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THREE-TORSION SUBGROUPS AND CONDUCTORS OF

GENUS 3 HYPERELLIPTIC CURVES

ELVIRA LUPOIAN

Abstract. We give a practical method for computing the 3-torsion subgroup
of the Jacobian of a genus 3 hyperelliptic curve. We define a scheme for the
3-torsion points of the Jacobian and use complex approximations, homotopy
continuation and lattice reduction to find precise expression for the 3-torsion.
In the latter stages of the paper, we explain how the 3-torsion subgroup can
be used to compute the wild part of the local exponent of the conductor at 2.

1. Introduction

Let C be a smooth, projective, hyperelliptic curve of genus 3 defined over Q and
let J be its Jacobian variety. Recall that J is a 3-dimensional abelian variety whose
points can be identified with elements of the zero Picard group of C, Pic0 (C). An
affine model of such a curve is

C ∶ y2 = f (x)

where f (x) ∈ Q[x] has degree 7 or 8, and no repeated roots. The Mordell-Weil
theorem states that J (L) is a finitely generated group for any number field L; that
is, J (L) ≅ J (L)

tors
⊕ Zr where J (L)

tors
is the finite torsion subgroup and r is

the rank. For a hyperelliptic curve we can compute a large part of the 2-torsion
subgroup of J , J [2] = {P ∈ J ∶ 2P = 0}. For any two roots of f , x1 and x2, the
class of the divisor (x1,0)− (x2,0)−∞1 −∞2 is a non-zero element of J [2], where
∞1,∞2 are two marked points on the projective curve. The two marked points
are distinct when f had degree 8 nd ∞1 = ∞2 when f has degree 7. Moreover, all
points of order 2 are of this from when f has degree 7, see [13] or [7].

The problem of finding a point of order 3 is not as straightforward. In Section
2, we will show that all 3-torsion elements correspond to ways of expressing f , or a
scalar multiple of f , as

f (x) (x + α1)2 + α7 (x3 + α8x
2 + α9x + α10)3 = (α2x

4 + α3x
3 + α4x

2 + α5x + α6)2
when f has degree 7, and

(−x6 −
a7

2
x5 − (−a6

2
+
a27
8
)x4 + α1 (−x5 −

a7

2
x4) − α2x

4 + α3x
3 + α4x

2 + α5x + α6)2

= α7 (x3 + α8x
2α9x + α10)3 + (x2 + α1x + α2)2 f (x)

when f has degree 8, for some α1, . . . , α10 ∈ Q, where a6 and a7 are coefficients
of f . The above correspondence can be used to define schemes parametrising the
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2 ELVIRA LUPOIAN

3-torsion points of J . In Sections 3 we give a method of approximating the points of
such schemes as complex numbers using homotopy continuation and the Newton-
Raphson method. These numerical analysis techniques are used to efficiently com-
pute approximations with a large precision, around 5000 decimal places, and in
Section 4 we explain how such approximations are used to find algebraic expres-
sions for the 3-torsion points of J , using lattice reduction. In Section 5, we compute
the 3-torsion subgroups of the modular Jacobians J0 (30) and J0 (40). A similar
method of complex approximations and lattice reduction was used in [8] to compute
the 2-torsion subgroup of some non-hyperelliptic modular Jacobians.

The second half of this paper will explain how the 3-torsion subgroup J [3]
can be used to determine the local conductor exponent of C at 2. Recall that
the conductor of a curve C/Q is a representation theoretic constant, defined as
a product N = ∏p p

np over the primes p where C has bad reduction. Thus the
problem of computing the conductor of C reduces to computing the local exponents
np for all primes of bad reduction p. When C is an elliptic curve, the np can be
computed using Tate’s algorithm (see [9, Chapter 4]). For hyperelliptic curves of
arbitrary genus, there are formulae for np for all p ≠ 2, see [5]. For curves of genus
2, Dokchitser and Doris [6] give an algorithm for n2. In [6], the authors take C to
be a non-singular projective curve of genus 2, defined over a finite extension K of
Q2. Then, n2 is the sum of the tame and wild parts,

n2 = ntame + nwild

where ntame can be deduced from a regular model of the curve and nwild is the
Swan conductor of the 3-adic Tate module of the Jacobian of C/K, and it can be
computed from the action of Gal (K (J[3]) /K) on J[3].

In the final two sections, we will assume C to be a smooth, projective and
hyperelliptic curve of genus 3, defined over Q2, and following [6] we use the action

of Gal (Q/Q) on J [3] to compute nwild when C is hyperelliptic of genus 3. In
Section 6, we give a brief theoretic overview of how the local conductor exponent
at 2 is calculated using a regular model of the curve and the 3-torsion subgroup of
its Jacobian. In Section 7, we compute the wild part of n2 for the modular curve
X0 (40) using the 3-torsion subgroups computed in Section 5.

Acknowledgements. I would like to thank my supervisors Samir Siksek and
Damiano Testa for their continued support, the many helpful conversations and
their invaluable suggestions throughout this project. I would also like to thank
Tim Dokchitser for the helpful conversation regarding the tame part of the conduc-
tor.

2. Scheme of 3-torsion points

Let C be a smooth, projective, hyperelliptic curve of genus 3, defined over a
number field K. By possible passing to a quadratic extension of K, C has an affine
model of the form

y2 = f (x)
where f (x) ∈K [x] is monic, has degree 7 or 8 and has no repeated roots.

The projective closure of C in P2 is defined by

Y 2Zd−2 = Zdf (X/Z)
where d is the degree of f .
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Remark 2.1. We refer to the points of C not appearing on the affine model as the
points at infinity. These correspond to Z = 0, and we observe that there is a single
such point, namely (0 ∶ 1 ∶ 0) when the degree of f is 7; and 2 points: (1 ∶ 1 ∶ 0) and(1 ∶ −1 ∶ 0) when the degree of f is 8.

