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EXTENSION BASES IN HENSELIAN VALUED FIELDS

AKASH HOSSAIN

Abstract. We study the behaviour of forking in valued fields, and we give
several sufficient conditions for parameter sets in a Henselian valued field of
residue characteristic zero to be an extension base. Notably, we consider ar-
bitrary (potentially imaginary) bases, whereas previous related results in the
literature only focus on maximally complete sets of parameters. This enables
us in particular to show that forking coincides with dividing in (the imaginary
expansions of) the ultraproducts of the p-adic fields.

1. Introduction

The elementary class of Henselian valued fields of residue characteristic zero has
been an important subject of study in model theory since the fundamental results
of Ax-Kochen and Ershov. As any field of characteristic zero can be the residue
field of a structure from this class, one can note that the complete theories of these
valued fields can have an arbitrarily “bad” complexity with respect to the standard
dividing lines of pure model theory (for instance, one can look at the trivially-valued
field Q).

Forking and dividing are abstract independence notions from pure model theory
that have deep interactions with those dividing lines. The independence theorems
for stable and simple theories [15] are perhaps the best examples of such interac-
tions. Of course, we cannot expect these notions to behave very well in any theory
outside of the simple world. For example, one very basic property expected of fork-
ing independence fails in general: a tuple c might not be independent from A over
A. However, one common pattern that has emerged from work on forking in wider
classes like NIP or NTP2 is that, over bases avoiding this pathological behaviour
(called extension bases), some results from stability and simplicity theory can be
pushed forward (as in [14], [6], [2], for instance). One crucial missing ingredient to
be able to use the forking machinery in unstable theories is therefore to identify
extension bases.

To this day, as far as we know, the results from the literature about forking in
Henselian valued fields only hold in the context where the base is a maximally-
complete field, or even a maximally-complete model (see for instance [12], chapter
13). This paper is an attempt to begin a more elaborate study of this subject, with
no assumptions on the base.

Forking in general is not easy to understand in valued fields, especially in imme-
diate extensions (thus the maximal completeness hypothesis to get rid of this case),
but the good understanding that we have on unary types in Henselian valued fields
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allows us to have some control over forking for unary types. By a standard induc-
tion argument using left-transitivity (see Proposition 4.15), our study of forking in
dimension one translates to results on extension bases in any dimension. Recall
that a parameter set A is an extension base when we have c ⫝f

A
A for every finite

tuple c (of some ∣A∣+-saturated model containing A). Let us state the main results
of this paper.
Necessary hypothesis . Let K be a valued field with respective value group and
residue field Γ, k. A necessary condition for every set in K to be an extension base
is that it is already the case in Γ, k, thus we assume that every set is an extension
base in the respectives theories of the pure ordered group Γ, and the pure field k.
We also need to assume that [k∗ ∶ (k∗)N ] is finite for every N > 0, an hypothesis
that also appears in [9] and [7]. This assumption is strictly weaker than the Galois
group ofK being bounded, which it is a very common condition in the model theory
of fields.

Our main theorem is as follows:

Theorem 1.1. Let K be a Henselian valued field of residue characteristic zero
satisfying the assumptions of the above paragraph. If nonforking coincides with
field-theoretic algebraic independence in the theory of the pure field k, then any
subset of K is an extension base.

Moreover, if Γ ≡ Z, then any subset of the imaginary expansion Keq is an exten-
sion base.

Corollary 1.2. Forking (with arbitrary imaginary parameters) coincides with di-
viding, and Lascar strong types coincide with Kim-Pillay strong types, in the theory
of any non-principal ultraproduct of the Qp.

Proof. It is a well-known fact that any such theory has NTP2. In particular, by ([6],
Theorem 1.2) and ([2], Corollary 3.6), forking coincides with dividing and Lascar
strong types coincide with Kim-Pillay strong types over extension bases. �

Note that by ([5], Theorem 7.6), the above corollary also applies to any field of
Laurent series over any PAC bounded field of characteristic 0.

We also prove in this paper more technical results which extend the main theorem
to a much weaker context, at the cost of having to name countably many constants.
See Theorems 5.8, 5.9 for precise statements.

Let us explain the outline of the paper.
Section 2 contains various well-known results about Henselian valued fields, their

model theory, and their geometry. We also introduce an ad-hoc notion of genericity
and weak-genericity for chains of balls.

Let us explain the content of section 3. In a Henselian valued field of residue
characteristic zero K with residue field k, one can show that any K-definable subset
X of k is k-definable in the pure field structure of k. We say in this case that
k is stably-embedded. However, if X is A-definable with A a subfield of K, X
might not be res(K(acl(A)))-definable. This stronger property, which we will call
strong stable embeddedness, does not always hold, and we will give some sufficient
conditions for it to hold (see Lemma 3.14). This result is interesting on its own,
and it could have other applications than the study of extension bases. We will
also give an example of a Henselian valued field of residue characteristic zero where
the residue field is not strongly stably embedded (in this case we will talk about
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weak stable embeddedness). We prove the results of this section by playing with
some automorphisms of Hahn fields that are elementary extensions of our model.
A more conventional way to carry out these proofs would be to use results on the
model theory of expansions of short exact sequences of Abelian groups (see [1],
subsection 4.1). We chose to take a different approach, and provide a proof that is
more self-contained, and arguably uses less technical tools.

In section 4, we give the basic definitions of forking, dividing and extension bases,
as well as some properties that are needed for our work.

In section 5, we start by proving key lemmas on unary forking in Henselian
valued fields, and then we prove the main theorems.

2. Preliminaries on Henselian valued fields

2.1. Notations. Let HF0,0 be the theory of Henselian valued fields of residue
characteristic zero. If M is a model of this theory, then we shall write K(M)
(resp. Γ(M), k(M)) for the domain of the valuation ofM (resp. its value group,
its residue field). We will write OM for the valuation ring ofM, and MM for its

maximal ideal. Let RV(M) be the Abelian group defined as K(M)∗Ò1 +MM
.

When there is no ambiguity, we may omit to specify the model and simply write
K, Γ, k, O, M, RV. We may also interpret them as ∅-definable set in the theory
of Meq. The Abelian group Γ will always be written additively. We will extend
the valuation map to a map of domain K by adding an element ∞ to Γ for the
image of zero. Similarly, we shall also add ∞ to RV to extend the domain of the
map K∗ Ð→ RV to K. Let us write RV∞ for the monöıd RV,∞, and define Γ∞
similarly. The canonical maps K Ð→ Γ∞ and RV∞ Ð→ Γ∞ will both be called val.
As for the maps K Ð→ k and K Ð→ RV∞, we will respectively call them res and
rv. Let us define on RV∞ the following ∅-definable ternary predicate:

⊕(x, y, z) ∶ ∃x′, y′ ∈K (rv(x′) = x ∧ rv(y′) = y ∧ rv(x′ + y′) = z)
We have a short exact sequence of Abelian groups given by:

1Ð→ O∗ Ð→K∗ Ð→ ΓÐ→ 0

Whenever this sequence splits, we will write ac (resp. s) for the induced group
homomorphism K∗ Ð→ O∗ Ð→ k∗ (resp. Γ Ð→ K∗). These maps do not always
exist in a valued field. Even if they do, they are not necessarily definable, and in
general they do not restrict (resp. extend) to maps that make the sequence split in
an elementary substructure (resp. extension). They are not part of the structures
and the languages we consider, unless we explicitly say so. If case these maps exist,
the expansion of the valued field to s and ac shall be called a Pas field.

We will write k′((tG)) for the valued field of all Hahn series with coefficients in
the field k′, and powers in the ordered Abelian group G. This valued field is known
to be Henselian. The above sequence splits in k′((tG)), with s(γ) = tγ , and ac(S)
the coefficient of least value in S.

In general, if S is a (potentially imaginary) sort (like K, Γ, RV), and A is a
parameter subset of Meq, we shall write S(A) for the parameter set S(M) ∩ A.
The non-forking (resp. non-dividing) independence relation will be denoted ⫝f

(resp. ⫝d), whereas the field-theoretic algebraic independence shall be written ⫝alg.

The model-theoretic algebraic closure of a parameter set A will be denoted acl(A),
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whereas the field-theoretic algebraic closure of a field F will be written F alg. The
divisible closure of any torsion-free Abelian group G will be denoted Q⊗G.
Remark 2.1. IfM is a valued field, and A ⊆Meq, there might exist an element of
k(A) (ie an element of k(M) ∩A, remember that k is the residue field sort, ie an∅-definable subset ofMeq) that cannot be pulled back to an element of K(A). In
other words, k(A) and res(K(A)) might not coincide, these two notations are not
aliases.

The notations k, K, Γ refer to definable sets. When we deal with an actual field
or group, we will usually call them k′, G as in the above definition of Hahn fields.

Remark 2.2. Let M be a Pas field, and A ⩽ B subfields of K(M). If ac(A) =
res(A), and val(A) = val(B), then it is easy to show that ac(B) = res(B):

Let b ∈ B∗. Let a ∈ A so that val(a) = val(b). By hypothesis, we can find a′ ∈ OA

so that res(a′) = ac(a). Then we have ac(b) = res ( b
a
⋅ a′) ∈ res(B).

2.2. Model-theoretic facts.

Proposition 2.3 ([10], Propositions 3.6, 4.3 and 5.1). LetM ⊧ HF0,0, and A ⊆M
so that A = K(A)alg ∩ K(M). Let n,m < ω, and X an A-definable subset of
Kn

×RVm
∞. Then X is definable by a formula using only parameters from K(A),

the language of the field K without equality, the language of the monöıd RV∞ (with
equality), the map rv, and the relation ⊕, without any quantifiers in K. Moreover,
if n = 1 and m = 0, then we can assume that the K-variable x in the formula only
occurs in terms of the form rv(x − a), with a ∈K(A).
Proof. Proposition 4.3 of the paper by Flenner is exactly the first part of the propo-
sition without our hypothesis A = Aalg

∩K(M).
In the proof of Proposition 5.1 of the same paper, the αi are given by apply-

ing Proposition 3.6 to polynomials with coefficient in A. The statement of this
Proposition 3.6 shows that the αi can be chosen as roots in K(M) of some iterated
derivatives of these polynomials, so they belong to Aalg

∩K(M), which concludes
the proof. �

Corollary 2.4. LetM ⊧HF0,0, and A ⊆K(M). Then K(acl(A)) = Aalg
∩K(M).

