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Abstract

We study the correspondence theory of intuitionistic modal logic in
modal Fairtlough-Mendler semantics (modal FM semantics) [13], which is
the intuitionistic modal version of possibility semantics [I9]. We identify
the fragment of inductive formulas [14] in this language and give the al-
gorithm ALBA [7] in this semantic setting. There are two major features
in the paper: one is that in the expanded modal language, the nomi-
nal variables, which are interpreted as atoms in perfect Boolean algebras,
complete join-prime elements in perfect distributive lattices and complete
join-irreducible elements in perfect lattices, are interpreted as the refined
regular open closures of singletons in the present setting, similar to the
possibility semantics for classical normal modal logic [33]; the other fea-
ture is that we do not use conominals or diamond, which restricts the
fragment of inductive formulas significantly. We prove the soundness of
the ALBA with respect to modal FM frames and show that the ALBA
succeeds on inductive formulas, similar to existing settings like |7l [33] 34].

Keywords: possibility semantics, Fairtlough-Mendler semantics, corre-
spondence theory, nucleus, complete Heyting algebra, intuitionistic modal
logic

1 Introduction

Possibility Semantics. Possibility semantics was proposed by Humberstone
[20], which is a generalization of possible world semantics for modal logic, based
on partial possibilities instead of complete possible worlds like the one in stan-
dard possible world semantics. In recent years there have been a lot of studies
in possibility semantics [4] [10] [I5] 16l [T7, B1], to name but a few. For a com-
prehensive study of possibility semantics, see [18] [19].

Intuitionistic Study of Possibility Semantics. In [2], Bezhanishvili and
Holliday use the tools of nuclei to study the equivalence between Fairtlough-
Mendler semantics (FM semantics for short) [13], Dragalin semantics [11] [12]
and nuclear semantics of intuitionistic logic, which can be regarded as different
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ways to realize possibility semantics of intuitionistic logic. In [3], Bezhanishvili
and Holliday study the different semantics of intuitionistic logic, which form a
hierarchy. Among these semantics, Dragalin semantics is more like neighbour-
hood semantics of modal logic [27], 28] [30] and Beth semantics of intuitionistic
logic [, nuclear semanrics is more like algebraic semantics, and FM semantics
is more like relational semantics with two relations. In [24], Massas provides
choice-free representation theorems for distributive lattice, Heyting algebras and
co-Heyting algebras. In [26], Massas studies the B-frame duality, where B-
frames can be seen as a generalization of posets, which play an important role
in the representation theory of Heyting algebras.

Correspondence Theory for Possibility Semantics. In [32], Yamamoto
studies Sahlqvist correspondence theory for full possibility frames. In [19, Theo-
rem 7.20], Holliday shows that all inductive formulas are filter-canonical, there-
fore every normal modal logic axiomatized by inductive formulas is sound and
complete with respect to its canonical full possibility frame. In [33], Zhao shows
that inductive formulas have first-order correspondents in full possibility frames
as well as in filter-descriptive possibility frames, using algebraic and algorithmic
correspondence theory methods [6] [7]. In this setting, the algebraic strcuture
of regular open subsets of a given full possibility frame is a complete Boolean
algebra with a complete operator, which is not necessarily an atomic Boolean
algebra, therefore it is not necessarily perfect.

Our Methodology. Our aim is to see if Sahlqvist-type correspondence the-
ory could work for semantics whose algebraic counterpart is based on locales,
i.e. complete Heyting algebras, which are not necessarily perfect (where every
element is join-generated by complete join-primes).

We study the correspondence theory of intuitionistic modal logic in the
modal version of Fairtlough-Mendler semantics, using algorithmic correspon-
dence theory methods, as explained in [0, [7]. We define the class of inductive
formulas for this semantics as well as the Ackermann Lemma Based Algorithm
ALBA which computes the first-order correspondents of inductive formulas.

Following the methodology of [33], our semantic analysis of the modal FM
frames is base on their dual algebraic structures, which are complete Heyting
algebras with complete operators (not necessarily perfect), where complete join-
primes are not always available, in contrast to settings like [7]. We use the
representation of complete Heyting algebras as the refined regular open subsets
in Fairtlough-Mendler frames, and we identify one Heyting algebra with an
operator (HAO) and one Boolean algebra with an operator (BAO) as the dual
algebraic structures of a given modal FM frame F: namely, the HAO Hgo,,
of refined regular open subsets of F and the BAO Bk of arbitrary subsets of
F. Therefore, we can define a natural order-embedding e : Hgro,, — Bk. It
is completely meet-preserving, therefore it has a left adjoint ¢ : Bx — Hro,,
sending a subset of the domain of F to the smallest refined regular open subset
containing it. We will use ¢ substantially in the interpretations of the expanded



modal language LT of the algorithm ALBA, which will play an important role in
the relational semantics and the refined regular open translation of the expanded
modal language.

