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EXIT GAME WITH PRIVATE INFORMATION

H. DHARMA KWON AND JAN PALCZEWSKI

Abstract. The timing of strategic exit is one of the most important but difficult business decisions,

especially under competition and uncertainty. Motivated by this problem, we examine a stochastic

game of exit in which players are uncertain about their competitor’s exit value. We construct an

equilibrium for a large class of payoff flows driven by a general one-dimensional diffusion. In the

equilibrium, the players employ sophisticated exit strategies involving both the state variable and

the posterior belief process. These strategies are specified explicitly in terms of the problem data

and a solution to an auxiliary optimal stopping problem. The equilibrium we obtain is further shown

to be unique within a wide subclass of symmetric Bayesian equilibria.

1. Introduction

The timing of strategic exit is one of the most important but difficult business decisions. Accord-
ing to anecdotes and empirical studies, many firms in declining industries miss the optimal time to
exit and amass substantial financial loss (Horn et al. [27], Elfenbein and Knott [14]). Exit decisions
are even more complicated when the firms are uncertain about the future profits such as in the cases
of 7 declining industries studied by Harrigan [26]. Furthermore, firms are generally uncertain about
their rival firms’ exit value from the outside option. Even though these two types of uncertainty
pose practical and managerial difficulties, there has been a paucity of attempts to investigate their
combined impact on the exit strategy. The goal of this paper is to study an exit game under both
types of uncertainty and obtain an equilibrium exit strategy.

In the model that we examine, we incorporate two salient features of an exit game: a stochastic
profit stream and private random exit values, both of which are realistic features of an exit game
between competing businesses. Initially, firms operate in a duopoly and earn identical profit streams
dependent on a one-dimensional diffusion modelling economic factors. Each firm is allowed to exit
at any point in time, but the remaining firm becomes a monopolist and enjoys a monopoly profit
flow. The exiting firm obtains an exit value which is its private information unknown to the rival
firm. The exit value incorporates the outside option for the firm as well as the cost of shutting down
the enterprise. The exit values of both firms have the same distribution and are independent.

We assume that each firm’s profit stream is publicly known, as it depends on the revenue and
the public demand. This is a common assumption in many game-theoretic models of duopoly exit
games [21, 18, 32, 45, 20]. The underlying dynamics of economic factors (the state process) is
a general one-dimensional diffusion. A firm’s exit value is private information, hidden from the
rival firm. This reflects the fact that a firm’s exit value depends on many internal factors that are
not observable by outsiders, such as alternative business opportunities, salvage values [26], or even
managerial behavioural biases [14]. The uncertainty about the rival’s exit value is also a standard
assumption in many economic models of exit games [42, 34, 31, 18].

The first main result of the paper is to obtain a novel equilibrium. Specifically, we obtain a
perfect Bayesian equilibrium that is succinctly characterised by two variables: the underlying state
Xt and the belief Yt. According to the equilibrium strategy, a player of type θi exits when (Yt) falls
below θi and (Xt, Yt) is in an explicitly given action region, see (4.6). The belief process (Yt) has
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the meaning of the maximum type of the opponent that has remained in the game, i.e., a player
believes that his opponent’s type at time t is less than Yt.

The novel characteristic of the equilibrium lies in the complexity of its strategies not found in
the deterministic counterpart. The value of (Yt) depends on the history of the sample path (Xt), so
it is not a simple function of the current value of (Xt); see Eq. (4.14). Most of the extant models
of exit decisions prescribe either a deterministic timeline to exit in the deterministic exit games
[34, 21, 18] or a profit-threshold policy in the case of a single-player model. In contrast, our results
suggest that a much more elaborate strategy is called for: the players should continuously monitor
the evolution of (Xt) and update their beliefs (Yt) regarding their opponent’s type and exit as soon
as (Yt) falls below their own type; see an alternative expression for the strategy in (4.1).

To our knowledge, this is the first equilibrium solution obtained for a stochastic exit game with a
diffusive state variable and a continuously distributed private type. In the deterministic model such
as in Fudenberg and Tirole [18], the time variable is a sufficient state variable, so the equilibrium
generating process depends on time alone. In contrast, in the stochastic game, the state of the
market evolves separately from the time variable, and hence, the dimensionality of the problem
increases.

It is worthy of note that our equilibrium is a natural extension of the known results in the
extant literature. Recall that our exit game model incorporates both a diffusive state variable and
asymmetric information. Previous studies have obtained an equilibrium of exit games with one of
the two features: either a diffusive state variable [45, 20] or private types [31, 18]. In this paper, we
bridge these two strands of literature by showing that our result coincides with the extant results
when one of the two features is absent; see Section 5.

The striking feature of our equilibrium solution is that it is given explicitly for a large class of
underlying diffusion processes and payoff functions, so it cannot be obtained by a guess-and-verify
approach. Instead, we only require that an auxiliary optimal stopping problem of exit from a
duopoly of one player has a solution of a threshold type and the threshold depends continuously on
the exit value; see Section 3.

Our second main result concerns the possibility of other symmetric equilibria. Non-zero sum
games typically have multiple equilibria, and identifying them is a formidable task (see Feinstein
et al. [16] for recent results in discrete time games). Although uniqueness is rarely studied in the
continuous-time literature, we are able to demonstrate that our exit game has a unique symmetric
equilibrium in a large class of symmetric equilibria in which the belief process (Yt) (or, more pre-
cisely, the generating process (At) in a one-to-one map correspondence with (Yt)) has a generalised
derivative that satisfies certain semi-continuity criteria (Thm. 6.6).

The proof of uniqueness is a significant mathematical result. There are mathematical difficul-
ties stemming from the continuum of player types and the diffusive dynamics of the underlying
state process. The proof requires a combination of probabilistic and analytical methods, and it
demonstrates technical complexity involved in establishing such results in a diffusive setting with
asymmetric information. Further mathematical details about our approach are summarised in the
beginning of Section 6.

In the context of exit games, the uniqueness question is also of game-theoretic interest. A war
of attrition under incomplete information is known to have, in general, a continuum of equilibria
[42, 34], but there are variants of exit game models that have unique equilibria due to special
conditions [18, 38]. This paper adds to this strand of the literature by establishing uniqueness
results in an exit game with state diffusive dynamics.

In addition to the two main results, our paper also provides a new framework for stopping games
with continuously distributed private types. In our equilibrium solution, each player employs a pure
strategy stopping time that depends on the private type. However, from a player’s perspective, the
opponent’s exit times resemble a mixed strategy [45], albeit with the mixing variable which is not
uniform on (0, 1) but distributed as a player’s type. Mathematically, a mixed stopping strategy can
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be represented as a randomised stopping time characterised by an increasing process adapted to a
player’s filtration (a generating process) and a randomisation device which is independent from the
underlying randomness in the game (see, e.g., De Angelis et al. [10, Def. 2.2]); the stopping time is
defined as the first time that the generating process exceeds the value of the randomisation device.
Despite the similarity, there is one fundamental difference: our equilibrium does not introduce a
private randomisation device because it is not a mixed strategy equilibrium. The apparent random-
ness comes from not knowing the opponent’s type, i.e., the asymmetric information. Nevertheless,
because a player’s actions resemble randomised stopping when perceived from the rival’s perspec-
tive, we can exploit a similar mathematical framework. This observation is key to the reformulation
of the problem in terms of best response optimal stopping problems in Lemma 4.2, where the exit
time of the opponent is replaced with a functional of the belief process.

The best response formulation recasts an equilibrium as a solution to a fixed-point problem
whereby the strategy of a player’s opponent (driven by the belief process) is also the best response
for any value of the player’s type. We emphasise that the symmetry of the game in which players
are identical is crucial for this approach and cannot be naturally relaxed.

Lastly, one of the mathematical challenges of our model is the construction of (Yt). Just as in
our paper, the introduction of an appropriate belief process is often encountered in papers studying
games with asymmetric information (Grün [22], Gensbittel and Grün [19], Ekström et al. [13], De
Angelis and Ekström [8]) and is akin to the filter process in problems with partial information. Our
model is unique because the belief process (Yt) is defined as a solution to an ordinary differential
equation (ODE) (4.14) with a discontinuous right-hand side. Solutions to ODEs with discontinuous
right-hand side are usually non-unique (Filippov [17, Ch. 2]) and related to differential inclusions.
There are several definitions of solutions to such ODEs. In this paper, we adopt Caratheodory’s
approach in which the solution is a continuous function which satisfies the integral version of the
ODE with probability one. Classical results from the ODE theory require that the discontinuities are
located on smooth surfaces, the condition that is not satisfied for our ODE in which the discontinuity
points are determined by a path of a diffusion process. Instead, we obtain a maximal Caratheodory
solution as a monotone limit of upper approximations of the right-hand side.

1.1. Literature review. Our paper extends the literature on stochastic stopping games under
asymmetric information. The asymmetry of information poses mathematical challenges, but there
has been a flurry of recent contributions, particularly, in zero-sum games. Games examined in the
literature possess various information structures and sources of uncertainty. One-sided asymmetry,
where one player has a strictly larger information flow, were studied by Grün [22], Lempa and
Matomäki [30], and De Angelis et al. [9]. Gensbittel and Grün [19] examine a zero-sum game in
which each player can only observe a private continuous time finite-state Markov chain while the
payoff is a function of both players’ processes. A recent paper De Angelis et al. [10] shows the
existence of a Nash equilibrium (saddle point) for general payoff processes in the framework with
asymmetric and partial information.

In non-zero sum games, players’ payoffs do not have to sum up to zero, which results in a much
richer set of equilibria even in the case of full information. PDE results are often in the form of
a verification theorem for a solution to a system of quasi-variational inequalities (Bensoussan and
Friedman [4]). The existence of an appropriate solution of this system is studied in Nagai [33] for
symmetric Markov processes and continued in Cattaiaux and Lepeltier [7] for Ray-Markov processes.
Superharmonic characterisation of players’ value functions for strong Markov processes is provided
in Attard [3]. Hamadene and Zhang [25] and Hamadene and Hassani [24] use iterative methods to
construct equilibria in games with two or more players which, even in a Markovian setting, are not
in the form of hitting times. Sub-game perfect equilibria are examined in Steg [45] and Riedel and
Steg [41].
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In economics literature, the framework of non-zero sum games has been applied to a game of exit
from a declining industry. Murto [32] investigates an exit game with a geometric Brownian motion as
the profit flow and characterises Markov perfect equilibria. Steg [45] studies the subgame perfection
concept in a class of stochastic exit games and finds a mixed strategy equilibrium analogous to
the one in the deterministic war of attrition. Georgiadis et al. [20] investigate an exit game under
complete information with a stochastic profit flow and find that the stochasticity combined with
asymmetry between the players destabilise the mixed strategy equilibrium.

Closest to this paper are studies of non-zero sum games with asymmetric information. In par-
ticular, Fudenberg and Tirole [18] examines a duopoly game of exit with a continuous distribution
of private types as in our paper, but it studies a deterministic game unlike our model. Décamps
and Mariotti [12] examines a duopoly game of investment in a common project with Poisson signals
about its quality. Players have incomplete information about their opponent’s investment costs,
so the problem is cast as a stopping game under asymmetric information. In another strand of
research, ghost games in which a player does not know if his opponent exists (De Angelis and Ek-
ström [8], Ekström et al. [13]) are solved using a verification approach and result in an equilibrium
in randomised stopping times. Pérez et al. [36] consider a game where one player can only stop
at random times indicated by a Poisson process. Using a fixed point theorem, the authors show
that the game has a Nash equilibrium in threshold strategies, i.e., in pure stopping times. The
optimality of this equilibrium is then extended to the class of all stopping times using optimal
stopping theory arguments applied to the best response problems. Conceptually, our paper has
similarities to both lines of research. The equilibrium strategies we find are akin to randomised
stopping times. However, instead of postulating a PDE for value functions, we use probabilistic
optimal stopping methods for best response problems to prove that a postulated pair of stopping
strategies is a perfect Bayesian equilibrium.

1.2. Summary of results. Our model considers an economy in which the underlying economic
factors are described by a one-dimensional diffusion

dXt = µ(Xt)dt+ b(Xt)dWt, t ≥ 0,

where (Wt)t≥0 is a Brownian motion. There are two players, each of whom has a private type θi,
i = 1, 2, that describes their exit value. The distribution of both private types, denoted by F , is
identical and known to both players, but the player’s own exits value is private and unknown to
his opponent. Players decide when to exit the market by choosing the stopping times τ1(θ1) and
τ2(θ2) that depend on their types. The player who remains in the market becomes a monopolist
and never exits. The expected payoff to Player i is then given by

∫

Ex

[
∫ τi∧τj(θj)

0
e−rtD(Xt)dt+ 1τi≤τj(θj)e

−rτiθi + 1τi>τj(θj)

∫ ∞

τj(θj)
e−rtM(Xt)dt

]

dF (θj),

where x is the initial value of the process (Xt), D is the duopoly profit flow and M is the monopoly
profit flow.

The model is completely symmetric, and this symmetry will be exploited in construction of a
symmetric equilibrium. We first note that in equilibrium a player of type θ′ would want to exit
earlier than a player of type θ′′ if θ′ > θ′′ because a player would exit earlier if his outside option
is more attractive. Therefore, it is natural that the player’s stopping time τi(θ) be monotone in
the type θ. Based on this monotonicity, we can deduce the existence of a stochastic process (Yt)
that has the interpretation of the highest value of the remaining type for both players. In turn, we
hypothesise

(1.1) τi(θi) = inf{t ≥ 0 : θi > Yt}.
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We show that a symmetric equilibrium ensues when the process (Yt) solves the differential equation

dYt = − F (Yt)

F ′(Yt)

rYt −D(Xt)

m(Xt)− Yt
1Xt≤α(Yt),

where α(θ) is the optimal exit threshold for a player with exit value θ whose opponent is commit-
ted to never exit the market while m is the expected total discounted monopoly profit: m(x) =
Ex

∫∞
0 e−rtM(Xt)dt. The results are stated as Theorems 4.17 and 4.19. It turns out that this equi-

librium is unique (Theorem 6.6) in the class of symmetric equilibria of the form (1.1) for a large
class of processes (Yt).

1.3. Outline of the paper and terminology. The paper is organised as follows. In Section 2
we introduce the framework for the exit game and a sufficient condition for a Nash equilibrium
in terms of best response optimal stopping problems. An optimal stopping problem of exit from
a duopoly is briefly discussed in Section 3. Its solution plays a pivotal role in the construction
of an equilibrium of the exit game in Section 4. Section 4.2 provides a heuristic derivation of the
equilibrium in (4.4). The uniqueness of the equilibrium is demonstrated in Section 6. Extreme cases
when the underlying dynamics are deterministic or the distribution of exit value collapses to a point
are covered in Section 5. Appendix develops asymptotic bounds for exit times of a diffusion and
contains detailed calculations for an example discussed in the text. To get a basic understanding
of the motivation, definition, and properties of the equilibrium without having to read technical
details of the mathematical framework, we recommend reading Sections 1.2, 4.1, 4.2, 4.6, 4.7, and
5.

As a matter of convention throughout the paper, we write increasing/decreasing for non-strict
monotonicity, and strictly increasing/decreasing for strict monotonicity.

2. Model

Consider a complete probability space (Ω,F ,P) with filtration (Ft)t≥0 satisfying the usual con-
ditions. The underlying state of the system is described by a one-dimensional diffusion

(2.1) dXt = µ(Xt)dt+ b(Xt)dWt, t ≥ 0,

where (Wt)t≥0 is an (Ft)-Brownian motion. We assume that µ(·) and b(·) are Lipschitz continuous
so that (Xt)t≥0 is a unique strong solution which is a strong Markov process. We further assume
that b(·) > 0. We denote by I = (xL, xU ) the (potentially infinite) interval in which Xt takes values
and assume that its boundaries are not attainable.

The model includes two agents (players), each having a private random variable θi, i = 1, 2,
describing their exit value (type). At the outset, the players do not know the exit value of either
player although the probability distribution of the types is public knowledge. At time 0, each player
learns his own private type which remains unknown to his opponent throughout the game. At any
time t > 0, a player is aware of his own type, but he only holds a belief (a probability distribution)
about his opponent’s type. This flow of information simulates a game of exit among firms that
learn of their own exit value upon entering an industry or a new market while remaining uncertain
about their opponent’s exit value until the end of the game. The exit value represents the reward
from exit that may include the salvage value and the value of an alternative business venture. Once
a player exits, the opponent player is assumed to hold perpetual monopoly of the industry/market.

Supporting those random variables are two complete probability spaces (Ωθi ,Fθi ,Pθi)i=1,2. Put

(2.2) (Ω̃, F̃ , P̃) = (Ω,F ,P) ⊗ (Ωθ1 ,Fθ1 ,Pθ1)⊗ (Ωθ2 ,Fθ2 ,Pθ2),

and denote by (F̃t)t≥0 the embedding of the filtration (Ft)t≥0 onto (Ω̃, F̃), i.e., F̃t = σ({A×Ωθ1 ×
Ωθ2 : A ∈ Ft}). With an abuse of notation, we will write (Xt)t≥0, θ1 and θ2 for an embedding of the

process (Xt)t≥0 and the random variables θ1, θ2 into (Ω̃, F̃ , P̃). We will denote by E the expectation
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with respect to P and by Ẽ the expectation with respect to P̃. With the lower index by P,E and P̃,
Ẽ we indicate the initial value X0.

The information flow of player i is modelled by filtration (F i
t )t≥0 := F̃t ∨ σ(θi), i.e., F i

t is the

smallest σ-algebra containing F̃t and with respect to which θi is measurable. His action is given by
a (F i

t )-stopping time τi which we denote by τi ∈ T (F i
t ). The payoff of Player 1 is

J1(x, τ1, τ2) = Ẽx

[
∫ τ1∧τ2

0
e−rtD(Xt)dt+ 1τ1≤τ2e

−rτ1θ1 + 1τ1>τ2e
−rτ2m(Xτ2)

]

,

and, analogously, the payoff of Player 2 is

J2(x, τ1, τ2) = Ẽx

[
∫ τ1∧τ2

0
e−rtD(Xt)dt+ 1τ2≤τ1e

−rτ2θ2 + 1τ2>τ1e
−rτ1m(Xτ1)

]

,

where

m(x) = Ex

[
∫ ∞

0
e−rsM(Xs)ds

]

, x ∈ I.

Function D(x) represents the profit flow to a player in a duopoly while M(x) is the profit flow to
the remaining player in the monopoly, hence m(x) is the cumulative discounted profit earned by a
monopolist given X0 = x.