Proof. LetX be a finite A-definable subset ofK. The proposition gives us a formula
defining X with parameters in Aalg

∩K(M), which satisfies the second part of the
proposition. Let (ai)i be the finite family of points from Aalg

∩K(M) that appear
in this formula. Suppose towards contradiction that X has a point a distinct from
all the ai. Let γ ∈ Γ(M) be strictly larger than all the val(a − ai). The set

Y = {b ∈K(M)∣val(a − b) ⩾ γ}
is infinite, but all its elements belong to X , for if b ∈ Y , then we have rv(b − ai) =
rv(a − ai) for all i. As a result, X is infinite, a contradiction. �

Remark 2.5. If M ⊧ HF0,0, then the above corollary implies in particular that

K(acl(∅)) ⊆ Qalg, so this field is trivially-valued.

Lemma 2.6. LetM ⊧HF0,0, and a1...an, b1...bn ∈K(M). Suppose(val(a1), ...val(an)) is a Q-free family in Q ⊗ Γ(M), and rv(ai) = rv(bi) for each
i. Then a1...an ≡∅ b1...bn.
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Proof. By 2.3, we just have to prove rv(P (a1...an)) = rv(P (b1...bn)) for each poly-
nomial P with ∅-definable coefficients. Let P be such a polynomial. By the
above remark, the non-zero coefficients of P all have value 0. As the val(ai)
form a Q-free family, the values of every monomial involved in P (a1...an) are
pairwise-distinct. Let Q be the monomial in P so that Q(a1...an) has least value.
Then we have rv(P (a1...an)) = rv(Q(a1...an)). As rv(ai) = rv(bi), we have
val(ai) = val(bi), so Q(b1...bn) is also the monomial of P (b1...bn) of least value,
and rv(P (b1...bn)) = rv(Q(b1...bn)). Now, rv(Q(a1...an)) is just the product of
powers of the rv(ai) by a constant. By hypothesis rv(ai) = rv(bi), we have
rv(Q(a1...an)) = rv(Q(b1...bn)). That concludes the proof. �

Fact 2.7 ([4], Corollary 28). If M ⊧HF0,0 is ℵ1-saturated, then s and ac exist.

Proposition 2.8 (see for instance [18], Corollary 5.25). Let M ⊧ HF0,0, and
A ⊆M so that A = acl(K(A)). Then any A-definable subset of Γ(M) is actually
val(A)-definable in the ordered group structure Γ(M). Moreover, any A-definable
subset X of k(M) is actually k(M)-definable in the ring structure k(M), and, if
ac exists in M, then X is ac(A)-definable in the ring structure k(M).
Corollary 2.9. LetM ⊧HF0,0, A ⊆M, and γ, δ ∈ Γ(M), so that A = acl(K(A)).
If γ ≡Γ(A) δ in the ordered group Γ(M), then γ ≡A δ in the valued fieldM.

The reader will find hints of the proof of the following lemma in ([13], proofs of
Proposition 5.9 and Lemma 5.10, and Remark 5.14). An explicit proof is provided
in section 3 of this paper.

Lemma 2.10. LetM ⊧HF0,0, and X a definable subset of RV. Then there exists
a finite family γ1...γn ∈ Γ, definable subsets Xi ⊆ RV of val−1(γi), and a bound

N < ω, so that Xi ⊆ X for all i, and X ∖ (⋃
i
Xi) is a reunion of cosets of the

∅-definable subgroup of RV corresponding to the embedding:

(k∗)N Ð→ k∗ = O∗Ò1 +MÐ→
K∗Ò1 +M = RV

The above lemma should also follow from the material on short exact sequences
in [1].

2.3. Balls.

Definition 2.11. LetM be a valued field. A ball X inM is a definable subset of
K(M) of the form:

X = {x ∈K ∣val(x − c)Rγ}
with c ∈K(M), γ ∈ Γ(M), and R is either > (in that case X is open) or ⩾ (here X
is closed). If X is defined as above, then its radius is rad(X) = γ. If A ⊆Meq, then
X is an A-ball if the imaginary canonical parameter of X is an element of dcleq(A).
Moreover, we say that an A-ball X is pointed when it has a point in K(A).

We will define two notions: genericity and weak genericity. Let us first give an
illustration before the formal details. Suppose A = acleq(A) ⊆Meq, and c ∈K(M).
The set B of every A-ball that contains c turns out to be a chain with respect to
inclusion, this is a well-known fact in ultrametric geometry. Now, not every A-ball
is necessarily pointed, so let B′ be the chain of pointed A-balls containing c. The
chain B

′ is a final segment of B which might be strict. Then, the type-definable set
∩B

′ is an approximation of c that is weaker than ∩B. Even if this approximation is
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weaker, it is witnessed by points from K(A) (because the balls of B′ are pointed),
hence it is often easier to manipulate than ∩B, especially when A is generated by
field parameters.

Let us now define formally our notions of genericity. Let B be a chain (with
respect to inclusion) of A-balls, and c ∈ K in an elementary extension of M. By
convention, if B = ∅, then ∩B, the intersection of every ball in B, is the definable
set K. We say that c is A-generic of B if the following conditions hold:

● c is in the A-type-definable set ∩B.
● For every A-ball X ⊊ ∩B, we have c /∈X .

The above conditions clearly yield a partial type overA. We can use basic saturation
arguments to show that such a type is consistent. In case B has a least element,
then we have to use the fact that the residue field is infinite (and maybe use a
density argument in case the least ball is not closed). Else, consistency is simply
established by compactness.

Likewise, ifB is a chain of pointed A-balls, then c is said to be weakly A-generic
of B when the following conditions hold:

● c ∈ ∩B.
● For every pointed A-ball X ⊊ ∩B, we have c /∈X .

Note that our notion of weak genericity only makes sense when B is a chain of
pointed A-balls, otherwise it is undefined. If B has a non-pointed element, then an
A-generic point ofB is weakly A-generic of some chain of A-balls whose intersection
is strictly coarser than ∩B, and it is not weakly A-generic of B. However, if every
ball of B is pointed, then A-genericity also implies weak A-genericity.

Geometrically speaking, the partial type of the A-generics ofB can be written as
an intersection of some decreasing sequence of A-definable crowns (a crown being
a ball from which we removed some subball that can be empty). In case of weak
genericity, less crowns are involved, so the set of realizations is larger.

If B has a least element which is a closed ball, then we will say that B is residual.
If not, then B will be called ramified (with respect to A) if ∩B strictly contains
an A-ball or a point in K(A), and B will be called immediate (with respect to A)
otherwise.

If X is a ball, a ∈X and b /∈X , then we have rv(b − a) = rv(b − a′) for all a′ ∈X .
As a result, we can define rv(b −X) to be rv(b − a) for any a ∈X .

Remark 2.12. If the value group is discrete, then every ball is both open and closed.
If it is dense however, then there is no ball that is both open and closed.

Remark 2.13. Let B and B
′ be chains of A-balls. One can note that the sets of

A-generic points of each chain of A-balls are the classes of some equivalence relation
(to belong to the same A-balls), which is even A-type-definable. As a result, B and
B
′ have the same A-generic points if and only if they have at least one A-generic

point in common.
Using the definition of genericity, one can easily show that B and B

′ have the
same A-generic points if and only if the A-type-definable sets ∩B and ∩B′ coincide.

Moreover, if the balls of B and B
′ are pointed, then the same two characteriza-

tions hold when we look at their A-weakly generic points.

When the parameter set is algebraically closed, and generated by field elements,
we have a good understanding of when the notions of genericity and weak genericity
do not coincide:
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Proposition 2.14. Let M ⊧ HF0,0, A ⊆Meq so that A = acleq(K(A)), and B a
chain of pointed A-balls. Suppose there is c ∈ K(M), A-weakly-generic of B, but
not A-generic of B.

Then B is residual. Moreover, if Y is the largest open ball that contains c which
is strictly contained in ∩B, then Y is an A-ball (which must not be pointed by weak
genericity of c), and c is A-generic of {Y }.
Proof. By hypothesis, there exists Y an A-ball containing c that is not pointed. In
particular, Y is strictly contained in ∩B. By 2.3, there exist a finite family (ai)i<N
of elements of K(A), and Z an A-definable subset of RVN , so that:

Y = {x ∈K ∣(rv(x − ai))i ∈ Z}
Clearly, as Y is not pointed, none of the ai belongs to Y . Let γ ∈ Γ(A) be the least
of the val(ai − Y ). There does not exist any δ ∈ Γ(M) so that γ < δ < rad(Y ),
for if not, then choose b ∈ K(M) for which val(b − c) = δ, for every i we have
rv(ai − b) = rv(ai − c), so b ∈ Y , which contradicts val(b − c) < rad(Y ).

If Γ(M) is dense, this must imply that Y is open and rad(Y ) = γ. If Γ(M) is
dicrete, then of course Y is open and closed, and the radius of Y as a closed ball is
the successor of γ.