To summarize, the principles for choosing the interpretations of the expanded
modal language are the following:

e The set of possible interpretations of nominals is join-dense in the complete
algebra of possible values of propositional variables;

e The set of possible interpretations of conominals is meet-dense in the com-
plete algebra of possible values of propositional variables (only in settings
when this is possible);

e The interpretation of black connectives should be the adjoints of modali-
ties in the basic propositional language;

e These interpretations should be expressible in a first-order way.

Structure of the paper. The paper is organized as follows: Section [2]intro-
duces some relevant structures and notions that will be used in later sections.
Section [B] presents preliminaries on modal Fairtlough-Mendler semantics. Sec-
tion [ analyzes the semantic environment for the interpretation of the expanded
modal language. Section [O] introduces the expanded modal language formally
as well as the refined regular open translation. Section [6] gives the syntactic
definition of inductive formulas. Section [T introduced the algorithm ALBA with
an example. Section B gives its success proof on inductive formulas and Section
gives its soundness proof. Section [I0 gives the conclusions.

2 Preliminaries

In this section, we introduce some topological and relational structures and the
notion of nucleus, which will be useful in later sections. For more details, see
[2, 24 25].

2.1 Topological and Relational Structures

Definition 2.1 (Refined Bitopological Space, Definition 5.1.1 in [24]). A refined
bitopological space is a triple (X, 7, 72) where 7y and 75 are topologies on X and
T1 g T2.

Definition 2.2 (Refined Birelational Frame). A refined birelational frame is a
tuple (X, <1, <3) where <5C<; are both partial orders on X.

For any poset (X, <), define the topology 7< taking all the upsets of (X, <)
as open sets. Therefore we can identify a partial order (X, <) with its corre-
sponding Alexandroff topology (X, 7). Since <oC<; iff 7<, C 7<,, we can iden-
tify refined birelational frames with their corresponding refined bi-Alexandroff
spaces.



In what follows, we will call refined birelational frames also Fairtlough-
Mendler frames (FM frames for short) [2, 13].

2.2 Nucleus

In this subsection we introduce the notion of nucleus on Heyting algebras. For
more details, see [21], 22, 23].

Definition 2.3 (Nucleus). A nucleus on a Heyting algebra H is a map j : H —
H satisfying the following conditions:

o jlanb)=j(a) Aj(b);

e a<j(a).

It is clear that a nucleus on H is also a closure operator, and the following
properties follow from the definition:

o J(T)="T;

o if a < b, then j(a) < j(b);

* j(j(a)) = j(a).
We call a nucleus dense if j(L) = L.

Definition 2.4 (Nuclear algebra). A nuclear algebra is a pair (H, j) where H
is a Heyting algebra and j is a nucleus on H. It is a localic nuclear algebra if H
is a locale, i.e. a complete Heyting algebra.

Theorem 2.5. If H = (H, L, T,A,V,—,j) is a nuclear algebra, then H; =
(Hj, L;, T,A;,V;,—;) is a Heyting algebra where H; = {a € H | a = j(a)} and
for a,b € H;:

o Lj=3(L)

e alNjb=aAb;

e aVb=7j(aVb);

ea—jb=a—b.
If H is a localic nuclear algebra, then Hj is a locale, where for Y C Hj:

o /\j Y =AY;

.« V,Y = (VY.

In a given refined bitopological space (X, 71,72), we use l; to denote the

interior map in 7; and C; to denote the closure map in ;. We use RO13(X) to
denote {Y C X | Y =1,Co(Y)}.

Lemma 2.6. Let F = (X, <, <5) be an FM-frame and (X, 71, 72) be its cor-
responding refined bitopological space, let the Hrp,, be the algebra (RO12(X),
J, H, N, VROy,, —>Rol2) where Y Vgo,, Z = |1C2(Y @] Z), Y —Rro,, 4 =
L((X —=Y)U Z). Then the operator |;Cs is a nucleus on the complete Heyting
algebra of opens in 7. Therefore Hgo,, is a complete Heyting algebra.



3 Preliminaries on Modal Fairtlough-Mendler se-
mantics

In the present section we collect the preliminaries on modal Fairtlough-Mendler
semantics. For more details, see e.g., [I3] 24, 25]. The style of presentation
follows [7}, [33].

3.1 Language

Let Prop be the set of propositional variables. The basic modal language £ is
defined as follows:

eu=p|L|TleAp|oVe|lp—¢l|Op,

where p € Prop.