Remark 2.1. When τ1 = τ2 both players exit the market and earn their exit value. This has a clear
explanation from a managerial perspective as players make the exit decision independently. From a
mathematical perspective, it will never happen as in an equilibrium that we study in this paper the
probability of a double exit is zero.

We make the following assumptions.

Assumption 2.2. Random variables θi, i = 1, 2, have the support [θL, θU ].

Assumption 2.3. Functions D,M : I → [0,∞) are continuous, increasing and bounded, and
M > D. Furthermore, infx∈I m(x) > θU , and the interest rate r > 0.

Assumption 2.4. Coefficients µ and b are Lipschitz continuous and b > 0.

Assumption 2.4 means that b is uniformly non-degenerate on any compact subset of I and (Xt)t≥0

is a weak Feller process, i.e., its semigroup maps continuous bounded functions into continuous
functions. Following from this observation, thanks to Assumption 2.3, function m defined above
and function d given as

d(x) = Ex

[
∫ ∞

0
e−rsD(Xs)ds

]

, x ∈ I,

are continuous and bounded.

Remark 2.5. In our model, m(x) is the cumulative future profit flow for a player who becomes a
monopolist when the underlying process is in state x. One might argue that the monopolist should
be allowed to exit the market, i.e., in the firm’s payoffs, m should be replaced by

m̂(x; θ) = sup
τ

Ex

[
∫ τ

0
e−rsM(Xs)ds + e−rτθ

]

,

where θ ∈ [θL, θU ] is the exit value of the monopolist. Clearly, m̂(x; θ) ≥ m(x). By Assumption 2.3,
we have m(x) > θU , so m̂(x; θ) > θ for every possible exit value θ. This means that the optimal
stopping time in m̂(x; θ) is τ = ∞, so m̂(x; θ) = m(x). This simplification has been accounted for
in the definition of player payoffs J1 and J2. The case when infx∈I m(x) < θU is significantly more
difficult and beyond the scope of this paper. It will certainly lead to a different behaviour of players
as it is possible that both players exit the market at a finite time when it is suboptimal to continue
as a monopolist even with the lowest exit value θL.
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We now introduce the notion of a Nash equilibrium in the context of our game.

Definition 2.6. A strategy profile (a pair of strategies) (τ∗1 , τ
∗
2 ) ∈ T (F1

t )× T (F2
t ) is called a Nash

equilibrium for x if for any other pair of strategies (τ1, τ2) ∈ T (F1
t )× T (F2

t ) we have

J2(x, τ
∗
1 , τ

∗
2 ) ≥ J2(x, τ

∗
1 , τ2), P̃x − a.s.,

J1(x, τ
∗
1 , τ

∗
2 ) ≥ J1(x, τ1, τ

∗
2 ), P̃x − a.s.

To construct a Nash equilibrium, we need to understand the structure of (F i
t )-stopping times.

The reader is referred to [15, Proposition 3.3] for related results in a more general setting and with
a different method of proof.

Proposition 2.7. Let Assumption 2.2 hold. If τ̂ : (Ω,F)⊗([θL, θU ],B([θL, θU ])) → ([0,∞),B([0,∞)))
is measurable and the mapping τ̂(·, θ) : Ω → [0,∞) is an (Ft)-stopping time for each θ ∈ [θL, θU ],
then τ = τ̂(·, θi) is an (F i

t )-stopping time. Conversely, for every (F i
t )-stopping time τ there is a

mapping τ̂ satisfying the above conditions such that τ = τ̂(·, θi), P-a.s.

Proof. The fact that τ = τ̂(·, θi) is an (F i
t )-stopping time is immediate.

The proof of the converse is more involved. Fix i ∈ {1, 2} and let G = F̂ ∨ σ(θi), where F̂ =

σ{A × Ωθ1 × Ωθ2 : A ∈ F}. Recalling the definition of Ω̃ in (2.2), we write its elements ω as
(ω0, ω1, ω2) ∈ Ω × Ωθ1 × Ωθ2 . Consider first τ(ω0, ω1, ω2) = τ ′(ω0)1A(ωi) for i ∈ {1, 2}, A ∈ σ(θi)
and τ ′ an (Ft)-stopping time. By [23, p. 76] there is B ∈ B([θL, θU ]) such that A = θ−1

i (B).
Hence τ(ω0, ω1, ω2) = τ̂(ω0, θi(ωi)) for τ̂(ω0, z) = τ ′(ω0)1B(z). This representation extends to any
G-measurable non-negative function using Monotone Class Theorem, i.e., any such function has a
representation as τ̂(ω0, θi(ωi)) for a measurable τ̂ as in the statement of the theorem.

It remains to show that if τ is (F i
t )-stopping time, then τ̂(·, z) is an (Ft)-stopping time for any

z ∈ [θL, θU ]. Fix t ≥ 0 and let A = {τ ≤ t} ∈ F i
t . By analogous arguments as above applied to G =

F̃t∨σ(θi), there is a Ft⊗B([θL, θU ])-measurable function f̂ such that 1A(ω0, ω1, ω2) = f̂(ω0, θi(ωi)).

By [6, Prop. 3.3.2], the set Az := {ω0 : f̂(ω0, z) = 1} is Ft-measurable for z ∈ [θL, θU ]. For any
ωi ∈ Ωθi , we have {ω0 : τ̂(ω0, θi(ωi)) ≤ t} = Aθi(ωi) ∈ Ft, so {τ̂ (·, z) ≤ t} ∈ Ft for any z belonging
to the support [θL, θU ] of θi (c.f. Assumption 2.2). As t ≥ 0 is arbitrary, the above arguments show
that τ̂(·, z) is an (Ft)-stopping time for any z ∈ [θL, θU ]. �

It will be convenient to define a payoff functional for a deterministic exit value: for σ ∈ T (Ft),

γ ∈ [θL, θU ] and a random time τ on (Ω̃, F̃ , P̃),

(2.3) J(x, σ, τ ; γ) = Ẽx

[
∫ σ∧τ

0
e−rtD(Xt)dt+ 1σ≤τ e

−rσγ + 1σ>τ e
−rτm(Xτ )

]

.

The function J(x, σ, τ ; γ) has the meaning of the expected payoff to player i whose type is γ when
player i’s strategy is to stop at σ and player j’s strategy is to stop at τ .

Fundamental to our construction of the Nash equilibrium is the following sufficient condition
enabled by the structure of (F i

t )-stopping times established in Proposition 2.7.

Corollary 2.8. Let Assumption 2.2 hold and assume that τ̂1, τ̂2 : Ω × [θL, θU ] → [0,∞) are as in
Proposition 2.7. Define τ1 = τ̂1(·, θ1) and τ2 = τ̂2(·, θ2). If for each θ ∈ [θL, θU ] we have

τ̂1(·, θ) ∈ argmax
σ∈T (Ft)

J(x, σ, τ2; θ) and τ̂2(·, θ) ∈ argmax
σ∈T (Ft)

J(x, σ, τ1; θ)

then (τ1, τ2) is a Nash equilibrium.

Proof. Take any (F1
t )-stopping time τ ′1. By Proposition 2.7, it can be written as τ̂ ′1(·, θ1) for a

F⊗B([θL, θU ])-measurable function τ̂ ′1 such that τ̂ ′1(·, z) is an (Ft)-stopping time for each z ∈ [θL, θU ].
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By the tower property of conditional expectation and the independence of τ2 = τ̂2(·, θ2) from θ1 we
have

J1(x, τ
′
1, τ2) = Ẽx

[

Ẽx

[
∫ τ ′1∧τ2

0
e−rtD(Xt)dt+ 1τ ′1≤τ2e

−rτ ′1θ1 + 1τ ′1>τ2e
−rτ2m(Xτ2)

∣

∣

∣

∣

σ(θ1)

]]

=

∫

γ∈[θL,θU ]
J(x, τ̂ ′1(·, γ), τ2; γ)dFθ1(γ) ≤

∫

γ∈[θL,θU ]
J(x, τ̂1(·, γ), τ2; γ)dFθ1(γ)

= Ẽx

[

Ẽx

[
∫ τ1∧τ2

0
e−rtD(Xt)dt+ 1τ1≤τ2e

−rτ1θ1 + 1τ1>τ2e
−rτ2m(Xτ2)

∣

∣

∣

∣

σ(θ1)

]]

= J1(x, τ1, τ2),

where Fθ1 is the cumulative distribution function of θ1 and for the inequality we used that τ̂1(·, γ)
maximises J(x, ·, τ2; γ). We repeat the same arguments for J2. �

3. Single player problem

In this section, we assume that Player 2 never exits. Player 1’s decision problem reduces to an
optimal stopping problem parametrised by θ with the payoff functional

(3.1) J(x, τ ; θ) = Ex

[

∫ τ

0
e−rsD(Xs)ds+ e−rτθ

]

,

where τ is an (Ft)-stopping time. The solution of this problem will be used in the construction of
the equilibrium for the exit game.

Denote the value function corresponding to (3.1) by

(3.2) u(x; θ) = sup
τ∈T (Ft)

J(x, τ ; θ).

Given that the profit flow D is increasing, the payoff J(x, τ ; θ) is increasing in x. Therefore, we
conclude that the value function u(x; θ) is increasing in x, so if x is in the stopping set (i.e., it is
optimal to stop when Xt = x ), then (xL, x] is in the stopping set. This implies that the optimal
strategy should be given by the first entry time τ = inf{t ≥ 0 : Xt ≤ α} for a threshold α depending
on θ. We will impose assumptions sufficient to deduce this result and a characterisation of the
threshold α from [1, Thm. 3].

Let φ(·) denote the decreasing fundamental solution to the ordinary differential equation (LX −
r)φ(x) = 0, where LX is the generator of (Xt)t≥0 given by

(3.3) LX :=
1

2
σ2(x)

∂2

∂x2
+ µ(x)

∂

∂x
.

Assumption 3.1.

(i) For each θ ∈ [θL, θU ], there exists a critical value c(θ) ∈ I ∪ {xU} such that D(x) ≤ rθ for
x < c(θ) and D(x) > rθ for x > c(θ).

(ii) For each θ ∈ [θL, θU ], the function

(3.4) aθ(x) :=
θ − d(x)

φ(x)

attains a unique global maximum at α(θ) ∈ I, is differentiable at α(θ) and is increasing for x < α(θ).
(iii) Function α : [θL, θU ] → I defined in (ii) is strictly increasing.

Remark 3.2. A sufficient condition for Assumption 3.1(ii)-(iii) is that, for each θ ∈ [θL, θU ], the
function x 7→ aθ(x) is continuously differentiable and there is α(θ) ∈ I such that a′θ(x) > 0 for
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x < α(θ) and a′θ(x) < 0 for x > α(θ). These conditions immediately give (ii). For (iii), fix θ and
x∗ = α(θ). Take any θ′ > θ and notice that

a′θ′(x
∗) = a′θ(x

∗) +
(θ′ − θ)φ′(x∗)

φ2(x)
< a′θ(x

∗) = 0,

because φ is a strictly decreasing function, so φ′ < 0. This implies that x∗ < α(θ′), hence the
required monotonicity.

Lemma 3.3. Under Assumptions 2.3, 2.4 and 3.1, we have:

(i) for each θ ∈ [θL, θU ], the optimal policy is to exit at the stopping time

(3.5) τ∗θ = inf {t ≥ 0 : Xt ≤ α(θ)} ,
where α(θ) is defined in Assumption 3.1. Furthermore, u(x; θ) is given by

(3.6) u(x; θ) =

{

aθ(α(θ))φ(x) + d(x) for x > α(θ)

θ for x ≤ α(θ)
,

and u(x; θ) > θ for all x > α(θ).
(ii) u(x; θ) is continuous in θ.
(iii) Function α is continuous and α(θ) ≤ c(θ).

Proof. Statement (i) follows directly from [1, Thm. 3]. For the second part of (iii), we rewrite (3.1)
as

J(x, τ ; θ) := θ + Ex

[

∫ τ

0
e−rs

(

D(Xs)− rθ
)

ds
]

,

from which it is clear that stopping is not optimal whenever D(Xs) − rθ > 0. The continuity of
α is proved by contradiction. Assume that there is a sequence (θn) ⊂ [θL, θU ] converging to θ and
α(θn) → α̂ 6= α(θ). Since α(θn) is a global maximum of aθn , we have aθn(α(θn)) ≥ aθn(α(θ)).
The mapping (x, θ) 7→ aθ(x) is continuous, so aθn(α(θ)) → aθ(α(θ)) and aθn(α(θn)) → aθ(α̂). This
means that aθ(α̂) ≥ aθ(α(θ)). This contradicts that α(θ) is the unique global maximum of aθ(·).

Statement (ii) can be deduced from the explicit formula (3.6) and the continuity of α(·). �

We turn the attention to an example on which we will illustrate our theory.

Example 1. Consider a geometric Brownian motion (Xt), i.e., a solution to the SDE given by
dXt = µXtdt+ bXtdWt for some µ < 0 and b > 0. Its generator takes the form

LX =
1

2
b2x2

d2

dx2
+ µx

d

dx
.

The fundamental solutions to the differential equation (LX − r)ϕ(x) = 0 are ψ(x) = xγ+ and
φ(x) = xγ− , where

γ± =
1

2
− µ

b2
±

√

(
1

2
− µ

b2
)2 +

2r

b2
.

From µ < 0, it is obvious that γ+ > 1 and γ− < 0, i.e., ψ is increasing while φ is decreasing.
We state now all conditions on the coefficients which will be required in this example:

(3.7) β ∈ (0, 1), r > δ, β − 1 > γ− > −1, βb2|γ−| < 2r,

where δ = βµ+ b2β(β−1)/2 and β will be used in the statement of the profit flow D and M below.
Notice that the second condition is automatically satisfied on a declining market, µ ≤ 0, because
δ ≤ 0 while r is required to be strictly positive. We keep it for reference.

We examine the case in which the duopoly and monopoly profit flows are given by

D(x) =

{

xβ x ∈ (0, xM ]

xβM x > xM
, M(x) = D(x) +M0,
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Figure 1. Optimal stopping threshold α(θ) for single player problem with exit value
θ.

for some fixed (large) xM to be determined later. We assume that M0 > rθU so that m(x) > θ for

all θ ∈ [θL, θU ]. We also assume a sufficiently large value of xM so that xβM > rθU . The function
D(·) is strictly increasing for x < xM and constant for x ≥ xM . This form of D is economically
realistic because it is impossible to achieve an unboundedly large value of profit stream. Appendix
B provides the proof that this example satisfies all the assumptions of the paper and derives the
explicit form of d(·) and m(·).

For numerical illustration, we examine the case µ = −0.5, b = 1, r = 1, β = 0.5, θL = 0.5, θU =
1.5, M0 = 2, and xM = 1000. It can be verified that γ− = −0.732, so it satisfies β − 1 > γ− > −1,
and βb2|γ−| = 0.366 < 2 = 2r. Furthermore, r > δ = −.375. Figure 1 shows a graph of α(θ), the
optimal stopping threshold for a single player problem. As expected, it is an increasing function
because players with higher exit values exit earlier.

4. Symmetric equilibrium

In this section, we construct a Nash equilibrium in the exit game introduced in Section 2. Apart
from all assumptions introduced so far in Sections 2 and 3, we make an additional standing assump-
tion:

Assumption 4.1. Random variables θi, i = 1, 2, have the same cumulative distribution function
F which is strictly increasing and continuous on its support [θL, θU ].

4.1. The strategy profile. We will now introduce a symmetric strategy profile which will be
shown to be a Nash equilibrium in the sense of Def. 2.6 as well as a perfect Bayesian equilibrium.
We start from an intuitive derivation of the form of such a strategy profile and then provide a formal
mathematical definition. Notice that in equilibrium a player of type θ′ would want to exit earlier
than a player of type θ′′ if θ′ > θ′′ because a player would exit earlier if his outside option is more
attractive. Therefore, it is natural that the symmetric equilibrium strategy τ̂(·, θ) (c.f. Corollary
2.8) should be monotone in the type θ. Based on the monotone property of τ̂ , we can hypothesise the
existence of a well-defined stochastic process (Yt) that has the interpretation of the highest value of
the remaining type for both players. Thus, the posterior distribution of the remaining types at any
point in time can be succinctly characterised by (Yt) alone. Furthermore, it would be natural (bar
technical difficulties) that (Yt) defined the strategy τ̂ via its inverse: τ̂(·, θ) = inf{t ≥ 0 : Yt < θ}.

The above intuitive arguments motivate the introduction of player i’s strategy of the form

(4.1) τi = inf{t ≥ 0 : Yt < θi}, i = 1, 2,

where the process (Yt)t≥0 is decreasing, (Ft)-adapted and right-continuous with values in [θL, θU ]

such that Y0− = θU . With an abuse of notation, we will treat (Yt)t≥0 as a process on (Ω̃, F̃ , P̃)
when necessary; clearly, it is (F̃t)-adapted then. Parametrisation (4.1) of the strategy reflects the
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intuitive meaning of the process (Yt) introduced above: on {Yt = y} all players of type θ > y have
left the game before or at time t.

From a mathematical perspective the process (Yt) is inconvenient to work with as it starts from
Y0− = θU and decreases to θL, i.e, it depends explicitly on the support [θL, θU ] and the distribution
of types; see the dynamics (4.14) of (Yt) in the case when the type θi has an absolutely continuous
cumulative distribution function F . It turns out that a more convenient parametrisation is given
by

At =

{

− log(F (Yt)), Yt > θL,

∞, Yt = θL.

We postulate a strategy profile defined in terms of (At) as

(4.2) dAt = λ(Xt, Y (At))dt,

where

(4.3) Y (a) = F−1(e−a), a ≥ 0,

and

(4.4) λ(x, y) =
ry −D(x)

m(x)− y
1x≤α(y).

By Assumption 3.1 and Lemma 3.3, the numerator of the function λ is non-negative. The denom-
inator is positive as m(x) > θU for any x ∈ I, see Assumption 2.3. Intuitively, exp(−At) = F (Yt)
has the interpretation of the proportion of the types that remain in the game at time t. It follows
that λ(Xt, Y (At)) has the interpretation of the rate of exit of an opponent at time t.

The heuristic motivation for the above form of the Nash equilibrium will be provided in Section 4.2
with formal mathematical derivation presented in Section 6 along the uniqueness results; arguments
used there require properties of the process (At) and of the best response stopping problems which
we derive Sections 4.3-4.8.

For notational convenience, we introduce the following function:

(4.5) A(y) = − log(F (y)), y ∈ (θL, θU ],

and A(θL) = ∞. Notice that a 7→ Y (a) and y 7→ A(y) are decreasing and continuous functions on
their domains. Furthermore, A(Y (a)) = a and Y (A(y)) = y.

