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Abstract

Loosely speaking, the Navier-Stokes-α model and the Navier-Stokes equations differ by

a spatial filtration parametrized by a scale denotedα. Starting from a strong two-dimensional

solution to the Navier-Stokes-α model driven by a multiplicative noise, we demonstrate that

it generates a strong solution to the stochastic Navier-Stokes equations under the condition

α → 0. The initially introduced probability space and the Wiener process are maintained

throughout the investigation, thanks to a local monotonicity property that abolishes the use

of Skorokhod’s theorem. High spatial regularity a priori estimates for the fluid velocity

vector field are carried out within periodic boundary conditions.

Keywords: Navier-Stokes-α, Navier-Stokes, multiplicative noise, cylindrical Wiener process, strong

solutions
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1 Introduction

To circumvent most of the Navier-Stokes drawbacks, a reasonable amount of Large Eddy Simulation

(LES) models have been created and introduced to the fluid mechanics’ literature. Among them is the

Navier-Stokes-α (NS-α) model, which made its appearance in [7, 15] and is known under the names:

Lagrangian averaged Navier-Stokes (LANS-α) equations [18] or the viscous Camassa-Holm problem [3].

Given a solution to the stochastic NS-α model:















∂

∂t

(

ū− α2∆ū
)

− ν∆
(

ū− α2∆ū
)

− ū×
(

∇×
(

ū− α2∆ū
))

+∇p̄ = g(·, ū)∂W
∂t

,

div(ū) = 0,

ū(0, ·) = ū0,

(1.1)
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2 Convergence analysis of the stochastic NS-α toward the NS equations

the main interest in this paper is to check whether or not it converges toward a solution of the stochastic

Navier-Stokes equations (NSEs)











∂u
∂t +−ν∆u+ [u · ∇]u+∇p = g(·, u)∂W∂t ,
div(u) = 0,

u(0, ·) = ū0,

(1.2)

when the spatial scale α tends to 0. Both equations are equipped with the same configurations, including

the initial datum ū0 to guarantee a similar fluid state at time t = 0. The two-dimensional vectors ū and

u denote the fluid velocities, the R-valued quantities p and p̄ represent the pressure fields, the positive

constant ν symbolizes the kinematic fluid viscosity, α is a small positive spatial scale at which the

fluid motion is filtered, g is a diffusion coefficient depending on the velocity vector field, and W is an

infinite-dimensional (possibly cylindrical) Wiener process. On account of the poor uniqueness properties

of three-dimensional solutions to the stochastic NSEs, the conducted study herein will be limited to two

dimensions to guarantee that the unique solution of the stochastic NS-α equations converges toward a

sole one as α goes to 0.

In this paper, the study is accomplished through periodic boundary conditions for the sake of inves-

tigating the effect of α on the space regularity of a solution and taking advantage of the nonlinearity’s

properties that occur within this framework. It could have been carried out within Dirichlet boundary

conditions if only the typical solution’s space regularity was intended. Observe that α is always multiplied

by ∆ū in equations (1.1), meaning that the extra granted regularity that does not figure in problem (1.2)

can be loosened through a particular assumption on α when dealing with a finite-dimensional system,

namely a Faedo-Galerkin approximation. The pressure field will be eliminated from the corresponding

weak formulation throughout this work through the null divergence criterion, and the focus will be turned

toward the velocity vector. Equations (1.1) will be transformed into a coupled problem of second-order

so that its form matches somehow that of system (1.2), and the spatial scale α will be controlled by the

inverse of a specific eigenvalue of the Stokes operator for the sake of absorbing the extra space regularity

that is delivered by equations (1.1).

Investigating the convergence of equations (1.1) toward system (1.2) is beneficial because the principal

reason for which the NS-αmodel was introduced is to overcome most of the Navier-Stokes shortcomings.

If the converse scenario took place, equations (1.1) would have become obsolete, but fortunately, it

is not. This convergence was also conducted for the deterministic settings (i.e. when g = 0) in [4],

where the convergence rate in terms of α is revealed. The theoretical study herein has the advantage of

building efficient numerical schemes for the stochastic Navier-Stokes problem while considering minimal

assumptions on the spatial scale α. Since α is solely involved with solutions’ space regularity, any time

discretization should not come into play in any further hypotheses upon α.

Equations (1.1) were first inspected in [5, 6], where the existence of a unique variational solution

was proven. It is worth highlighting one drawback of this model relative to the pressure’s regularity

that appears after applying a generalization of the De Rham theorem [17], which links the velocity’s

smoothness to that of the pressure. In point of fact, it was shown (c.f. [6, Theorem 3.3]) that p̄ is H−1-

valued, meaning that it is lower than that of p, which is L2-valued. This inconvenience originates from

the biharmonic operator that appears in the first identity of system (1.1) and might have an uncooperative

effect on convergence rates of numerical schemes concerned with a non-null divergence of velocities.