In the algorithm, we will use inequalities ¢ < 1, whose truth in a model is
equivalent to the global truth of ¢ — 9 in the model. We will also define quasi-
inequalities 1 < 1 & ... & ¢, < P, = ¢ < 9, where & is the meta-level
conjunction and = is the meta-level implication. We say that a formula is pure
if it does not contain occurrences of propositional variables.

3.2 Semantics

For any R C W x W, we denote R[X] = {w € W | (3z € X)Raw}, R7}[X] =
{we W | 3z € X)Rwz}, Rlw] := R[{w}] and R~'[w] := R™[{w}], respec-
tively.

Definition 3.1 (Modal FM frames and models). A modal FM frame is a tuple
F = (X, <1,<s, R), where (X, <q,<3) is an FM frame, R C W x W such that
Oro,, (X) :={w e W | Rlw] C X} € RO12(X) for any X € RO12(X). A modal
FM model is a pair M = (IF, V') where V : Prop — RO12(X) is a valuation on F.

Given any modal FM model M = (X,<;,<5, R, V) and any w € X, the
satisfaction relation is defined as follows:

M,wl-p iff weV(p)
M, w IF L :  never
M,wlF T : always

M,wlFpAy iff M,wlF¢and M,w I

MywlFeVvey iff (Vo >1 w)(Fu >20)(M,ulF @ or M,ulk 1)
Mwlke—=v¢ iff (Vo> w)(Movlke = Muvl-1)

M, w IF Op if Vo(Rwv = M,vlF o).

We use [o]¥ = {w € X | M,w I ¢} to denote the truth set of ¢ in M. We
say that ¢ is globally true on M (notation: M IF ¢) if M w IF ¢ for all w € X.
We say that ¢ is valid on F (notation: F IF ¢) if ¢ is globally true on (F, V) for
all V on X. The semantics for inequalities and quasi-inequalities is as follows:



MIFp <% iff  (forallw e X)(M,wlF¢ = M,w )
MIF&, (i <vi) = o<t iff (Ml < foralli) = (Mg < ).

An inequality (resp. quasi-inequality) is valid on F if it is globally true on (F, V)
for all V.

Proposition 3.2. For any modal FM model M = (X, <y, <5, R, V) and any
we X,

MiIFg = iff [o]" C [ i MIFp <
Flkp—1y iff FlFp<.

4 Semantic Environment of our Setting

In this section, we use some algebraic structures to give the semantic definition
how the expanded modal language used in the algorithm will be defined. The
style of presentation follows [33].

4.1 The Heyting Algebra with Operator Hgo,,

Definition 4.1 (Heyting algebra with operator). A Heyting algebra with opera-
tor (HAO) is a tuple H = (H, L, T, A, V,—, 0), where the O-free part is a Heyt-
ing algebra and O is a unary operation such that OT = T and O(aAb) = OaAOb
for any a,b € H. An HAO is complete if its Heyting algebra part is complete.
An HAO is completely multiplicative if O preserves all existing meets.

Definition 4.2. For any modal FM frame F = (X, <y, <5, R), let the Hgo,, =
(RO12(X), &, H,N, VRO,5s —*RO12> ORO;, ) Where YVRo,, Z 1= 11C2(YUZ), Y —ro,,
Z=h((X-Y)u2).

Proposition 4.3. (cf. [I9, Theorem 5.6(2)]) For any modal FM frame F, Hgo,,
is a complete and completely multiplicative HAO.

The essential difference between the correspondence for Kripke semantics for
intuitionistic modal logic and the current setting is that the algebra Hgo,, is not
perfect in general, i.e. they are not join-generated by completely join-primes.

4.2 The Auxiliary BAO Bk

Consider any modal FM-frame F = (X, <y,<9, R), there is another way of
viewing it, namely taking it as a trirelational frame F3 = (X, <1, <5, R), the
complex algebra of which is a Boolean algebra with three operators Bg.

The formal definition of the BAO By is given as follows:

Definition 4.4. For any modal FM-frame F = (X, <y, <3, R), define Bx =
(P(X),2,W,N,U, —, 0k, 0<,,0<,), where N,U, — are set-theoretic intersec-
tion, union and complementation respectively, Ok(a) = {w € W | R[w] C a},
and O<,(a) ={w e W | (Vv >; w)(v € a)}.



Since RO12(X) C P(X), we have that e : Hro,, < Bk is an order-embedding
according to the order of the two algebras. Since in Hro,,, arbitrary intersec-
tions of refined regular open subsets are again refined regular open, e is com-
pletely meet-preserving. Notice also that Oro,, is the restriction of Ok to Hro,,-
All these observations can be summarized as follows:

Lemma 4.5. e : Hro,, < Bk is a completely meet-preserving order-embedding
such that e o Orp,, = Ok oe.