As Y is open, let X be the least closed ball that strictly contains Y . As X is
definable over the canonical parameter of Y , X is an A-ball. The radius of X is
γ, so at least one of the ai must be in X , so X is pointed. There is no (Meq-)ball
between X and Y , and c ∈ Y , so c must be A-weakly generic of {X}. Now, by
2.13 applied to {X} and B, X must be a lower bound of B. Then, X must be the
least element of B, otherwise a standard compactness argument could be used to
show that the inclusion of type-definable sets X ⊆ ∩B would be strict, which would
contradict 2.13. As a result, we notice that X is canonical, its construction does
not depend on the choice of Y , but Y does depend on X : it is the largest open
ball containing c and strictly contained in X . Therefore, the choice of Y must be
unique: Y is the only A-ball containing c that is not pointed. There is no A-ball
smaller than Y containing c, so c is A-generic of {Y }, this concludes the proof. �

Corollary 2.15. LetM ⊧ HF0,0, and A ⊆Meq so that A = acleq(K(A)). If Γ(M)
is dense, then any closed A-ball is pointed.

Proof. Let X be a closed A-ball, and c ∈K(M) an A-generic point of {X}. Let B
be the set of every pointed A-ball containing c. If X was not pointed, then c would
not be A-generic of B, so we could apply the proposition to show that c would be
A-generic of {Y } for some open ball Y . However, X is not open, so we reach a
contradiction by 2.13 applied to {X} and {Y }, and X must be pointed. �

Corollary 2.16. Let M ⊧ HF0,0, and A ⊆Meq so that A = acleq(K(A)). Let B
be a chain of A-balls. If B is ramified, then ∩B actually has a point in K(A).
Proof. Let Y be an A-ball strictly contained in ∩B. If Y is closed and Γ(M) is
dense, then we are done by the corollary.

Else, let X be the least closed ball strictly containing Y (which is in fact the least
ball strictly containing Y ). The ball X is clearly an A-ball, and we have X ⊆ ∩B by
minimality of X . This inclusion is strict as B is not residual. Let c be an A-generic
point of {Y }. If Y is not pointed, then we can apply the proof of the proposition
(to the set of pointed A-balls containing c) to show that X is pointed, so ∩B has
a point in K(A) either way. �
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Proposition 2.17. Let M ⊧ HF0,0, and A ⊆Meq so that A = acleq(K(A)). Let
c, d ∈K(M) be singletons, and B the set of pointed A-balls that contain c. Suppose
d ∈ ∩B. Then:

● If ∩B has no point in K(A), then c ≡A d.
● If a ∈K(A) is in ∩B, and rv(c − a) = rv(d − a), then c ≡A d.

Proof. As A = acleq(K(A)), it is sufficient to show c ≡K(A) d. By 2.3, it is sufficient
to show that rv(c − a′) = rv(d − a′) for all a′ ∈K(A). Let a′ ∈K(A).

● Suppose a′ /∈ ∩B. Let X ∈B so that a′ /∈ X . Then rv(a′ − c) = rv(a′ −X) =
rv(a′ − d).

● Suppose a′ ∈ ∩B (so the point a from the statement of the proposition
exists). Let X be the least closed ball that contains a and a′. Then X

is a pointed A-ball that does not contain c, so rv(c − a′) = rv(c − a) and
val(c − a′) < rad(X). As rv(d − a) = rv(c − a), we have val(d − a) =
val(c − a) < rad(X), so val(d − a′) < rad(X), so d /∈ X , which implies
rv(d − a′) = rv(d − a) = rv(c − a) = rv(c − a′).

Either way, we have rv(c − a′) = rv(d − a′), so we can conclude. �

An extensive study of unary types over imaginary parameters has been carried
out in [13], in the setting of pseudo-local fields. In particular, there is an analogue
of the above proposition with imaginary parameters, when the value group is a
Z-group:

Proposition 2.18 ([13], Lemma 3.7). Let M ⊧ HF0,0 with Γ(M) ≡ Z, and A ⊆Meq so that A = acleq(A). Let c, d ∈K(M) be singletons, and B the set of A-balls
that contain c. Suppose d ∈ ∩B, and B is A-immediate. Then c ≡A d.

Proposition 2.19. LetM ⊧ HF0,0, A ⊆ B ⊆Meq so that A = acleq(A), B a chain
of A-balls, and c ∈K(M) a point A-generic of B. Then there exists c′ ≡A c (in an
elementary extension of M) that is B-generic of B.

Proof. Suppose not. Then, by compactness, there exists a finite family (Xi)i of
B-balls strictly contained in ∩B so that, for all c′ ≡A c, we have c′ ∈ ⋃

i
Xi. Replace

M by a ∣B∣+-saturated, strongly ∣B∣+-homogeneous elementary extension.

● Suppose B is residual. Let Yi be the largest open ball containing Xi, and
strictly contained in min(B) (the least element of B). The definable set

⋃
i
Yi is A-invariant, so each Yi is an acleq(A) = A-ball, so c /∈ Yi by A-

genericity. However, we have c ∈ ⋃
i
Yi, a contradiction.

● Suppose B is not residual. Without loss of generality, suppose each Xi

contains at least one A-conjugate of c. Let X be the least closed ball that
contains all the Xi. Then X is the least closed ball that contains every
A-conjugate of c, so X is A-invariant, therefore X is an A-ball. As c ∈ X ,
X ∈B (we can replace B by the set of every A-ball containing ∩B, without
loss of generality). By hypothesis, X is not the least element of B, so the
largest open ball containing c and strictly contained in X (let us call it Y )
is an A-ball. This contradicts the minimality of X , as each Xi is strictly
contained in Y , so the least closed ball that contains all of them must be
(weakly) contained in Y . �
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2.4. Lifts of the residue field.

Definition 2.20. In a valued fieldM, a lift of the residue field is a ring morphism
k(M)Ð→ OM that is a section of res.

In the Hahn field k′((tG)), the standard lift maps an element of k′ to the corre-
sponding constant polynomial.

Proposition 2.21 ([18], subsection 2.4). LetM ⊧HF0,0. Then there is a canonical
1-1 correspondence between the lifts of the residue field in M and the maximal
proper subfields of OM.

Moreover, if N ⊧ HF0,0, f ∶ N Ð→M is an embedding, and l is a lift of the
residue field in N , then there exists at least one lift of the residue field l′ in M so
that l′ extends f−1lf ∶ f(k(N))Ð→ OM.

Corollary 2.22. In any valued field M ⊧HF0,0, the residue field can be lifted.

Proof. Apply the proposition to the (canonical) embedding intoM whose domain
is the trivially valued field Q (which is of course Henselian). �

Remark 2.23. IfM ⊧ HF0,0, a ∈ K(M), and α ∈ k(M), then the following condi-
tions are equivalent:

● There exists a lift of the residue field sending α to a.
● α and a have the same ideal over Q.

Lemma 2.24. LetM ⊧HF0,0. Suppose ac and s exist inM. Let l be a lift of the
residue field. Let a ∈K(M)∗ so that val(a) ≠ 0. Then a ≡∅ l(ac(a))s(val(a)).
Proof. Let b = l(ac(a))s(val(a)). We have ac(a) = ac(b) and val(a) = val(b), so
rv(a) = rv(b) (as ac and s exist, we have a group isomorphism between RV(M)
and k(M)∗ × Γ(M)). Moreover, as val(a) ≠ 0, we can apply 2.6 to get a ≡∅ b. �

Proposition 2.25. Let M ⊧ HF0,0, and A = acleq(K(A)) ⊆Meq. Suppose the
following conditions hold:

● ac and s exist in M.
● For every γ ∈ Γ(dcl(∅)), there exists an a ∈K(A) so that val(a) = γ.
● For every N > 0, α ∈ ac(K(A)), there exists a ∈ O∗A so that
res(a) mod (k∗)N = α mod (k∗)N .

Then, for every δ ∈ Γ(A), there exists an a ∈K(A) so that val(a) = δ.
In particular, the radius of every A-ball can be written val(a) for some a ∈K(A).

Proof. Let δ ∈ Γ(A). Then δ is K(A)-definable, so by 2.8 it is actually val(K(A))-
definable. By ([8], Corollary 1.10), the definable closure of val(K(A)) in the or-
dered group Γ(M) is exactly the relative divisible closure of the subgroup of Γ(M)
generated by val(K(A)) and Γ(dcl(∅)). In other words, there exist γ ∈ Γ(dcl(∅)),
a ∈K(A), and N > 0 so that δ = val(a)+γ

N
. By hypothesis, there exists a′ ∈K(A) so

that val(a′) = γ.
Let ā ∈ O∗A so that res(ā) mod (k∗)N = ac(aa′) mod (k∗)N . Let a′′ = aa′ā−1.

We have a′′ ∈ K(A) and val(a′′) = val(a) + γ. We will conclude the proof by
showing that a′′ has an Nth-root in K(M), this root will have value δ, and it will
also belong to K(A), as A = acl(A).
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We have ac (a′′) = ac(aa′)
res(ā)

∈ (k∗)N . Let r′ ∈ k∗ so that r′N = ac(a′′), and let l be

a lift of the residue field. We have (l(r′))N = l(ac(a′′)), so l(ac(a′′)) has an Nth-
root in K(M). As a result, l(ac(a′′))s(val(a′′)) also has an Nth-root in K(M),
namely l(r′)s(δ). By 2.24, l(ac(a′′))s(val(a′′)) ≡∅ a′′, so a′′ also has an Nth-root
in K(M), and we can conclude. �

3. The strength of the residue field’s stable embeddedness

In the Proposition 2.8, one cannot help but notice that the result on definable
subsets of k is weaker than that on Γ. In particular, we don’t have an analogue of
2.9 in k. This property will sometimes be needed for our results on unary forking,
so we would like to understand when it holds. In this section, we will show a
counterexample in which this analogue does not hold, and we will give sufficient
conditions to obtain the same nice behavior as what we have in Γ. The strategy
for the proofs is to work in an elementary extension that is a Hahn field, where the
specific structure will give us more tools to build elementary maps.

We invite the reader to recall what we said in the Remark 2.1 to not get confused
in the notations. For instance, in the Definition 3.6, we have an explicit field k′,
but we use the notation k to define some definable subset X of k′, because X has
points in elementary extensions of k′ that are not in k′.