Let J be the Jacobian variety of C. Recall that J is a 3-dimensional, abelian
variety over K, whose points can be identified with points of Pic

0 (C), the zero
Picard group of C. From now on we simply regard points on J as classes of divisors
of degree 0 on C. See [13] or [7] for details on the arithmetic of hyperelliptic curves.

The 3-torsion subgroup of J consists of all elements [D] ∈ Pic
0 (C) such that

3D = div (h), where h is a rational function on C. To parametrise all such points, we
treat the two degree cases separately. We begin with the following straightforward
result, which is required throughout the remainder of the section.

Lemma 1. Let C be a smooth, projective and hyperelliptic curve of genus g over
a number field K and let K (C) be its function field. Let y2 = f (x) be an affine
model of the curve with f ∈ K [x]. Suppose g (x) is any polynomial in x, which is
also an element of K (C) and its divisor of zeros is of the form 3D, where D is an

effective divisor. Then g (x) is a cube as an element of K [x].
Proof. We can write g as

g (x) = α (x − β1)r1 . . . (x − βs)rs (x − γ1)t1 . . . (x − γn)tn
where f (βi) = 0 for all i = 1 . . . s, f (γj) ≠ 0 for all j = 1 . . . n and α ∈K×.The divisor
of zero of g is

s∑
i=1

2ri (βi,0) + n∑
j=1

tj ((γj ,√f (γj)) + (γj ,−√f (γj)))
By assumption, this must equal 3D, and hence 3 divides 2ri and tj for all i = 1 . . . s
and j = 1 . . . n, and the result follows. �

Proposition 1. Let C be an odd degree hyperelliptic curve of genus 3, over a
number field K, with an affine model

y2 = f (x) = x7 + a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0

where ai ∈ K and f has no repeated roots. Let J be the Jacobian of C. Then any
non-zero 3-torsion point of J is the form [1

3
div (h)] where

h = y (x + α1) + α2x
4 + α3x

3 + α4x
2 + α5x + α6

with α1, . . . , α6 ∈K satisfying

f (x) (x + α1)2 + α7 (x3 + α8x
2 + α9x + α10)3 = (α2x

4 + α3x
3 + α4x

2 + α5x + α6)2
for some α7, α8, α9, α10 ∈ K̄. Furthermore this correspondence preserves the action
of GK = Gal (K/K).
Proof. Let ∞ be the unique point at infinity on this model and [D] ∈ J [3]∖ 0. By
Riemann-Roch there exists a unique, effective divisor D0 = P1 +P2 + P3 such that

D ∼D0 − 3∞

As 3D is principal, 3D0−9∞ = div (h) , where h is a rational function on C. Thus
h is in the Riemann-Roch space L (9∞) which has basis

1, x, x2, x3, x4, xy, y
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Then, replacing h by a scalar multiple if necessary, h is either a polynomial in
x of degree at most 4, or h = y + k (x) with k (x) ∈ K [x], deg (x) ≤ 4, or h =
y (x + α1) + k (x) with α1 ∈K, k (x) ∈K [x] and deg (x) ≤ 4.
Case 1. Suppose h ∈ K [x] and d = deg (h) ≤ 4. Let θ1, . . . , θd be the roots of h.
The divisor of zeros of h is 3D0 = 3P1 + 3P2 + 3P3 since div (h) = 3D0 − 9∞. We
can also compute the divisor of zeros directly, and find it to be

d∑
i=1

((θi,√f (θi)) + (θi,−√f (θi)))
The above divisor has degree at most 8, whilst deg (3D0) = 9, and hence they cannot
be equal. Thus h cannot be a polynomial in x of degree at most 4.

Case 2. Suppose h = y+g (x) where g ∈K [x] and deg (g) ≤ 4, and let h̃ = −y+g (x).
As before, the divisor of zeros of h is 3D0, and the divisor of zeros of h̃ is

3ι (D0) = 3ι (P1) + 3ι (P2) + 3ι (P3)
where ι ∶ C Ð→ C denotes the hyperelliptic involution on C. The divisor of zeros

of hh̃ is 3D0 + 3ι (D0), and hence hh̃ = −f (x) + g (x)2 is necessarily a cube as an

element of K [x] by Lemma 1. However, this is a contradiction since −f (x)+g (x)2
has degree 7 or 8.

Case 3. This is the only remaining case. Suppose h = y (x + α1) + g (x) where

α1 ∈ K, g (x) ∈ K [x] and g has degree at most 4, and let h̃ = −y (x + α1) + g (x).
Arguing as before, the divisor of zeros of hh̃ is 3D0 + 3ι (D0) and hence by Lemma

1, hh̃ ∈K [x] is necessarily a cube. Hence

hh̃ = (y (x + α1) + g (x)) (−y (x + α1) + g (x))
= −f (x) (x + α1)2 + g (x)2
= α7 (x3 + α8x

2 + α9x + α10)3
for some α7, . . . , α10 ∈ K, where g (x) = α2x

4 + α3x
3 + α4x

2 + α5x + α6 for some

α2, . . . , α6 ∈K.

�

Equating coefficients in this expression

f (x) (x + α1)2 + α7 (x3 + α8x
2 + α9x + α10)3 = (α2x

4 + α3x
3 + α4x

2 + α5x + α6)2
gives 10 equations in α1, . . . , α10, where (α1, . . . , α6) define a 3-torsion point. We
will refer to the scheme defined by these 10 equations as the scheme of 3-torsion
points.

