we obtain by identification that

M
′

t =
√

1− δ2
∫ t

0

sign(Xδ
s )k2,sk

W
s dBs + δ

∫ t

0

sign(Xδ
s )k2,sk

W
s sign(Ws)dWs

On another hand, we have:

〈M ′

,M
′〉t = (1− δ2)

∫ t

0

(

sign(Xδ
s )k2,sk

W
s

)2
ds+ δ2

∫ t

0

(

(sign(Xδ
s )k2,sk

W
s sign(Ws)

)2
ds.

Which implies: 〈M ′

,M
′〉t = t because k2,s ∈ {−1, 1}, kWs ∈ {−1, 1}, sign(Xδ

s ) ∈ {−1, 1} and sign(Ws) ∈
{−1, 1}. Consequently, M

′

is a Brownian motion. This completes the proof.
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5.2 Construction of solutions from a continuous process of the class Σr(H)

Now, we shall derive solutions by using continuous processes of the class Σr(H). Thus, we shall use next

notations: for any continuous process X of the last mentioned class, we let gt = sup{s ≤ t : Xt = 0} and

τt = inf{s ≥ 0 : 〈X,X〉s > t}. Let kD and k1,· be progressive processes defined in (5) with respect to D and

(kDgτtXτt : t ≥ 0) respectively. Z2 is the progressive process defined in (6) with respect to (kDgτtXτt : t ≥ 0). k2 will

denotes the progressive process defined in (7) with respect to (kDgτtXτt : t ≥ 0).

Proposition 9. The process Y1 defined by ∀t ≥ 0, Y1,t = Z1,tk
D
gτt

Xτt is a weak solution of (21) with the parameter

α and starting from 0.

Proof. Let X = m + v + A be a continuous process of the class Σr(H). By applying the balayage formula in the

progressive case, we get

kDgtXt =

∫ t

0

p(kDgs)dXs +Rt,

where R is a continuous process with finite variations such that R0 = 0 and dR is carried by {t ≥ 0 : Xt = 0}. Since

D is continuous, we have: p(kDgs) = kDgs− = kDs−. Thus, it follows from the continuity of X that

kDgtXt =

∫ t

0

kDs dXs +Rt =

∫ t

0

kDs dms +

∫ t

0

kDs dvs +

∫ t

0

kDs dAs +Rt.

However, we have
∫ t

0

kDs dvs =

∫ t

0

ZD
s dvs,

where ZD is the progressive process defined in (4) with respect to D. Thus, we obtain that

∫ t

0

kDs dvs = 0

because dv is carried by {t ≥ 0 : Dt = 0} = {t ≥ 0 : ZD
t = 0}. Which becomes

kDgtXt =

∫ t

0

kDs dms +

∫ t

0

kDs dAs +Rt. (23)

Now, let Yt = kDgτt
Xτt . We obtain by applying Proposition 2.2 of [2], the following:

Y1,t = Z1,tYt =

∫ t

0

Z1,sdYs + (2α− 1)L0
t (Y1,·).

But,
∫ t

0

Z1,sdYs =

∫ t

0

Z1,sk
D
τs
dmτs +

∫ t

0

Z1,sk
D
τs
dAτs +

∫ t

0

Z1,sdRτs .

Hence, we obtain:
∫ t

0

Z1,sdYs =

∫ t

0

Z1,sk
D
τs
dmτs

because, dAτ· and dRτ· are carried by {t ≥ 0 : Z1,t = 0}. Which implies that

Y1,t =

∫ t

0

Z1,sk
D
τs
dmτs + (2α− 1)L0

t (Y1,·).

However, the process W defined by ∀t ≥ 0,

Wt =

∫ t

0

Z1,sk
D
τs
dmτs =

∫ τt

0

Z1,〈X,X〉sk
D
s dms
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is a continuous local martingale. Furthermore, by applying the balayage formula on k1,g′

t

Yt, we obtain by identification

that

Wt =

∫ τt

0

k1,〈X,X〉sk
D
s dms

since Z1,tYt = k1,g′

t

Yt with g
′

t = sup{s ≤ t : Yt = 0}. On another hand, we have:

〈W,W 〉t =
∫ τt

0

(

k1,〈X,X〉sk
D
s

)2
d〈m,m〉s = 〈m,m〉τt = t.

Consequently, W is a Brownian motion. This completes the proof.

Proposition 10. The process Y2 defined by ∀t ≥ 0, Y2
t = Z2,tk

D
gτt

Xτt is a weak solution of (22) with the parameter

α and starting from 0.

Proof. Recall that we have obtained in (23), the following:

kDgtXt =

∫ t

0

kDs dms +

∫ t

0

kDs dAs +Rt.

If we let Yt = kDgτt
Xτt , we obtain from Proposition 2.3 of [2], the following:

Y2,t = Z2,tYt =

∫ t

0

Z2,sdYs +

∫ t

0

(2α(s)− 1)dL0
s(Y2,·).

But,
∫ t

0

Z2,sdYs =

∫ t

0

Z2,sk
D
τs
dmτs +

∫ t

0

Z2,sk
D
τs
dAτs +

∫ t

0

Z2,sdRτs .

Hence, we obtain:
∫ t

0

Z2,sdYs =

∫ t

0

Z2,sk
D
τs
dmτs

because, dAτ· and dRτ· are carried by {t ≥ 0 : Z2,t = 0}. Which implies that

Y2,t =

∫ t

0

Z2,sk
D
τs
dmτs +

∫ t

0

(2α(s)− 1)dL0
s(Y2,·).

However, the process W defined by ∀t ≥ 0,

Wt =

∫ t

0

Z2,sk
D
τs
dmτs =

∫ τt

0

Z2,〈X,X〉sk
D
s dms

is a continuous local martingale. Furthermore, by applying the balayage formula on k2,g′

t

Yt, we obtain by identification

that

Wt =

∫ τt

0

k2,〈X,X〉sk
D
s dms

since Z2,tYt = k2,g′

t

Yt with g
′

t = sup{s ≤ t : Yt = 0}. On another hand, we have:

〈W,W 〉t =
∫ τt

0

(

k2,〈X,X〉sk
D
s

)2
d〈m,m〉s = 〈m,m〉τt = t.

Consequently, W is a Brownian motion. This completes the proof.
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