3.1. Algebraic technicalities. In order to build our example and prove our ver-
sion of 2.9 in k, we first need to state simple field-theoretic facts.

Definition 3.1. Let G be an ordered Abelian group, and k′ a field of characteristic
zero. We will define two (injective) group homomorphisms:

aut1k′,G ∶ Aut(k′) Ð→ Aut(k′((tG)))
aut2k′,G ∶ Hom(G,k′∗) Ð→ Aut(k′((tG)))

The automorphisms of k′((tG)) we consider are of course valued field automor-
phisms.

For every σ ∈ Aut(k′), aut1k′,G(σ) is defined as ∑
α
aαt

α z→ ∑
α
σ(aα)tα.

For every σ ∈ Hom(G,k′∗), aut2k′,G(σ) is defined as ∑
α
aαt

α z→ ∑
α
aασ(α)tα.

The map aut1k′,G is classical, and the map aut2k′,G is denoted P in the Definition

3.3.5 of the paper [16], to which we refer the interested reader for a more elaborate
study of automorphisms of Hahn fields (and some of their subfields).

Lemma 3.2. Let G be a divisible group, and g ∈ G. Then there exists σ ∈
Hom(Q,G) so that σ(1) = g.
Proof. Let g1 = g. By induction on n > 0, choose gn+2 ∈ G an (n + 2)th root of
gn+1 (ie gn+2n+2 = gn+1). In particular, gn+1 is always an ((n + 1)!)th root of g. For

each (n,m) ∈ Z×Z>0, define f(n,m) = (gm)n(m−1)!. By straightforward, but rather
long computations, one can show that f factors through the canonical surjection
Z × Z>0 Ð→ Q, and that the induced map Q Ð→ G is a group homomorphism
sending 1 to g. �

Lemma 3.3. Let k′ be a field of characteristic zero, and n > 0. Then, in the field
k′(u) (u being any transcendental element), u

u+n
is not a square.



EXTENSION BASES IN HENSELIAN VALUED FIELDS 11

Proof. If u
u+n

were a square, then there would exist P , Q ∈ k′[u] so that Q ≠ 0

and Q2
⋅ u = P 2

⋅ (u + n). Now, k′[u] is a UFD where u and u + n are coprime and
irreducible. As a result, u appears an even amount of times in the factorization of
P 2

⋅ (u+n) in k′[u], and it appears an odd amount of times in that of Q2
⋅u, so we

cannot have Q2
⋅ u = P 2

⋅ (u + n). �

Lemma 3.4. Let k′ be an algebraically-closed field of characteristic zero, 1 ≠ λ ∈
Q>0, and P , Q coprime non-zero polynomials in k′[u]. If P (u)

Q(u)
= P (λu)

Q(λu)
in k′(u),

then both P and Q are constant.

Proof. Suppose, say, P is non-constant (the same proof will work if Q is non-
constant), and admits a non-zero root α. As λ ∈ Q∗, and k′ has characteristic zero,
the orbit of α under the bijection h ∶ x z→ λ−1x is infinite. Therefore, there
exists n ∈ Z so that hn(α) is a root of P (u), but hn+1(α) is not. As hn(α) is a
root of P (u), hn+1(α) is a root of P (λu). As P (u)Q(λu) = P (λu)Q(u), hn+1(α)
is a root of P (u)Q(λu), so it is a root of Q(λu). This contradicts the coprimality
hypothesis, as hn(α) is a common root of P (u) and Q(u).

Now, P and Q are coprime and do not admit any non-zero root. In particular,
P and Q are either both constant, or one of them is constant and the other can be
written βXN for some β ∈ k′∗, N > 0. Then, if P and Q are not both constant, it

is easy to see that P (u)
Q(u)

≠ P (λu)
Q(λu)

, which concludes the proof. �

Corollary 3.5. Let k′ be a field of characteristic zero, 0 < N ≠ M > 0, and F ∈
k′(u) ∖ k. Then F (Mu) ≠ F (Nu).
Proof. We can assume k′ is algebraically-closed. We can write F (Nu) = P (u)

Q(u)
, with

P , Q ∈ k′[u] coprime and non-zero (because F ≠ 0). If we had F (Mu) = F (Nu),
then we would have P (u)

Q(u)
= P (M

N
u)

Q(M
N

u)
, so both P and Q would be constant by the

lemma, so F ∈ k′, this is absurd. �

3.2. An example of weak stable embeddedness. Let us build an example of a
Henselian valued field of residue characteristic zeroM, a subfield A <K(M), and
an A-definable set X ⊆ k(M) so that X is not k(acl(A))-definable (and hence in
particular not res(K(acl(A)))-definable). We will also have Γ(acl(A)) > Γ(dcl(∅)),
so that the example is not too degenerate.

Definition 3.6. Let k′ = Qalg(u), G = Q, andM = k′((tG)). We will write ac for
the natural angular component map ofM, and we will identify k′ with a subfield of
K(M) via the natural lift of the residue field. Let A ⊆K(M) be the field generated
by u ⋅ t, and X = u mod (k∗)2 = {x ∈ k∣x ⋅ u−1 ∈ (k∗)2}.
Proposition 3.7. The set X is A-definable.

Proof. Consider the A-definable set:

Y = {x ∈ k∣∃y ∈K val(y) = val(u ⋅ t) ∧ y ∈ (K∗)2 ∧ x = res(u ⋅ t ⋅ y−1)}
Let us show that X = Y .

If x ∈ X(M), then we have x = uv2 for some v ∈ k′∗. We have x ∈ Y (M) by
choosing y = (v−1 ⋅ t 1

2 )2.
Let x ∈ Y (M), and y be as in the definition of Y . Then ac(y) must be in (k′∗)2,

and we have x = u ⋅ ac(y)−1, so x ∈ X(M).
We have X(M) = Y (M), so X = Y . �
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Proposition 3.8. We have k(acl(A)) = Qalg.

Proof. Let N > 0. Let σN ∈ Aut(k′) be defined as σN(F (u)) = F (Nu). Apply 3.2
to the divisible group (Qalg)∗ to find σ′N ∈Hom(Q, k′∗) so that σ′N(1) = N−1. Let
τN = aut2k′,G(σ′N)○aut1k′,G(σN). Then τN ∈ Aut(M/A). By 3.5 (with k′ = Qalg), for

each F ∈ k′∖Qalg, (τN(F ))N = (F (N ⋅u))N is an infinite family of pairwise-distinct
A-conjugates of F , so F /∈ acl(A). This concludes the proof. �

Proposition 3.9. The definable set X has infinitely many Qalg-conjugates.

Proof. For each N < ω, let σN ∈ Aut(k′/Qalg) be defined as σN(F (u)) = F (u+N),
and τN = aut1k′,G(σN).1 By 3.3, the (τN(X))N are all pairwise-distinct. �

As a result the A-definable set X is not k(acl(A))-definable, which concludes
our example of a Henselian valued field of residue characteristic zero where k is not
strongly stably embedded.

3.3. Elementary embeddings into Hahn fields. Apart from the proof of 2.10,
the content of this subsection is mostly an application of some of the material
covered in the notes of van den Dries [18].

Proposition 3.10 ([18], Corollary 4.29). Let M be any valued field of residue
characteristic zero. Let σ1, σ2 be valued field embeddings with domain M, andMi a maximal immediate extension of σi(M). Then there exists τ a valued field
isomorphism M1 Ð→M2 so that σ2 = τ ○ σ1.

Proposition 3.11. LetM be a Henselian Pas field of residue characteristic zero,
and l a lift of the residue field. Then there exists a valued field embedding σ ∶MÐ→ k(M)((tΓ(M))) so that the following conditions hold:

● σ is the identity on k(M)∪ Γ(M).
● For every α ∈ k(M), σ(l(α)) is the constant series α.
● For every γ ∈ Γ(M), σ(s(γ)) = tγ.

Moreover, σ is an elementary map of Pas fields.

Proof. For the construction of σ and the proof that it satisfies the conditions from
the list, onc can read the discussion from the notes of van den Dries between the
lemmas 4.30 and 4.31.

For the proof that σ is an elementary map, one can read the section 5.5 of the
notes, especially the definitions at the beginning and theorem 5.21. It is clear that
σ is a “good map” with respect to these definitions. �

We will actually need a construction that is a little more specific to prove Lemma
2.10:

Proposition 3.12. Let G be an ordered Abelian group, k′ a field of characteristic
zero, andM a Pas elementary extension of k′((tG)) (in the Pas language). Then

there exists σ an elementary embedding of Pas fieldsMÐ→ k(M)((tΓ(M))) so that
the following conditions hold:

● σ is the identity on Γ(M)∪ k(M).
● The restriction of σ to k′((tG)) is the inclusion map.

1The map σN is Qalg-invariant, but it is not A-invariant anymore.
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Proof. The proof is written in the same spirit as in the notes of van den Dries.
Let l be a lift of the residue field in M extending that of k′((tG)) (by 2.21).

Let K ′ be some maximal immediate extension ofM, and L be the subfield ofM
generated by k′((tG)) ∪ s(Γ(M)) ∪ l(k(M)). We have a valued field embedding

τ ∶ L Ð→ k(M)((tΓ(M))) sending each s(γ) to tγ , sending each l(α) to the
constant polynomial α, and sending each element of k′((tG)) to itself. Now, the

extension L ⩽M is clearly immediate, so K ′ and k(M)((tΓ(M))) are both maximal
immediate extensions of L. By 3.10, we have σ a valued field isomorphism K ′ Ð→

k(M)((tΓ(M))) that extends τ . By construction of τ , σ is also a Pas isomorphism.