We remark that the stopping times τi have an equivalent representation (c.f. Lemma 4.16)

(4.6) τi = inf{t ≥ 0 : Yt ≤ θi,Xt ≤ α(θi)}, i = 1, 2,

which naturally links with the classical form of a solution to the best response optimal stopping
problem and furnishes a perfect Bayesian equilibrium (PBE). The condition Yt ≤ θi originates from
the notion that Yt is the maximum type remaining in the game; if Yt hits θi, it signals that it is time
for player of type θi to exit. The other condition suggests that a player exits only when Xt ≤ α(θi);
this condition originates from the interpretation of α(θi) as the exit threshold in the single-player
problem. If Xt > α(θi), the prospective profit stream is sufficiently large that a player does not
have an incentive to exit.

The representation (4.6) does not allow us to derive an optimisation problem in which the type of
the opponent is integrated out and the action of his stopping time replaced by appropriate functional
of the process (Yt), see Lemma 4.2. In the following subsections the reader will notice the importance
of this detail and how it is overcome in order to establish the PBE. Indeed, in Sections 4.3-4.6 we
prove that (τ1, τ2) is a Nash equilibrium; this is followed in Section 4.7 by arguments showing that
(4.6) yields a PBE.

Example 1 (continued). For intuitive understanding, we now return to the numerical example
introduced in Section 3 and assume that the type θi is uniformly distributed within an interval
[θL, θU ]; recall that θL = 0.5 and θU = 1.5. A simulated realisation of the game is presented in
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(a) A sample path of Xt and α(Yt).
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(b) A sample path of Yt.

Figure 2. Example of the evolution of (Xt) and the corresponding processes (Yt)
and α(Yt) with initial conditions X0 = 2.72 and Y0 = θU over time interval [0, 2].

Figure 2. It illustrates a sample path of (Xt, Yt) and α(Yt) with initial conditions X0 = 2.72 and
Y0 = θU over a time interval [0, 2].

The functional form of λ(·, ·) given in (4.4) suggests that there are two regions: an exit region
Xt ≤ α(Yt) and a no-action region Xt > α(Yt). According to the strategy profile (4.6), players
may exit only when Xt ≤ α(Yt), which results in a positive value of λ(Xt, Yt). This feature of the
strategy profile is illustrated by Figure 2, where (Yt) decreases only when Xt ≤ α(Yt). For instance,
in the time intervals [0, 0.378] and [0.748, 0.974], Xt stays above α(Yt), so Yt stays constant within
these intervals. In contrast, Xt ≤ α(Yt) in the intervals [0.494, 0.746] and [1.068, 1.486], so (Yt)
declines steadily in time.

Next, we illustrate an individual player’s strategy. A player of type θ ≥ Yt follows a threshold
exit strategy: to exit as soon as Xt ≤ α(θ). This is intuitively consistent with the optimal policy
for a single-player case. On the other hand, any player of type θ′ < Yt will wait until Yt hits θ

′, at
which point in time he will also adopt a threshold exit strategy, i.e., to exit when Xt ≤ α(θ). In
Nash equilibrium, one would never encounter a player of type θ > Yt; when θ = Yt and Xt ≤ α(θ),
the dynamics (4.2) of At implies that Ys = Y (As) < θ for any s > t, so infimum of times that the
condition Ys < θ is satisfied is t which justifies the equivalence of definitions (4.1) and (4.6). This
equivalence does not hold when θ > Yt, so only a strategy of the form (4.6) defines a PBE.

In the example shown in Figure 2, a player of type θ = 1.5 does not exit until Xt hits α(1.5) at
t = 0.378. Because a player of type 1.5 is supposed to be the first type to exit under the prescribed
strategy profile (θU = 1.5), he exits as soon as Xt ≤ α(1.5) = α(Y0) is satisfied. If the process (Xt)
had started out below α(1.5), then the player would have exited right away at time t = 0.

On the other hand, any player of type θ < Y0 has to wait beyond t = 0.378 because his prescribed
time of exit is τ̂(·, θ) = inf{t ≥ 0 : Yt < θ}. It follows that Figure 2(B) can be utilised to determine
the time of exit for any given type: we simply have to invert the t− Yt graph into Yt − t graph and
relabel the horizontal variable as θ and the vertical variable as τ̂(·, θ). The result is Figure 3. It
illustrates the property of the strategy profile that the exit time is monotonically decreasing in the
type.

The PBE strategy (4.6) of type θ can be succinctly represented as an exit region in the x-y space
defined as {(x, y) : x ≤ α(θ), y ≤ θ}. Figure 4 shows a simulated sample path of (Xt, Yt) as well as
the exit region for type θ = 1 indicated by the shaded rectangle. The player of type θ = 1 exits as
soon as (Xt, Yt) hits the shaded exit region, which takes place at time t = 1.352 when Xt = 0.432
and Yt = 1.

Next, we illustrate the temporal evolution of a game by analysing the dynamics of (Xt, Yt) and
the prescribed strategy for each player. Suppose that θ1 = 1.4 and θ2 = 1. At the beginning
of the game, each player knows his own type but not his opponent’s. However, they both know
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Figure 3. Simulated values of τ̂(·, θ).
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Figure 4. Simulated path of (Xt, Yt). The exit region for θ = 1 is shaded.

the strategy profile and the initial probability distribution of their opponent’s type, just as in the
standard game-theoretic assumption. According to the strategy profile, player i exits at the earliest
time such that Yt < θi. As the game progresses, each player observes whether his opponent exits
or not. If both players remain in the game until time t, they update their posterior beliefs about
their opponent’s type by using the dynamics of (Yt) given by (4.2). Finally, Player 1 exits at time
τ̂(·, 1.4) = 0.564 (see Figure 3), revealing his type publicly. Player 2 never exits under this scenario,
and he consequently enjoys the monopoly from time τ̂(·, 1.4) onwards.

As indicated before (see Corollary 2.8), the proof that the strategy profile given by (4.1) with
Yt = Y (At), for At defined above, is a Nash equilibrium will require examination of the optimal
stopping problem with the functional J(x, σ, τi; γ) defined in (2.3). Recall that τi depends on θi
which is not observable by the rival firm; formally, θi is independent from F . We will therefore
integrate out θi in the following lemma. The statement is formulated for a general process (At)t≥0

as this does not lead to any additional complications in the proof.
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Lemma 4.2. Let τi be of the form (4.1) with Yt = Y (At) for a process (At)t≥0 which is (Ft)-adapted,
right-continuous and increasing with A0− = 0. For any (Ft)-stopping time σ we have

(4.7) J(x, σ, τi; γ) = Ex

[

∫ σ

0
e−rs−AsD(Xs)ds+ γe−rσ−Aσ− +

∫

[0,σ)
e−rs−Asm(Xs)dAs

]

.

Proof of this and other technical results are collected in Section 4.8.

4.2. Heuristic derivation of λ(x, y). Before we delve into the mathematical proof of the equi-
librium, we provide a heuristic derivation of the form of λ(x, y) given in (4.4). We first assume a
current value of Yt = θc at time t and consider the regime Xt > α(Yt) = α(θc). Recall that we
have established that the optimal policy for a single-player problem is never to exit for Xt > α(θc)
if the player is of type θc. Even if his opponent is present, this optimal policy does not change
for Xt > α(θc) as the opponent’s action can only increase the profit flow compared to duopoly
payoff in the single-player problem. Hence, a player of type θc should not exit in equilibrium if
Xt > α(θc). From the monotone property of θ 7→ τ̂(·, θ), it follows that any type θ′ < θc should not
exit if Xt > α(θc). Since all types of θ′ > θc already exited in the past, no one exits for as long as
Xt > α(Yt). It follows that λ(Xt, Yt) = 0 if Xt > α(Yt).

We now consider the exit region Xt ≤ α(θc). By the arguments established above, it is the type
θc that should decide when to exit; the types θ < θc would first wait until after θc exits, and the
types θ > θc should have already exited by now. Thus, we impose the condition that the best
response of a type θ < θc is to wait at least an infinitesimal time while the best response of a type
θc is to exit immediately.

Next, let Xt = x ≤ α(θc) and At = A(θc). As argued before it is suboptimal to delay exit by a
small time δt > 0 for a player of type θc. Using (4.7) and (4.2), we have

0 ≥

E

[

∫ t+δt

0
e−rs−AsD(Xs)ds+ θce

−r(t+δt)−A(t+δt)− +

∫

[0,t+δt)
e−rs−Asm(Xs)dAs

∣

∣

∣
Xt = x,At = A(θc)

]

− E

[

∫ t

0
e−rs−AsD(Xs)ds+ θce

−rt−At− +

∫

[0,t)
e−rs−Asm(Xs)dAs

∣

∣

∣
Xt = x,At = A(θc)

]

= e−rt−At−

(

θc + δt
[

D(x) + λ(x, θc)m(x)− θc(r + λ(x, θc))] +O
(

(δt)2
)

)

.

From this, the leading-order term of δt must be non-positive, which yields the inequality

(4.8) λ(x, θc) ≤
rθc −D(x)

m(x)− θc
.

On the other hand, it is suboptimal for Player i of type θ < θc to exit immediately at t. Assuming
that waiting an infinitesimally short time δt > 0 is strictly better (which we leave without any
formal justification), an analogous argument as above gives

(4.9) λ(x, θc) >
rθ −D(x)

m(x)− θ
, θ < θc.

Note that both conditions (4.8) and (4.9) automatically enforce that λ(x, θc) = (rθc−D(x))/(m(x)−
θc). From the arbitrariness of θc and x ≤ α(θc) and together with the condition that λ(x, y) = 0
for x > α(y), we finally conclude the form (4.4) for λ.

4.3. Construction and properties of (At)t≥0. Standard theory of ODEs cannot be applied to
obtain existence and uniqueness of solutions to (4.2) because the function λ is discontinuous for
each trajectory of (Xt). Instead, we construct the process (At) that satisfies the integral form of
(4.2). We start with a number of technical results.
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We first review the continuity of the process (Xx
t )t≥0 with respect to the initial value x. [29,

Thm. 1, p. 102] implies that for any T > 0 and q ≥ 1 we have for any xn → x in I,
(4.10) lim

n→∞
E
[

sup
s∈[0,T ]

|Xxn
s −Xx

s |q
]

= 0.

The dependence of Xx
t on the initial point x is monotone due to the comparison principle for

diffusions. Hence, by the monotone convergence theorem, (4.10) implies that if the sequence (xn)
is monotone, then for each T > 0, there is a P-negligible subset of Ω outside of which

(4.11) lim
n→∞

sup
s∈[0,T ]

|Xxn
s −Xx

s | = 0.

The infinite variation of trajectories of the process (Xt), which follows from the non-degeneracy
of the diffusion coefficient σ, yield the following result.

Lemma 4.3. For any càdlàg finite variation (Ft)-adapted process (ϕt), we have
∫ ∞

0
1Xs=ϕsds = 0, Px − a.s.

for any x ∈ I.
Thanks to this lemma, modification of λ on the right-hand side of (4.2) on a (countable) number

of curves of the form x = h(y) for continuous h does not affect the solution in the sense that if a
process (At) satisfies (4.2) then so it does with the modified λ. This will play an important role in
the construction of the solution in Proposition 4.6 as well as in Section 6 in which uniqueness of
equilibrium is established.

Lemma 4.4. For any x ≤ α(θU ), the mapping

[θL, θU ] ∋ y 7→ l(x, y) :=
ry −D(x)

m(x)− y

is strictly increasing with the derivative

(4.12) 0 <
rm(x)−D(x)

(m(x)− y)2
≤ rmmin

(mmin − θU )2
,

where mmin = infx∈I m(x).

Lemma 4.5. The mapping (x, a) 7→ λ(x, Y (a)) is decreasing in x and a.

The above basic properties of the expression defining λ in (4.4) are key to the construction of a
solution to (4.2) as well as to the study of the best response optimal stopping problems. Notice also
that l(x, y) ≥ 0 for x ≤ α(y) thanks to Lemma 3.3, so the function λ is non-negative.

Proposition 4.6. There is a strong Markov process (Xt, At)t≥0 such that (Xt) solves (2.1) and
(At) is a continuous process which satisfies

(4.13) At = A0 +

∫ t

0
λ(Xs, Y (As))ds, t ≥ 0, Px − a.s.

i.e., it is a Carathéodory solution to (4.2).

The solution of (4.13) in the above proposition is constructed as a limit of solutions (Aε
t ) of ODEs

with the right-hand side λε. Functions λε converge from above to λ and are Lipschitz continuous,
so that (Aε

t ) are uniquely determined for each ω. The monotone limit A0 = limε↓0A
ε is shown to

satisfy (4.13) with Lemma 4.3 playing an important role.
The process (A0

t )t≥0 is a Carathéodory solution to (4.2): it is a continuous process such that for
almost every ω and almost every t the equality (4.2) holds. The concept of Carathéodory solutions
was introduced in the theory of ODEs to make sense of equations with discontinuous right-hand side,
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i.e., equations whose solutions cannot be continuously differentiable functions. Here, we extended
the notion to random ODEs by studying the equation pathwise, for each ω (and the resulting
trajectory t 7→ Xt(ω)) separately. The reason that the equality in (4.2) is P-a.s. is due to the use
of Lemma 4.3. We finish with the following important remark.

Remark 4.7. There may be many Carathéodory solutions to (4.13) but it follows from the above
discussion that (A0

t )t≥0 is the largest of them.

It should be noted, however, that this extremal property of the solution does not play any role
in our considerations below. It may well be that there is a unique Carathéodory solution but the
theory of such equations with discontinuities driven by infinite variation process (Xt) is not well
developed and beyond the scope of this paper.

Notice that when the CDF F of θ is differentiable then Yt = Y (At), where (At) satisfies (4.13),
is a Carathéodory solution to

(4.14) dYt = − F (Yt)

F ′(Yt)
λ(Xt, Yt)dt, Y0 = Y (A0).

As the mapping Y is decreasing, it is the smallest Carathéodory solution.
We will indicate an initial point (X0, A0) = (x, a) of the Markov process (Xt, At)t≥0 either as

a subscript in Pxa or in the process itself Xx
t , A

x,a
t and mix the notations depending on which

is beneficial for the clarity of exposition. Since (Xt)t≥0 is a strong solution of (2.1) the process
(Xt, At)t≥0 can be considered as a family of processes on the original probability space (Ω,F ,P) as
well as a Markov family.

The final auxiliary result concerns the dependence of the process (At) on the initial point a and
the initial state x of (Xt). The Lipschitz continuity with respect to a will be instrumental in proving
the continuity of the value function to the best response optimal stopping problem, a key result to
prove the equilibrium property of the postulated strategies.

Lemma 4.8. For any x ∈ I, the mapping a 7→ Ax,a
t =: Aa

t is increasing and for a, a′ ≥ 0

|Aa
t −Aa′

t | ≤ |a− a′|, t ≥ 0.

For any a ≥ 0, the mapping x 7→ Ax,a
t is decreasing and sequentially continuous in the following

sense: for every T > 0, x0 ∈ I and xn → x0, there is a P-negligible subset of Ω outside of which
Axn,a

t converges to Ax0,a
t in the supremum norm ‖Z‖T = supt∈[0,T ] |Zt|.

Remark 4.9. It can be deduced from the above lemma and its proof that the mapping (x, a) 7→ Ax,a
t

is sequentially continuous at each point (x̄, ā) ∈ I×[0,∞) outside of a P-negligible set which depends
on (x̄, ā) and the sequence. Indeed, the continuity in a is uniform over x, while by applying Lemma
4.8 for T = 1, 2, 3, . . ., we obtain the sequential continuity at x̄ for any t ≥ 0. The aforementioned
negligible set arises because of the occupation measure formula applied to a semimartingale Zt =
X x̄

t −α(Y (Ax̄,ā
t )) which itself depends on (x̄, ā), and because of the convergence of the process (Xx

t )
which depends on the sequence xn → x̄.

4.4. Best-response value function. Motivated by Corollary 2.8, we assume now that Player 2
follows the strategy τ∗2 given by (4.1) with (At) stated in (4.3). We will study the best response of
Player 1 when θ1 = θ ∈ [θL, θU ], i.e., the optimal stopping problem

sup
σ∈T (Ft)

J(x, σ, τ∗2 ; θ).

This problem does not have a structure of a Markovian optimal stopping problem, but thanks to the
strong Markov property of (Xt, At) and the expression (4.7) for J(·), we will solve it by considering
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the following Markovian optimal stopping problem on the extended state space (Xt, At):
(4.15)

v(x, a; θ) = sup
σ∈T (Ft)

Exa

[

∫ σ

0
e−rs−AsD(Xs)ds + θe−rσ−Aσ +

∫ σ

0
e−rs−Asm(Xs)λ(Xs, Y (As))ds

]

.

Notice that (At) is absolutely continuous, so At− = At. By (4.2) and Lemma 4.2, we have

v(x, 0; θ) = sup
σ∈T (Ft)

J(x, σ, τ∗2 ; θ).

We can rewrite the middle term of (4.15) in an integral form

(4.16) θe−rσ−Aσ = θe−A0 −
∫ σ

0
e−rs−Asθ

(

r + λ(Xs, Y (As))
)

ds.

Letting

(4.17) ṽ(x, a; θ) = sup
σ∈T (Ft)

Exa

[

∫ σ

0
e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds
]

we have v(x, a; θ) = ṽ(x, a; θ) + θe−a. This equivalent formulation of the optimal stopping problem
will be used often in the paper and it underlies the arguments of the following proposition.

Proposition 4.10. The value function v(x, a; θ) is continuous in (x, a) ∈ I × [0,∞). Furthermore,
an optimal stopping time for v(x, a; θ) is σ∗ = inf{t ≥ 0 : (Xt, At) ∈ Sθ

ṽ}, where
Sθ
ṽ = {(x, a) ∈ I × [0,∞] : ṽ(x, a; θ) = 0}

is a closed set.

The main finding of the above proposition is the continuity of the value function v, or, equivalently,
the continuity of ṽ. The form of an optimal stopping time follows then from the standard theory.

The continuity of ṽ in (x, a) does not follow from standard results because the functional is not
continuous due to the discontinuity of λ and the process (Xt, At) has not been shown to be Feller
continuous. Instead, we approximate the value function ṽ from above and from below by value
functions ṽε, ṽε corresponding to optimal stopping problems with λ in the functional (4.17) (but
not in the dynamics of (At)) replaced by continuous λε from above (as in Proposition 4.6) and
by continuous λε from below (constructed analogously as λε). We prove directly the continuity
of ṽε and ṽε using Lemma 4.8 and Eq. (4.11). Thanks to the monotonicity of ṽε in ε, which
follows immediately from the monotonicity of λε in ε and the fact that m > θU , the function
ṽ0 = lim infε↓0 ṽ

ε is upper semi-continuous. Similarly, ṽ0 = lim supε↓0 ṽε is lower semi-continuous.