However, since Hgo,, and Bk have different definitions of join, Hgo,, is not
a sublattice of Bk.
We have the following corollary by [9, Proposition 7.34]):

Corollary 4.6. e : Hro,, = Bk has a left adjoint ¢ : Bx — HRro,, defined, for
every a € Bk, by

e(a) = Mg, (b € Hroy, | a < e(b)}.

Clearly, ¢(Y) = [1Co(Y) for any <;-upset Y C X, and ¢(Y) = [1Co(11Y") for
any Y C W where 11Y is the least <i-upset containing Y. Indeed, by definition
e(X) = /\HRO12 {Y € RO12(X) | X <e(Y)} =({Y € RO12(X) | X C Y}, which
is the smallest refined regular open set containing X. The closure operator ¢
will be called the refined regular open closure map and c(a) the refined regular
open closure of a.

4.3 Interpreting the Additional Symbols
4.3.1 Nominals

Nominals are originally introduced in hybrid logic (see e.g. [5, Chapter 14]).
They are used as special propositional variables and are interpreted as single-
tons, to refer to a world of the domain. In correspondence theory, nominals are
used for computing the minimal valuation of propositional variables so as to
eliminate them.

In the literature, nominals are interpreted as atoms (in complete atomic
Boolean algebra based settings), completely join-prime elements (in perfect dis-
tributive lattice based settings), completely join-irreducible elements (in perfect
(non-distributive) lattice based settings), regular open closures of singletons (in
the setting of possibility semantics of classical normal modal logic). The com-
mon feature is that the selected class of elements join-generates the relevant
complete lattices.

Therefore, in our setting, we need to find a subset of Hgro,, which join-
generates the whole Hgo,,. We take Nom(Hgro,,) := {c¢({z}) | = € X} be the
set of refined regular open closures of singletons in Bk, which will be shown to
be the join-dense set of Hro,,-



Propositional base Nominals/join-generators
perfect Boolean algebras atoms
perfect distributive lattices complete join-primes
perfect general lattices complete join-irreducibles
possibility semantics regular open closures of singletons

Proposition 4.7. For any Y € Hro,,,

Y= \/{c{z})|z€Y}=\/{Z € Nom(Hro,,) | Z C Y}.
RO12 RO12

Proof. For the first equality, it is easy to see that for any « € Y, ¢({z}) C
c(Y) =Y, s0 Vgo,{c({z}) | * € Y} C Y. For the other direction, for any
zeY,zec({r}) CVgo,ic{z}) |z € Y}. The second equality is easy. [

4.3.2 Black Diamond

The black diamond 4 comes from tense logic, which is the backward looking
diamond “there was a moment where...”. When O is interpreted on the relation
R, # is interpreted on the relation R~!. These two connectives has the following
property: ¢ — O is globally true in a model iff ¢ — ¢ is globally true
in that model. This property is called the adjunction property algebraically.
In correspondence theory, we use the black diamond to compute the minimal
valuation of a propositional variable, and the adjunction property is exactly
what we need. Therefore, our task here is to find the left adjoint of Oro,,.

We know from lattice theory that in complete lattices, a map has a left
adjoint iff it is completely meet-preserving. Since Hgo,, and Bk are both com-
plete, and Oro,, : Hro,, = Hro,, and Ok : Bk — Bk are both completely
meet-preserving, therefore they both have left adjoints, which are denoted by
®ro,, and €k, respectively.

Lemma 4.8. (Folklore.) #x(X) = R[X] for any X C W.
Lemma 4.9. ®ro,,(Y) = (co ®xoe)(Y).

Proof. We have the following chain of equalities:

’ROIQ (Y) = /\R012{Z € Hro,, | Y < Oroy, (Z)}
Aro,,1Z € Hro,, | e(Y) < (Okoe)(Z)}  (Lemma A3
Nro.,{Z € Hro,, | (#x0e)(Y) < e(Z)}
Aro,1Z € Hro,, | (co #xoe)(Y) < Z}
= (co®koe)(Y)

= (co ®K)(Y)
= ¢(R[Y)) (Lemma [A.8])
= L C(11R[Y]). (Corollary 0]

O



5 Preliminaries on Algorithmic Correspondence

In the present section, we collect preliminaries on algorithmic correspondence
for modal FM semantics. We will define the expanded modal language £1 for
ALBA, the first-order correspondence language £! and the refined regular open
translation of £1 into £!. Our treatment is similar to [7} [33].

5.1 The Expanded Modal Language L™

The expanded modal language £1 contains the basic modal language £ and
a set Nom of nominals, to be interpreted as elements in Nom(Hgo,,), and the
black connective ®, to be interpreted as the left adjoint of O. Its definition is
given as follows:

pu=p| L] TlileApleVele—e|Dp| €,

where p € Prop and i € Nom.