Notice now that the inclusion σ(M) Ð→ k(M)((tΓ(M))) is a “good map”, hence an

elementary embedding of Pas fields. As a result,M Ð→ σ(M)Ð→ k(M)((tΓ(M)))
witnesses the proposition. �

Now, as promised, here is a proof of Lemma 2.10. The techniques used in this
proof are quite similar to those used in subsection 3.4. We give less formal details
here than in the next subsection.

Proof of Lemma 2.10. Let H be the ∅-type-definable group ⋂
N<ω
(k∗)N . For each

N < ω, let XN be the definable set:

{x ∈ RV∣x mod (k∗)N ⊆X}
Let Xω = {x ∈ RV∣x mod H ⊆X}. We just have to prove that val(X ∖XN) is finite
for some N < ω. If not, then by compactness val(X ∖Xω) must be infinite. Let us
show that this is impossible.

We can apply 3.11 to some Pas field that is an elementary extension ofM (which
exists by 2.7) to findM1 a Hahn field that is an elementary extension ofM. LetN be a ∣M1∣+-saturated elementary extension ofM1. By 3.12, letM2 be a Hahn
field that containsM1 so that we have an elementary embedding σ ∶ N Ð→M2

which restricts to the identity onM1.
By compactness and saturation, if val(X ∖Xω) was infinite, then there would

exist x ∈ RV(σ(N)) so that x ∈X ∖Xω and val(x) /∈ Γ(M1). Let y be in H(σ(N))
so that xy /∈ X . By 3.2 applied to the divisible group H , let τ ∈Hom(Q ⋅val(x),H)
so that τ(val(x)) = y. Let A ⩽ Q ⊗ Γ(M2) so that Q ⊗ Γ(M2) = (Q ⊗ Γ(M1)) ⊕
A ⊕Q ⋅ val(x). Let τ ′ be the group homomorphism Q ⊗ Γ(M2) Ð→ k(M2)∗ that
extends τ which is trivial on (Q ⊗ Γ(M1)) ⊕A. Then aut2

k(M2),Γ(M2)
(τ ′∣Γ(M2)

) is
a valued field automorphism ofM2 leavingM1 pointwise-invariant, and sending x
to xy. As X isM1-definable, we must have xy ∈ X , a contradiction. �

3.4. A sufficient condition for strong stable embeddedness.

Lemma 3.13. Let M ⊧ HF0,0 be ℵ1-saturated, and A ⊆ Meq an algebraically-
closed parameter set. Suppose M is strongly-∣A∣+-homogeneous, and let ac be an
angular component onM. Let H be the divisible ∅-type-definable group ⋂

N>0
(k∗)N .

Suppose for all r ∈ ac(K(A)), there exists a ∈ OA so that res(a) mod H = r mod H.
Then every A-definable subset of k is actually res(K(A))-definable in the pure field
k(M).
Proof. Let X be an A-definable subset of k. Any element of Q ⊗ val(K(A)) is a
Q-linear combination of elements from val(K(A)), so there exists (γi)i a family
of values from val(K(A)) that is a Q-base of Q ⊗ val(K(A)). In other words,
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Q ⊗ val(K(A)) is the direct sum of the Abelian groups (Qγi)i. Let ai ∈ K(A)
so that val(ai) = γi, and a′i ∈ OA so that res(a′i) mod H = ac(ai) mod H . Let

ri = ac(ai

a′
i

) ∈H .

Write for short k′ = k(M), G = Γ(M), and let us identifyM with a Pas elemen-
tary substructure of k′((tG)) by using 3.11. Note that the Hahn series in k′((tG))
that have finite support belong toM by the conditions of 3.11.

By 2.6, and by strong-homogeneity, there exists σ ∈ Aut(M) so that σ (ai

a′
i

) =
rit

γi . By 3.2 applied to H , as Qγi is isomorphic to Q, choose τi ∈ Hom(Qγi, k′∗)
so that τi(γi) = r−1i . By the universal property of the direct sum, we can find
τ ′ ∈ Hom (Q⊗ val(K(A)), k′∗) extending each of the τi. Now, choose B a Q-
vector-subspace of Q ⊗ G so that Q ⊗ G = (Q ⊗ val(K(A))) ⊕ B, and extend τ ′

to τ ′′ ∈ Hom (Q⊗G,k′∗) so that τ ′′∣B = 1. Let τ = aut2k′,G(τ ′′∣G). Then τ is an

automorphism2 of k′((tG)) leaving k′, G pointwise-invariant, and sending each rit
γi

to tγi . Let L be the subfield of K(A) generated by the ai

a′
i

. Then we clearly have

res(τ ○σ(L)) = ac(τ ○σ(L)). By 2.2, we have res(τ ○σ(K(A))) = ac(τ ○σ(K(A))).
By 2.8, τ ○ σ(X) is res(τ ○ σ(K(A)))-definable in the pure field k′. Now, as M
is an elementary substructure, σ and hence τ ○ σ is an elementary map, so X is
res(K(A))-definable in the pure field k(M). �

Lemma 3.14. Let M ⊧ HF0,0, and A ⊆Meq so that A = acleq(K(A)). Suppose

[k∗ ∶ (k∗)N] is finite for each N > 0. Suppose for each N > 0, α ∈ k
∗
Ò(k∗)N , there

exists a ∈ OA so that res(a) mod (k∗)N = α. Then any A-definable subset of k is
res(K(A))-definable in the pure field k(M).
Proof. By the finiteness hypothesis, we can freely replace M by an ℵ1-saturated,
strongly-∣A∣+-homogeneous elementary extension. Let X be an A-definable subset
of k, and H = ⋂

N>0
(k∗)N . For each N > 0, let πN be the canonical projection

k∗ÒH Ð→
k∗Ò(k∗)N . Let p be the partial type

{res(xα) mod (k∗)N = πN (α)∣α ∈ k∗(M)ÒH(M),N > 0}
The partial type p does not necessarily have a realization in K(A), but it is finitely
satisfiable in K(A) by hypothesis on A.

Let EN be the set of every formula with parameters in K(A) and variables in(xα)
α∈k

∗(M)ÒH(M)
, y1...yN . For each φ ∈ EN and m > 0, let φ̄m be the formula in

the variables (xα)
α∈k

∗
ÒH

stating that the set:

{y1...yN ∈K ∣φ((xα)α, y1...yN)}
has exactly m elements. Let FN be the set of every formula (in the language of
the pure field k) without parameters, with variables y1...yN ∈ k, z ∈ k. Let q be the
following partial type in the variables (xα)α:⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ̄m Ô⇒ [ N,m > 0
∀y1...yN ∈ O (φ((xα)α, y1...yN)Ô⇒ φ ∈ EN

¬[∀z ∈ k (z ∈X ⇐⇒ ψ(res(y1)...res(yN), z))])] ψ ∈ FN

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

2The map τ is an automorphism of valued fields, but it is not an automorphism of Pas fields.
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The realizations of q are the tuples (aα)α for which X is not res(K(acl(A(aα)α)))-
definable. The definition of q can be read “for all yi, if yi is A(xα)α-algebraic via
the formula φ, then the formula ψ(res(yi), z) does not define X”.

Now the Lemma 3.13 implies that the type p∪q is inconsistent. By compactness,
as p is finitely satisfiable in K(A), K(A) has a tuple that is not a realization of q.
This concludes the proof. �

Corollary 3.15. Let M ⊧ HF0,0, and A ⊆M, so that A = acl(K(A)). Suppose[k∗ ∶ (k∗)N ] is finite for every N > 0, and A satisfies the conditions of the lemma.
Then, for all r, s ∈ k(M), if r ≡k(A) s in the field k(M), then we have r ≡A s in
the valued fieldM.

Remark 3.16. In the example of subsection 3.2, we have u ≡k(A) u+1, but u /≡A u+1.

The lemma also allows us to prove an analogue of 2.15. It will be useful for one
of our main results (Theorem 5.9).

Corollary 3.17. With the same hypothesis as the lemma, suppose additionally:

● For every γ ∈ Γ(dcl(∅)), there exists a ∈K(A) so that val(a) = γ.
● In the pure field k(M), for any subfield B for which Balg

∩ k(M) = B, we
have B = acl(B) in the theory of the field k(M).

Then, for any α ∈ RV(A), there exists a ∈K(A) so that rv(a) = α.
Proof. Let α ∈ RV(A). By 2.25, any value of Γ(A) can be pulled back to K(A),
so we can assume by scaling everything that val(α) = 0, ie α ∈ k∗. Now, α ∈
acleq(K(A)), so by the lemma we actually have α ∈ acl(res(K(A))) in the pure
field structure of k(M). By hypothesis, α ∈ res(K(A))alg ∩ k(M). Therefore, we
have a polynomial P with non-zero coefficients in OM∩K(A) so that α is a root of
res(P ). If we choose such a P as a pullback of the minimal polynomial of α over
res(K(A)), then, by Henselianity and as we are in residue characteristic zero, there
exists a root of P in K(M) having residue α. As P is chosen whith coefficients in
K(A), and A = acleq(K(A)), this root is in K(A), which concludes the proof. �

Corollary 3.18. With the same hypothesis as the above corollary, every A-ball is
pointed.

Proof. Let Y be an A-ball. If Y is not open, then Γ is dense, so we can apply 2.15
to conclude. Else, by using 2.3 with a reasoning similar to 2.15, we can prove that
X the minimal closed ball strictly containing Y is pointed. Let a ∈K(A)∩X . We
can use the above corollary to find a′ ∈ K(A) so that rv(a′) = rv(Y − a), and we
can conclude as a′ + a ∈ Y . �

4. Forking and dividing

4.1. Basic facts. We will explicitly state each property of forking and dividing
that will be needed in this paper. For a more general overview of these notions, we
refer to [17] and [3].