The proof is concluded by showing that ṽ = ṽ0 = ṽ0.

Remark 4.11. It would be tempting to apply a smoothing technique with λε and λε to prove the
continuity of (x, a) 7→ Ax,a

t . However, the use of λε leads to the largest Carathéodory solution to
(4.2), while, by analogy, we expect λε to yield the smallest Carathéodory solution. This approach
would, therefore, require proving the uniqueness of Carathéodory solutions which is known to not be
true in general.

4.5. Best response stopping set. By Proposition 4.10, the mapping (x, a) 7→ v(x, a; θ) is contin-
uous (as is ṽ(x, a; θ) = v(x, a; θ) − θe−a) and the stopping sets for ṽ and v coincide: Sθ

ṽ = Sθ
v . We

denote by Cθ
ṽ the continuation set, i.e., Cθ

ṽ = I × [0,∞) \ Sθ
ṽ . We also have u(x; θ) = ũ(x; θ) + θ,

where u is defined in (3.6) and

(4.18) ũ(x; θ) = sup
σ∈T (Ft)

Ex

[

∫ σ

0
e−rs

(

D(Xs)− rθ
)

ds
]

.

Recall that the smallest optimal stopping time for u(x; θ) and ũ(x; θ) is

η = inf{t ≥ 0 : ũ(Xt; θ) = 0} = inf{t ≥ 0 : Xt ∈ Sũ},
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where Sũ = {x ∈ I : x ≤ α(θ)} is the stopping set and its complement Cũ = I\S is the continuation
set.

We will turn our attention to the study of the stopping and continuation sets for ṽ. In a sequence
of 3 lemmas, we will establish the regions of the state space which are subsets of the stopping or
continuation sets for ṽ. Each lemma uses different mathematical tools, which guided the split of
the material. For the clarity of the presentation, we outline here the steps:

• {(x, a) ∈ I × [0,∞) : x > α(θ)} ⊂ Cθ
ṽ (Lemma 4.12);

• {(x, a) ∈ I × [0,∞) : x < α(Y (a)), a < A(θ)} ⊂ Cθ
ṽ (Lemma 4.13);

• {(x, a) ∈ I × [0,∞) : x ≤ α(Y (a)), a ≥ A(θ)} ⊂ Sθ
ṽ (Lemma 4.14).

Corollary 4.15 combines these properties into a complete characterisation of the stopping set Sθ
ṽ .

Lemma 4.12. ṽ(x, a; θ) > 0 for (x, a) ∈ I × [0,∞) such that x > α(θ).

Proof. Fix x > α(θ) and a ≥ 0. Consider a process
{

dAt = λ(Xt, Y (At))dt,

A0− = A0 = a.

Define F|Y (a)(y) = F (y∧Y (a))
F (Y (a)) which is the cumulative distribution function F conditioned on the

outcome being smaller than Y (a). Let θa = F−1
|Y (a)(F (θ2)) ∼ F|Y (a), where we recall that θ2 is the

exit value (type) of player 2. We choose θa in this way so that we can integrate it out as we did for
θi using arguments as in Lemma 4.2 with a different cumulative distribution function.

Let Āt = At − a and τa = inf{t ≥ 0 : F−1
|Y (a)(e

−Āt) < θa}. Taking σ = inf{t ≥ 0 : Xt ≤ α(θ)}, we
obtain

u(x; θ) = Ex

[
∫ σ

0
e−rsD(Xs)ds + e−rσθ

]

= Ẽx

[
∫ σ∧τa

0
e−rsD(Xs)ds + 1σ≤τae

−rσθ + 1σ>τa

(

∫ τa

σ
e−rsD(Xs)ds + e−rσθ

)

]

≤ Ẽx

[
∫ σ∧τa

0
e−rsD(Xs)ds + 1σ≤τae

−rσθ + 1σ>τa

(

∫ τa

σ
e−rsM(Xs)ds + e−rσm(Xσ)

)

]

= Ẽx

[
∫ σ∧τa

0
e−rsD(Xs)ds + 1σ≤τae

−rσθ + 1σ>τae
−rτam(Xτa)

]

= J(x, σ, τa; θ),

where in the inequality we used that M(x) ≥ D(x) and m(x) > θU . Notice also that we integrate

over the extended probability space (Ω̃, F̃ , P̃) since τa depends on θ2 via θa. We apply analogous
arguments as in Lemma 4.2 and rewrite the middle term as in (4.16) to get

u(x; θ) ≤ Ex

[
∫ σ

0
e−rs−Ās

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds

]

+ θ.

Taking the supremum over σ ∈ T (Ft) and subtracting θ from both sides, we see that

ũ(x; θ) ≤ sup
σ∈T (Ft)

Ex

[
∫ σ

0
e−rs−Ās

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds

]

= ea sup
σ∈T (Ft)

Ex

[
∫ σ

0
e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds

]

= eaṽ(x, a; θ),

where in the first equality we used the relationship between At and Āt, and the last one is by the
definition of ṽ. Since x > α(θ), it is in the continuation region Cũ of ũ, so ũ(x; θ) > 0. Hence,
ṽ(x, a; θ) > 0. �

Lemma 4.13. ṽ(x, a; θ) > 0 for (x, a) ∈ I × [0,∞) such that x < α(Y (a)) and a < A(θ).
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Proof. For any (x, a) ∈ I × [0,∞) satisfying x < α(Y (a)) and a < A(θ), we have

D(x)− rθ + λ(x, Y (a))(m(x) − θ) = D(x)− rθ +
rY (a)−D(x)

m(x)− Y (a)
(m(x)− θ)

> D(x)− rθ +
rθ −D(x)

m(x)− θ
(m(x)− θ) = 0,

where the inequality uses Y (a) > θ and Lemma 4.4.
The stopping time η := inf{t ≥ 0 : Xt ≥ α(Y (At)) and At < A(θ)} is Pxa-a.s. strictly positive

by the continuity of (Xt, At). On the interval [0, η) the above estimate applies. Hence

ṽ(x, a; θ) ≥ Exa

[
∫ η

0
e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds

]

> 0.

�

Lemma 4.14. We have Sθ
ṽ ⊇ {(x, a) ∈ I × [0,∞) : x ≤ α(θ) and a ≥ A(θ)}.

Proof. Consider an optimal stopping problem ṽ(x, a; θ) on (x, a) ∈ I × [A(θ),∞) =: O. Then
ϕ(x, a) = eaṽ(x, a; θ) is the smallest non-negative function satisfying for (x, a) ∈ O the super-
martingale property (the justification of this fact is relegated to the end of the proof):

(4.19) Exa

[

e−rt−
∫ t
0 λ(Xu,Y (Au))duϕ(Xt, At)

+

∫ t

0
e−rs−

∫ s
0 λ(Xu,Y (Au))du

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds

]

≤ ϕ(x, a).

We will show that (4.19) is satisfied by ϕ(x, a) = ũ(x; θ), from which we immediately conclude that
ũ(x; θ) ≥ eaṽ(x, a; θ) for (x, a) ∈ O as ũ is non-negative. Since ũ(x; θ) = 0 for x ≤ α(θ), the stopping
region for ṽ must contain O ∩

(

(xL, α(θ)] × [0,∞)
)

which is the statement of the proposition.

Since ũ(·; θ) is C1(I) and the second derivative lies in L∞
loc (see (3.6) and classical results on the

smoothness of the value function on the continuation set), Itô-Tanaka formula [40, Ch. VI, Thm. 1.5]
yields

e−rtũ(Xt; θ) = ũ(x; θ) +

∫ t

0
e−rs(LX − r)ũ(Xs; θ)ds+

∫ t

0
e−rsdMs,

where (Mt)t≥0 is a square integrable martingale and LX is the infinitesimal generator of (Xt)t≥0.

Using the supermartingale property of the process t 7→
∫ t
0 e

−rs(D(Xs) − rθ)ds + e−rtũ(Xt; θ), we
obtain

(4.20) LX ũ− rũ+D − rθ ≤ 0, for x ∈ I \ {α(θ)}.

Let Āt = At − a. We apply the product rule

e−rt−Āt ũ(Xt; θ) = ũ(x; θ)+

∫ t

0
e−rs−Ās(LX−r)ũ(Xs; θ)ds−

∫ t

0
e−rs−Ās ũ(Xs; θ)dĀs+

∫ t

0
e−rs−ĀsdMs

and take expectations on both sides to arrive at

(4.21) Exa

[

e−rt−Āt ũ(Xt; θ) +

∫ t

0
e−rs−Ās

(

− (LX − r) + λ(Xs, Y (As))
)

ũ(Xs; θ)ds
]

= ũ(x; θ).
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Recall that ũ(x′; θ) = 0 for x′ ≤ α(θ) and that α(θ) ≥ α(Y (As)) since As ≥ A(θ). Hence
∫ t

0
e−rs−Ās

(

− (LX − r) + λ(Xs, Y (As))
)

ũ(Xs; θ)ds

=

∫ t

0
1Xs>α(Y (As))e

−rs−Ās

(

− (LX − r)ũ(Xs; θ) + λ(Xs, Y (As))ũ(Xs; θ)
)

ds

≥
∫ t

0
1Xs>α(Y (As))e

−rs−Ās

(

D(Xs)− rθ + λ(Xs, Y (As))ũ(Xs; θ)
)

ds

=

∫ t

0
1Xs>α(Y (As))e

−rs−Ās

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds,

where the last equality uses that λ(x′, Y (a′)) = 0 for x′ > α(Y (a′)). On x′ ≤ α(Y (a′)) we have

D(x′)− rθ + λ(x′, Y (a′))(m(x′)− θ) ≤ D(x′)− rθ + λ(x′, θ)(m(x′)− θ) = 0,

where the inequality is by Lemma 4.4 and Y (a′) ≤ θ. Therefore,

0 ≥
∫ t

0
1Xs≤α(Y (As))e

−rs−Ās
(

D(Xs)− rθ + λ(Xs, Y (As))ũ(Xs; θ)
)

ds.

Inserting the above two estimates into (4.21) we get

Exa

[

e−rt−Āt ũ(Xs; θ) +

∫ t

0
e−rs−Ās

(

D(Xs)− rθ + λ(Xs, Y (As))ũ(Xs; θ)
)

ds

]

≤ ũ(x; θ),

which completes the proof that ϕ(x, a) = ũ(x; θ) satisfies (4.19).
Derivation of (4.19): Define

F (x, a) = Exa

[
∫ ∞

0
e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds

]

.

Similar arguments as in the proof of Proposition 4.10 show that F is continuous and bounded.
Furthermore, by the strong Markov property of (Xt, Yt), we have

ṽ(x, a; θ) = sup
σ∈T (Ft)

Exa

[

F (x, a)− e−rσF (Xσ, Aσ)
]

.

Recall that a function ψ is called r-excessive if ψ(x, a) ≥ Exa

[

e−rtψ(Xt, At)
]

, t ≥ 0. Define η(x, a) =

supσ∈T (Ft) Exa

[

− e−rσF (Xσ, Aσ)
]

. By [44, Sec. 3.3, Thm. 1], η is the smallest r-excessive function

dominating −F . Using that ṽ(x, a; θ) = η(x, a) + F (x, a), we obtain that ṽ is the smallest non-
negative function satisfying, for t ≥ 0,

ṽ(x, a; θ) ≥ Exa

[

e−rtṽ(Xt, At; θ) +

∫ t

0
e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds
]

.

Inserting ṽ(x, a; θ) = e−aϕ(x, a) above and noticing that As − a =
∫ s
0 λ(Xu, Y (Au))du yields (4.19).

�

Having established properties of the continuation and stopping sets for ṽ and a given θ, we
combine them into a complete characterisation of the stopping set.

Corollary 4.15. Stopping region for ṽ (and v) is

Sθ
ṽ = {(x, a) ∈ I × [0,∞) : x ≤ α(θ) and a ≥ A(θ)}.

Proof. Denote by S̃θ the right-hand side of the equality in the statement of the corollary. From
Lemma 4.14, we have S̃θ ⊂ Sθ

ṽ . The proof is completed when we show that (S̃θ)c ⊂ Cṽ. Lemma
4.12 implies that

(4.22) {(x, a) ∈ I × [0,∞) : x > α(θ)} ⊂ Cθ
ṽ .
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Lemma 4.13 shows that

(4.23) {(x, a) ∈ I × [0,∞) : x < α(Y (a)) and a < A(θ)} ⊂ Cθ
ṽ .

Take a < A(θ). From the first inclusion, (α(θ), xU )× {a} ⊂ Cθ
ṽ , where we recall that I = (xL, xU ).

From the second inclusion, (xL, α(Y (a))) × {a} ⊂ Cθ
ṽ , but a < A(θ) means that Y (a) > θ, so

α(Y (a)) > α(θ). Hence I × {a} ⊂ Cθ
ṽ . This, together with inclusions (4.22) and (4.23), implies

Cθ
ṽ ⊇ {(x, a) ∈ I × [0,∞) : x > α(θ) or a < A(θ)} = (S̃θ)c

and the proof is completed. �

4.6. Nash equilibrium. The description of the stopping set in Corollary 4.15 is natural in the
framework of optimal stopping of two-dimensional dynamics. The resulting optimal stopping time,
however, is not of the form (4.1). It turns out that due to the specific form of the stopping region
and of the dynamics of (Xt, At) this optimal stopping time can be equivalently described as the first
time that At exceeds A(θ), hence, in the form of (4.1) when one recalls that At = A(Yt). Leaving
technical complications aside, this can be seen as follows. Denoting by σ the first entry time of
(Xt, At) to Sθ

ṽ and by τ the first time that At > A(θ), it is clear that τ ≥ σ. Obviously, if Aσ > A(θ)
then τ = σ. Assume Aσ = A(θ). When Xσ < α(θ), the process At is strictly increasing at σ as
λ(Xσ, θ) > 0, so again τ = σ. A more delicate argument is needed when Xσ = α(θ), but then the
regularity of the point α(θ) for the process (Xt) implies that (Xt) enters the open interval (xL, α(θ))
immediately, so a similar argument as before can be used.

Lemma 4.16. For (x, a) ∈ I × [0, A(θ)), we have

inf{t ≥ 0 : At > A(θ)} = inf{t ≥ 0 : (Xt, At) ∈ Sθ
ṽ}, Pxa − a.s.

Proof. Define τ = inf{t ≥ 0 : At > A(θ)} and

σ = inf{t ≥ 0 : (Xt, At) ∈ Sθ
ṽ} = inf{t ≥ 0 : At ≥ A(θ) and Xt ≤ α(θ)}.

Recall that Sθ
ṽ is closed, so σ is a stopping time. Fix (x, a) as in the statement of the lemma. We will

argue omega by omega. Fix ω ∈ Ω and take any t ≥ 0 such that At(ω) > A(θ). By the assumption
that a < A(θ) we have t > 0. Due to the dynamics of (At) there is s ≤ t such that Xs(ω) ≤ α(θ)
and As(ω) > A(θ). This implies that s ∈ {u ≥ 0 : Au(ω) ≥ A(θ) and Xu(ω) ≤ α(θ)} and shows
that τ(ω) ≥ σ(ω). From the arbitrariness of ω we conclude that τ ≥ σ.

Since τ ≥ σ, Pxa-a.s., by the strong Markov property of (Xt, At) and the continuity of the
trajectories we have Pxa(τ > σ) = Exa

[

PXσAσ(τ > 0)
]

and Xσ ≤ α(θ), Aσ = A(θ). In order to show
that Pxa(τ > σ) = 0 it suffices to demonstrate that

(4.24) Pxa(τ > 0) = 0 for (x, a) ∈ Oθ := {(x, a) ∈ I × [0,∞) : x ≤ α(θ), a = A(θ)}.
Take (x, a) ∈ Oθ. If x < α(θ) then η = inf{t ≥ 0 : Xt > α(Y (At))} > 0 Pxa-a.s. and (At) is
strictly increasing on [0, η). Hence, Pxa(τ > 0) = 0. Consider now x = α(θ) and a = A(θ). By the
non-degeneracy of the diffusion around x, we have that η◦ = inf{t ≥ 0 : Xt < α(θ)} = 0 Pxa-a.s.
Let B = {τ > 0 and η◦ = 0}. For ω ∈ B, At(ω) = A0(ω) = A(θ) for t ∈ [0, τ(ω)). Since η◦(ω) = 0,
there is t(ω) < τ(ω) such that Xt(ω) < α(θ). By the continuity of (Xt), the Lebesgue measure of the
set {s ∈ [0, t(ω)] : Xs(ω) < α(θ)} is greater than zero which contradicts that λ(Xs(ω), As(ω)) = 0
for s ∈ [0, τ(ω)) (recall the dynamics (4.2) of (At)). This contradiction shows that the set B is
empty. Since Pxa(η

◦ = 0) = 1, we conclude that Pxa(τ > 0) = 0. �

We are now in a position to state the main result of this section.

Theorem 4.17. Let τ1, τ2 be given by (4.1) with (At) stated in (4.3). Then (τ1, τ2) is a Nash
equilibrium in the sense of Definition 2.6.



22 H.D. KWON AND J. PALCZEWSKI

Proof. We apply Corollary 2.8. Take τ̂1(·, θ) = τ̂2(·, θ) = inf{t ≥ 0 : Y (At) < θ}. These are
stopping times thanks to Lemma 4.16. Due to the symmetry of the problem, it is sufficient to show
that for every θ ∈ [θL, θU ] and x ∈ I, the stopping time σ∗ = τ̂1(·, θ) solves the optimal stopping
problem supσ∈T (Ft) J(x, σ, τ2; θ), where τ2 = τ̂2(·, θ2) is an T (F2

t )-stopping time. Recall that by

Lemma 4.2 and (4.15) we have

v(x, 0; θ) = sup
σ∈T (Ft)

J(x, σ, τ2; θ).