We extend the valuation V' to nominals such that V(i) € Nom(Hgo,,) and
use ¢ to denote the element that V(i) = 1;Ca(11{4}).

The satisfaction relation for the additional symbols is given as follows:

Definition 5.1. In any modal FM model M = (X, <y, <5, R, V),

M, w I i iff (Vo >1 w)(Fu >20)(@ <1 ).
M,wl- ®¢ iff (Vo >; w)(Fu >z v)(Ft <1 w)Is(Rst and M, s I+ ).

Truth set and validity are defined similarly to the basic modal language.

5.2 The Correspondence Languages L'

In order to express the first-order correspondents of modal formulas, we need
to define the first-order correspondence language £!.

Syntax. The non-logical symbols of the first-order correspondence language
L' consists of the following:

e a set of unary predicate symbols P,,, each of which corresponds to a propo-
sitional variable p,, and is going to be interpreted as a refined regular open
subset of the domain;

e three binary relation symbols <;, <5 and R corresponding to the relations
denoted with the same symbol;

e a set of individual symbols i, each of which corresponds to a nominal
i,. Notice that we allow the individual symbols i, to be quantified by
quantifiers Vi, Ji,.



5.3 The Refined Regular Open Translation

In the present section, we will define the refined regular open translation of LT
into £!.

Definition 5.2 (Syntactic Refined Regular Open Closure). Given a first-order
formula a(z) with at most  free, the syntactic regular open closure RO (a(x))
is defined as (Vy >1 x)(3z >2 y)(32' <1 2)a(2).

Definition 5.3 (Refined Regular Open Translation). The regular open trans-
lation of a formula in £1 into £! is given as follows:

T.(pi) = P
To(L) = z#uw
(T) = x=ux
T.(i) = RO(i=u);
ST(SDI/\SDZ) = STu(p1) A STi(p2);
STo(p1 V) = (Yy>1 90)(32 >3 Y) (ST (1) V ST (2));
ST, (<p1 —@2) = (Vy=>12)(STy(p1) = STy (p2));
T.(Op) = VYy(Ray — ST,(¥));
ST (®9) = RO?(3y(Ryx A ST,(¥)))-

The refined regular open translations of inequalities ¢ < 1 and quasi-
inequalities are given as follows (notice that they are interpreted on the level of
global truth of models):

= /\g Ve (ST () — STy(vy)) —

The following proposition justifies the translation defined above:

Proposition 5.4. For any modal FM model M = (X, <;, <9, R, V), any w € X,
any Lt-formula ¢, any £T-inequality Ineq, any £1-quasi-inequality Quasi,

o M,w - iff M = ST, ()[w];
o M- o iff M = VzST,(0);

e M I Ineq iff M = ST (Ineq);

e M I Quasi iff M = ST (Quasi).

6 Inductive formulas

In this section, we define inductive formulas for our setting. The definition is
similar to [34].

10



We define positive formulas with variables in A C Prop as follows:
POS4::=p| L | T |OPOS,4 | POS4s APOS, | POS4 VvV POSy4

where p € A.

We define the dependence order on propositional variables as any irreflexive
and transitive binary relation <o on them.

We define the PIA formula with main variable p as follows:

PIA, :=p| L | T|OPIA, | POS4, — PIA,

where A, = {q € Prop | ¢ <q p}.
We define the inductive antecedent as follows:

Ant ::= PIA, | Ant A Ant | Ant V Ant

where p € Prop.
We define the inductive succedent as follows:

Suc ::= POSpyop | PIA; — Suc | OSuc | Suc A Suc

where g € Prop.
Finally, an Q-inductive formula is a formula of the form Ant — Suc. An
inductive formula is an Q-inductive formula for some <gq.

Remark 6.1. Since in our settings, we have not yet found meet-dense set of
Hro,,, and we will only compute minimal valuations rather than maximal valu-
ations, we do not use the order-type and signed generation tree style definitions
like in [7]. In addition, since we do not have diamond in the basic language,
the fragment that we have is much smaller than typical definitions of inductive
formulas in some existing settings like [7].

7 The Algorithm ALBA

In the present section, we define the algorithm ALBA which compute the first-
order correspondence of the input formula, in the style of 7] 34].

The algorithm ALBA executes in three stages. ALBA receives a formula
Ant — Suc as input and transforms it into the inequality Ant < Suc.

1. Preprocessing and First approximation:

(a) We apply the following distribution rules exhaustively:

e In Ant, rewrite every subformula of the former form into the
latter form:

- BV A (BAra)V(yAa)

IFor the name, see e.g. [29, Remark 3.24].

