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Abstract

We propose two Polyak-type step sizes for mirror descent and prove their

convergences for minimizing convex locally Lipschitz functions. Both step sizes,

unlike the original Polyak step size, do not need the optimal value of the objec-

tive function.

1 Introduction

Throughout this paper, consider the optimization problem

x⋆ ∈ argmin
x∈X

f (x), (P)

for some proper closed convex function f and non-empty closed convex set X ⊆
R

d . Denote by g (x) a subgradient of f at x. When X = R
d , Polyak [21] proposed

the subgradient method in Algorithm 1. The specific choice of ηk in Algorithm 1 is

called the Polyak step size. The Polyak step size avoids evaluating the Lipschitz nor

smoothness parameters of f , sometimes a difficult task. Nevertheless, its requires

knowing f ⋆, which limits its direct applications in practice.

Remarkably, the convergence rate of the Polyak step size is often satisfactory

and can be even optimal. Polyak [21] proved that projected gradient descent with

the Polyak step size converges at a linear rate when f is strongly convex and either

smooth or Lipschitz. Later, Polyak [22, Chapter 5.3] showed that asymptotically, gra-

dient descent with the Polyak step size converges at an O(1/
p

k) rate, where k de-

notes the number of iterations, when f is locally Lipschitz. Hazan and Kakade [10]

showed that the Polyak step size yields the optimal iteration complexities achievable

by gradient descent when f is Lipschitz, Lipschitz and strongly convex, smooth, or
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Algorithm 1 Subgradient method with the Polyak step size

Require: x1 ∈R
d .

1: for all k ∈N do

2: ηk ← f (xk )− f ⋆

‖g (xk )‖2
2

, where ‖·‖2 denotes the ℓ2-norm.

3: xk+1 = xk −ηk g (xk ).

4: end for

smooth and strongly convex. Loizou et al. [17] proposed a “stochastic Polyak step

size” for stochastic gradient descent when f is a finite sum and studied the itera-

tion complexity under standard smoothness and strong convexity conditions. The

stochastic Polyak step size was later extended by D’Orazio et al. [8] for stochastic

mirror descent. Ren et al. [23] studied the convergence of gradient descent with the

Polyak step size under a generalized smoothness and generalized Łojasiewicz con-

dition.

In this paper, we study the Polyak step size in the style of Polyak [22]. We do

not aim to provide an iteration complexity bound under restrictive conditions on

the objective function f , such as Lipschitzness and smoothness. Instead, we aim

to guarantee asymptotic convergence for a very large class of f . In particular, we

propose two algorithms based on mirror descent with Polyak-type step sizes and

prove their convergences when f is locally Lipschitz. Our motivation is twofold.

1. There are several applications that violate the Lipschitz and smoothness as-

sumptions, such as portfolio selection [18], Poisson inverse problems [5, 11],

quantum state tomography [12, 20], and minimization of quantum Rényi di-

vergences [26].

2. Though Polyak [22] has proved convergence of gradient descent with the Polyak

step size, it is desirable to generalize the result for mirror descent. First, Polyak

[22] does not consider the constrained optimization case. Second, projected

gradient descent can generate infeasible iterates, causing the algorithm to

“stall” before approaching the minimizer [15, 26].

The interested reader is referred to Appendix A for the details. Moreover, unlike

the original Polyak step size studied by Polyak [22] and its mirror descent extension

D’Orazio et al. [8], the two algorithms we propose do not need the optimal value f ⋆.

There have been several variants of the Polyak stpe size that do not need f ⋆ ei-

ther; see, e.g., the discussions by Polyak [21], Brännlund [6] and a recent solution by

Hazan and Kakade [10]. Among existing works, the most relevant to this paper are

Nedić and Bertsekas [19] and Goffin and Kiwiel [9]. In particular, the two algorithms

we propose are generalizations of the “first adjustment” considered by Nedić and

Bertsekas [19] and the subgradient level method analyzed by Goffin and Kiwiel [9]1,

respectively.

Our analyses differ significantly from those by Nedić and Bertsekas [19] and by

Goffin and Kiwiel [9]. In particular, the non-Euclidean nature of mirror descent and

1According to Goffin and Kiwiel [9], the algorithm was proposed by Brännlund in his PhD thesis, but

we cannot find the PhD thesis. Therefore, we cite Goffin and Kiwiel [9] instead of Brännlund’s PhD thesis.
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the fact that the mirror map may not be defined on the boundary of X render the

proof strategies of Nedić and Bertsekas [19] and Goffin and Kiwiel [9] not directly

applicable. The measure of the “traveling distance” in the subgradient level method

is also slightly modified to fit in the mirror descent framework; see Section 4.1 for a

discussion.