Proposition 2. Let C be an even degree hyperelliptic curve of genus 3, over a
number field K, with an affine model

y2 = f (x) = x8 + a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0
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where ai ∈ K and f has no repeated roots. Let J be the Jacobian of C. Then any
non-zero 3-torsion point of J is the form [1

3
div (h)] where

h = x2y − x6 −
a7

2
x5 + (−a6

2
+
a27
8
)x4 + α1 (xy − x5 −

a7

2
x4) + α2 (y − x4)

+ α3x
3 + α4x

2 + α5x + α6

for some α1, . . . , α6 ∈K satisfying

−f (x) l (x)2 + g (x)2 = α7 (x3 + α8x
2 + α9x + α10)3

for some α7, . . . , α10 ∈K where

l (x) = x2 + α1x + α2

g (x) = −x6 + (−a7
2
− α1)x5 + (−a6

2
+
a2
7

8
−
α1a7

2
− α2)x4 + α3x

3 + α4x
2 + α5x + α6

Furthermore this correspondence preserves the action of GK = Gal (K/K).
Proof. Let∞+ and∞− be the two points at infinity on this model and [D] ∈ J [3]∖0.
By Riemann-Roch there exists a unique, effective divisor D0 = P1 + P2 + P3 such
that

D ∼D0 −∞+ − 2∞−

As 3D is principal, 3D0 − 3∞+ − 6∞− = div (h) , where h is a rational function on
C. Thus h is in the Riemann-Roch space L (3∞+ + 6∞−) which has basis

1, x, x2, x3, y − x4, xy − x5 − a7

2
x4, x2y − x6 − a7

2
x5 + (−a6

2
+

a
2

7

8
)x4

By possibly replacing h by a scalar multiple, h will necessarily fall in one of the
following four cases.

Case 1. Suppose h is a polynomial in x of degree d ≤ 3. Let θ1, . . . , θd be the roots
of h. The divisor of zeros of h is 3D0 since div (h) = 3D0 − 9∞. We can also
compute the divisor of zeros directly, and find it to be

d∑
i=1

((θi,√f (θi)) + (θi,−√f (θi)))
The above divisor has degree at most 6, whilst deg (3D0) = 9, and hence they cannot
be equal. Thus h cannot be a polynomial in x of degree at most 3.

Case 2. Suppose h is of the form

h = y − x4 + α1x
3 + α2x

2 + α3x + α4

= y + g (x)
for some α1, . . . , α4 ∈K, where g (x) = −x4+α1x

3+α2x
2+α3x+α4. Let h̃ = −y+g (x).

Arguing as in the proof of the previous proposition, the divisor of zeros of h is 3D0;
and the divisor of zeros of h̃ is 3ι (D0). The divisor of zeros of hh̃ ∈ K [x] is

3D0+3ι (D0), and thus by Lemma 1, hh̃ ∈K [x] is necessarily a cube. We find that

hh̃ = (y + g (x)) (−y + g (x))
= −f (x) + g (x)2
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has degree at most 7, and hence it has degree 6 or 3 if it is indeed a cube. Suppose
hh̃ has degree 6, so hh̃ = q3 where q ∈ K [x] is a quadratic polynomial. Let θ1, θ2
be the roots of q. Then the divisor of zeros of hh̃ is

3

2∑
i=1

((θi,√f (θi)) + (θi,−√f (θi)))
and by considering the degree of this divisor, it cannot equal 3D0. A very similar
argument shows that the deg (hh̃) = 3 also leads to a contradiction. Thus h cannot
be of the stated form.

Case 3. Suppose h is of the form

h = xy − x5 −
a7

2
x4 + α1 (y − x4) + α2x

3 + α3x
2 + α4x + α5

= l (x) y + g (x)
for some α1, . . . , α5 ∈ K, where l (x) = x + α1, g (x) = −x5 − a7

2
x4 − α1x

4 + α2x
3 +

α3x
2 + α4x + α5. Let h̃ = −l (x) y + g (x). Arguing as before, hh̃ ∈ K [x] is a cube.

We find that

hh̃ = (l (x) y + g (x)) (−l (x)y + g (x))
= −l (x)2 f (x) + g (x)2

has degree at most 8, and hence it must have degree 3 or 6 if it is a cube. As in case
2, both possible degrees lead to a contradiction. Hence h cannot be of the stated
form.

Case 4. Suppose h is of the form

h = x2y − x6 −
a7

2
x5 + (−a6

2
+
a2
7

8
)x4 + α1 (xy − x5 −

a7

2
x4) + α2 (y − x4)

+ α3x
3 + α4x

2 + α5x + α6

= l (x)y + g (x)
for some α1, . . . , α6 ∈K, where l (x) = x2+α1x+α2, g (x) = −x6−a7

2
x5−(−a6

2
+

a2

7

8
)x4+

α1 (−x5 − a7

2
x4)−α2x

4 +α3x
3 +α4x

2 +α5x+α6. Following previous arguments, set

h̃ = −l (x) y + g (x), then by considering the divisor of zeros of hh̃ we find that

hh̃ ∈K [x] must be a cube. In general,

hh̃ = (l (x) y + g (x)) (−l (x)y + g (x))
= −l (x)2 f (x) + g (x)2

has degree 9, and so it must be the cube of a degree 3 polynomial; and so there
exist α7, . . . , α10 ∈K such that

−l (x)2 f (x) + g (x)2 = α7 (x3 + α8x
2α9x + α10)3

Thus such h define 3-torsion points on J .

�
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Equating coefficients in the expression

(−x6 −
a7

2
x5 − (−a6

2
+
a2
7

8
)x4 + α1 (−x5 −

a7

2
x4) − α2x

4 + α3x
3 + α4x

2 + α5x + α6)2

= α7 (x3 + α8x
2 + α9x + α10)3 + (x2 + α1x + α2)2 f (x)

gives 10 equations in α1, . . . , α10, where (α1, . . . , α6) define a 3-torsion point. We
will refer to the scheme defined by these 10 equations as the scheme of 3-torsion
points.