11



—aA(BVY), (@aAB)V(aA9)
e In Suc, rewrite every subformula of the former form into the
latter form:

-~ (BAYVa, (BVa)A(yVa)

aV (BA7), (@VB)A(aVy)
—a—= Ay, (a=B)A(a—7)
— O(aAB), DaAOpS

(b) Apply the splitting rules:

a< BNy aVp <y
a<fB a<y a<ly By

Now for each obtained inequality ¢; < v;, We apply the first-approzimation

rule:
i <Yy
ip <y = g <y

Now we call each quasi-inequality ip < ¢; = ig < 9; a system, and use S
to denote a meta-conjunction of inequalities. When S is empty, we denote
it as &.

. The reduction-elimination cycle:

In this stage, for each system ip < ¢; = iy < 1;, we apply the following
rules to eliminate all the propositional variables:

(a) Splitting rules:

S = a<fAy
S = a<p) (5= a<ny)

S&a<BAY = p<9
S&alp&kaly = <y
S = avpi<y
S = a<y) (S=p8<9)
S&avB<y = p<9y
S&a<y&B<y = o<

(b) Residuation rules:
S = a<0Og

S = ea<p
S&a<Df = p<v¢
S& ®a<pB = o<

S=alfB—=7y

S = anf <~y
Sta<Boy = p<v
Skanp<sy = o<y

12



(¢c) Approzimation rule:

S = p<9vy
S&i<yp = i<y

The nominal introduced by the approximation rule must not occur
in the system before applying the rule.

(d) Deleting rules:

S&a<T = p<v
S = p<v
S = a<T
o = a<T

(e) Right-handed Ackermann rule. This rule eliminates propositional
variables and is the core of the algorithm:

&0 <p& &<y = o<y
& n;(0/p) < 1 (0/p) = ©(0/p) < ¥(O/p)

where:

i. p does not occur in 64, ...,0,;
ii. Each n;,1 is positive, and each ¢;, ¢ negative in p, for 1 < i < m;
iii. :=6;V...V0,.

3. Output: If in Stage 2, the algorithm gets stuck for some systems, i.e.
some propositional variables cannot be eliminated, then the algorithm
stops and output “failure”. Otherwise, each initial system after the first
approximation rule has been reduced to a set of pure quasi-inequalities
Reduce(ip < ¢; = ip < 1), and then the output is a set of pure quasi-
inequalities (J;.;Reduce(ip < ¢; = ip < 1);). Then we can use the con-
junction of the refined regular open translations of the quasi-inequalities
to obtain the first-order correspondence (notice that in the standard trans-
lation of each quasi-inequality, we need to universally quantify over all the
individual variables).

Example 7.1. Here we give an example. For the sake of clarity we add propo-
sitional quantifiers and nominal quantifiers before the quasi-inequality.

Vp(Op — p)
Vp(Op < p)
Vpvi(i<Op =i<p)
VpVi(€i<p =i<p)

Vi(i < @)
ViVa (ST, (i) — ST, (#1))
Vivz(ROI2(i = x) » ROX(3y(Ryx A ROLZ(i = y))))

13



8 Success

In the present section, we show the success of ALBA on any inductive formula
= .

Theorem 8.1. ALBA succeeds on any inductive formula ¢ — 1 and outputs a
set of pure quasi-inequalities and a first-order formula.

Proof. We check the shape of the inequalitys or systems in each stage, for the
input formula Ant — Suc:

Stage 1.

After applying the distribution rules, it is easy to see that Ant becomes the
form \/ A PIA,, and Suc becomes of the form A Suc’, where

Suc’ ::= POSpop | PIA; — Suc’ | OSuc’.

Then by applying the splitting rules, we get a set of inequalities of the form
APIA, < Suc’.

After the first approximation rule, we get systems of the form iy < A PIA, =
io < SUC/.

Stage 2. In this stage, we deal with each system ip < A PIA, = ip < Suc’.

For the inequality ip < A PIA,, by first applying the splitting rule for A and
then exhaustively applying the residuation rules for O and —, we get inequalities
of the form MinVal, < p or MinVal, < T or MinVal, < L, where

MinVal, ::= iy | #MinVal, | MinVal, A POS 4, ,

where A, = {q € Prop | ¢ <q p}.
Now we deal with the iy < Suc’ part.

e If the system is of the form S & &(MinValp <p) = ip < PIA; — Suc/,
then we have the following execution of ALBA:
S & &(MinVal, < p) = ig APIA, < Suc’
S & &(Minval, < p) & j<ig APIA, = j<Suc
S & &(MinVal, < p) & j < iy & j<PIA, = j < Suc’
S & &(Minval, <p) & j<ip, = j<Suc.

o If the system is of the form &(MinValp <p) = ip < OSuc’, then we
have the following execution of ALBA:
& (Minval, < p) = iy < Suc’
&(MinVal, < p) & j < #ip = j < Suc