Let us recall the definition of forking and dividing. In order to simplify the
definitions, we will fix κ an arbitrarily large infinite cardinal, andM a κ-saturated,
strongly-κ-homogeneous structure. A set A will be called small if ∣A∣ < κ.
Definition 4.1. Let A be a small subset of M, and X a definable subset of M
in a small number of variables (this number can be infinite, it does not matter as
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only a finite number of those variables can appear in the formula defining X). We
say that N < ω, and (σn)n<ω ∈ Aut(M/A)ω constitute a witness for division of X
over A when σ0 = id, and, for all P ∈ P(ω), if ∣P ∣ = N , then ⋂

n∈P
σn(X) = ∅. We

say that X divides over A when such a witness for division exists. We say that X
forks over A if there exists a finite family X1...Xn of definable subsets ofM so that
X ⊆ ⋃

i
Xi, and Xi divides over A for all i.

We shall say that a partial type p divides (resp. forks) over A if some finite
intersection of definable subsets from p divides (resp. forks) over A.

Let B,C be small subsets ofM. We note C ⫝d
A
B (resp. C ⫝f

A
B) if tp(C/AB)

does not divide (resp. does not fork) over A.

Remark 4.2. If π is a partial type over AB that does not fork over A, then there
exists a completion of π over AB that does not fork over A.

This extension property might not hold for dividing, in fact the purpose of the
definition of forking is to satisfy this property. Forking can be defined as the
subrelation of ⫝d satisfying this extension property, that is “maximal” in some

sense (see [3], Proposition 12.14).
However, by going from dividing to forking, we lose a crucial property: not

all sets are extension bases anymore (this notion will be formally defined soon).
Therefore, the study of extension bases that we carry out in this paper is a way
to understand when forking keeps the good properties that hold for dividing, when
we can get the best of both worlds.

Remark 4.3. ● These definitions do not depend on the choice of the monster
model M. In other words, if N is a κ-saturated, strongly-κ-homogeneous
structure, A′B′C′ ⊆ N , and ABC z→ A′B′C′ is a partial elementary map
with respect toM and N , then we have C ⫝f

A
B ⇐⇒ C′ ⫝f

A′
B′.

● If C /⫝f
A
B, then there exists c1...cn ∈ C so that c1...cn /⫝f

A
B (we call that

property left finite character).
● If X ⊆ Y are two definable sets, and Y divides (resp. forks) over A, then
so does X .

Proposition 4.4. If f is an A-definable function, and Y is a definable subset of
the image of f , then Y divides over A if and only if f−1(Y ) does.
Proof. Let (σn)n ∈ Aut(M/A)ω. As f is A-definable, we have the equality:

σn(f−1(Y )) = f−1(σn(Y ))
Now, if P ⊆ ω, then:

⋂
n∈P

σn(f−1(Y )) = ⋂
n∈P

f−1(σn(Y )) = f−1 (⋂
n∈P

σn(Y ))
As Y and its A-conjugates are subsets of the image of f , such an intersection is
empty if and only if ⋂

n∈P
σn(Y ) = ∅. As a result (σn)n is a witness for division of Y

over A if and only it is also a witness for division of f−1(Y ) over A, which concludes
the proof. �

Fact 4.5. Let A, B, C be small subsets of M. Then:
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(1) C ⫝f
A
B ⇐⇒ C ⫝f

acl(A)
B. (This is because every A-indiscernible sequence is

acl(A)-indiscernible.)
(2) If B is an ∣AC ∣+-saturated, strongly-∣AC ∣+-homogeneous elementary sub-

structure of M that contains A, then C ⫝f

A
B ⇐⇒ C ⫝d

A
B. Moreover, if

p is a complete type over B in a finite number of variables, and the orbit
of p under Aut(B/A) is smaller than ∣A∣+ (in particular, if this orbit is a
point), then p does not divide over A. (See for instance [17], exercises 7.1.3
and 7.1.5.)

(3) If D is a small subset ofM, C ⫝f
A
B, and D ⫝f

AC
B, then CD ⫝f

A
B (we call

that left transitivity).

Let us conclude this subsection by an example set in the class of ordered Abelian
groups, which will be useful later.

Remark 4.6. Let G be a non-trivial ordered Abelian group, and A,B ⊆ G. Suppose
the following conditions hold:

● G is ∣AB∣+-saturated.
● ∀a ∈ A ∀b ∈ B a < b.
● G is dense or A does not have a largest element.

Then, one can show by an easy compactness argument that the type-definable set
X = ⋂

a∈A,b∈B
]a, b[ is non-empty in G.

Moreover, suppose G ≡ Z, A′, B′ are small subsets of G so that A ⊆ A′ ⊆ B′ ⊇ B,
and X does not have any point in dcl(B′). Then one can prove that c ⫝f

A′
B′. This

can be done by looking at the unary types in the ordered group Z, which are easy
to understand. In fact, more generally, the author has soon to be available preprint
about forking in a larger class of ordered Abelian groups, from which this result
follows immediatly.

4.2. Further results. The facts in this subsection are already known, but we do
not know of good references where they are proved explicitly. Propositions 4.8 and
4.9 are proved in ([6], Lemma 3.21.(2)) with hypothesis that are not necessary.

Lemma 4.7. Let A be a small subset ofM, Z, Z ′ A-definable sets, R ⊆ Z ×Z ′ an
A-definable set, and m < ω. Suppose that, for all x ∈ Z, the set Rx = {y ∈ Z ′∣R(x, y)}
has exactly m elements.

Then, if Y ⊆ Z ′ is anM-definable set that divides over A, then the definable set
X = {x ∈ Z ∣∃y ∈ Y R(x, y)} divides over A.

Proof. By contraposition, suppose X does not divide over A. Let N < ω, and(σn)n<ω ∈ Aut(M/A)ω so that σ0 = id. As X does not divide over A, there must
exist P a subset of ω of sizeNm so that ⋂

n∈P
σn(X) ≠ ∅. Let α be in that intersection.

As α ∈ Z, let β1...βm be the elements of Rα. For each n ∈ P , let 1 ⩽ f(n) ⩽ m so
that βf(n) ∈ σn(Y ). By the pigeonhole principle, there exists 1 ⩽ q ⩽ m so that q
has at least N antecedents from f . Let Q = {n ∈ P ∣f(n) = q}. Then Q is a subset of
ω of size ⩾ N for which βq ∈ ⋂

n∈Q
σn(Y ), hence N, (σn)n is not a witness for division

of Y over A. This holds for all N, (σn)n, so Y does not divide over A, and we can
conclude. �
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Proposition 4.8. Let A, B, C, D be small subsets of M so that acl(AC) ⊆
acl(AD). If D ⫝f

A
B, then C ⫝f

A
B.

Proof. Let c be a finite tuple from C, Y an AB-definable set that contains c, p < ω,
and (Yi)0⩽i⩽p someM-definable sets so that Y ⊆ ⋃

i
Yi. Let φ(x, y) be a formula with

parameters in A so that φ(D,y) is the least finite (say, of size m < ω) AD-definable
set that contains c. Let ψ(x) be the A-definable formula stating that there exists
exactlym distinct points y1..ym for which φ(x, yi) holds for all i. Let X be the AB-
definable set containing (some enumeration of) D defined by the following formula
with free variable x:

ψ(x) ∧ (∃y (φ(x, y) ∧ y ∈ Y ))
Define similarly Xi from Yi. By hypothesis, X does not fork over A. We clearly
have X ⊆ ⋃

i
Xi, so there exists j so that Xj does not divide over A. By 4.7, Yj does

not divide over A. This holds for every choice of a finite family (Yi)i, so Y does
not fork over A. This holds for every Y , so c ⫝f

A
B. This holds for every finite tuple

c of C, so by left finite character we have C ⫝f
A
B. �

Proposition 4.9. If A, B, C are small subsets of M, and C /⫝f
A
acl(AB), then

C /⫝f
A
B.

Note that the other direction is an easy consequence of the definition of forking.

Proof. Let X be an acl(AB)-definable set containing C that forks over A. Let
X1...Xn witness that X forks over A, ie X ⊆ ⋃

i
Xi and each Xi divides over A.

Now, X has finitely many AB-conjugates, so there exist N < ω and σ1...σN ∈
Aut(M/AB) so that {σj(X)∣1 ⩽ j ⩽N} is the orbit of X under the action of
Aut(M/AB). The reunion Y = ⋃

j
σj(X) is an AB-definable set containing C.

As each σj pointwise-fixes A, each σj(Xi) divides over A (apply σj to a witness for

division). As Y ⊆ ⋃
ij
σj(Xi), we have C /⫝f

A
B, which concludes the proof. �

Lemma 4.10. Let A, C be small subsets of M, and X a definable subset of M
in a small number of variables that divides over A. Suppose (2∣AC ∣)+ < κ (an
assumption that can always be made as κ is arbitrarily large, and we can replaceM
by a sufficiently large elementary extension). Then there exists C′ ≡A C, C′ ⊆M,
so that X divides over AC′.

Proof. Let b ∈M so that X is b-definable. By a standard compactness argument,
from a witness for division of X over A, we can find a sequence (σi)i<(2∣AC∣)+ ∈

Aut(M/A)(2∣AC∣)+ , N < ω, so that, for all P ⊆ (2∣AC ∣)+, if ∣P ∣ = N , then ⋂
i∈P

σi(X) =
∅. Let us look at the map f ∶ i z→ tp(σi(b)/AC). The image of f is smaller

than 2∣AC ∣, so we can apply the pigeonhole principle to find i0 < i1 < i2... so that,
for all n < ω, f(in+1) = f(in). Let C′ = σ−1i0 (C) ≡A C. For each n < ω, σ−1i0 ○ σin(b)
is a σ−1i0 (AC) = AC′-conjugate of b, so we can use strong homogeneity to find

τn ∈ Aut(M/AC′) (τ0 = id) so that τn(b) = σ−1io ○ σin(b), ie τn(X) = σ−1io ○ σin(X).
Then N , (τn)n<ω is a witness for division of X over AC′. �



EXTENSION BASES IN HENSELIAN VALUED FIELDS 19

4.3. Extension bases.

Definition 4.11. Let A be a small subset ofM. Then A is an extension base if,
for every small subset C ofM, we have C ⫝f

A
A.