The same goes for other stochastic Navier-Stokes variants, such as the Leray-α model [11]. Further

examinations of equations (1.1) were performed in [10, 12], including a splitting-up scheme in [9].

This paper is organized as follows: all preliminaries, assumptions and configurations are presented

in Section 2, which allows the main theorem of this work to be stated in Section 3, followed by Section 4

where the Faedo-Galerkin approximation of equations (1.1) is exploited to acquire a finite-dimensional

system, and a priori estimates are carried out within multiple spatial regularities. Section 5 provides
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the convergence steps of the projected system, including the local monotonicity property, which is a

prominent member of the demonstration. Finally, a conclusion regarding the accomplished analysis in

the previous section, the relationship with the Navier-Stokes problem, and a few perspectives are given

in Section 6.

2 Configuration and materials

Given a positive number L, the domain D represents a two-dimensional torus (0, L)2, and for a

given T > 0, the time interval reads [0, T ]. Throughout this paper, the Lebesgue and Sobolev spaces are

denoted Lp and Hm (or Wm,p) respectively, and for an arbitrary normed vector space X, its associated

norm will be symbolized by ||·||X . The notation Xper signifies that all its members are periodic functions

whose mean is null. Regarding the small spatial scale α that is present in equations (1.1), a special norm

||·||α is associated with it and defined by ||·||2α := ||·||2L2+α2 ||∇·||2L2 . The notation L2(E,F ) is the space

of all Hilbert-Schmidt operators; with E and F being two given Banach spaces, . embodies a shorthand

for the less or equal symbol ≤ up to a universal non-negative constant, andCD will denote throughout this

paper a positive constant depending only on the domain D. The solely employed Gelfand triple herein

is
(

H1
per(D), L2

per(D),H−1
per(D)

)

, where H−1
per(D) is the dual space of H1

per(D). The L2(D) space will

be endowed with its standard inner product (·, ·), and the duality brackets 〈·, ·〉 will represent the duality

product between H1
per(D) and H−1

per(D). Following the mathematical notations for the Navier-Stokes

framework, the function spaces that will be frequently encountered herein are

V :=
{

u ∈ [C∞
per(D)]2

∣

∣ div(u) = 0
}

,

H :=
{

u ∈ [L2
per(D)]2

∣

∣ div(u) = 0 a.e. in D
}

,

V :=
{

u ∈ [H1
per(D)]2

∣

∣ div(u) = 0 a.e. in D
}

.

Let A be the Stokes operator defined from D(A) := [H2(D)]2 ∩ V into H by A := −P ∆, where

P : [L2
per(D)]2 → H is the Leray Projector. In two-dimensional domains and under periodic boundary

conditions, it is well-known that the Laplace-Leray commutator [P ,∆] vanishes; namely P ∆ = ∆P .

Recall that operator A is self-adjoint whose inverse is compact (c.f. [21, 24]). From now on, all Cartesian

products of a sole linear space will be symbolized by blackboard bold letters with the domain D being

omitted. For instance, the Sobolev space [H1
per(D)]2 will become H

1
per.

Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered complete probability space whose filtration (Ft)0≤t≤T is right-

continuous. Given a separable Hilbert spaceK equipped with a complete orthonormal basis {wk, k ≥ 1},

the K-valued cylindrical Wiener process W (t), t ∈ [0, T ] reads

W (t) :=
∑

k≥1

βk(t)wk, ∀t ∈ [0, T ],

where {βk, k ≥ 1} is a family of independent and identically distributed R-valued Brownian motions

on (Ω,F , (Ft)0≤t≤T ,P). For any φ ∈ L2
(

Ω;L2(0, T ;L2(K,L
2))
)

, its stochastic integral with respect

to the Wiener process {W (t), t ∈ [0, T ]} is defined (c.f. [22]) as the unique continuous L
2-valued

Ft-martingale such that for all ψ ∈ L
2,

(
∫ t

0
φ(s)dW (s), ψ

)

=
∑

k≥1

∫ t

0
(φ(s)wk, ψ) dβk(s), ∀t ∈ [0, T ].

For clarity’s sake, the nonlinear term in equations (1.1) will be denoted b̃; that is

b̃(u, v, w) = −
(

u× (∇× v), w
)
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for appropriate vector fields u, v and w, where v = u− α2∆u in the equations of interest. The bilinear

operator that can be derived from b̃ will be denoted B̃ and it reads: B̃(u, v) := −u × (∇ × v), for all

u, v ∈ V. The below proposition lists a few useful properties of the bilinear operator B̃.