Therefore, by the reduction strategies above, we get a quasi-inequality of the
form (here Pure is a meta-conjunction of inequalities without propositional vari-
ables):

&(MinVal, < p) & Pure = j < POSprop.
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Now we can apply the right-handed Ackermann rule to an 2-miminal vari-
able ¢ to eliminate it. Since there are only finitely many propositional variables,
we can always find another 2-miminal variable to eliminate. Finally we elimi-
nate all propositional variables and get pure quasi-inequalities and the refined
regular open translation. O

9 Soundness

In this section, we prove the soundness of ALBA with respect to modal FM
frames. The basic proof structure is similar to [7, [8] [34].

Theorem 9.1 (Soundness). If ALBA runs according to the success proof in the
previous section on an input inductive formula ¢ — 1 and outputs a first-order
formula FO(p — 1), then for any modal FM frame F = (X, <;, <5, R),

Fl- ¢ — o iff FE FO(p — 1)).

Proof. The proof goes similarly to [7, Theorem 8.1]. Let ¢ — ¢ denote the
input formula, {ip < ¢; = ip < ¥;}ier denote the set of systems after the
first-approximation rule, let {Reduce(ip < ¢; = ip < ;) }iesr denote the sets of
quasi-inequalities after Stage 2, let FO(¢ — ) denote the refined regular open
translation of the quasi-inequalities in Stage 3 into first-order formulas, then it
suffices to show the equivalence from () to @) given below:

FlFo = (1)
F||—i0§(pi:>i0§’t/1i, foralliel (2)
FIF Reduce(ip < ¢; = io <)), foralliel (3)
F = FO(p - ) (@)
The equivalence between ({l) and (2)) follows from Proposition [0.2}
The equivalence between () and (3] follows from Propositions @3] 0.2k
The equivalence between [B]) and @) follows from Proposition .4l O

In what follows, we will prove the soundness of each rule in each stage.

Proposition 9.2 (Soundness of the rules in Stage 1). The distribution rules
and the splitting rules are sound in both directions in F.

Proof. For the soundness of the distribution rules, it follows from the validity
of the following equivalences in F:

o (VB Ay & (@A) V(BAY);
e aN(BVY) e (aNB)V(aAy);

e O(aApB)+ OaAOp;
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e (@NB)Vy e (@Vy)ABVY);

e aV(BA7) & (@VB)A(aVy);

e (a—=pBAY) & (a—=B)A(a—7).

For the soundness of the splitting rules, it follows from the following fact:
FEa<pfAviff (FrFa<pand FEa<%);
Fravi<~yiff (FrFa<yand FE§ <~).

For the soundness of the first-approximation rule, by Proposition 4.7]

V(gi) = \/ {Z € Nom(Hro,,) | Z C V(p:)}-
RO12

Now we have the following chain of equivalences:

FlIF ¢; <

iff for any V, \Vgo,,{Z € Nom(Hro,,) | Z € V(p:)} € V(i)
ifft  for any V, (VZ € Nom(Hgo,,) s.t. Z C V() (Z C V()
iff  for any V, (VZ € Nom(Hro,,)(Z CV(pi) = Z CV())

iff  forany V', V'(i) CV'(¢:) = V'(i) CV'(¢y)
if FlFi<g = i<

O

For the soundness of each rule in Stage 2, we introduce the following nota-
tions: for each rule, before its application we have a system S = Ineq, after
its application we get a system S’ = Ineq’ (indeed, for the splitting rules we
might have two systems after the application, but their soundness are trivial),
the soundness of Stage 2 is then the equivalence of the following:

e FIFS = lIneq
e FIFS' = Ineq

It suffices to show the following property for the splitting rules, residuation
rules and the deleting rules:

For any F, any V,
F,VIFS = Ineqiff F,V IS = Ineq’.

For the first-approximation rule, we prove it directly.
For the right-handed Ackermann rule, we also prove it directly.

Proposition 9.3. The splitting rules, the approximation rule, the residuation
rules and the deleting rules in Stage 2 are sound in both directions in F.

Proof. The soundness proofs for the splitting rules and the residuation rules are
similar to the soundness of the same rules in [7].
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e For the splitting rules, it follows from the following equivalence: for any
modal FM frame F, any valuation V on F,

FVIFa<pBA~yiff F,VIFa<Band F,VIFa<7;
FVIFavB<yiff F,VIFa<~yand F,V I3 <~.

e For the residuation rules, it follows from the following equivalence: for any
modal FM frame F, any valuation V on F,

—FVIiFa<OBiff F,VI-F ®a < j;
—FViFa<pg—=~vif F,VIFaAp <~.