The first algorithm we propose had appeared in our recent paper [26]. That pa-

per focuses on an application in quantum information theory and is targeted at

information theorists. We isolate the optimization theory part and present it in a

slightly more general form in Section 3.

2 Problem Formulation and Useful Facts

2.1 Problem Formulation

We consider solving the optimization problem (P) by mirror descent. Let h be a

convex function and Dh the associated Bregman divergence, i.e.,

Dh (x, y) := h(x)−h(y)−〈∇h(y), x − y〉 , ∀(x, y) ∈ domh×dom∇h.

Let g (x) be a subgradient of f at x. Define T (x;η) as a solution to the following

minimization problem

min
y∈X

〈g (x), y − x〉+
Dh (y, x)

η
(1)

for any step size η > 0. Mirror descent iterates by iteratively applying the mapping

T with possibly different step sizes. The two “algorithms” we propose are indeed

mirror descent with different step size selection rules. For convenience, we present

the step size selection rule and mirror descent step (1) together and call them “algo-

rithms.”

2.2 Assumptions

We make the following assumptions in the rest of this paper. The first assumption is

standard and ensures that f is continuous around the minimizer [2, Corollary 8.39].

Assumption 2.1. The optimal value f ⋆ is finite.

The following two assumptions ensure that mirror descent with Dh is well-defined

for solving (P). In particular, Assumption 2.2 resolves the “domain consistency” is-

sue [1]; Assumption 2.3 ensures that g (x) is well defined at any x ∈X ∩ int domh [3,

Corollary 16.18]. See, e.g., the discussion in Bauschke et al. [3].

Assumption 2.2. The function h is Legendre and the set X ∩dom f is contained in

the closure of domh.

Assumption 2.3. The relative interior of f contains X ∩ int domh.

The following assumption is standard for analyzing mirror descent-type meth-

ods; see, e.g., Juditsky and Nemirovski [13, 14].
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Assumption 2.4. The function h is strongly convex with respect to a norm ‖·‖ (not

necessarily ℓ2) on X ∩ int domh; that is,

Dh (x, y) ≥
1

2

∥

∥y − x
∥

∥

2
, ∀x, y ∈X ∩ int domh.

We will write ‖·‖∗ for the norm dual to ‖·‖. The last assumption, local bounded-

ness of the subgradients, is key to our analyses. This assumption is also exploited by,

e.g., Polyak [22] and Goffin and Kiwiel [9].

Assumption 2.5. The mapping g (·) is bounded on any compact subset of X ∩int domh.

One may equivalently assume that f is Lipschitz on any compact subset of X ∩
int domh.

2.3 Useful Facts

The following results, which will be used in our analyses, are perhaps familiar to

experts. We present them for the convenience of the reader.

The following theorem [1, Theorem 3.8(i)] helps verify that the iterates all lie in

the interior of domh.

Theorem 2.1. Suppose that h is Legendre. Let x ∈ int domh and (xk )k∈N be a sequence

in int domh. If Dh (x, xk ) →∞, then (xk )k∈N converges to a point on the boundary of

domh.

Corollary 2.2. Suppose that h is Legendre. Let x ∈ int domh and { xk }k∈N ⊂ int domh.

If Dh(x, xk ) ≤ c for some c > 0 for all k ∈N, then the closure of { xk }k∈N lies in int domh.

Let x⋆ be the minimizer. In our analyses, it is desirable to set x to be x⋆ in The-

orem 2.1. Nevertheless, it can happen that x⋆ does not belong to2 int domh. The

issue can be easily circumvented as f is closed.

Lemma 2.3. Let x⋆ be a minimizer of f on X . For any ε > 0, there exists some xε ∈
X ∩domh such that f (xε) ≤ f ⋆+ε.

Proof. If x⋆ ∈ X ∩ int domh, then we can simply choose xε = x⋆. Otherwise, by

Assumption 2.3, there is some y in the intersection of X ∩ int domh and the relative

interior of dom f . Define

ϕ(t) := f (x⋆+ t(y − x⋆)), ∀t ∈R.