Remark 4.12. Note that models are extension bases: any type over a model admits
a global coheir, which is in particular a global non-forking extension. In any ele-
mentary extension of the ordered group Z, any definably-closed parameter set is a
model, therefore any set in the theory of (Z,+,<) is an extension base.

Lemma 4.13. Let A be a large subset of M, and C be a class of small subsets ofM. Suppose that, for every singleton c ∈ A, for all B ∈ C, we have Bc ∈ C. Then
the following conditions are equivalent:

● For every B ∈ C, for every small subset C of A, we have C ⫝f
B
B

● For every B ∈ C, for every singleton c ∈ A, we have c ⫝f
B
B.

Proof. The first condition clearly implies the second one.

Suppose the first condition fails. Let C be a small subset of A so that C /⫝f
B
B.

By left finite character, there exist singletons c1...cn ∈ C so that c1...cn /⫝f
B
B. By

(the contraposite of) left transitivity, there must exist i so that ci+1 /⫝f
Bc1...ci

B, so

ci+1 /⫝f
Bc1...ci

Bc1...ci by definition. However, by hypothesis, we have Bc1...ci ∈ C, so

the second condition fails, and we get the equivalence. �

Lemma 4.14. Suppose M is a Henselian valued field of residue characteristic
zero. Let A be a small subset ofMeq. Suppose C ⫝f

A
A for every small subset C of

K(M). Then A is an extension base.

Proof. Suppose M is a Henselian valued field of residue characteristic zero. Let
C be a small subset of Meq. For each c ∈ C, the sort of Meq that contains c
is the image of K under some surjective ∅-definable function fc (in fact Meq =
dcleq(K(M))), so we can find dc ∈ K(M) so that fc(dc) = c. Let D be the
reunion of all the dc. Then D is a small subset of K(M) for which C ⊆ dcl(D), so
acl(AC) ⊆ acl(AD). By hypothesis, we have D ⫝f

A
A, so we get C ⫝f

A
A by using

4.8. This holds for every C, so A is an extension base. �

Note that the above lemma applies more generally to every first-order structure,
where the sortK would be replaced by the reunion of the home sorts of the structure
at hand.

Corollary 4.15. Let C be a class of small subsets ofM for which, for every A ∈ C,
c ∈K(M), we have Ac ∈ C. Then the following conditions are equivalent:

● Every element of C is an extension base.
● For every A ∈ C, for every singleton c ∈K(M), we have c ⫝f

A
A.

Proof. This is an immediate consequence of 4.14 and 4.13 (with A =K(M)). �

Definition 4.16. SupposeM is a field. We denote classical field algebraic indepen-
dence by C ⫝alg

A
B, that is, for every finite tuple c from the field generated by AC,
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the transcendence degree of c over the field generated by A equals its transcendence
degree over the field generated by AB.

Instead of checking the definition for every finite tuple, one can equivalently check
equality of the transcendence degrees for every finite tuple that is algebraically
independent over the field generated by A.

Fact 4.17. IfM is a field, then ⫝f⊆⫝alg.

Remark 4.18. IfM is a field, and ⫝f=⫝alg, then it is easy to observe that every set

is an extension base.

5. Main results

In this section, we fix κ > ℵ0, M a κ-saturated and κ-strongly homogeneous
Henselian valued field of residue characteristic zero.

In order to study extension bases, we will use the argument of 4.15 to reduce to
the case of unary types. We will start this section by giving sufficient conditions for
a global unary type to be non-forking over some parameter set A. We have three
distinct cases that correspond to the three following lemmas. The cases depend on
the nature of the chain of A-balls of which our unary type is A-generic, as well as
whether A is generated by parameters from K.

The following lemma deals with the case of a non-residual chain, with A not
necessarily generated by field parameters.

Lemma 5.1. Let A be a small subset ofMeq, B a chain of A-balls, B a (2∣A∣)++-
saturated, strongly-(2∣A∣)++-homogeneous small elementary substructure ofMeq that
contains A, and c ∈K(M). Assume the following conditions hold:

● A = acleq(A).
● B is not residual.
● c is B-generic of B.
● There exists b ∈ K(B) ∩ (∩B) so that val(c − b) ⫝f

Γ(A)
Γ(B) in the ordered

group structure of Γ(M).
● For every N < ω, [k∗ ∶ (k∗)N] is finite.

Then we have c ⫝f
A
B.

Proof. First of all, let us notice that the smallest closed ball that contains b and c
is contained in ∩B, and this inclusion is strict, otherwise this closed ball would be
the least element of B, contradicting the hypothesis. By genericity of c, this ball
does not belong to B, but it has a point b in B, so its radius val(c − b) must not
be in Γ(B).

Suppose by contradiction that c/⫝f
A
B. Then, by 4.5, we have c/⫝d

A
B. By 2.17

(B = acleq(K(B))), there exists X a unary B-definable subset of RV that contains
rv(c − b) so that X ′ = {x ∈K ∣rv(x − b) ∈X} divides over A. By 4.10, there exists
b′ ∈ B so that b ≡A b′ and X ′ divides over Ab′. We have val(c − b) < val(b − b′), so
rv(c−b) = rv(c−b′). Thus, by replacingX byX∩val−1(]−∞, val(b−b′)[) ∋ rv(c−b),
we have rv(x − b) ∈ X ⇐⇒ rv(x − b′) ∈ X for all x ∈ K, and we can suppose b′ = b
without loss of generality. One can notice that a witness for division of X ′ over
Ab′ is also a witness for division of the translate X ′ − b′ over A, so we can suppose
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b = b′ = 0 without loss of generality (so Ab′ = A). By 4.4, we can deduce that X
divides over A, as X ′ is the preimage of X under the A-definable function rv. Now,
let (γi)i, (Xi)i, N < ω be a witness of Lemma 2.10 applied to X . The family (γi)i
is finite, so we can assume that the γi are algebraic over B, ie they belong to Γ(B),
so they are all distinct from val(c). As a result, we can replace X by X ∖ (⋃

i
Xi)

without loss of generality. As X is invariant under multiplication by (k∗)N , X is
the preimage of X̄ = X mod (k∗)N , so X̄ divides over A. The A-definable group

homomorphism val ∶ RVÒ(k∗)N Ð→ Γ has a finite kernel k
∗
Ò(k∗)N . We can

apply 4.7 to the relation:

R = {(x, y) ∈ Γ ×RVÒ(k∗)N ∣val(y) = x}
to show that val(X̄) divides over A. Now we are done: take a witness for division(σn)n of val(X̄) over A, (σn∣Γ(M))n is a witness for division of val(X̄) over Γ(A)
in the ordered group Γ(M) ; we know that val(X̄) is Γ(B)-definable by 2.8, and

val(c) = val(c − b) ∈ val(X̄), so val(c − b) /⫝d
Γ(A)

Γ(B), a contradiction. �

Remark 5.2. In the above lemma, the notions of B-genericity and B-weak-genericity
are the same: B is a model, so every B-ball is pointed.

The following lemma deals with the case of a residual chain, with A not neces-
sarily generated by field parameters.

Lemma 5.3. Let A be a small subset of Meq, Z a closed A-ball, B a (2∣A∣)++-
saturated, strongly-(2∣A∣)++-homogeneous small elementary substructure ofMeq that
contains A, and c ∈K(M). Assume the following conditions hold:

● A = acleq(A).
● c is B-generic of {Z}.
● In the field k(M), we have ⫝f=⫝alg.

Then we have c ⫝f
A
B.

Proof. Suppose towards contradiction that c/⫝d
A
B. Let X , X ′ be as in the proof

of 5.1. We can assume X ′ ⊆ Z. By 4.10, there exist b, b′ ∈ B so that b ∈ Z,
val(b′) = rad(Z), and X ′ divides over Abb′. Just like in the previous proof, a

witness for division of X ′ over Abb′ is a witness for division of X′−b
b′

over A, so we
can assume b = 0, b′ = 1, and Z = O. By genericity of c, and by 2.17, we know that,
for all c′ ∈K(M), if res(c′) = res(c), then c ≡B c′. As a result, the set:

{x ∈X ′∣∀y ∈ O (res(x) = res(y)Ô⇒ y ∈X ′)}
is a B-definable subset of X ′ containing c, so it still divides over A, and we can
assume that X ′ coincides with this set. Now X ′ is the preimage of res(X ′), so
by 4.4 res(X ′) divides over A. By 2.8 we have res(c) /⫝f

k(A)
k(B) in the field k, so

by hypothesis res(c)/⫝alg
k(A)

k(B), and res(c) is not transcendental over k(B). This

contradicts the genericity of c. �
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In the next lemma, we also deal with the residual case, but without the assump-
tion ⫝f=⫝alg in k(M). However, we have to strengthen our hypothesis on A to

make it work, and suppose that A is generated by field elements.

Lemma 5.4. Let A be a small subset of Meq, Z a closed A-ball, B a (2∣A∣)++-
saturated, strongly-(2∣A∣)++-homogeneous small elementary substructure ofMeq that
contains A, and c ∈K(M). Assume the following conditions hold:

● A = acleq(K(A)).
● c is B-generic of {Z}.
● There exist b ∈ Z(A) and b′ ∈ K(A) so that val(b′) = rad(Z), and, in the
pure field k(M), we have res ( c−b

b′
) ⫝f

k(A)
k(B).

Then we have c ⫝f
A
B.

Proof. Let c′ = c−b
b′
. It is clear that c′ is B-generic of O. As res ( c−b

b′
) ⫝f

k(A)
k(B) in

the field k(M), we have c′ ⫝f
A
B with a reasoning similar to the previous lemma.