3. Complex Approximations and Homotopy Continuation

Let e1, . . . , e10 be the equations in α1, . . . , α10 defining a scheme of 3-torsion
points as in the previous section. We want to determine the solution set of this
system of equations. In theory, this can be done using Gröbner basis techniques, the
following two Magma commands do precisely this: PointsOverSplittingField and
Points. The input for the former is a set of equations defining a zero-dimensional
scheme and its output is the solution set of the system of equations. Due to the
large degree of our scheme, we found that this command was inefficient in our
examples. The latter command is less ambitious. It is designed to give the set of
K-rational points of a zero- dimension scheme S, where K is the field of definition
of S. In this case, determing the field of definition of the 3-torsion subgroup is as
difficult as determining the 3-torsion subgroup itself. Thus, we were unable to use
this latter command in our computations.

Instead, we will take a two step approach to determine the points of our scheme.
First, the solutions of e1, . . . , e10 can be approximated as complex points using the
Newton-Raphson method. We give a brief overview of this, a detailed explanation
can be found in [12, Page 298]. In the section which follows, we explain how these
approximations can be used to find precise expressions for these points.

Complex Approximations. Let E = (e1, . . . , e10) be as above, and view this 10-
tuple of equations as a function C10

Ð→ C10. Let dE be the Jacobian matrix of
E. Suppose x0 is an approximate solution to E with dE (x0) invertible. For k ≥ 1,
define

xk = xk−1 − dE (xk−1)−1E (xk−1)
Provided the initial approximation x0 is a good enough approximation, the result-
ing sequence {xk}k≥0 converges to a root of E, with each iterate having increased
precision. In fact, at each step the number of decimal places to which the approxi-
mation is accurate roughly doubles [12, Section 5.8]

This method requires initial complex approximations to the solutions of E. These
can be obtained using homotopy continuation and its implementation in Julia (see
[3]).

Homotopy Continuation. Homotopy continuation is a method for numerically
approximating the solutions of a system of polynomial equations by deforming the
solutions of a similar system whose solutions are known. We give a brief sketch of
the idea, but a more detailed explanation if this theory can be found in [3] or [15] .

The total degree of E is defined as deg (E) = ∏i deg (ei), where deg (ei) is the
maximum of the total degrees of the monomials of ei.
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Let F be a system of 10 polynomials in α1, . . . , αn, which has exactly deg (E)
solutions and these solutions are known. The system F will be known as a start
system. The standard homotopy of F and E is a function

H ∶ C10 × [0,1]Ð→ C10

H (x, t) = (1 − t)F (x) + tE (x)
Fix N ∈ N, and for any s ∈ [0,N]∩N define Hs (x) =H (x, s/N), this is a system

of 10 polynomials in α1, . . . , αn.
For N large enough, the solutions of Hs (x) are good approximations of the

solutions of Hs+1 (x), and using the Newton-Raphson method we can increase their
precision. The solutions of H0 (x) = F (x) are known, and they can be used to
define solution paths to approximate solutions of HN (x) = E (x).

There are two important things to highlight.

1. Given any E, a start system ( and its solutions) can always be computed.
2. A start system can be modified to ensure solutions paths are non-overlapping

and converging to approximate solutions of E.

Homotopy Continuation is implemented in the Julia package HomotopyContin-
uation.jl (see [3]).

Remark 3.1. The implementation of homotopy continuation in Julia gives approx-
imates to solutions of E which are accurate to 16 decimal places. For our compu-
tations we used the approximate solutions and 1000 iterations of Newton-Raphson
to obtain an accuracy of 5000 decimal places.

4. Algebraic Expressions

Suppose (α1, . . . , α10) is a point on a scheme of 3-torsion points defined by
E = (e1, . . . , e10), which has a complex approximation (a1, . . . , a10), accurate to
k decimal places. We use the short vector algorithm to find the minimal polyno-
mials of the αi and define the corresponding 3-torsion point.

4.1. Minimal Polynomials. Fix i, 1 ≤ i ≤ 10 and let α = ai, θ = αi. As α is an
algebraic number, there exists d ∈ N and c0, . . . , cd ∈ Z such that

cdα
d + . . . + c1α + c0 = 0

Suppose θ ∈ R, that is the imaginary part of θ is small, so we’ll assume that θ is
approximating a real algebraic number and take θ = Re (θ) ∈ R. Fix a constant

C = 10k
′

, with k′ < k such that

∣ [C ⋅ θi] −C ⋅ αi ∣ ≤ 1 for all 0 ≤ i ≤ d

where [x] denotes the integer part of x ∈ R. Let Lk be the lattice generated by the
columns vd, . . . , v0 of the (d + 1) × (d + 1) matrix

Ak =

⎛⎜⎜⎜⎜⎜⎝

1 . . . 0 0

0 . . . 0 0

⋮ ⋱ ⋮ ⋮
0 . . . 1 0[Cθd] . . . [Cθ] [C]

⎞⎟⎟⎟⎟⎟⎠
= (vd, . . . , v1, v0)

As c0, . . . , cd ∈ Z
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ck =

⎛⎜⎜⎜⎝
cd
⋮
c1
a

⎞⎟⎟⎟⎠ = cdvn + . . . + c0v0 ∈ Lk
where a = cd [Cθd]+ . . .+ c1 [Cθ]+ c0 [C]. We can recover c∞ = (cd, . . . , c0) from ck

by setting

c0 = a − (cd [Cθd] + . . . + c1 [Cθ])
For any k ≥ 1:

∣∣ck ∣∣ =√c2
dθ
+ . . . + c2

1
+ γ2

≤
√
c2
dθ
+ . . . + c2

1
+ (γ −Ccdθ

θdθ − . . . −Cc1θ −Cc0)2
≤
√
c2dθ
+ . . . + c2

1
+ (cdθ

([Cadθ] −Cθdθ) + . . . + c1([Ca] −Cθ) + c0([C] −C))2
≤
√
c2
dθ
+ . . . + c2

1
+ (cdθ

+ . . . + c1 + c0)2
≤

√
c2
dθ
+ . . . + c2

1
+ (c2

dθ
+ . . . + c2

1
+ c2

0
)2

≤

√
2 (c2

dθ
+ . . . + c2

1
+ c2

0
)2 =√2 ∣∣ c∞∣∣2

and this shows that although the length ∣∣c∣∣ depends on the precision of the

approximation k, ∣∣c∣∣ is bounded by the fixed constant
√
2∣∣ c∞∣∣2. As k increases,

we expect the general size of a vector in L to increase, but our vector k is of bounded
lenght, and thus when k is sufficiently large, this vector will be the shortest vector
in the lattice.

We use Hermite’s theorem to determine when the shortest vector in our lattice
is a good candidate for the vector k.

Theorem 1. (Hermite) Let L be an n dimensional lattice and M the length of the
shortest non-zero vector in L. There exist constant µn ∈ R≥0 depending only on n

such that

Mn ≤ µnd (L)2
where d (L) is the discriminant of L.

There are bounds on these µn given in [10, Page 66]. For a general lattice of full
rank, we expect this bound to be close to the actual size of the shortest non-zero
vector in the lattice.

Proof. See [10, Page 66] �

Hermite’s theorem suggests that the length of the shortest vector in Lk is approx-

imately d (Lk) 1

d+1 . In our case, d (L) = det (A) = C = 10k′ ; and so if our minimal
polynomial has coefficients of order 10

n, k, k′ are such that:(dθ + 1)102n ≤ 10k′/(dθ+1).

and if the shortest vector in L is shorter than d (L) 1

dθ+1 , then it is a suitable
candidate for the vector we are looking for. As before, we search for the shortest
vector in the lattice using the Magma command ShortestVectors (see [2]).

Remark 4.1. When the imaginary part of θ is not 0, the same method can be used
but with Lk being generated by the columns of
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Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 0

0 . . . 0 0

⋮ ⋱ ⋮ ⋮
0 . . . 1 0[CRe (θd)] . . . [CRe (θ)] [C][CIm (θd)] . . . [CIm (θ)] 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Re (θ) and Im (θ) denote the real and imaginary parts of θ.

To summarise, the strategy for finding the coefficients of the minimal polynomial
of α is as follows.

1. Choose d.
2. Define the lattice Lk.
3. In Lk look for vectors which are shorter than, say 1/1000d (Lk) 1

d+1 . If such
a vector doesn’t exists, either increase the precision k and start again, or
choose a different degree and start again.

4. If such a vector exists, verify that θ is an approximate solution of the
corresponding polynomial. If this is not the case, choose a different degree
and start again.

Note that regarding the choice of degree, we start with d = 1 and run through
the natural number until we find a suitable vector.

4.2. Coefficient Relations. Suppose (α1, . . . , α6) define a rational function h on
C, which corresponds to a 3-torsion point as in Section 2. Let fi be the minimal
polynomial of αi and set di = deg (fi). For a fixed root α = α1 of f1, we want to
determine the roots of f2, . . . , f6 defining h, and thus the corresponding 3-torsion
point. Simplest way theoretically of doing this is to compute all possible six tu-
ples of roots, and simply test whether each possibility defines a 3-torsion points.
However, this is incredibly impractical, especially when the degrees of the mini-
mal polynomials are large. Instead, we explain an alternative method to compute
relations amongst the coefficients using lattice reduction.

Firstly, we can try to express α2, . . . , α6 in terms of powers of α. Let K1 = Q (α)
be the number field defined by α. If f2 has a root over K1, we can write it as

bd1
α2 = bd1−1α

d1−1 + . . . + b1α + b0
for some b0, . . . , bd1

∈ Z. Let a1, a2 be complex approximations of α, α2 correct to k

decimal places. If a1, a2 ∈ R, that is the imaginary part of both a1 and a2 is small,
we search for b0, . . . , bd1

by looking for short vectors in the lattice generated by the
columns of

Ak =

⎛⎜⎜⎜⎜⎜⎝

1 . . . 0 0 0

0 . . . 0 0 0

⋮ ⋱ ⋮ ⋮ ⋮
0 . . . 0 1 0[Cad1−1
1
] . . . [Ca1] [Ca2] [C]

⎞⎟⎟⎟⎟⎟⎠
where C is a constant of order 10

k, chosen as before. If a1, a2 /∈ R, we instead
search for short vectors in the lattice generated by the columns of



THREE-TORSION SUBGROUPS AND CONDUCTORS OF GENUS 3 HYPERELLIPTIC CURVES11

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 0 0

0 . . . 0 0 0

⋮ ⋱ ⋮ ⋮ ⋮
0 . . . 0 1 0[CRe (ad1−1

1
)] . . . [CRe (a1)] [CRe (a2)] [C][CIm (ad1−1

1
)] . . . [CIm (a1)] [CIm (a2)] 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Remark 4.2. If no relations as above exist, we can use a similar lattice method to
look for higher order relations, that could help to identify the corresponding the
root of f2. In practice, we were able to compute relations as above in our examples.