Proposition 2.1 The following assertions are satisfied by the nonlinear term:

(i) For all u, v, w ∈ H
1, 〈B̃(u, v), w〉 = −〈B̃(w, v), u〉. In particular, 〈B̃(u, v), u〉 = 0.

(ii) 〈B̃(u, v), w〉 = ([u · ∇]v,w) − ([w · ∇]v, u), for all u, v, w ∈ H
1
per. If additionally, u and v are

divergence-free then, 〈B̃(u, v), v〉 = − ([v · ∇]v, u).

(iii)

∣

∣

∣
〈B̃(u, v), w〉

∣

∣

∣
≤ CD ||u||

L4 ||∇v||L2 ||w||
1

2

L2 ||∇w||
1

2

L2 , for all u, v, w ∈ H
1
per.

Proof: Assertion (i) can be proven by a simple application of the identity (u× v) · w = −(w × v) · u.

To demonstrate equality (ii), we need to employ the following property:

〈B̃(u, v), w〉 = ([u · ∇]v,w) +
(

(∇u)T · v,w
)

− (∇(u · v), w) , (2.1)

which may be straightforwardly proven via the identity

[u · ∇]v + (∇u)T · v −∇(u · v) = −u× (∇× v).

Indeed, the quantity
(

(∇u)T · v,w
)

of equation (2.1) turns into − ([w · ∇]v, u) + (∇(u · v), w) after

applying two consecutive integration by parts. Plugging it back in equation (2.1) completes the proof of

(ii). Finally, the Hölder and Ladyzhenskaya (see [16, Lemma I.1]) inequalities applied to assertion (ii)

yield estimate (iii). �

The operator b̃ can be readily expressed via the trilinear form associated with the Navier-Stokes

equations, as mentioned in Proposition 2.1-(ii). For brevity’s sake, we deploy the next proposition to

grant a few corresponding properties. The reader may refer to [23, Remark 2.2] for further information.

Proposition 2.2 (i) ([u · ∇]v, v) = 0 for all u, v ∈ V.

(ii) |([u · ∇]v,w)| ≤ CD ||u||
L2 ||∇v||L2 ||w||

1

2

L2 ||Aw||
1

2

L2 , for all u ∈ H, v ∈ V and w ∈ D(A).

Assumptions

(S1) E

[

||ū0||2
p

H1

]

< +∞, for some p ∈ [1,+∞),

(S2) g ∈ L2
(

Ω;L2(0, T ;L2(K,L
2))
)

satisfies: for all u ∈ V, g(·, u) is Ft-progressively measurable,

and almost everywhere in Ω× (0, T ), it holds that:

|||g(·, u) − g(·, v)||L2(K,L2) ≤ Lg||u− v||α, ∀u, v ∈ V,

||g(·, u)||L2(K,H1) ≤ K1 +K2 ||u||α , ∀u ∈ V.

for some real, nonnegative, time-independent constants Lg, K1,K2.

Remark 2.1 Inequality ||g(·, u)||L2(K,H1) ≤ K1+K2||u||α of assumption (S2) is imposed in H
1 instead

of L
2 to be able to execute high space-regularity estimates for the velocity field.

To reduce repetitions, the below proposition gathers a few properties that will be employed throughout

this paper.

Proposition 2.3 (i) xp ≤ 1 + xq for all x ≥ 0, and 1 ≤ p ≤ q < +∞.

(ii) 2 (a, b) = ||a||2
L2 − ||b||2

L2 + ||a− b||2
L2 , for all a, b ∈ L

2.

(iii) |a+ b|p ≤ 2p−1 (|a|p + |b|p), for all a, b ∈ R and p ≥ 1.
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2.1 Concept of solutions

The underlying equations consist of a fourth-order problem which might not be insightful. Therefore,

a continuous differential filter shall be introduced allowing equations (1.1) to turn into a second-order

coupled problem.

Definition 2.1 (Continuous differential filter) Let v ∈ L
2 be a given vector field. A continuous differ-

ential filter ū of v is defined as part of the unique solution (ū, p̄) ∈ V × L2
0(D) to the problem.