We show in Corollary 4.15 that the optimal stopping time for v is given by

σ∗ = inf{t ≥ 0 : Xt ≤ α(θ) and At ≥ A(θ)}
= inf{t ≥ 0 : At > A(θ)}
= inf{t ≥ 0 : Y (At) < θ},

where the second equality follows from Lemma 4.16 and the last equality is because Y = A−1. �

4.7. Perfect Bayesian Equilibrium. The equilibrium established above is not only a Nash equi-
librium, but it also furnishes a perfect Bayesian equilibrium via (4.6). A perfect Bayesian equilibrium
requires two conditions [35]: sequential rationality and the correct dynamics (Bayesian updating)
of the beliefs of the players. The correct belief dynamics is automatically taken care of through the
dynamics of Yt that unambiguously determines the posterior probability distribution of θ1 and θ2.
The sequential rationality stipulates that each player’s strategy is a best response at any time t with
the knowledge of his own type at any value of Xt and any belief represented by Yt. In particular, a
perfect Bayesian equilibrium has to take into account the best response even in case of deviations.
In the context of the strategy profile we defined, a deviation happens only if a player of type θ fails
to exit even though Yt < θ. If deviation takes place, the dynamics of (Yt) is unaltered because his
opponent can never find out if deviation occurred or not.

To formally define a perfect Bayesian equilibrium in our setting with asymmetric information, we
adapt the notions of extended strategy and time-consistent extended strategy from Riedel and Steg
[41]. For the sake of simplicity, we present the framework for equilibria in pure strategies which
can be written as hitting times of a measurable set Υ by the process (Xt, At, θi), where the last
component is the type of the player; the strategy (4.6) is of this form. The stopping time employed
by the player i of type θi, i = 1, 2, for the game starting at time t ≥ 0 is given by

τ(t; θi) = inf{s ≥ t : (Xs, As, θi) ∈ Υ}.
Notice that such a family of strategies for player i and a fixed value of θi satisfies the conditions of
time-consistent extended strategy in [41, Def. 2.13], i.e., it is an extension of that concept to games
with private information.

To this end, for any t ≥ 0, we define the posterior distribution F|Y (At) of θi, i = 1, 2, given the
value of the belief process At, as F|y(z) = F (z ∧ y)/F (y). Therefore, the random variables denoting
the remaining types of player i conditional that the game has not ended by time t, are constructed
as

(4.25) θ̂ti = F−1
|Y (At)

(F (θi)) ∼ F|Y (At), i = 1, 2.

Define a functional Ĵt by

(4.26) Ĵt(x, τ1, τ2; θ) = Ẽx

[
∫ τ1∧τ2

t
e−r(s−t)D(Xs)ds+1τ1≤τ2e

−r(τ1−t)θ+1τ1>τ2e
−r(τ2−t)m(Xτ2)

∣

∣

∣

∣

F̃t

]

.

Definition 4.18. The symmetric strategy profile τ(t; θ) given by Υ and the posterior probability
distribution (4.25) constitute a perfect Bayesian equilibrium if

Ĵt(x, σ, τ(t; θ̂
t
i); θ) ≤ Ĵt(x, τ(t; θ), τ(t; θ̂

t
i); θ), Px-a.s.,
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for any i = 1, 2, x ∈ I, θ ∈ [θL, θU ], t ≥ 0, and σ ∈ T (F̃t), σ ≥ t.

A formal treatment of the conditional random distribution F|A(Yt) is beyond the scope of this

paper but the functional Ĵt evaluated at τ(t, θ̂ti) can be given the formal meaning:

Ĵt(x, σ, τ(t; θ̂
t
i); θ) = Ex

[
∫ Y (At)

θL

(
∫ σ∧τ(t;γ)

t
e−r(s−t)D(Xs)ds + 1σ≤τ(t;γ)e

−r(σ−t)θ

+ 1σ>τ(t;γ)e
−r(τ(t;γ)−t)m(Xτ(t;γ))

)

dF (γ)

F (Y (At))

∣

∣

∣

∣

Ft

]

.

For technical reasons and mathematical convenience, we define
(4.27)

Jt(x, τ1, τ2; θ) = Ẽx

[

1τ2>t

(
∫ τ1∧τ2

t
e−r(s−t)D(Xs)ds+1τ1≤τ2e

−r(τ1−t)θ+1τ1>τ2e
−r(τ2−t)m(Xτ2)

)
∣

∣

∣

∣

F̃t

]

and notice that

(4.28) Jt(x, σ, τ(0; θi); θ) = e−At Ĵt(x, σ, τ(t; θ̂
t
i); θ),

where we used F (Y (At)) = e−At . The symmetry of the condition in Definition 4.18, the identical
distribution of θi, and equality (4.28) imply that τ(t; θ) furnishes a perfect Bayesian equilibrium if

(4.29) Jt(x, σ, τ(0; θ2); θ) ≤ Jt(x, τ(t; θ), τ(0; θ2); θ), Px-a.s.,

for any x ∈ I, θ ∈ [θL, θU ], t ≥ 0 and σ ∈ T (F̃t) with σ ≥ t.
Consider now Υ corresponding to the Nash equilibrium (4.6):

(4.30) Υ∗ = {(x, a, θ) ∈ I × [0,∞) × [θL, θU ] : x ≤ α(θ), a ≥ A(θ)}.
In order to verify (4.29), we apply arguments similar as in the proof of Lemma 4.2 to integrate out
θ2 in Jt:

Jt(x, σ, τ(0; θ2); θ) = Ex

[

∫ σ

t
e−r(s−t)−AsD(Xs)ds+ θe−r(τ−t)−Aτ +

∫

[t,τ)
e−r(s−t)−Asm(Xs)dAs

∣

∣

∣
Ft

]

,

where we used that σ ≥ t and σ ∈ T (Ft). To show that Υ∗ defines a perfect Bayesian equilibrium,
it is enough to prove that for any t ≥ 0 and θ ∈ [θL, θU ], the stopping time σ∗ = τ(t; θ) solves the
optimal stopping problem

(4.31) ess sup
σ≥t

Ex

[

∫ σ

t
e−r(s−t)−AsD(Xs)ds+ θe−r(σ−t)−Aσ +

∫

[t,σ)
e−r(s−t)−Asm(Xs)dAs

∣

∣

∣
Ft

]

.

Due to the Markov property of (Xt, At) and the boundedness and continuity of D and m, the
classical theory of optimal stopping yields the optimal stopping time of the form σ∗ = inf{s ≥ t :
U(Xs, As; θ) = θe−As}, where

U(x, a; θ) = sup
σ∈T (Ft)

Exa

[

∫ σ

0
e−rs−AsD(Xs)ds + θe−rσ−Aσ +

∫

[0,σ)
e−rs−Asm(Xs)dAs

]

.

Recalling the form of At in (4.2), notice that U(x, a; θ) = v(x, a; θ), where v is defined in (4.15).
Corollary 4.15 implies that the solution of the stopping problem (4.31) is indeed given by σ∗ = τ(t; θ).
This completes the proof that the strategy profile derived in previous sections gives rise to a perfect
Bayesian equilibrium.

Theorem 4.19. Symmetric strategy profile given by Υ∗ is a perfect Bayesian equilibrium in the
sense of Definition 4.18.
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We emphasise again the difference between the definition of the strategy profile (4.1) that forms
a Nash equilibrium and the strategy profile (4.6) that corresponds to Υ∗ and forms the perfect
Bayesian equilibrium. These strategies coincide along the equilibrium path for the game started at
time 0. The former definition is fundamental for the reformulation of the best response problem
where the type of the opponent is integrated out (Lemma 4.2). We further exploit it above where we

rewrite the functional Ĵt as Jt in (4.28) with the opponent following the equilibrium path τ(0; θi).
The reader can further notice the interaction between these definitions in the following remark.

Remark 4.20. The equality (4.28) enables a mathematically equivalent formulation of Definition
4.18: a symmetric strategy profile τ(t; θ) given by Υ is a perfect Bayesian equilibrium if

{τ(0; θi) < t} = {Y (At) < θi}, Px-a.s.

and

Jt(x, σ, τ(0; θi); θ) ≤ Jt(x, τ(t; θ), τ(0; θi); θ), Px-a.s.,

for any i = 1, 2, x ∈ I, θ ∈ [θL, θU ], t ≥ 0, and σ ∈ T (F̃t), σ ≥ t.

4.8. Remaining proofs.

Proof of Lemma 4.2. Since (At)t≥0 is (Ft)-adapted, right-continuous and increasing, the process
(Yt)t≥0 retains the same adaptivity and right-continuity but is decreasing. From A0− = 0 and
F (θU ) = 1, we obtain Y0− = θU . We also have Yt ∈ (θL, θU ], t ≥ 0.

The rest of the proof follows similar arguments as in [10, Section 4]. For simplicity of notation,
we omit the index i in τi and θi. Here, we treat (Yt)t≥0 and (At)t≥0 as stochastic processes on

(Ω̃, F̃ , P̃) in an obvious way due to the product form of the probability space. Let F̃∞ =
∨

t≥0 F̃t.
We first note that

{t > τ} ⊆ {Yt < θ} ⊆ {t ≥ τ}.
From the first inclusion, we get that

Ẽ
[

1σ>τ

∣

∣F̃∞

]

= lim
ε↓0

Ẽ
[

1σ−ε>τ

∣

∣F̃∞

]

≤ lim
ε↓0

(

1− F (Yσ−ε)
)

= 1− F (Yσ−),

where we used that (Yt) is monotone, so the limits exist. The second inclusion gives the opposite
estimate:

Ẽ
[

1σ>τ

∣

∣F̃∞

]

= lim
ε↓0

Ẽ
[

1σ−ε≥τ

∣

∣F̃∞

]

≥ lim
ε↓0

(

1− F (Yσ−ε)
)

= 1− F (Yσ−).

By (4.5), we conclude that

(4.32) Ẽ
[

1σ>τ

∣

∣F̃∞

]

= 1− e−Aσ− and Ẽ
[

1σ≤τ

∣

∣F̃∞

]

= e−Aσ−.

Let ϕ : [0,∞] × R → R be a measurable bounded function. We shall show that

(4.33) Ẽx

[

1σ>τ ϕ(τ,Xτ )
∣

∣F̃∞

]

=

∫

[0,σ)
e−Asϕ(s,Xs)dAs.

Define τ̂(u) = inf{t ≥ 0 : Yt < u} so that τ = τ̂(θ); notice that this is the decomposition of τ from
Proposition 2.7 in which we suppress in the notation the dependence on ω. To shorten notation,
define an (F̃t)-adapted process

Zt = ϕ(t,Xt)1σ>t, t ≥ 0.

Using the independence of θ from F̃∞, we have

Ẽx

[

1σ>τ ϕ(τ,Xτ )
∣

∣F̃∞

]

= Ẽx

[

Zτ

∣

∣F̃∞

]

=

∫ θU

θL

Zτ̂(v)dF (v) =

∫ 1

0
Zτ̂(F−1(u))du,
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where F−1(·) is the inverse of F (which exists by Assumption 4.1) and in the last equality we used
[40, Ch. 0, Prop. 4.9]. We rewrite τ̂(F−1(u)) as follows:

τ̂(F−1(u)) = inf{t ≥ 0 : Yt < F−1(u)} = inf{t ≥ 0 : F (Yt) < u} = inf{t ≥ 0 : e−At < u}
= inf{t ≥ 0 : 1− e−At > 1− u} =: τ̃(1− u).

This allows us to write
∫ 1

0
Zτ̂(F−1(u))du =

∫ 1

0
Zτ̃(1−u)du =

∫ 1

0
Zτ̃(u)du =

∫ ∞

0
Zsd(1 − e−As) =

∫ ∞

0
e−AsZsdAs,

where we apply [40, Ch. 0, Prop. 4.9] in the third equality. Recalling the definition of (Zt)t≥0

completes the derivation of (4.33).
Using (4.32)-(4.33), the functional J takes an equivalent form

J(x, σ, τ ; γ) = Ẽx

[

∫ σ

0
e−rs−As−D(Xs)ds + γe−rσ−Aσ− +

∫

[0,σ)
e−rs−Asm(Xs)dAs

]

.

Since (At) is increasing, it has only a countable number of jumps, so
∫ σ

0
e−rs−As−D(Xs)ds =

∫ σ

0
e−rs−AsD(Xs)ds

and (4.7) is proved. �

Proof of Lemma 4.4. Take any x ≤ α(θU ). The formula (4.12) for the derivative of the mapping
from the statement of the lemma follows by straightforward differentiation. Denote it by g(y;x).
By assumptions, we have m(x) ≥ mmin > θU and D(x) ≤ rθU since x ≤ α(θU ). Hence g(y;x) > 0.
We also note that

rm(x)−D(x)

(m(x)− y)2
≤ rm(x)

(m(x)− θU )2
≤ rmmin

(mmin − θU)2
,

since the function z 7→ z/(z − θU )
2 is decreasing for z > θU . �

Proof of Lemma 4.5. Recalling that a 7→ Y (a) is decreasing, Lemma 4.4 shows that a 7→ λ(x, Y (a))
is decreasing on {a ≥ 0 : x ≤ α(Y (a))} which is either a closed interval [0, a∗(x)] or an empty set
(in which case we set a∗(x) = 0), since a 7→ α(Y (a)) is continuous and decreasing. As λ ≥ 0 and
λ(x, ·) ≡ 0 on (a∗(x),∞), we conclude that a 7→ λ(x, a) is decreasing.

Fix now a ≥ 0 and notice that

x 7→ rY (a)−D(x)

m(x)− Y (a)

is decreasing on x ≤ α(Y (a)). Indeed, rY (a) − D(x) > 0 for such x and decreasing and the
numerator is increasing in x. We also have λ(x, a) = 0 for x > α(Y (a)) and λ ≥ 0, so a potential
jump at x = α(Y (a)) is downward. This completes the proof of monotonicity. �

Proof of Lemma 4.3. Define a semimartingale Zt = Xt − ϕt. The occupation times formula [39,
Cor. 1, p. 216] shows that for any ε > 0 and t > 0, Px-a.s.,

(4.34)

∫ ε

−ε
Lu
t du =

∫ t

0
1Zs−∈[−ε,ε]d[Z,Z]

c
s =

∫ t

0
1{Zs−∈[−ε,ε]}b

2(Xs)ds,

where Lu
t is the local time of (Zt)t≥0 at the level u and [Z,Z]c is the path-by-path continuous part

of the quadratic variation [Z,Z] and equals to the quadratic variation [Zc, Zc] of the continuous
local martingale part of Z (see [39, p. 70]). Clearly, the continuous local martingale part Zc of
Z equals to the continuous local martingale part of Xc and, using [39, Thm. 29, p. 75], we have

[Zc, Zc]t = [Xc,Xc]t =
∫ t
0 b

2(Xs)ds. The equality (4.34) holds outside of Px-negligible set common
for every t ≥ 0; indeed, it is sufficient to apply the above formula for a sequence tn → ∞.
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Taking the limit in (4.34) as ε ↓ 0, the dominated convergence theorem implies that

0 = lim
ε↓0

∫ ε

−ε
Lu
t du = lim

ε↓0

∫ t

0
1{(Xs−−ϕs−)∈[−ε,ε]}b

2(Xs)ds =

∫ t

0
1Xs=ϕsb

2(Xs)ds,

where in the last equality we used the continuity of (Xt). To conclude, we recall that b(·) > 0. �

Proof of Proposition 4.6. Construction of (At): Function α is strictly increasing and continuous
(Lemma 3.3), so its inverse α−1 is well defined, continuous and strictly increasing. Hence, x ≤ α(y)
can be equivalently written as y ≥ α−1(x). Define

(4.35) λε(x, y) = l(x, y)1y≥α−1(x) + l(x, α−1(x))1y<α−1(x)
1

ε

(

y − α−1(x) + ε
)+
,

where l(x, y) is defined in Lemma 4.4. Using this lemma and the above definition, the mapping
y 7→ λε(x, y) is Lipschitz with the constant independent of x. Due to the continuity of α and its
inverse, λε is continuous. Hence, for any ω ∈ Ω, using the continuity of trajectories of (Xt), there
is a unique solution of the ODE

(4.36) dAε
t = λε(Xt, Y (Aε

t ))dt, Aε
0 = a ≥ 0,

and it depends continuously on a. Since λε is increasing in ε and non-negative, by the comparison
principle for ODEs, the solution Aε

t is increasing in ε and non-negative. Hence the limit A0
t :=

limε↓0A
ε
t exists, is increasing and right-continuous. We will show that it satisfies (4.13) Px-a.s. It

suffices to show that

(4.37) lim
ε↓0

∫ t

0
λε(Xs, Y (Aε

s))ds =

∫ t

0
λ(Xs, Y (A0

s))ds, Px − a.s.

From (4.35), we have the lower bound λε(x, y) ≥ l(x, y)1y>α−1(x). As l is non-negative, Fatou’s
lemma implies

lim inf
ε↓0

∫ t

0
λε(Xs, Y (Aε

s))ds ≥
∫ t

0
l(Xs, Y (A0

s))1Y (A0
s)>α−1(Xs)ds

using that l is continuous and ε 7→ Y (Aε
s) is continuous and increasing for each s ≥ 0. For the upper

bound, we write

λε(x, y) ≤ l(x, y)1y>α−1(x) + l(x, α−1(x))1α−1(x)−ε<y≤α−1(x).

This and the fact that lim supε↓0{α−1(Xs)− ε < Y (Aε
s) ≤ α−1(Xs)} ⊂ {Y (A0

s) = α−1(Xs)} yield

lim sup
ε↓0

λε(Xs, Y (Aε
s)) ≤ l(Xs, Y (A0

s))1Y (A0
s)>α−1(Xs) + l(Xs, α

−1(Xs))1Y (A0
s)=α−1(Xs).

Recall that l is bounded, so we can apply reverse Fatou’s lemma

lim sup
ε↓0

∫ t

0
λε(Xs, Y (Aε

s))ds ≤
∫ t

0
l(Xs, Y (A0

s))1Y (A0
s)>α−1(Xs) + l(Xs, α

−1(Xs))1Y (A0
s)=α−1(Xs)ds.

The process s 7→ A0
s is increasing, hence of finite variation, and right-continuous. Functions Y and α

are continuous and {Y (A0
s) = α−1(Xs)} = {α

(

Y (A0
s)
)

= Xs}. Since function l is bounded, Lemma

4.3 implies that the integral
∫∞
0 l(Xs, α

−1(Xs))1Y (A0
s)=α−1(Xs)ds = 0 Px-a.s. We can therefore

conclude that the following limit exists Px-a.s. (with the measure zero set independent of t)

lim
ε↓0

∫ t

0
λε(Xs, Y (Aε

s))ds =

∫ t

0
l(Xs, Y (A0

s))1Y (A0
s)≥α−1(Xs)ds =

∫ t

0
λ(Xs, Y (A0

s))ds.