The equivalences above follow from the fact that the interpretations of 4
and O form an adjunction pair, and the interpretations of A and — form
a residuation pair.

e For the approximation rule, the soundness proof is similar to the first-
approximation rule: for any modal FM frame F, any valuation V,

i Vi(pi) € V(i)

T Vgor, {2 € Nom(Hro,,) | Z € Vig)} € V()
ifft  (VZ € Nom(Hro,,) s.t- Z C V(p:))(Z C V(¢3))
iff (VZ € Nom(Hgro,,)(Z C V(i) = Z CV(1y)).

Therefore, if F IF'S = ¢; < 1, then for any V, if F,V IF S and
V(i) C V(gi), then V(p;) C V(1);), so for V(i) € Nom(Hgo,,), from the
above equivalences we have V(i) C V(¢;), i.e. F,V IF i < ¢;. Thus
FIFS&i<g = i<

IfFIFS&i<g; = i<y, then for any valuation V, if F, V' IF S, then for
any Z € Nom(HRgo,,), if Z C V(¢;), take V' := Vi, then since i does not
occur in S, we have F, V' IF' S. We also have V(i) = Z C V(¢;) = V'(¢:),
sofromFIFS&i<p, = i<y, weget Z=V'(Q) CV'(¥;) =V,
therefore F, V' I ; < 1p;. Therefore we get FIFS = ¢; < ;.

e The soundness of the deleting rule is trivial, since o < T always holds in
any modal FM model.

O
Proposition 9.4. The right-handed Ackermann rule is sound in F.

Proof. Without loss of generality we assume that n = 1 and m = 1. Then it
suffices to show the following equivalence:

e FIFO<p&n<1 = <Yy
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o FIFn(0/p) <u(B8/p) = ©(0/p) <(0/p).

J: Assume that FIF 0 < p&n <: = ¢ < 1. Then for any valuation V on F,
if B,V IFn(8/p) < ¢(8/p), then take V' = sz/j(e)v then since p does not occur in 6,
we have V'(0) = V(0) = V'(p), therefore V(n(0/p)) = V'(n(6/p)) = V'(n), sim-
ilarly V(¢(0/p)) = V' (1), so from F, V' I- n(0/p) < 1(0/p) we get V'(n) C V'(1).
Therefore F, V' IF ¢ < 4. Therefore V'(¢) C V'(¢). Similar to n and ¢ we get
Vi(g) = V(p(6/p)) and V'(1) = V((0/p)), 50 F,V Ik p(8/p) < (8/p). By
the arbitrariness of V' we get F I n(0/p) < u(8/p) = «(0/p) < ¥(8/p).

f: Assume F IF n(0/p) < «(0/p) = @(0/p) < ¥(0/p). Then for any
valuation V on F, if F,V I 0 < p & n < ¢, then V(0) C V(p),V(n) C V(v).
Therefore by the polarity of p in n(0/p) and ¢(6/p) we have that V(n(6/p)) C
Vi(n) € V() € V((0/p)). So from F I- n(0/p) < u(0/p) = ¢(0/p) < ¢(6/p)
we get V(o) CV(p(@/p)) CV((0/p)) CV(¢),soF,VIF ¢ <. Therefore by
the arbitrarinessof V we get FIF0 <p & n<.: = ¢ <. O

10 Conclusions

In this paper, we study the correspondence theory of intuitionistic modal logic
in modal Fairtlough-Mendler semantics, which is the intuitionistic modal coun-
terpart of possibility semantics. Our study can be regarded as the study of
correspondence theory for complete Heyting algebras with complete operators
which are not necessarily perfect.

We proposed the general principles to choose the interpretations of the ex-
panded modal language used in the algorithm ALBA, and apply it in the current
setting. Therefore, we interpret the nominals in our setting as the refined regular
open closures of singletons, which is join-dense in Hgro,, and can be expressed
in a first-order way.

For future directions, we mention the following:

e In the present paper, we use a join-dense set of Hrp,, to interpret the
nominals. Whether a meet-dense set of Hro,, which can be expressed in
a first-order way can be found is a question related to whether we can
expand the fragment of inductive formulas here, which is also related to
finding correspondents of the KC formula —p V ——p and the LC formula
(p — q) V (¢ — p) in the present semantic setting.

e In the present paper, we only have O as the modality, since it interacts
well with arbitrary intersection. A future direction is to find a way to
incorporate < into the picture.

e In the present paper, we consider complete Heyting algebra expansions,
therefore it is natural to also consider the correspondence theory of com-
plete lattice expansions which are not necessarily perfect.
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e In the present paper, we do not consider the canonicity and completeness
concepts related to the intuitionistic modal version of possibility seman-
tics, which is a future direction.
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