When the degrees di are small, factorising our polynomials can often be quicker
than searching for coefficient relations. Suppose ai is a complex approximation of
αi, and fi is the minimal polynomial of αi. Over C, fi can be factorised into linear
factors.

fi = s1 . . . sdi

For k large enough, there is an n such that sn (ai) is almost zero. Thus sn corre-
sponds to the required root of fi.

Checking the correctness of our minimal polynomials and coefficient is straight-
forward. We simply define the points determined by our candidate polynomials
and check that they are solutions of our defining set of equations.

5. Examples

Using the method described in Sections 2-4, we computed the 3-torsion subgroup
of the modular Jacobians J0 (30) and J0 (40).

The MAGMA code in the computations presented in this section can be found at

https://github.com/ElviraLupoian/3TorsionOfGenus3HypCurves

5.1. J0 (30) [3]. We work with the model of the modular curve X0 (30) given by
Magma

y2 + (−x4 − x3 − x2) y = 3x7 + 19x6 + 60x5 + 110x4 + 121x3 + 79x2 + 28x+ 4
Completing the square gives a model of the form required by section 2,

y2 = x8 + 14x7 + 79x6 + 242x5 + 441x4 + 484x3 + 316x2 + 112x+ 16
The scheme of 3-torsion points is defined by 10 equations

− α2

2
+ α2

6
− α7α

3

10
,

− 2α1α2 − 14α2

2 + 2α5α6 − 3α7α9α
2

10,

− α2

1 − 28α1α2 − 79α2

2 − 2α2 + 2α4α6 + α2

5 − 3α7α8α
2

10 − 3α7α
2

9α10,

− 14α2

1
− 158α1α2 − 2α1 − 242α2

2
− 28α2 + 2α3α6 + 2α4α5 − 6α7α8α9α10 − α7α

3

9
− 3α7α

2

10
,

− 79α2

1 − 484α1α2 − 112α1α6 − 28α1 − 441α2

2 − 2α2α6 − 158α2 + 2α3α5 + α2

4 + 2820α6 − 3α7α
2

8α10

− 3α7α8α
2

9
− 6α7α9α10 − 1,

− 242α2

1 − 882α1α2 − 112α1α5 − 2α1α6 − 158α1 − 484α2

2 − 2α2α5 − 484α2 + 2α3α4 + 2820α5

− 112α6 − 3α7α
2

8α9 − 6α7α8α10 − 3α7α
2

9 − 14,
− 441α2

1
− 968α1α2 − 112α1α4 − 2α1α5 − 484α1 − 316α2

2
− 2α2α4 − 882α2 + α2

3
+ 2820α4 − 112α5

2α6 − α7α
3

8 − 6α7α8α9 − 3α7α10 − 79,

https://github.com/ElviraLupoian/3TorsionOfGenus3HypCurves
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− 484α2

1
− 632α1α2 − 112α1α3 − 2α1α4 − 882α1 − 112α2

2
− 2α2α3 − 968α2 + 2820α3 − 112α4 − 2α5

− 3α7α
2

8 − 3α7α9 − 242,
2820α2

1
− 112α1α2 − 2α1α3 − 158888α1 − 3452α2 − 112α3 − 2α4 − 3α7α8 + 1987659,

2820α1 − 112α2 − 2α3 − α7 − 158404,
where the 3-torsion points are classes of divisors of the form 1

3
div (h)

h = x2y − x6 − 7x5 − 15x4 + α1 (xy − x5 − 7x4) + α2 (y − x4) + α3x
3

+ α4x
2 + α5x + α6

By approximating the solutions of the above system and then finding precise

algebraic expressions for the 3-torsion points, we find that J0 (30) [3] ≅ (Z/3Z)6 can
be generated using 3 Galois orbits, 2 consisting of 8 points each, and 1 consisting
of 6 points.

For each orbit, we give the minimal polynomial of α1 and expressions for α2, . . . , α6

in terms of α1.

u6 − 21u5 + 184u4 − 861u3 + 2296u2 − 3381u+ 2439
α1 = u

α2 = u − 2
α3 = (1/639)(4u5 − 70u4 + 704u3 − 3962u2 − 3192u− 10638)
α4 = (1/213)(4u5 − 70u4 + 704u3 − 3962u2 + 5541u− 7230)
α5 = (1/213)(4u5 − 70u4 + 704u3 − 3962u2 + 8310u− 8934))
α6 = (1/639)(4u5 − 70u4 + 704u3 − 3962u2 + 9588u− 10638)

u8 − 28u7 + 343u6 − 2401u5 + 10414u4 − 28147u3 + 45290u2 − 39200u+ 13925
α1 = u

α2 = 2u − 2
α3 = (1/2169)(16u7 − 392u6 + 4116u5 − 24010u4 + 83312u3 − 168882u2 + 113309u− 54568)
α4 = (1/723)(32u7 − 784u6 + 8232u5 − 48020u4 + 166624u3 − 337764u2 + 326392u− 119258)
α5 = (1/723)(64u7 − 1568u6 + 16464u5 − 96040u4 + 333248u3 − 675528u2 + 699056u− 279004)
α6 = (1/2169)(128u7 − 3136u6 + 32928u5 − 192080u4 + 666496u3 − 1351056u2 + 1427032u− 592712)

u8 − 86u7 + 2449u6 − 33383u5 + 252436u4 − 1109723u3 + 2786294u2 − 3689116u+ 2224811
α1 = u

α2 = (1/1214905376480298255)(29876018790328u7− 2417413903833052u6+ 60684703080638118u5

− 674976608990629628u4+ 3832952879194486442u3− 11087064205570838970u2

+ 16027124735004738752u− 11008190935547438114)
α3 = (−1/1214905376480298255)(226884728945872u7− 18363364083540328u6+ 460287793516793082u5