Hence (A0
t )t≥0 satisfies (4.13) and we will use it as a definition of the process (At)t≥0 from the

statement of the proposition. From (4.13) we deduce that (At) is continuous Px-a.s.
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Markov property: As the process (At) is constructed ω by ω, it is sufficient to show that for
any u ≥ 0 and s ≥ 0 we have A0

u+s = Ā0
s, where Ā

0
t = limε↓0 Ā

ε
t with (Āε

t ) being the unique solution
of

dĀε
t = λε(Xu+t, Y (Āε

t ))dt, Āε
0 = A0

u.

This is not immediate as it is possible that Aε
u > A0

u for all ε > 0 which implies Āε
t < Aε

u+t, at least

for t ≤ T (ω) for some T (ω) > 0. To overcome this problem, define (Āε,δ
t ) as a solution to (4.36)

with the initial condition Āε,δ
0 = A0

u + δ, for δ > 0. By the continuous dependence of the solution

to (4.36) on the initial condition and the comparison principle for ODEs, we have Āε
t = infδ>0 Ā

ε,δ
t .

The mapping ε 7→ Āε
t is increasing, hence, Ā0

t = infε,δ>0 Ā
ε,δ
t .

Fix ω ∈ Ω (we omit it in the notation for the clarity of exposition). For any δ > 0 there is ε > 0
such that Aε

u ≤ A0
u + δ. By the uniqueness of solutions to (4.36) and the comparison principle, we

have Aε
u+s ≤ Āε,δ

s , s ≥ 0, so A0
u+s ≤ Āε,δ

s . This implies that A0
u+s ≤ Ā0

s. The opposite inequality
follows from Āε

0 ≤ Aε
u and analogous arguments as above.

Strong Markov property: We apply [5, Ch. I, Prop. 8.2]. Condition (S.R.) for the process
(Xt, At)t≥0 is immediate. Indeed, fix a stopping time σ. Then Xσ is Fσ-measurable since (Xt) is
strong Markov. Due to the boundedness of λ, the process (At) does not explode at a finite time.
Furthermore, for any ε > 0, Aε

σ(ω) is defined based on the trajectory (Xt(ω))t≤σ(ω) , so A
ε
σ is Fσ-

measurable. The random variable A0
σ is also Fσ-measurable as an Px-a.s. limit of a sequence of

Fσ-measurable random variables; recall that the probability zero set from Lemma 4.3 is universal
for all σ.

Condition (S.M.)’ of [5, Ch. I, Prop. 8.2] is proved analogously as the Markov property but with
u replaced by σ(ω). �

Proof of Lemma 4.8. The monotonicity of the mapping a 7→ Aa
t follows from the comparison prin-

ciple for ODEs applied to (4.36). To prove the second statement, we take a > a′ and write

Aa
t −Aa′

t = Aa
0 −Aa′

0 +

∫ t

0

[

λ(Xs, Y (Aa
s))− λ(Xs, Y (Aa′

s ))
]

ds ≤ Aa
0 −Aa′

0 = a− a′,

where we used that the integrand is non-positive because Aa
s ≥ Aa′

s and the mapping a 7→ λ(x, Y (a))

is decreasing (by Lemma 4.5). The difference Aa
t − Aa′

t is bounded from below by 0 from the first
part of the statement.

The monotonicity in x follows from the observation that Xx
t ≥ Xx′

t for x > x′ and t ≥ 0 by the
comparison principle for SDEs, so, using Lemma 4.5,

λ(Xx
t , y) ≤ λ(Xx′

t , y) for all y ∈ [θL, θU ].

For the continuity, fix a ≥ 0 and take xn ↑ x0. Then Axn
t ≥ Ax0

t and so α(Y (Axn
t )) ≤ α(Y (Ax0

t )).
Notice that λ(x, a) is bounded from above by rθU/(mmin − θU ) < ∞, where mmin = infx∈I m(x).
By Fatou’s lemma

A∞
t := lim sup

n→∞
Axn

t ≤ a+

∫ t

0
lim sup
n→∞

λ(Xxn
s , Y (Axn

s ))ds ≤ a+

∫ t

0
lim sup
n→∞

λ(Xxn
s , Y (Ax0

s ))ds

= a+

∫ t

0
λ(Xx0

s , Y (Ax0
s ))ds = Ax0

t ,

where the second inequality is based on the monotonicity of a 7→ λ(x, Y (a)) (Lemma 4.5) and
the penultimate equality is because λ(zn, y) ↓ λ(z, y) for zn ↑ z, and Xxn

s ↑ Xx0
s by (4.11) (the

convergence is for ω outside of P-negligible set independent from s). Combined with the opposite
inequality as Axn

t ≥ Ax0
t , we obtain Ax

t = A∞
t . By the arbitrariness of t, Axn

t ↓ Ax0
t for all t ≥ 0.

Dini’s theorem implies that the convergence is uniform on compact sets.
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We now turn our attention to the case of xn ↓ x0. Then Axn
t ≤ Ax0

t and so α(Y (Axn
t )) ≥

α(Y (Ax0
t )). By Fatou’s lemma

A∞
t := lim inf

n→∞
Axn

t ≥ a+

∫ t

0
lim inf
n→∞

λ(Xxn
s , Y (Axn

s ))ds ≥ a+

∫ t

0
lim inf
n→∞

λ(Xxn
s , Y (Ax0

s ))ds

≥ a+

∫ t

0

rY (Ax0
s )−D(Xx0

s )

m(Xx0
s )− Y (Ax0

s )
1{Xx0

s <α(Y (A
x0
s ))}ds,

where in the last inequality, we use Xxn
s ↓ Xx0

s by (4.11) to argue the convergence of the fraction
due to its continuity, and the convergence of the indicator functions because of lim infn→∞{Xxn

s ≤
α(Y (Ax0

s ))} ⊃ {Xx0
s < α(Y (Ax0

s ))}. Denote by Āt the right-hand side of the above estimate. When
we recall that A∞

t ≤ Ax0
t , we obtain Ax0

t ≥ Āt and both processes are continuous. For any t ≥ 0,
we compute

Ax0
t − Āt =

∫ t

0

rY (Ax0
s )−D(Xx0

s )

m(Xx0
s )− Y (Ax0

s )

(

1{Xx0
s ≤α(Y (A

x0
s ))} − 1{Xx0

s <α(Y (A
x0
s ))}

)

ds

≤ λmax

∫ t

0
1{Xx0

s =α(Y (A
x0
s ))}ds,

where λmax is the upper bound for λ. By Lemma 4.3, the right-hand side is P-a.s. zero and the null
set can be taken independent of t. Hence Ax0

t and Āt are P-indistinguishable. Since A
x0
t ≥ Axn

t and
A∞

t = lim infn→∞Axn
t ≥ Āt, we have that Axn

t converges to Ax0
t for all t outside of P-negligible set.

By Dini’s theorem, the convergence is uniform for t on compact sets. Due to the monotonicity of
x 7→ Ax

t the convergence over monotone sequences xn extends to general sequences. �

Proof of Proposition 4.10. There are continuous bounded functions λε, λε such that λε ≥ λ ≥ λε,
and λε ↓ λ and λε ↑ λ pointwise as ε ↓ 0; see (4.35) for an explicit definition of λε. This is because
the discontinuity of λ is on a continuous curve {(x, a) : x = α(Y (a))}. Consider

ṽε(x, a; θ) = sup
σ∈T (Ft)

Exa

[

∫ σ

0
e−rs−As

(

D(Xs)− rθ + λε(Xs, Y (As))(m(Xs)− θ)
)

ds
]

,

and analogously ṽε; notice that the dynamics of the process (At) does not depend on ε. Since
m(x) > θU for all x ∈ I, we have ṽε ≥ ṽ ≥ ṽε.

Assume that ṽε and ṽε are continuous; the proof will come shortly. For any δ-optimal stopping
time σδ for ṽ, we have

ṽ(x, a; θ)− δ ≤ Exa

[

∫ σδ

0
e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds
]

= lim
ε↓0

Exa

[

∫ σδ

0
e−rs−As

(

D(Xs)− rθ + λε(Xs, Y (As))(m(Xs)− θ)
)

ds
]

≤ lim inf
ε↓0

ṽε(x, a; θ),

where the equality is by the dominated convergence theorem and the last inequality is because the
expectation in the second line is dominated by ṽε(x, a; θ). Combining this for arbitrary δ > 0 with
ṽ ≥ ṽε, we obtain that ṽε converges pointwise from below to ṽ, hence ṽ is lower semicontinuous.

The mapping ε 7→ ṽε(x, a; θ) is increasing for each fixed x, a, θ hence the limit ṽ0(x, a; θ) :=
limε↓0 ṽ

ε(x, a; θ) exists. Using the continuity of ṽε, by the general theory of optimal stopping (see,
e.g., [28, 37]), the stopping time σε = inf{t ≥ 0 : ṽε(Xt, At; θ) = 0} is optimal for ṽε. It is also
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increasing in ε due to the monotonicity of ṽε in ε. Hence

ṽ0(x, a; θ) = lim
ε↓0

Exa

[

∫ ∞

0
1t≤σεe−rs−As

(

D(Xs)− rθ + λε(Xs, Y (As))(m(Xs)− θ)
)

ds
]

≤ Exa

[

∫ ∞

0
1t≤σ0e−rs−As

(

D(Xs)− rθ + λ(Xs, Y (As))(m(Xs)− θ)
)

ds
]

≤ ṽ(x, a; θ),

where in the first inequality we used the reverse Fatou’s lemma (as the integrand is bounded from
above) and σ0 = limε↓0 σ

ε = infε>0 σ
ε is a stopping time as an infimum of stopping times. The

inequality ṽ0 ≥ ṽ is immediate from ṽε ≥ ṽ. Hence ṽε converges to ṽ pointwise from above, which
implies that ṽ is upper semicontinuous.

Combining the above two semicontinuity results shows the continuity of ṽ. By the general optimal
stopping theory, see [28, 37], the optimal stopping time is given by the formula in the statement of
the proposition.

In remains to show the continuity of ṽε. The proof for ṽε is analogous. Take (xn, an) converging
to (x, a) and such that (xn) is monotone (which can be assumed without loss of generality). For
any T > 0, we have the following estimate

∣

∣ṽε(xn, an; θ)− ṽε(x, a; θ)
∣

∣

≤ sup
σ∈F(Ft),σ≤T

{

E

[
∫ σ

0
e−rs

∣

∣

∣
e−Axn,an

s
(

D(Xxn
s )− θ

)

− e−Ax,a
s

(

D(Xx
s )− θ

)

∣

∣

∣
ds

]

+ E

[
∫ σ

0
e−rs

∣

∣

∣
e−Axn,an

s λε(Xxn
s , Y (Axn,an

s ))
(

m(Xxn
s )− θ

)

− e−Ax,a
s λε(Xx

s , Y (Ax,a
s ))

(

m(Xx
s )− θ

)

∣

∣

∣
ds

]}

+ 2e−rT 1

r
C

≤ E

[
∫ T

0
e−rs

∣

∣

∣
e−Axn,an

s
(

D(Xxn
s )− θ

)

− e−Ax,a
s

(

D(Xx
s )− θ

)

∣

∣

∣
ds

]

+ E

[
∫ T

0
e−rs

∣

∣

∣
e−Axn,an

s λε(Xxn
s , Y (Axn,an

s ))
(

m(Xxn
s )− θ

)

− e−Ax,a
s λε(Xx

s , Y (Ax,a
s ))

(

m(Xx
s )− θ

)

∣

∣

∣
ds

]

+ 2e−rT 1

r
C,

where

C := sup
(x,a)∈I×[0,∞)

(

D(x)− rθ + λε(x, Y (a))(m(x) − θ)
)

<∞.

By Lemma 4.8 (c.f. Remark 4.9), Axn,an
s converges pointwise to Ax,a

s for all s ∈ [0, T ] and ω outside
of a P-negligible set. We also have convergence of (Xxn

s )s∈[0,T ] to (Xx
s )s∈[0,T ] outside of a P-negligible

set. We can therefore conclude, by the dominated convergence theorem, that

lim
n→∞

∣

∣ṽε(xn, an; θ)− ṽε(x, a; θ)
∣

∣ ≤ 2e−rT 1

r
C.

Since T is arbitrary, this shows the continuity of ṽε. �

5. Two special cases

In this section, we explore how our solution behaves when we remove either the stochastic state
variable or the private information from our model. These are two special cases that have been
studied in the previous literature on exit games. By comparing our results with known results from
the literature, we establish the robustness and generality of our solution.
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First, we remove the dynamics of the stochastic state variable from the solution by setting
(formally) µ(·) = b(·) = 0 with an initial value of the state variable set to x. We assume that
D(x)/r < θL so that all types of players have an incentive to exit. In this case, α(θ) = ∞ for all
θ ∈ [θL, θU ], so the rate of exit reduces to

λ(x, y) =
ry −D(x)

m(x)− y
.

One striking difference from the case of a dynamic state variable is that λ(x, y) is always strictly
positive. Furthermore, from (4.1), the exit strategy of a player of type θ is given by

τ̂(θ) = inf{t ≥ 0 : Yt < θ}.
Because Yt possesses a deterministic dynamics, τ̂(θ) is also deterministic. Thus, each type of a
player chooses a deterministic time to exit at the outset of the game. This feature is consistent with
[31, 18], who examined deterministic exit games with private types.

Next, we keep the stochastic state variable but remove the uncertainty in the exit value. More
precisely, we take the limits θL → θ and θU → θ and study the behaviour of the equilibrium
strategy profile. This requires care as in the limit the distribution of a player’s type degenerates to
a deterministic quantity θ. To get around this difficulty, we re-express (4.1) in terms of the process
At as follows:

τi = inf{t ≥ 0 : e−At < F (θi)}.
Recall that F (θi) is uniformly distributed within the interval [0, 1], and hence, we can reformulate
the condition e−At < F (θi) as e−At < ǫ̂i, where ǫ̂i is a random variable uniformly distributed on
[0, 1]. We now take the limits θL → θ and θU → θ:

(5.1) τi = inf{t ≥ 0 : e−At < ǫ̂i}.
In the limit the dynamics of (At) takes the form

dAt =
rθ −D(Xt)

m(Xt)− θ
1Xt≤α(θ) =: λ̃(Xt).

We can identify (5.1) with a mixed strategy equilibrium for stochastic exit games with known exit
values. Indeed, in accordance with the standard definition of a mixed strategy, each player can be
viewed as having a randomisation device uniformly distributed on [0, 1] which generates a random
value in the beginning of the game; we can identify this randomisation device with ǫ̂i. The player
then exits at the first instance that e−At falls below ǫ̂i. Because the exit rate λ̃(Xt) is positive
only when Xt ≤ α(θ), the strategy (5.1) coincides with the mixed strategy found by [45, 20]. We
conclude that our equilibrium converges to the established results as θL and θU approach θ.

6. Uniqueness of absolutely continuous symmetric Bayesian equilibria

In the previous section, we have constructed a symmetric equilibrium. Here we show that this is
the unique equilibrium in a certain subclass of symmetric equilibria in which individual strategies
are of the form (4.1).

Difficulties in the proof of uniqueness of symmetric equilibria driven by a belief process stem
from the continuum of player types and the diffusive dynamics of the underlying state process. The
first technical result shows that the player’s strategy is a solution to a Markovian optimal stopping
problem for almost every value of player type, i.e., the best response optimal stopping problem.
The Markovian structure is provided by the state process and the belief process that defines the
equilibrium. Classically, the solution of a stopping problem is given by the hitting time of a stopping
set on which the value function coincides with the payoff. This is the smallest optimal stopping
time, however it may not be the only one, so we cannot assume that the player’s strategy determines
the stopping set for the best response problem. Instead, we work with an action set which collects
all points in which the equilibrium strategy prescribes to stop immediately and describe it uniquely
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in terms of the function α(·) from Section 3. Hence, every symmetric equilibrium is described by
the same action set in the 2-dimensional space comprising the state process and the belief, but
there may be potentially many equilibria driven by different belief processes. The uniqueness of the
latter is the second technical result of this section. The optimality of the equilibrium strategy for
the best response optimal stopping problem yields that the equilibrium strategy established in the
paper provides an upper bound for infinitesimal changes of the equilibrium generating process (At).
The lower bound for infinitesimal changes of (At) arises from examining deviations in equilibrium
strategies for players with nearly identical types.

As in the previous section, for the convenience of presentation, we rewrite strategies are of the
form (4.1) in terms of an increasing right-continuous process (At)t≥0 with A0 = 0:

(6.1) τi = inf{t ≥ 0 : At > A(θi)},
where A(·) is defined in (4.5). We also impose Assumption 4.1. In this section, we restrict our
attention to absolutely continuous equilibria. The reader is referred to [11, Section 3.2] for a
complete characterisation of stopping times of Markovian type of the form (6.1).

Definition 6.1. A strategy profile (τ1, τ2) with τi given by (6.1) equipped with the prior distribution
F is called an absolutely continuous symmetric Bayesian Nash equilibrium if

(i) the process (Xt, At)t≥0 is a strong Markov process;
(ii) for x ∈ I and a ≥ 0, the process (At)t≥0 is absolutely continuous with respect to the Lebesgue

measure and satisfies for t ≥ 0

(6.2) At = a+

∫ t

0
ϕ(Xs, Y (As))ds, Px − a.s.

for a measurable function ϕ : I × [θL, θU ] → [0,∞) called a generator.
(iii) For any a ≥ 0 and x ∈ I, stopping times τ1, τ2 given by

(6.3) τi = inf{t ≥ 0 : At > A(θ̂i)}, i = 1, 2,

with At satisfying (6.2), form a Nash equilibrium for x in the sense of Def. 2.6 with θ̂i =
F−1
|Y (a)(F (θi)) ∼ F|Y (a), i = 1, 2, where F|y(z) = F (z ∧ y)/F (y).

Definition 6.2. An absolutely continuous symmetric Bayesian Nash equilibrium is called lower
semi-continuous if the generator ϕ is a lower semi-continuous function, and upper semi-continuous
if the generator ϕ is an upper semi-continuous function.

The above definition of an absolutely continuous symmetric Bayesian Nash equilibrium is weaker
than a PBE adopted in Subsection 4.7 as it does not require the strategy profile to be an equilibrium
at any time t even in the case of a deviation of one of a player. This weaker notion is however
sufficient to prove uniqueness.

Remark 6.3. Since F is continuous and strictly increasing, F (θi) ∼ U(0, 1), so θ̂i as defined above
has the distribution F|Y (a). The cumulative distribution function F|y is strictly increasing on its

domain, hence σ(θi) = σ(θ̂i) (here σ(Z) is the σ-algebra generated by Z), so the information of a

player observing θi is identical to the information obtained from observing θ̂i.