It is easily checked that ϕ is also proper closed convex. Then, ϕ is continuous on the

closure of its domain [3, Corollary 9.15]. Therefore, we can choose xε = x⋆+t(y−x⋆)

for some t small enough.

2Consider, for example, minimizing the function f (x, y) := x on the the set

{(x, y) ∈R
2 : x ≥ 0, y ≥ 0,x + y = 1}

by entropic mirror descent. Then, h is the engative Shannon entropy and int domh is the interior of the

positive orthant. Obviously, the minimizer is (1,0) and does not belong to int domh
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The following is an intermediate result in the standard analysis of mirror descent

[14] and is seldom explicitly stated as a lemma. We provide its proof for complete-

ness.

Lemma 2.4. Let x ∈ X ∩ int domh. Let x+ = T (x;η) for some η > 0. Then, x+ ∈
X ∩ int domh and

η
(

f (x)− f (y)
)

≤ Dh(y, x)−Dh (y, x+)+
η2

∥

∥g (x)
∥

∥

2
∗

2
.

Proof. We write

ηk

(

f (x)− f (y)
)

≤ ηk 〈g (x), x − y〉
= ηk 〈g (x), x+− x〉+ηk 〈g (x), x − x+〉
≤ Dh (y, x)−Dh (y, x+)−Dh (x+, x)+ηk 〈g (x), x − x+〉

≤ Dh (y, x)−Dh (y, x+)−
‖x − x+‖2

2
+η〈g (x), x − x+〉

≤ Dh (y, x)−Dh (y, x+)−
‖x − x+‖2

2
+η

∥

∥g (x)
∥

∥

∗‖x − x+‖.

The first inequality follows from the convexity of f ; the second follows from the

Bregman proximal inequality [24]; the third follows from Assumption 2.4. It remains

to maximize the right-hand side with respect to ‖x − x+‖.

3 First Algorithm

3.1 Algorithm and Convergence Guarantee

Algorithm 2 presents the first algorithm we propose. The algorithm generalizes the

“first adjustment” of Nedić and Bertsekas [19] by replacing the ℓ2-norm with a gen-

eral norm. Compared to Algorithm 1, the only difference lies in that f ⋆ is replaced

by a sequence of its estimates ( f̂k )k∈N.

The following theorem guarantees that Algorithm 2 asymptotically converges to

an approximate solution to (P).

Theorem 3.1. If Assumptions 1–5 hold, then Algorithm 2 satisfies

inf
k∈N

f (xk ) ≤ f ⋆+δ.

Algorithm 2 requires deciding the error tolerance δ in advance and does not

guarantee convergence to the exact minimum. Our second algorithm fixes the weak-

nesses.

3.2 Proof of Theorem 3.1

Suppose, for contradiction, that

inf
k∈N

f (xk ) ≥ f ⋆+δ+ε (2)

for some ε> 0.

5



Algorithm 2 First Algorithm

Require: δ1 ≥ δ> 0, β< 1, γ≥ 1, c > 1/2, and x1 ∈X ∩ int domh.

1: for all k ∈N do

2: if g (xk )= 0 then

3: Return xk as a minimizer and terminate.

4: end if

5: f̂k ←min1≤κ≤k f (xκ)−δk .

6: ηk ← f (xk )− f̂k

c‖g (xk )‖2
∗

.

7: xk+1 ←T (xk ;ηk ).

8: if f (xk+1)≤ f̂k then

9: δk+1 = γδk .

10: else

11: δk+1 = max {βδk ,δ }.

12: end if

13: end for

Lemma 3.2. There is some k̃ ∈N such that δk = δ for all k ≥ k̃.

Proof. Suppose that f (xk+1) ≤ f̂k holds for infinitely many k’s. Then, since δk ≥ δ

for all k ∈N, we have f (xk ) →−∞, violating Assumption 2.1. Therefore, f (xk+1) ≤ f̂k

can only hold for finitely many k’s. This implies that Line 11 of Algorithm 2 must be

executed infinitely many times. The lemma follows.

By the definition of f̂k , (2), and Lemma 3.2, we have

f̂k ≥ inf
k∈N

f (xk )−δk ≥ f ⋆+δ+ε−δ= f ⋆+ε, ∀k ≥ k̃.