− 5069981080078429502u4+ 28138121917331765018u3− 77651266046887373580u2
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+ 119961145357139022083u− 45446963859192685796)
α4 = (−1/404968458826766085)(221239419854296u7− 17945665351388284u6+ 451320054316335906u5

− 4984082896579474376u4+ 27907810187789236094u3− 78911274653216131110u2

+ 111314232875845983914u− 60056349012914418458)
α5 = (−1/1214905376480298255)(593735119981072u7− 48868278713945128u6+ 1258524218508960012u5

− 14170047695264405192u4+ 81156089944126098548u3− 237313632893922545220u2

+ 339196464518479391108u− 198602211969557067116)
α6 = (−1/242981075296059651)(35094171383296u7− 3004896812056480u6+ 81787675076005272u5

− 944075033879118080u4+ 5498949927080657672u3− 16418946803186159928u2

+ 23935267946866848320u− 14729053581484018328)
The field of definition of definition of all 3-torsion points defined by the above
expressions is the degree 144 number field L defined as follows. Let K be the
degree 48 number field defined by

x48 − 9x47 + 36x46 − 75x45 + 57x44 + 45x43 + 114x42 − 1134x41 + 2649x40 − 2694x39 −
9x38 + 3708x37 − 4208x36 − 549x35 − 477x34 + 24297x33 − 35388x32 − 15957x31 −
58908x30 + 587655x29 − 1095192x28 + 147498x27 + 2477835x26 − 4287114x25 +
2891076x24 + 570960x23 − 2932713x22 + 2692353x21 − 803187x20 − 889560x19 +

1287588x18−729954x17+58869x16+358671x15−388314x14+194094x13−21821x12−
50094x11+63396x10−45024x9+22035x8−8640x7+2955x6−684x5+111x4−24x3+1
then, L is the degree 6 extension of K defined by

x6 − 21x5 + 184x4 − 861x3 + 2296x2 − 3381x+ 2439
We verify that the above generate the entire 3-torsion subgroup as follows. We

form the subgroup H of 3-torsion points generated by the above, as a subgroup
of J0 (30)(L)tors, and reduce modulo an ideal of OL of norm 529. As 23 is prime
of good reduction for the curve, the induced reduction map on the Jacobian is
injective on torsion. We verify that the image of the H under the reduction map

is isomorphic to (Z/3Z)6. Since the genus is 3 and the reduction map is injective,

H ≅ (Z/3Z)6 is the entire 3-torsion subgroup J0 (30) [3].
5.2. J0 (40) [3]. We work with the model of the modular curve X0 (30) given by
Magma

y2 + (−x4 − 1)y = 2x6 − x4 + 2x2

Completing the square gives a model of the form required by section 2,

y2 = x8 + 8x6 − 2x4 + 8x2 + 1
The scheme of 3-torsion points is defined by 10 equations

α2

2
− α2

6
− α3

9
α10,

2α1α2 − 2α5α6 − 3α8α
2

9α10,

α2

1 + 8α2

2 + 2α2 − 2α4α6 − α2

5 − 3α7α
2

9α10 − 3α2

8α9α10,

16α1α2 + 2α1 − 2α3α6 − 2α4α5 − 6α7α8α9α10 − α3

8
α10 − 3α2

9
α10,

8α2

1 − 2α2

2 + 2α2α6 + 16α2 − 2α3α5 − α2

4 + 8α6 − 3α2

7α9α10 − 3α7α
2

8α10 − 6α8α9α10 + 1,
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− 4α1α2 + 2α1α6 + 16α1 + 2α2α5 − 2α3α4 + 8α5 − 3α2

7
α8α10 − 6α7α9α10 − 3α2

8
α10,

− 2α2

1 + 2α1α5 + 8α2

2 + 2α2α4 − 4α2 − α2

3 + 8α4 + 2α6 − α3

7α10 − 6α7α8α10 − 3α9α10 + 8,
16α1α2 + 2α1α4 − 4α1 + 2α2α3 + 8α3 + 2α5 − 3α2

7
α10 − 3α8α10,

8α2

1 + 2α1α3 + 8α2 + 2α4 − 3α7α10 − 18,
8α1 + 2α3 − α10,

where the 3-torsion points are classes of divisors of the form 1

3
div (h),

h = x2y − x6 − 4x4 + α1 (xy − x5) + α2 (y − x4) + α3x
3 + α4x

2 + α5x + α6

By approximating the solutions of the above system and then finding precise alge-

braic expressions for the 3-torsion points, we find that J0 (40) [3] ≅ (Z/3Z)6 can be
generated using 3 Galois orbits, 2 consisting of 6 points each, and 1 consisting of 8
points.

For each orbit, we give the minimal polynomial of α1 and expressions for α2, . . . , α6

in terms of α1.

u6 + 4u4 − 8u2 + 12
α1 = u

α2 = u + 1
α3 = (−1/9)(u5 + u3 + 16u + 18)
α4 = (−1/3)(u5 + u3 + 4u + 3)
α5 = (−1/3)(u5 + u3 + u − 6)
α6 = (−1/9)(u5 + u3 + 7u + 9)

u6 − 6u5 + 4u4 + 24u3 + 256u2 − 576u+ 324
α1 = u

α2 = (1/198)(−u4 + 4u3 + 58u2 − 124u+ 126)
α3 = (−1/99)(u4 − 4u3 − 58u2 + 322u + 468)
α4 = (−1/99)(u4 − 4u3 − 58 ∗ u2 − 74u + 765)
α5 = (−1/99)(u4 − 4u3 − 58u2 − 173u + 468)
α6 = (1/198)(u4 − 4u3 − 58u2 + 520u− 522)

u8 − 126u4 − 648u2 − 1323
α1 = u

α2 = −1
α3 = (1/189)(u7 − 63u3 − 648u)
α4 = 3

α5 = −u
α6 = 1
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The field of definition of the 3-torsion subgroup is the degree 48 number field
defined by

x48 − 22x47 + 220x46 − 1298x45 + 4840x44 − 10758x43 + 7848x42 + 30564x41 −
90644x40 − 54378x39 + 983934x38 − 3228430x37 + 6037118x36 − 6706868x35 +
3859158x34 − 6290682x33 + 41469355x32 − 151827480x31 + 375328308x30 −