Remark 6.4. Notice that ϕ on the right-hand side of (6.2) can be discontinuous, so the solution
does not exist in the classical sense. It may also not be unique as the discontinuity may be crossed
infinitely many times in any time interval (due to the infinite variation of (Xt)) and ϕ is not as-
sumed to be Lipschitz. This lack of uniqueness does not pose any mathematical difficulties for the
analysis as we only need that (Xt, At) is a strong Markov process and (At) is increasing and abso-
lutely continuous with a lower semi-continuous weak derivative. An example of such an absolutely
continuous symmetric Bayesian Nash equilibrium can be found in Section 4.
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Remark 6.5. Notice that for any a ≥ 0 and x ∈ I, τi given by (6.1) or (6.3) with A0 = a is an
(F i

t )-stopping time, i = 1, 2, because the filtration (Ft)t≥0 is complete with respect to Px, x ∈ I, see
[5, Chapter I, Theorem 10.7].

Before formulating main results of this section, we need to introduce the following notation. We
define an upper semi-continuous envelope ϕ∗ of ϕ by

ϕ∗(x, y) = lim sup
(x′,y′)→(x,y)

ϕ(x′, y′)

and a lower semi-continuous envelope ϕ∗ of ϕ by

ϕ∗(x, y) = lim inf
(x′,y′)→(x,y)

ϕ(x′, y′).

Theorem 6.6. For an absolutely continuous Bayesian Nash equilibrium with a lower semi-continuous
generator ϕ, its upper semi-continuous envelope ϕ∗ coincides with λ, i.e., we have ϕ∗ = λ.

Before proving this theorem, we discuss its consequences. Theorem 6.6 establishes the uniqueness
of the absolutely continuous symmetric Bayesian Nash equilibrium with a lower semi-continuous
generator. This does not cover the case of the equilibrium defined by λ in the previous section
which is upper semi-continuous, but we will be able to strengthen this result.

Definition 6.7. Assume that a measurable function ϕ is a generator of an absolutely continuous
Bayesian Nash equilibrium. If the set ∆ϕ := {(x, y) ∈ I × [θL, θU ] : ϕ∗(x, y) 6= ϕ∗(x, y)} is a
countable union of graphs of the form x = h(y) for a function h : [θL, θU ] → I of finite variation,
we will call the generator semi-continuously bounded.

Notice that the generator λ from the previous section is semi-continuously bounded as the set
∆λ from the above definition consists of a graph of function α, the stopping boundary of the
single-player problem.

Lemma 6.8. Let ϕ be a semi-continuously bounded generator and (Xt, At) the pair of processes
from Definition 6.1. The process (At)t≥0 satisfies (6.2) with the upper semi-continuous envelope ϕ∗

and with the lower semi-continuous envelope ϕ∗ of ϕ.

Proof. The result is an immediate consequence of Lemma 4.3. �

We recall, see Remark 4.7, that the process (At) may not be uniquely determined. However, the
process constructed in Section 4 is the maximal solution, so it yields the smallest stopping times.

We conclude with the main uniqueness result of the paper.

Corollary 6.9. Generator λ determines the unique absolutely continuous Bayesian Nash equilib-
rium in the family of equilibria with semi-continuously bounded generators.

Proof. Let ϕ be a semi-continuously bounded generator of an absolutely continuous Bayesian Nash
equilibrium. By applying Theorem 6.6 to ϕ∗, we have ϕ

∗ = λ. Furthermore, Lemma 6.8 implies that
the process (At) satisfies (6.2) with λ as well. Noting that (At) itself determines player’s strategies,
we obtain uniqueness. �

The above corollary is the main uniqueness result of the paper. We argue that the assumption of
semi-continuous boundedness of a generator is quite natural. As remarked, the function λ generating
the equilibrium of the previous section is semi-continuously bounded with the jump set ∆λ consisting
of only the graph of the stopping boundary of a single player problem. As the generator ϕ from
(6.2) has the interpretation of the intensity of exiting of an opponent, it is unlikely that one can
explicitly construct ϕ with a more complex jump set ∆ϕ than stipulated in Definition 6.7, so our
result may be viewed as a guarantee that there will be no other explicitly constructed absolutely
continuous symmetric Bayesian Nash equilibrium in the problem.
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The remaining of this section is divided into two parts. In the first part, we define the action
sets for the best response problem and establish their properties. The second part is devoted to
the derivation of an upper and lower bounds for ϕ and its upper semi-continuous envelope and the
proof of Theorem 6.6.

6.1. Properties of action sets for best response problems. Before proceeding further, we
recall properties of lower semi-continuous functions.

Lemma 6.10. [43, p. 51] The following hold:

(1) Function ϕ is lower semi-continuous iff lim inf(x′,y′)→(x,y) ϕ(x
′, y′) ≥ ϕ(x, y) for any (x, y) ∈

I × [θL, θU ];
(2) Function ϕ is lower semi-continuous iff the set {(x, y) ∈ I × [θL, θU ] : ϕ(x, y) > z} is open

in I × [θL, θU ] (i.e., its complement is closed) for any z ∈ R.
(3) Function ϕ is upper semi-continuous iff (−ϕ) is lower semi-continuous.

Throughout the remaining of this section, we assume that (At)t≥0 given by (6.2) is the process that
characterises a lower semi-continuous absolutely continuous symmetric Bayesian Nash equilibrium
(τ1, τ2). For θ ∈ [θL, θU ] and a ≤ A(θ), define v(x, a; θ) by (4.15) with λ replaced by ϕ. In the
remainder of this section, we will refer to equations from Section 4 without further mentioning that
λ is to be replaced by ϕ. The first key step is proving a converse of Corollary 2.8.

Proposition 6.11. The stopping time

(6.4) τθ = inf{t ≥ 0 : At > A(θ)},
with A0 = a and the dynamics (6.2), is an optimal stopping time for v(x, a; θ) for θ ∈ (θL, Y (a)].

Proof. Fix a ≥ 0 and consider an equilibrium (τ1, τ2) in Definition 6.1(iii). The decomposition of
the stopping time τi from Proposition 2.7 is τ̂i(ω, θ) = τθ(ω) with τθ from (6.4). We further have

J1(x, τ1, τ2) =

∫ Y (a)

θL

J(x, τθ, τ2; θ)F|Y (a)(dθ),

where J(x, σ, τ2; θ) is defined in (2.3). Using representation (4.7) of J and taking into account that
A0 = a ≥ 0 while Lemma 4.2 assumed a = 0, we have

(6.5) J(x, σ, τi; θ) = eaEx

[

∫ σ

0
e−rs−AsD(Xs)ds+ θe−rσ−Aσ− +

∫

[0,σ)
e−rs−Asm(Xs)dAs

]

.

Hence, from (4.15)

v(x, a; θ) = sup
σ∈T (Ft)

e−aJ(x, σ, τ2; θ), θ ∈ [θL, Y (a)].

The proof will now follow by contradiction. Assume that there is θ̂ ∈ (θL, Y (a)] such that

(6.6) J(x, τθ̂, τ2; θ̂) ≤ eav(x, a; θ̂)− ε

for some ε > 0. Notice that the mapping (t, θ) 7→ J(x, t, τ2; θ) is continuous due to the continuity
of At, see (6.5). We also have that the mapping θ 7→ τθ is left-continuous. Indeed, take a sequence
θn ↑ θ and fix ω ∈ Ω; we will argue pointwise. Fix any t > τθ(ω). We have At(ω) > A(θ). Using
that A(θn) ↓ A(θ), there is k such that At(ω) > A(θk), which implies t > τθk(ω) ≥ infn τθn(ω) =
limn→∞ τθn(ω), where the last equality follows from the fact that the sequence τθn(ω) is decreasing
in n. From the arbitrariness of t, we obtain that τθ(ω) ≥ limn→∞ τθn(ω). The opposite inequality
is obvious as A(θn) > A(θ).

The above two observations as well as the boundedness of the terms under the integrals in (6.5)
imply that

θ 7→ J(x, τθ, τ2; θ)
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is left-continuous. Hence, there is δ > 0 such that θ̂ − δ ≥ θL and J(x, τθ, τ2; θ) ≤ eav(x, a; θ)− ε/2

for θ ∈ [θ̂− δ, θ̂]. This will allow us to improve the equilibrium strategy τ1 defined in (6.3) and lead

to a contradiction. Take σ∗ ∈ T (Ft) such that J(x, σ∗, τ2; θ̂) > eav(x, a; θ̂)− ε/4. By the continuity
of θ 7→ J(x, σ∗, τ2; θ), there is δ′ ∈ (0, δ) such that

J(x, σ∗, τ2; θ) > J(x, τθ, τ2; θ), θ ∈ [θ̂ − δ′, θ̂].

Hence the strategy τ ′1 = τ̂ (·, θ1) (c.f. Proposition 2.7) with

τ̂(·, θ) =
{

σ∗, θ ∈ [θ̂ − δ′, θ̂],

τθ, otherwise,

is a strictly better response to τ2 than τ1 = τθ1 , which contradicts that (τ1, τ2) given by (6.3) is an
absolutely continuous Bayesian Nash equilibrium, contradicting Definition 6.1(iii). �

For θ ∈ [θL, θU ], denote Sθ = {x ∈ I : PxA(θ)(τθ = 0) = 1} and Oθ = {x ∈ I : ϕ(x, θ) > 0},
which is an open set by Lemma 6.10. Recall that by the 0-1 law, PxA(θ)(τθ = 0) ∈ {0, 1}, so on the
complement of Sθ we have PxA(θ)(τθ > 0) = 1. We will call Sθ the action set for reasons explained
in the remark below.

Remark 6.12. We cannot assume that the stopping time defined in (6.1) coincides with the first
hitting time of the stopping set on which the value function v(x, a; θ) coincides with the payoff
as there may be many optimal stopping times; the aforementioned hitting time is the smallest of
them. Therefore, the optimality of the stopping rule (6.1) does not determine the stopping set. This
motivates our less direct approach and the introduction of the set Sθ of those values of x, a, θ for
which the stopping rule (6.1) stops immediately with probability one.

Lemma 6.13. We have Oθ ⊂ Sθ.

Proof. If ϕ(x, θ) > 0, then the first inclusion follows from the fact that ϕ > 0 in an open neighbour-
hood of (x, θ) by Lemma 6.10. �

Lemma 6.14. Set Sθ is closed in I.
Proof. Assume that Sθ is not closed. There is x ∈ I \ Sθ such that Bε(x) ∩ Sθ 6= ∅ for all ε > 0,
where Bε(x) = {x′ ∈ I : |x−x′| < ε}. We can find a monotone sequence (xn) ⊂ Sθ converging to x.
We will assume that the sequence is increasing; arguments for a decreasing sequence are analogous.
By the regularity of (Xt), we have Px(σ(xL,x) = 0) = 1, where we write σB = inf{t ≥ 0 : Xt ∈ B}
for a Borel set B ⊂ I and σz when B = {z}. For any ε ∈ (0, 1), we have

ExA(θ)

[

τθ ∧ 1
]

= ExA(θ)

[

1σxn≤ε(τθ ∧ 1) + 1σxn>ε(τθ ∧ 1)
]

≤ ExA(θ)

[

1σxn≤ε(τθ ∧ 1) + 1σxn>ε

]

≤ ExA(θ)

[

1σxn≤ε

(

1τθ<σxn
σxn + 1τθ≥σxn

(τθ ∧ 1)
)]

+ PxA(θ)(σxn > ε)

≤ ExA(θ)

[

1σxn≤ε

(

1τθ<σxn
ε+ 1τθ≥σxn

(σxn + ExnAσxn
[τθ]

)]

+ PxA(θ)(σxn > ε)

≤ εPxA(θ)(σxn ≤ ε) + PxA(θ)(σxn > ε),

where we used the strong Markov property of (Xt, At) and ExnAσxn
[τθ] = 0 since xn ∈ Sθ and

Aσxn
≥ A(θ). By the dominated convergence theorem and the regularity of (Xt), we have

lim
n→∞

PxA(θ)(σxn ≤ ε) = 1, lim
n→∞

PxA(θ)(σxn > ε) = 0.

Inserting this into the above estimates gives ExA(θ)

[

τθ ∧ 1
]

≤ ε. This means that ExA(θ)

[

τθ ∧ 1
]

= 0
as ε ∈ (0, 1) was arbitrary. We therefore conclude that PxA(θ)(τθ = 0) = 1, which contradicts the
assumption that x /∈ Sθ. �

Lemma 6.15. We have PxA(θ)(Xτθ ∈ Sθ or τθ = ∞) = 1.
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Proof. Recall that the filtration (Ft) is right continuous. Define σθ = τθ + 1τθ<∞τθ ◦ θτθ , where
θt is the shift operator for the Markov process (Xt, At)t≥0. This is a stopping time thanks to [5,
Chapter I, Thm. 8.7]. We have Aτθ = A(θ) because of the continuity of (At) and the definition of
τθ. Combining this with the strong Markov property of (Xt, At) we can write

ExA(θ)[Aσθ
] = ExA(θ)

[

1τθ=∞A(θ) + 1τθ<∞EXτθ
Aτθ

[Aτθ ]
]

= ExA(θ)

[

1τθ=∞A(θ) + 1τθ<∞EXτθ
A(θ)[Aτθ ]

]

= ExA(θ)

[

1τθ=∞A(θ) + 1τθ<∞EXτθ
A(θ)[A(θ)]

]

= A(θ).

Hence, recalling the definition of τθ, this implies PxA(θ)(σθ > τθ and τθ <∞) = 0 and, consequently,
PxA(θ)(τθ ◦ θτθ = 0 | τθ <∞) = 1. Notice now that {Xτθ /∈ Sθ, τθ <∞} = {τθ ◦ θτθ > 0, τθ <∞}. As
the latter event has probability zero, we conclude that PxA(θ)(Xτθ /∈ Sθ | τθ <∞) = 0. �

Lemma 6.16. For any θ ∈ (θL, θU ], we have Sθ = (xL, α(θ)].

Proof. We first show that Sθ ∩ (α(θ), xU ) = ∅. Take x > α(θ). By assumption τθ is optimal for
v(x,A(θ); θ), so also for ṽ(x,A(θ); θ) defined in (4.17). Following arguments of Lemma 4.12 with λ
replaced by ϕ we obtain ṽ(x,A(θ); θ) > 0. Hence, stopping immediately is suboptimal, so τθ > 0
PxA(θ)-a.s. and x /∈ Sθ.

Assume that there are b, c ∈ I, b < c, such that [b, c]∩Sθ = {b, c}. Take any x ∈ (b, c). Thanks to
Lemma 6.15, we have σb,c ≤ τθ, where σb,c is the first entry time to the set {b, c}. By the definition
of Sθ we further have that σb,c = τθ. By the optimality of σb,c for ṽ(x,A(θ); θ) we have

(6.7) ṽ(x,A(θ); θ) = Ex

[

∫ σb,c

0
e−rs−A(θ)

(

D(Xs)− rθ
)

ds
]

< 0,

where the last inequality is because Xs ≤ α(θ) ≤ c(θ) (Lemma 3.3) and hence D(Xs) − rθ < 0
(Assumption 3.1). This contradicts the lower bound ṽ ≥ 0 which can be obtained by stopping
immediately. This means that Sθ is either an empty set or an interval.

The set Sθ cannot be empty as by Lemma 6.15 that would mean τθ = ∞, PxA(θ)-a.s. But clearly
the best response to an opponent who never stops is the optimal stopping time from Section 3 which
is not infinite Px-a.s. Hence, in equilibrium Sθ 6= ∅.

We shall prove that xL is the left endpoint of Sθ. Assume that inf Sθ =: b > xL. Take any
x ∈ (xL, b). As above, the stopping time τb is optimal for ṽ(x,A(θ); θ). The estimate (6.7) with σb,c
replaced by σb := inf{t ≥ 0 : Xt = b} holds true and contradicts ṽ(x,A(θ); θ) ≥ 0.

It remains to show that supSθ =: c = α(θ). Assume, by contradiction, that c < α(θ) and take
any x ∈ (c, α(θ)). Then σc is optimal for ṽ(x,A(θ); θ) and yields the payoff

e−A(θ)
Ex

[

∫ σc

0
e−rs

(

D(Xs)− rθ
)

ds
]

≤ sup
σ∈T (Ft)

e−A(θ)
Ex

[

∫ σ

0
e−rs

(

D(Xs)− rθ
)

ds
]

= e−A(θ)ũ(x; θ),

where ũ(x; θ) is defined in (4.18). Since x < α(θ) then ũ(x; θ) = 0. We will show that the inequality
above is strict, i.e., σc is suboptimal for ũ(x; θ). Assume optimality of σc and select z1, z2 so that
c < z1 < x < z2 < α(θ). From the dynamic programming principle for ũ we obtain

Ex

[

∫ σc

0
e−rs

(

D(Xs)− rθ
)

ds
]

≤ Ex

[

∫ σz1,z2

0
e−rs

(

D(Xs)− rθ
)

ds+ e−rσz1,z2 ũ(Xσz1,z2
; θ)

]

< 0,

where we used that ũ(Xσz1,z2
; θ) = 0 and the integrand is strictly negative for Xs ≤ α(θ). This

contradicts that ũ ≥ 0. �

6.2. Properties of ϕ. We start from an immediate corollary which follows by combining Lemma
6.13 and Lemma 6.16.

Corollary 6.17. ϕ(x, y) = 0 for y ∈ (θL, θU ] and x > α(y).

We turn attention to upper and lower bounds for ϕ.
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Lemma 6.18. We have ϕ(x, y) ≤ λ(x, y) for (x, y) ∈ I × [θL, θU ].

Proof. Fix any (x, θ) such that ϕ(x, θ) > 0 and set a = A(θ). We must have x ≤ α(θ) thanks to
Corollary 6.17. From Lemma 6.13, we have that the optimal stopping time τθ for ṽ(x, a; θ) satisfies
τθ = 0 Pxa-a.s. Then, for any t > 0, we have

Exa

[

∫ t

0
e−rs−As

(

D(Xs)− rθ + ϕ(Xs, Y (As))(m(Xs)− θ)
)

ds
]

≤ ṽ(x, a; θ) = 0.

We divide both sides by t and change the variable of integration to z = s/t:

Exa

[

∫ 1

0
e−rtz−Atz

(

D(Xtz)− rθ + ϕ(Xtz , Y (Atz))(m(Xtz)− θ)
)

dz
]

≤ 0.