Now, this time b, b′ ∈K(A), so c ∈ acl(Ac′), so c ⫝f
A
B by 4.8. �

Now that we have seen several sufficient conditions for a global unary type to
be non-forking over A, we will need to be able to build these types, ie realize these
conditions. It will be easy in some cases, and the construction will be described
quickly in the proofs of our theorems. The two following lemmas deal with cases
where a more technical approach is required. The next lemma will be used to build
a non-forking global extension of the type of an A-generic point of an A-immediate
chain. The second lemma does the same for the generic of an A-ramified chain, but
there we will have to assume that A is generated by field elements.

Remark 5.5. In the residual case, the non-forking global extension is easy to build
when ⫝f=⫝alg in k(M): Lemma 5.3 merely requires c to be B-generic of the correct

chain. One can note that this lemma holds with a weaker hypothesis: instead of
requiring ⫝f=⫝alg in k(M), we can just suppose that for all b, b′ ∈ K(B), if b ∈ Z
and val(b′) = rad(Z), then we have res ( c−b

b′
) ⫝f

k(A)
k(B) in the field structure of

k(M). However, without the hypothesis ⫝f=⫝alg in k(M), it is not clear whether
the existence of the non-forking global extension can be established, because a
random B-generic point of {Z} might not satisfy these new conditions. Maybe
such a point still exists, this is one of the interesting questions that naturally follow
from this paper.

Lemma 5.6. Let A be a small subset of Meq. Let B be an non-residual chain of
A-balls. Let B be a (2∣A∣)++-saturated, strongly-(2∣A∣)++-homogeneous small elemen-
tary substructure of Meq that contains A, and b ∈ K(B) so that b ∈ ∩B. Suppose
the following conditions hold:

● A = acleq(A).
● In the ordered group Γ(M), Γ(A) is an extension base.

Then there exists c ∈ K(M) so that c is B-generic of B, and val(c − b) ⫝f
Γ(A)

Γ(B)
in the ordered group structure.
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Proof. Define:

Ā = {rad(X)∣X ∈B} ⊆ Γ(A)
B̄ = {δ ∈ Γ(B)∣∀γ ∈ Ā γ < δ}

Let X = ⋂
γ∈Ā,δ∈B̄

]γ, δ[, (σn)n ∈ Aut(Γ(M)/Γ(A))ω, and B̄′ = ⋃
n
σn(B̄). Then Ā and

B̄′ satisfy the hypothesis of 4.6, so the type-definable set Y = ⋂
γ∈Ā,δ∈B̄′

]γ, δ[ is non-
empty. However, we have Y = ⋂

n
σn(X), so (σn)n cannot be a witness for division

of (any Γ(B)-definable set containing) X over Γ(A). Therefore, X does not divide
over Γ(A) in the ordered group Γ(M). In this ordered group, the induced theory
is dependent ([11]), and Γ(A) is an extension base, so forking over Γ(A) coincides
with dividing over Γ(A) ([6], Theorem 1.2). As a result, X does not fork over Γ(A)
in Γ(M). By 4.2, there exists γ ∈ Γ(M) so that γ ∈X , and γ ⫝f

Γ(A)
Γ(B).

Now we are done: a witness of the lemma will be any c ∈K(M) so that val(c−b) =
γ. Such a point c must be B-generic of B: val(c − b) > Ā implies c ∈ ∩B, and
val(c − b) < B̄ implies that c does not belong to any smaller B-ball. �

Lemma 5.7. Let A be a small subset of Meq. Let B be an A-ramified chain of
A-balls. Let B be a (2∣A∣)++-saturated, strongly-(2∣A∣)++-homogeneous small elemen-
tary substructure ofMeq that contains A, c ∈K(M), and b ∈K(A) so that b ∈ ∩B.
Suppose the following conditions hold:

● A = acleq(K(A)).
● c is A-generic of B.
● In the ordered group Γ(M), Γ(A) is an extension base.

Then there exists c′ ≡A c so that c′ is B-generic of B, and val(c′ − b) ⫝f
Γ(A)

Γ(B) in
the ordered group structure.

Proof. Let Ā, B̄, X , (σn)n, B̄′, Y be as in the proof of the previous lemma. Let
B′ be a small ∣B∣+-saturated elementary substructure ofM containing B ∪ B̄′. By
2.19, there exists d ≡A c so that d is B′-generic of B. The value val(d − b) not
only is a point of Y , put it is also a Γ(A)-conjugate of val(c − b). As a result, the
partial type (of the ordered group) tp(val(c − b)/Γ(A)) ∪ {x ∈ X} does not divide,
and hence does not fork over Γ(A). Let γ ∈ Γ(M) be a realization of this type
for which γ ⫝f

Γ(A)
Γ(B). We have γ ≡Γ(A) val(c − b), so γ ≡A val(c − b) by 2.9. Let

σ ∈ Aut(M/A) so that σ(val(c − b)) = γ. As b ∈ K(A), σ(b) = b, so c′ = σ(c)
witnesses the lemma. �

We can finally prove our main results:

Theorem 5.8. Let A be a small subset of K(M). Suppose the following conditions
hold:

● Every subset of Γ(M) is an extension base with respect to the ordered group
structure.

● Γ(M) is dense.
● Every subset of k(M) is an extension base with respect to the field structure.
● For every N < ω, [k∗ ∶ (k∗)N] is finite.
● For every γ ∈ Γ(dcl(∅)), there exists an a ∈K(acl(A)) so that val(a) = γ.
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● For every N > 0, α ∈ k
∗
Ò(k∗)N(M), there exists a ∈ O∗

acl(A) so that

res(a) mod (k∗)N = α.
Then A is an extension base.

Proof. Let C be the class of every small subsets A′ of K(M) satisfying the two last
points of the theorem, and such that Γ(A′) is an extension base in Γ(M). Clearly,
for all A′ ∈ C, for all c ∈ K(M), we have A′c ∈ C.3 By 4.15, we just have to show
that c ⫝f

A
A for every singleton c ∈K(M).

Let c ∈K(M). As c ⫝f
A
A⇐⇒ c ⫝f

acleq(A)
acleq(A), we can replace A by acleq(A).

LetB be a (2∣A∣)++-saturated, strongly-(2∣A∣)++-homogeneous small elementary sub-
structure ofMeq that contains A. We have to find c′ ≡A c for which c′ ⫝f

A
B. Let

B be the set of every A-ball containing c.

● Suppose B is A-immediate. Let c′ witness Lemma 5.6. We have c′ ⫝f
A
B by

5.1. Let us show c ≡A c′. Let B′ be the chain of every pointed A-ball that
contains c. If ∩B′ has no point in K(A), then we have c ≡A c′ by 2.17, as c′

is clearly in ∩B
′. Else, if a ∈K(A) is in ∩B

′, then B
′ is not A-immediate,

so ∩B′ ≠ ∩B, and c is not A-generic of B′. By 2.14, B has a least element
Y , an open ball which does not contain a. As c and c′ are both in Y , we
clearly have rv(c − a) = rv(c′ − a), which also implies c ≡A c′ by 2.17.

● Suppose B is A-ramified, ie ∩B has a point b ∈ K(A). Let c′ witness
Lemma 5.7 applied to b. We have c′ ⫝f

A
B by 5.1.

● Suppose B is residual, let X = min(B). Then X is pointed by 2.15. Let
b ∈ K(A) so that b ∈ X . By 2.25, there also exists b′ ∈ K(A) so that
val(b′) = rad(X). As k(A) is an extension base in the residue field, we can
use 4.2 to find α ≡k(A) res ( c−bb′

) so that α ⫝f
k(A)

k(B). By 3.15, we have

α ≡A res ( c−b
b′
), so there exists c′ ≡A c for which res( c′−b

b′
) ⫝f

k(A)
k(B). By

5.4, we have c′ ⫝f
A
B. �

Theorem 5.9. The above theorem also holds if we replace the hypothesis on the
density of Γ by the following condition:

In the pure field k(M), for any subfield B for which Balg
∩ k(M) = B, we have

B = acl(B) in the theory of the field k(M).
Proof. The only difference in the proof is in the residual case, where we have to use
3.18 instead of 2.15 to show that X is pointed. �

Theorem 5.10. Let A be a small subset of K(M). Suppose the following condi-
tions hold:

● Every subset of Γ(M) is an extension base with respect to the ordered group
structure.

● ⫝f=⫝alg in the field k(M).
3There is a subtlety here. The k∗Ò(k∗)N are fixed. If they were infinite (hence unbounded),

maybe adding c to A′ would add new classes of (k∗)N that cannot be pulled back to K(A′c)! So
the finiteness hypothesis is crucial for the induction argument of 4.15.
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● For every N < ω, [k∗ ∶ (k∗)N] is finite.

Then A is an extension base.

Proof. We do the same proof as above with C the class of every small subset of
K(M). The only case where we have to act differently is the residual case. Here,
we use 2.19 to find c′ ≡A c which is B-generic of B. Then c′ ⫝f

A
B by 5.3. �

Theorem 5.11. Let A be a small subset ofMeq. Suppose the following conditions
hold:

● Γ(M) ≡ Z.
● ⫝f=⫝alg in the field k(M).
● For every N < ω, [k∗ ∶ (k∗)N] is finite.

Then A is an extension base.

Proof. This time C is the class of every small subset of Meq. We have the same
disjunction of three cases:

● B is A-immediate. We proceed just like the proof of 5.8, except that we
have to use 2.18 instead of 2.17 to prove c′ ≡A c.

● B is A-ramified, ie ∩B contains an A-ball X . By 2.19, let c′ ≡A c a B-
generic point of B. By genericity of c′, we can apply 4.6 to show that
val(c −X) ⫝f

Γ(A)
Γ(B) in the ordered group Γ(M). Then we can apply 5.1

(with b any point in K(B) ∩X) to get c ⫝f
A
B.

● B is residual. This time, we proceed like the proof of 5.10. �
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