By Lemma 2.3, there is some x̃ ∈X ∩ int domh such that

f̂k ≥ f (x̃), ∀k ≥ k̃ . (3)

Then, we write

Dh (x̃, xk+1) ≤ Dh (x̃, xk )−ηk

(

f (xk )− f (x̃)
)

+
η2

k

∥

∥g (xk )
∥

∥

2
∗

2

≤ Dh (x̃, xk )−ηk

(

f (xk )− f̂k

)

+
η2

k

∥

∥g (xk )
∥

∥

2
∗

2

= Dh (x̃, xk )−
(

f (xk )− f̂k

)2

c
∥

∥g (xk )
∥

∥

2
∗

+
(

f (xk )− f̂k

)2

2c2
∥

∥g (xk )
∥

∥

2
∗

= Dh (x̃, xk )−
1

c

(

1−
1

2c

)

(

f (xk )− f̂k
∥

∥g (xk )
∥

∥

∗

)2

, ∀k ≥ k̃. (4)

In the above, the first inequality follows from Lemma 2.4; the second follows from

(3); the third line follows from the definition of ηk .
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By (4), the set {Dh (x̃, xk )}k∈N is bounded. By the strong convexity of h (Assump-

tion 2.4), the set of iterates { xk }k∈N is also bounded in X ∩ int domh. Hence, by

Corollary 2.2, the closure of the set of iterates { xk }k∈N is bounded in X ∩ int domh.

Then, there is some G > 0 such that
∥

∥g (xk )
∥

∥

∗ ≤ G for all k ∈ N. The inequality (4)

implies

Dh (x̃, xk+1) ≤ Dh (x̃, xk )−
1

cG2

(

1−
1

2c

)

(

f (xk )− f̂k

)2
, ∀k ≥ k̃

A telescopic sum gives

1

cG2

(

1−
1

2c

) ∞
∑

k=k̃

(

f (xk )− f̂k

)2 ≤ Dh (x̃, xk̃ )<∞,

showing that f (xk )− f̂k → 0. Nevertheless, Lemma 3.2 implies

f (xk )− f̂k = f (xk )−min
κ≤k

f (κ)+δ≥ δ, ∀k ≥ k̃,

a contradiction. The theorem follows.

4 Second Algorithm

4.1 Algorithm and Convergence Guarantee

Algorithm 3 presents the second algorithm we propose. The algorithm generalizes

the subgradient level method analyzed by Goffin and Kiwiel [9].

Algorithm 3 is a direct adaptation of the subgradient level method to the mirror

descent setup, except for Line 20. Line 1–17 are exactly the same as the correspond-

ing parts in the subgradient level method. Line 18 generalizes the Polyak-type step

size with a general norm, as in Algorithm 2. Line 19 replaces a gradient descent step

with a mirror descent step. Line 20 is the major difference. In the original subgra-

dient level method, σk is the sum of the Euclidean distances between consecutive

iterates; in Line 20, σk becomes the sum of the magnitudes of the gradients scaled by

cηk . The two definitions ofσk coincide, up to a scaling factor c, in the unconstrained

optimization setup Goffin and Kiwiel [9] considered, but are obviously different in

general.

Theorem 4.1. If Assumptions 1–5 hold, then Algorithm 3 satisfies

inf
k∈N

f (xk ) = f ⋆.

4.2 Proof of Theorem 4.1

We will prove by contradiction: If infk∈N f (xk )> f ⋆, then Lemma 4.2 and Lemma 4.3

below show that δl → 0 and δl bounded away from zero, respectively. Therefore, the

desired convergence must hold.
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Algorithm 3 Second Algorithm

Require: δ1 > 0, σ1 = 0, l = 1, k(1) = 1, B > 0, c > 1/2, and x1 ∈X ∩ int domh.

1: for all k ∈N do

2: if g (xk )= 0 then

3: Return xk as a minimizer and terminate.

4: end if

5: f rec
k

← min1≤κ≤k f (xκ)

6: if f (xk ) ≤ f rec
k(l )

− (1/2)δl then

7: k(l +1) ← k

8: σk ← 0

9: δl+1 ← δl

10: l ← l +1

11: else if σk > B then

12: k(l +1) ← k

13: σk ← 0

14: δl+1 ← (1/2)δl

15: l ← l +1

16: end if

17: f̂k ← f rec
k(l )

−δl

18: ηk ← f (xk )− f̂k

c‖g (xk )‖2
∗

.

19: xk+1 ←T (xk ;ηk ).