727099012x29+ 1204881284x28− 1812362612x27+ 2558319144x26− 3402905364x25+
4192192588x24−4669768140x23+4602283152x22−3939374364x21+2873125672x20−

1738390504x19 + 830314684x18 − 275496188x17 + 30094447x16 + 31178478x15 −
22364652x14 + 5362086x13 + 2307708x12 − 2995626x11 + 1676724x10 − 615660x9 +
121728x8 + 25686x7 − 31194x6 + 9162x5 + 1458x4 − 2088x3 + 738x2 − 126x + 9
Checking that the above orbits generate the entire 3-torsion subgroup of J0 (40)

can be done as in the previous example.

6. Local Conductor Exponent at 2

Throughout this section, C/K will denote a smooth, projective, hyperelliptic
curve defined over K, a finite extension of Q2. Let J be the Jacobian variety
associated to C, T = TlJ the l-adic Tate module and V = VlJ = T ⊗Zl

Ql the asso-
ciated l-adic representation, where l is any prime different from 2. The conductor
exponent of such a representations, as defined in [6] and [14] , is

n = ∫
∞

−1
codimV Gu

K du

where GK = Gal (K/K) is the absolute Galois group of K and {Gu
K}u≥−1 denote

the ramification groups of GK in upper numbering. The tame and wild parts are
defined as

ntame = ∫
0

−1
codimV G

u
K du

nwild = ∫
∞

0

codimV Gu
K du

Remark 6.1. The definition is independent of the choice of prime l, see [14].

Our approach is to take l = 3 and use the 3-torsion subgroup, computed as in
Section 2 to 4.

6.1. Tame Conductor. From the above, the tame part of the conductor can be
computed as

ntame = 6 − dimV3J
I

where I ⩽ GK is the inertia subgroup.
Alternatively, we can also also deduce the tame part of the conductor from the

regular model of C. From a regular model of C over Z2 we can calculate

● the abelian part a, equal to the sum of the genera of all components of the
model
● the toric part t, equal to the number of loops in the dual graph of C

Then, the tame part of the exponent is equal to 6− 2a− t, see [1, Chapter 9] for
details. Regular models can often be computed using the method described in [4],
however, this is often a challenging problem.
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6.2. Wild Conductor. Recall that we wish to compute

nwild = ∫
∞

0

codimV G
u
K du

For u ≥ 0, Gu
K is pro-p and codimV Gu

K = codimV̄ Gu
K = codimJ [3]Gu

K , see [14]. We
may replace GK by G = Gal (K (J[3]) /K), and thus

nwild = ∫
∞

0

codimJ[3]Gu

du

Alternatively, using the definition of Gu and Gu, the ramification groups in upper
numbering and lower numbering respectively, we find

nwild = ∫
∞

0

codimJ[3]Gu

[G0 ∶ Gu] du =
∞

∑
k=0

codimJ[3]Gk

[G0 ∶ Gk]
Remark 6.2. Using our presentation of J [3], the ramification groups Gu and their
action on J [3] are completely explicit; and as a result nwild is a straightforward
computation.

7. Example

Recall that the 3-torsion subgroup J0 (40) [3] is defined over a degree 48 number
field defined by the polynomial f , stated in Section 5.2. This polynomial remains
irreducible over Q2, and defines a degree 48 Galois extension of Q2, which we denote
by L. Let G = Gal (L/Q2). We find that G can be generated by τ1,τ2,β, σ1, σ2,
where τi have order 2, β has order 3 and σj have order 4. Then,

G0 = ⟨τ1, β, σ1, σ2⟩ and ∣G0∣ = 24
G1 = ⟨τ1, σ1, σ2⟩ and ∣G1∣ = 8
G2 = G3 = ⟨τ1⟩ and ∣G2∣ = ∣G3∣ = 2
Gn = 1 for all n ≥ 4

Using the explicit generators stated in section 5.2, we can compute the Galois
invariants

J0 (40)G0 ≅ (Z/3Z)2
J0 (40)G1 ≅ (Z/3Z)4
J0 (40)G2 ≅ (Z/3Z)4

and thus

nwild = 4/1 + 2/3 + 2/12+ 2/12 = 5
As X0 (40) is a modular curves, we may compute its conductor from the isoge-

nous decomposition of its Jacobian into a product of abelian varieties of smaller
dimension. The modular Jacobian X0 (N) is isogenous to ⊕fAf where Af is the
abelian variety associated to a newform f ∈ S2 (Mf) of some level Mf , and the
direct sum is over equivalence classes of newforms in S2 (N). These can be com-
puted using Stein’s modular symbols algorithms and its implementation in Magma,
see [11]. The conductor of J0 (N) is equal to product, over equivalence classes of
newforms in S2 (N), of the conductors of Af . This is clear from the definition of
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the conductor, as given in Section 6, if we take l ≠ p and not dividing the degree of
the isogeny.

In this example using Magma, we find

J0 (40) ≃ E1 ⊕E2 ⊕E3

where Ei are abelian varieties of dimension 1, and conductors 23 ⋅5, 22 ⋅5 and 2
2 ⋅5,

respectively. This suggests that n2 = 7.

Remark 7.1. The above suggest that ntame = 2, but the author is yet to verify this
directly.
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