Since D is bounded from below, ϕ ≥ 0 and m > θ, we can apply Fatou’s lemma

0 ≥ lim inf
t→0

Exa

[

∫ 1

0
e−rtz−Atz

(

D(Xtz)− rθ + ϕ(Xtz , Y (Atz))(m(Xtz)− θ)
)

dz
]

≥ D(x)− rθ + ϕ(x, Y (a))(m(x) − θ),

where in the last inequality follows from the continuity of trajectories (Xt, At), the continuity of
functions D, m, Y , and the lower semi-continuity of ϕ. The above inequality is equivalent to
ϕ(x, θ) ≤ λ(x, θ), where we also used that x ≤ α(θ). The proof is concluded when we notice that
λ ≥ 0, so ϕ(x, a) ≤ λ(x, a) when ϕ(x, a) = 0. �

Lemma 6.19. We have ϕ∗(x, y) ≥ λ(x, y) for (x, y) ∈ I × [θL, θU ].

Proof. Denote by ṽ the value function of the problem (4.17) with (At) given by (6.2). First notice
that there exists (x, θ) ∈ I×(θL, θU ] such that ϕ(x, θ) > 0. Otherwise, we would have a contradiction
with Sθ = (xL, α(θ)] asserted in Lemma 6.16.

Fix (x, θ) such that ϕ(x, θ) > 0. Denote a = A(θ) and

Γ(x′, a′) = e−a′
(

D(x′)− rθ + ϕ∗(x′, Y (a′))(m(x′)− θ)
)

.

Take ε > 0. By the lower semi-continuity of ϕ and the upper semi-continuity of Γ, using Lemma
6.10, there is δ > 0 such that U := [x− δ, x + δ]× [θ − δ, θ] ⊂ I × [θL, θU ],

(6.8) inf
(x′,y′)∈U

ϕ(x′, y′)) > ϕ(x, θ)/2, and sup
(x′,y′)∈U

Γ(x′, A(y′)) ≤ Γ(x, a) + ε.

Recall the definition (6.3) of an optimal stopping time τγ for ṽ(x, a; γ) for θ − δ ≤ γ ≤ θ. Let
σδ = inf{t ≥ 0 : Xt /∈ (x− δ, x+ δ)}. By the optimality of τγ we have

ṽ(x, a; γ) = Exa

[

∫ τγ

0
e−rs−As

(

D(Xs)− rγ + ϕ(Xs, Y (As))(m(Xs)− γ)
)

ds
]

= Exa

[

∫ τγ∧σδ

0
e−rs−As

(

D(Xs)− rγ + ϕ(Xs, Y (As))(m(Xs)− γ)
)

ds

+ 1σδ<τγ

∫ τγ

τγ∧σδ

e−rs−As
(

D(Xs)− rγ + ϕ(Xs, Y (As))(m(Xs)− γ)
)

ds
]

≤ Exa

[

∫ τγ∧σδ

0
e−rs−As

(

D(Xs)− rγ + ϕ(Xs, Y (As))(m(Xs)− γ)
)

ds

+ 1σδ<τγe
−rσδ ṽ(Xσδ

, Aσδ
; γ)

]

≤ Exa

[

∫ τγ∧σδ

0
e−rs−As

(

D(Xs)− rγ + ϕ∗(Xs, Y (As))(m(Xs)− γ)
)

ds

+ 1σδ<τγe
−rσδ ṽ(Xσδ

, Aσδ
; γ)

]

,
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where the first inequality follows from the strong Markov property and the definition of ṽ(Xσδ
, Aσδ

; γ),
and the second inequality uses ϕ∗ ≥ ϕ.

We transform the final expression above and use ṽ ≥ 0 to obtain

(6.9)

0 ≤ Exa

[

∫ τγ∧σδ

0
e−rsΓ(Xs, As)ds

]

+ Exa

[

∫ τγ∧σδ

0
e−rs−As(r + ϕ∗(Xs, Y (As))(θ − γ)ds

]

+ Exa

[

1σδ<τγe
−rσδ ṽ(Xσδ

, Aσδ
; γ)

]

= (I) + (II) + (III).

We divide both sides by Exa[τγ ∧ σδ]; this can be done as Pxa(τγ ∧ σδ > 0) = 1 due to the 0-1 law.
Using the bounds (6.8) the first terms yields

(I)

Exa[τγ ∧ σδ]
≤ Γ(x, a) + ε.

Recall that λ is bounded from above, while Lemma 6.18 shows that ϕ ≤ λ. Since ϕ∗ ≤ sup(x,y) ϕ(x, y),
we conclude that r + ϕ∗ is bounded above by some constant C1 and

(II)

Exa[τγ ∧ σδ]
≤ Exa[τγ ∧ σδ]C1(θ − γ)

Exa[τγ ∧ σδ]
= C1(θ − γ).

To estimate the last term, notice that ṽ(x′, a′; γ) = v(x′, a′; γ) − e−a′γ ≤ m(x′) − e−a′γ ≤ C2 for
some C2 > 0 since the function m is bounded. Then

(III)

Exa[τγ ∧ σδ]
≤ C2

Pxa(σδ < τγ)

Exa[τγ ∧ σδ]
.

We apply the above estimates to the right-hand side of (6.9) and take limit as γ ↑ θ:

(6.10) 0 ≤ Γ(x, a) + ε+ 0 + C2 lim
γ↑θ

Pxa(σδ < τγ)

Exa[τγ ∧ σδ]
.

Let ϕ = inf(x′,y′)∈U ϕ(x
′, y′) ≥ 1

2ϕ(x, θ) by (6.8) and ϕ = sup(x′,y′)∈U ϕ(x
′, y′) <∞ by ϕ ≤ λ. Those

bounds on ϕ allow us to bound the numerator and denominator under the limit:

{σδ < τγ} = {Aσδ
≤ A(γ)} ⊆ {a+ ϕσδ ≤ A(γ)} =

{

σδ ≤
A(γ) − a

ϕ

}

,

and

Exa[τγ ∧ σδ] ≥ Exa[1σδ>τγ τγ ] ≥ Exa

[

1σδ>τγ

A(γ)− a

ϕ

]

=
A(γ)− a

ϕ
Pxa(σδ > τγ).

Combining these estimates yields

lim
γ↑θ

Pxa(σδ < τγ)

Exa[τγ ∧ σδ]
≤ lim

γ↑θ

Pxa

(

σδ ≤ A(γ)−a
ϕ

)

A(γ)−a
ϕ Pxa(σδ > τγ)

= ϕ/ϕ lim
γ↑θ

Pxa

(

σδ ≤ A(γ)−a
ϕ

)

A(γ)−a
ϕ

,

where the last equality follows from limγ↑θ Pxa(σδ > τγ) = 1 (as a = A(θ)). It remains to study
the asymptotic behaviour of σδ near 0, i.e., the limit limt↓0 Px(σδ < t)/t. It is well known that
Px(σδ < t) decreases exponentially fast as it does for the Brownian motion, but we could not
find a direct reference for this fact. For completeness, we provide a derivation of a bound for this
probability in the appendix. From (A.1), we have

Pxa(σδ < t) ≤ C3e
−C4/t2 ,

for some constants C3, C4 > 0. It is now immediate to see that

lim
t↓0

Pxa(σδ < t)/t ≤ C3 lim
t↓0

e−C4/t2/t = 0.
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Returning to (6.10), we have shown that Γ(x, a) + ε ≥ 0 for any ε > 0, i.e., Γ(x, a) ≥ 0. This
implies that

D(x)− rθ + ϕ∗(x, Y (a))(m(x) − θ) ≥ 0,

which is equivalent to ϕ∗(x, θ) ≥ λ(x, θ) upon recollection that a = A(θ).
We have therefore demonstrated that ϕ∗(x, θ) ≥ λ(x, θ) for (x, θ) such that ϕ(x, θ) > 0. Define

O+ = {(x, θ) ∈ I × [θL, θU ] : ϕ(x, θ) > 0} and Oα = {(x, θ) ∈ I × [θL, θU ] : x ≤ α(θ)}. Due to
the upper bound ϕ ≤ λ (see Lemma 6.18) and the fact that λ ≡ 0 on the complement of Oα, we
have O+ ⊂ Oα. By the upper semi-continuity of ϕ∗ and the continuity of λ on Oα, we further have
that ϕ∗ ≥ λ on cl(O+), where cl(·) denotes the closure. Let U0 = Oα \ cl(O+). This is a relatively
open set in Oα. Furthermore, ϕ ≡ 0 on U0. Assume that U0 is non-empty. Due to the closedness
of Oα, it has a non-empty interior. Take any (x, θ) in the interior of U0. We immediately have
that PxA(θ)(τθ > 0) = 1. However, (x, θ) ∈ Oα, so x ≤ α(θ) and, by Lemma 6.16, x ∈ Sθ. This
means that PxA(θ)(τθ = 0) = 1, a contradiction. This completes the proof that ϕ∗(x, θ) ≥ λ(x, θ)
for (x, θ) ∈ Oα. Recall that λ ≡ 0 on the complement of Oα. Since ϕ∗ is non-negative, it trivially
dominates λ on the complement of Oα, which finishes the proof. �

Combining Lemma 6.18 and 6.19 yields the proof of the main result of this section.

Proof of Theorem 6.6. Notice that λ is upper semi-continuous and it majorises ϕ by Lemma 6.18.
Hence, it also majorises ϕ∗ which is the smallest upper semi-continuous function dominating ϕ.
However, λ also bounds ϕ∗ from below, which completes the proof. �

Appendix A. Asymptotics of σδ near 0

We provide a sketch of an asymptotic bound for the behaviour of Px(σδ < u) as u ↓ 0, where
σδ = inf{t ≥ 0 : Xt /∈ (x− δ, x + δ)}. Notice that the probability is identical when the coefficients
of Xt are replaced with

µ̃(y) = µ(y ∧ (x+ δ) ∨ (x− δ)), b̃(y) = b(y ∧ (x+ δ) ∨ (x− δ)),

i.e., we can assume that µ and b in (2.1) are bounded, continuous and b is uniformly bounded away
from 0. Consider the change of measure given by

dP̃x

dPx
= η1,

where

ηt = exp
(

−
∫ t

0
µ(Xs)/b(Xs)dWs −

∫ t

0
µ2(Xs)/b

2(Xs)ds
)

.

Then for u ≤ 1, we have

Px(σδ < u) = Ẽx(1σδ<uη
−1
1 ) ≤

(

P̃x(σδ < u)
)1/2‖η−1

1 ‖L2 = c1
(

P̃x(σδ < u)
)1/2

for some constant c1 > 0 and

dXt = b(Xt)dW̃t, X0 = x

for P̃x-Brownian motion W̃t. Consider Λt =
∫ t
0 b

2(Xs)ds and the time change Tt being the inverse
of Λt which exists since b is separated from 0. Then Yt = XTt is a Brownian motion. We have the
sequence of inclusions:

{σδ < t} =
{

sup
u∈[0,t]

|Xu − x| ≥ δ
}

⊂
{

sup
u∈[0,ess supω∈Ω Λt(ω)]

|Yu − x| ≥ δ
}

,

where we used that Xt = YΛt . Let b̄ = supy∈[x−δ,x+δ] b(y) > 0. Then Λt ≤ b̄t and
{

sup
u∈[0,ess supω∈Ω Λt(ω)]

|Yu − x| ≥ δ
}

⊂
{

sup
u∈[0,tb̄]

|Yu − x| ≥ δ
}

.
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This gives us the following estimate

P̃x(σδ < t) ≤ P̃x

(

sup
u∈[0,tb̄]

|Yu − x| ≥ δ
)

= P̃0

(

sup
u∈[0,tb̄]

|Yu| ≥ δ
)

≤ 2P̃0

(

sup
u∈[0,tb̄]

Yu ≥ δ
)

≤ 2

√

2

π

∫ ∞

δ/(tb̄)
e−z2/2dz ≤ c2e

−c3/t2 ,

where the penultimate inequality follows from [40, Proposition 3.7, Chapter III] and the last in-
equality holds for sufficiently small t (precisely, t such that δ/(tb̄) ≥ 1). Combining together the
above estimates yields

(A.1) Px(σδ < u) ≤ c1
√
c2e

−0.5c3/u2

for sufficiently small u.

Appendix B. Example from the text

Below we provide the proof that the model in Example 1 satisfies all the assumptions of the
paper. First, we obtain the explicit form of d(x) and m(x). Clearly, m(x) = d(x) + M0

r . To find
d, we utilise the fact that (LX − r)d(x) +D(x) = 0 for x ∈ (0, xM ) ∪ (xM ,∞) and that d(x) is a
continuously differentiable bounded function. It can be verified that (see [2])

d(x) =

{

xβ

r−δ + c1(xM )ψ(x), x ∈ (0, xM ],
xβ
M

r + c2(xM )φ(x), x > xM ,

where δ was defined after (3.7). Because d(·) must be a bounded function, the fundamental solutions
φ(·) and ψ(·) do not show respectively in the general form of the solution d(x) in the intervals
(0, xM ] and (xM ,∞). The coefficients c1(xM ) and c2(xM ) are determined by the continuity and the
differentiability of d(·) at xM :

xβM
r − δ

+ c1(xM )ψ(xM ) =
xβM
r

+ c2(xM )φ(xM )

βxβ−1
M

r − δ
+ c1(xM )ψ′(xM ) = c2(xM )φ′(xM ) ,

from which we obtain

c1(xM ) =
1

ξ(xM )
[−φ′(xM )xβM (

1

r
− 1

r − δ
)− βφ(xM )

xβ−1
M

r − δ
],

c2(xM ) =
1

ξ(xM )
[−ψ′(xM )xβM (

1

r
− 1

r − δ
)− βψ(xM )

xβ−1
M

r − δ
]

with ξ(x) = φ(x)ψ′(x)− ψ(x)φ′(x) = (γ+ − γ−)x
γ++γ−−1. Using the definition of φ(·), we simplify

expression for c1(xM ) as

c1(xM ) =
γ−δ − βr

(γ+ − γ−)r(r − δ)
x
β−γ+
M .

Its numerator can be further rewritten as follows:

γ−δ − βr = β[
b2

2
γ−(β − 1) + µγ− − r]

= β[
b2

2
γ−(γ− − 1) + µγ− − r] + β

b2

2
γ−(β − γ−) = β

b2

2
γ−(β − γ−),(B.1)

where we used the equality b2

2 γ−(γ−−1)+µγ−−r = 0 satisfied by γ−. Since γ− < 0 and β−γ− > 0,
it follows that c1(xM ) < 0. Furthermore, using that γ+ > 1 > β, we have limxM→∞ c1(xM ) = 0.



40 H.D. KWON AND J. PALCZEWSKI

We now show that D(·) and M(·) satisfy all the assumptions given in the paper if xM is taken
sufficiently large. First, Assumptions 2.2–2.4 are trivially satisfied. Our remaining task is to show
that Assumption 3.1 is satisfied. Assumption 3.1(i) holds because D(·) is increasing from zero

to xβM > rθU . By Remark 3.2, Assumption 3.1(ii) and (iii) are satisfied if there is x∗ = α(θ)
such that a′θ(x) > 0 for x < x∗ and a′θ(x) < 0 for x > x∗. Hence, we examine the derivative of
aθ(x) = (θ − d(x))/φ(x) given by

(B.2) a′θ(x) =

{

−γ−θx−γ−−1 − (β − γ−)
xβ−γ−−1

r−δ − (γ+ − γ−)c1(xM )xγ+−γ−−1, x ≤ xM ,

−γ−(θ − xβ
M

r )x−γ−−1, x > xM .

From (B.2), a′θ(x) < 0 for x > xM , because θ − xβM/r ≤ θU − xβM/r < 0 by the assumption that

xβM > rθU . We also note that a′θ(x) > 0 for sufficiently small values of x because of (3.7) and
γ+ − γ− > 0. We shall show that a′θ(x) is decreasing on (0, xM ) for sufficiently large xM , which,
together with the above observations about a′θ(x) for x close to 0 and x > xM allows us to conclude
that there is x∗ = α(θ) such that a′θ(x) > 0 for x < x∗ and a′θ(x) < 0 for x > x∗.

For convenience, we express a′θ(x) = A(x)−B(x) +C(x) for x ∈ (0, xM ), where A(·), B(·), C(·)
are positive functions given by

A(x) = −γ−θx−γ−−1; B(x) = (β − γ−)
xβ−γ−−1

r − δ
; C(x) = −(γ+ − γ−)c1(xM )xγ+−γ−−1 .

Note that A(·) is decreasing while B(·) and C(·) are increasing. Furthermore, it can be easily
checked that C(x)/B(x) increases in x because γ+ > 1 > β and c1(xM ) < 0. Hence, within the
interval (0, xM ], C(x)/B(x) takes the maximum value at xM , which is given by

g :=
C(xM )

B(xM )
=

(r − δ)

(β − γ−)
· (γ+ − γ−)

−(γ−δ − βr)

(γ+ − γ−)r(r − δ)
=
βb2|γ−|

2r
,

where we used the alternative expression of γ−δ − βr in (B.1). Here we have g < 1 from the
assumption that 1 > βb2|γ−|/(2r). Thus, we obtain for x ≤ xM

(B.3) B(x)− C(x) = B(x)
(

1− C(x)

B(x)

)

≥ B(x)
(

1− C(xM )

B(xM )

)

> 0 .

Fix ǫ > 0. There is yǫ > 0 such that A(yǫ) < ǫ and B(yǫ)(1− g) > 2ǫ. We compute the derivative
of B(x)− C(x) to judge its monotonicity on (0, yǫ):

B′(x)− C ′(x) = xβ−γ−−2
[(β − γ−)(β − γ− − 1)

r − δ
+ (γ+ − γ−)(γ+ − γ− − 1)C1(xM )xγ+−β

]

.

By (3.7), we have β − γ− − 1 > 0, γ+ − γ− − 1 > 0 and γ+ − β > 0. Recalling that C1(xM ) < 0
and converges to 0 as xM → ∞, there is xM > yǫ that satisfies assumptions stated previously and
such that B(x) − C(x) is increasing on (0, yǫ). Since A(x) is decreasing, this implies that a′θ(x) is
decreasing for x ∈ (0, yǫ). Using (B.3) and the fact that B is increasing, we have B(x) − C(x) >
B(x)(1 − g) > B(yǫ)(1 − g) > 2ǫ for x ∈ (yǫ, xM ]. Thus, A(x) − B(x) + C(x) < ǫ − 2ǫ < 0 for
x ∈ (yǫ, xM ], i.e., a′θ is decreasing. We conclude that there is a unique value of x = α(θ) that
satisfies a′θ(x) = 0 within the interval (0, xM ]. We further recall that a′θ(x) < 0 for x > xM . This
establishes that a′θ(x) > 0 for x < α(θ) and a′θ(x) < 0 for x > α(θ).
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