20: σk+1 ←σk +cηk

∥

∥g (xk )
∥

∥

∗.

21: end for

Lemma 4.2. If infk∈N f (xk ) > f ⋆, then l →∞ and δl → 0.

Proof. By Lemma 2.3, there is some point x̃ ∈X ∩ int domh near x⋆ such that

inf
k∈N

f (xk ) ≥ f (x̃). (5)

Now we prove l →∞ by contradiction. Suppose that l is always bounded above by

some l ∈N. Define sk := cηk

∥

∥g (xk )
∥

∥

∗. By Line 12–15 in Algorithm 3, we have

δl ≥ δ, ∀1 ≤ l ≤ l , (6)

for some δ> 0, and there is some k̃ ∈N such that

∞
∑

k=k̃+1

sk ≤ B. (7)
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Iteratively applying Lemma 2.4, we write

Dh(x̃, xk+1) ≤ Dh (x̃, xk )−ηk

(

f (xk )− f (x̃)
)

+
s2

k

2c2

≤ Dh (x̃, xk̃+1)−
k
∑

κ=k̃+1

ηκ

(

f (xκ)− f (x̃)
)

+
1

2c2

k
∑

κ=k̃+1

s2
κ

≤ Dh (x̃, xk̃+1)+
B2

2c2
, ∀k > k̃,

where the last inequality follows from (5) and the fact that
∑

k s2
k
≤

(

∑

k sk

)2
. There-

fore, {Dh (x̃, xk )}k∈N is bounded. By the strong convexity of h (Assumption 2.4), the

set { xk }k∈N is also bounded. Corollary 2.2 then ensures that the closure of { xk }k∈N
is bounded on the interior of domh. By Assumption 2.5, we have

∥

∥g (xk )
∥

∥

∗ ≤ G for

some G > 0 for all k ∈N.

The inequality (7) also implies that ηk

∥

∥g (xk )
∥

∥

∗ → 0. By the definition of ηk , we

write

ηk

∥

∥g (xk )
∥

∥

∗ =
f (xk )−minκ≤k f (xκ)+δl

c
∥

∥∇ f (xk )
∥

∥

∗

≥
f (xk )−minκ≤k f (xκ)+δl

cG
,

showing that

lim
k→∞

f (xk )−min
κ≤k

f (xκ)+δl = 0.

Then, by (6), for large enough k we have

f (xk )−min
κ≤k

f (xκ)+δ≤ f (xk )−min
κ≤k

f (xκ)+δl ≤
1

2
δ,

contradicting the fact that f (xk ) ≥ minκ≤k f (xκ).

Now we have proved that l →∞. By the monotone convergence theorem, δl →
δ∞ for some δ∞ ≥ 0. Suppose that δ∞ > 0. Then, Line 11–15 cannot be executed

infinitely many times; this together with l → ∞ implies that Line 6–10 is executed

infinitely many times. Then, f (xk ) → ∞, violating Assumption 2.1. Therefore, we

have δ∞ = 0.

Remark. The lemma is inspired by the analysis of Goffin and Kiwiel [9, Lemma 2]. If

we can choose x̃ = x⋆ in the proof above, which is the case in the analysis of Goffin

and Kiwiel [9], then there is no need to assume infk∈N f (xk ) > f ⋆. Nevertheless, x⋆

may lie on the boundary of domh, which hinders us from using Theorem 2.2. See

the footnote before Lemma 2.3 for an example.

Lemma 4.3. If infk∈N f (xk ) > f ⋆, then δl → δ∞ for some δ∞ > 0.

Proof. Notice that f̂k and f rec
k(l )

are decreasing and bounded from below by f ⋆. By

the monotone convergence theorem, both limk→∞ f̂k and limk→∞ f rec
k(l )

exist. Also

9



notice that limk→∞ f rec
k(l )

> f ⋆; otherwise, we have infk∈N f (xk ) = f ⋆. Since δl → 0 by

Lemma 4.2, we write

lim
k→∞

f̂k = lim
k→∞

(

f rec
k(l ) −δl

)

= lim
k→∞

f rec
k(l )

> f ⋆.

Similarly as in the proof of Lemma 4.2, there exist some ε> 0 and x̃ ∈X ∩ int domh

and k̃ ∈N such that3

f (xk ) > f (x̃) and f̂k ≥ f (x̃)+ε, ∀k ≥ k̃. (8)

Then, we have

sk := cηk

∥

∥g (xk )
∥

∥

∗ =
f (xk )− f̂k
∥

∥g (xk )
∥

∥

∗
≤

f (xk )− f (x̃)−ε
∥

∥g (xk )
∥

∥

∗
, ∀k ≥ k̃. (9)

We write

Dh (x̃, xk+1) ≤ Dh (x̃, xk )−ηk

(

f (xk )− f (x̃)
)

+
s2

k

2c2

= Dh (x̃, xk )−
sk

(

f (xk )− f (x̃)
)

c
∥

∥g (xk )
∥

∥

∗
+

s2
k

2c2

≤ Dh (x̃, xk )−
sk

(

f (xk )− f (x̃)
)

c
∥

∥g (xk )
∥

∥

∗
+

sk

(

f (xk )− f (x̃)−ε
)

2c2
∥

∥g (xk )
∥

∥

∗

= Dh (x̃, xk )−
(

c −
1

2

)

sk

(

f (xk )− f (x̃)
)

c2
∥

∥g (xk )
∥

∥

∗
−

skε

2c2
∥

∥g (xk )
∥

∥

∗

≤ Dh (x̃, xk )−
skε

2c2
∥

∥g (xk )
∥

∥

∗
, ∀k ≥ k̃ . (10)

In the above, the first inequality follows from Lemma 2.4; the second inequality fol-

lows from (9); the last follows from (8). Therefore, Dh (x̃, xk ) is strictly decreasing.

Similarly as in the proof of Lemma 4.2, we conclude that
∥

∥g (xk )
∥

∥

∗ ≤ G for some

G > 0. Summing the inequality (10) for k ≥ k̃, we get

ε

2c2G

∞
∑

k=k̃

sk <∞.

This implies that σk > B (Line 11 in Algorithm 3) can only happen a finite number

of times, so δl does not converge to zero.

Lemma 4.2 and Lemma 4.3 together provide the desired contradiction. The the-

orem follows.

3Notice that there is a slight abuse of notations: the x̃ and k̃ here are different from those in the proof

of Lemma 4.2.
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A Optimization Problems Violating Lipschitz/Smoothness

Conditions

Consider a stock market of d stocks. Denote the return rates of the n stocks by an

entry-wise non-negative random variable a taking values in R
d . Suppose a takes the

value ai with probability pi
4. The growth-optimal portfolio selection (aka the Kelly

criterion) is given by

x⋆ ∈ argmin
x∈∆

f (x), f (x) :=
n
∑

i=1

pi

[

− log〈ai , x〉
]

, (11)

where ∆ denotes the probability simplex in R
n . It is easily checked that the opti-

mization problem (11) is convex and the function f is neither Lipschitz nor smooth.

A simple calculation shows that f is not smooth relative to the negative Shannon

entropy [16]. Although f is smooth relative to the Burg entropy [3], the resulting it-

eration rule lacks a closed-form and can be computationally expensive when the n

is very large.

The maximum-likelihood estimator (MLE) for Poisson inverse problems can be

transformed to (11) after a smart entry-wise scaling [25, 4]. The MLE for quantum

state tomography takes the form [12]

ρ⋆ ∈ argmin
ρ∈D

1

n

n
∑

i=1

[

− logtr
(

Aiρ
)]

, (12)

where D denotes the set of Hermitian positive semi-definite matrices of unit traces

and Ai are Hermitian positive semi-definite matrices. When all matrices involved

share the same eigenbasis, (12) becomes a vector optimization problem of the form

(11); that is, (12) is exactly the non-commutative counterpart of (11). The expres-

sions of quantum Rényi divergences are complicated, so we omit them; the inter-

ested reader is referred to You et al. [26].

Consider solving (11) by projected gradient descent. Even if we ignore the step

size selection issue, the so-called “stalling issue” [15] arises. Projection onto the

probability simplex typically results in sparse vectors [7]. Since ai can also be sparse

and the product of sparse vectors can be exactly zero, the function f and its gradi-

ent can be undefined at a sparse iterate; then, projected gradient descent “stalls”,

though the iterate may be far from the minimizer. Knee et al. [15] and You et al.

[26] provide related discussions for quantum process tomography and minimizing

quantum Rényi divergences, respectively.

4In general, the support of a does not need to be finite. We focus on the finite support case to ease the

discussion.
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