{

− α2∆ū+ ū+∇p̄ = v, in D,

div(ū) = 0, in D.
(2.2)

The notation v̄ (instead of ū) is widely spread in the literature of differential filters. However, to maintain

a visible relationship between equations (1.1) and (2.2), v̄ will be substituted by the notation ū. Observe

that system (2.2) represents a deterministic steady Stokes problem and that v plays the role of an outer

force. Additionally, projecting system (2.2) using the Leray projector P yields

α2Aū+ ū = P v, in D.

which has a unique solution ū according to [14, Subsection 8.2]. Thereby, when it comes to the process

{ū(t), t ∈ [0, T ]} of problem (1.1), the multiplication in L2 of the above equation by ϕ ∈ V returns for

all t ∈ [0, T ],

(v(t), ϕ) = (ū(t), ϕ) + α2 (∇ū(t),∇ϕ) . (2.3)

Based on the above identity, we define v0 as the solution of (v0, ϕ) = (ū0, ϕ) + α2 (∇ū0,∇ϕ), for all

ϕ ∈ V. Since ū0 belongs to V, it is straightforward that α2
E [(∇ū0,∇ϕ)] → 0 as α → 0. Subsequently,

E [(v0, ϕ)] = E [(ū0, ϕ)] for all ϕ ∈ V as α → 0. As a result, v0 = ū0 P-a.s. and a.e. in D when α
vanishes. The next definition states the compound of a solution to equations (1.1) whose existence and

uniqueness are illustrated in [6].

Definition 2.2 Let T > 0 and assume (S1)-(S2). A V × H-valued stochastic process (ū(t), v(t)), t ∈
[0, T ] is said to be a variational solution to problem (1.1) if it fulfills the following conditions:

(i) ū ∈ L2(Ω;L2(0, T ;H2 ∩ V) ∩ L2 (Ω;L∞(0, T ;V)),

(ii) v ∈ L2(Ω;L2(0, T ;V)) ∩ L2(Ω;L∞(0, T ;H)),

(iii) P-almost surely, ū is weakly continuous with values in V, and v is continuous with values in H,

(iv) for all t ∈ [0, T ], ū satisfies the following equation P-almost surely



























(v(t), ϕ) + ν

∫ t

0
(∇v(s),∇ϕ) ds+

∫ t

0
b̃ (ū(s), v(s), ϕ) ds

= (v0, ϕ) +
(

∫ t

0
g (s, ū(s)) dW (s), ϕ

)

, ∀ϕ ∈ V,

(v(t), ψ) = (ū(t), ψ) + α2 (∇ū(t),∇ψ) , ∀ψ ∈ V.

(2.4)

It is worth mentioning that the weak continuity of ū is related to the strong continuity of v. This fact

emerges from the relationship (2.3).

Two-dimensional strong solutions to equations (1.2) were conducted in [13, 19]. An appropriate

definition is given by:
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Definition 2.3 Let T > 0 be fixed and assumptions (S1)-(S2) be fulfilled. A process u(t), t ∈ [0, T ] on a

stochastic filtered probability space
(

Ω,F , (Ft)t∈[0,T ],P
)

is said to be a strong solution to equations (1.2)

if it belongs to L2(Ω;C([0, T ];H) ∩ L2(0, T ;V)), and it satisfies P-a.s. for all t ∈ [0, T ], the weak

formulation

(u(t), ϕ) + ν

∫ t

0
(∇u(s),∇ϕ) ds +

∫ t

0
([u(s) · ∇]u(s), ϕ) ds

= (ū0, ϕ) +

(
∫ t

0
g(s, u(s))dW (s), ϕ

)

, ∀ϕ ∈ V.

Equations (1.2) have a unique solution in the sense of Definition 2.3, see for instance [19, Proposition

3.2]. This fact will be evoked all this paper long.

3 Main result

Theorem 3.1 Let T > 0, L > 0, (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space, D = (0, L)2

be a two-dimensional torus subject to periodic boundary conditions, and 1 ≤ p < +∞ be given. Let

{ek, k ≥ 1} be a complete orthonormal basis of H consisting of eigenfunctions of the Stokes operator

A, and {µk, k ≥ 1} be the associated eigenvalues whose values diverge when k → +∞. Assume that

hypotheses (S1)-(S2) are fulfilled, and that for all N ∈ N\{0}, the spatial scale follows the decreasing

rate Cminµ
−3/4
N ≤ α := αN ≤ Cmaxµ

−3/4
N , for some constants Cmin,Cmax > 0 independent ofN . Then,

a solution (ū, v) :=
(

ū(αN ), v(αN )
)

to equations (1.1) in the sense of Definition 2.2 for a given α

converges toward the unique strong solution vNS of equations (1.2) in the sense of Definition 2.3 when

N → +∞, and it satisfies:

(i) E

[

sup
t∈[0,T ]

||vNS(t)||2pL2 + 2pν

∫ T

0
||vNS(t)||2(p−1)

L2 ||∇vNS(t)||2L2 dt

]

≤ C2,

(ii) E

[

sup
t∈[0,T ]

||∇vNS(t)||2pL2 +

(

ν

∫ T

0
||AvNS(t)||2L2

)p
]

≤ C4,

where C2 > 0 depends on constants Cmax, C1 of Lemma 4.1 and its parameters, and C4 > 0 depends on

C1, ||ū0||L6p(Ω;V) and Cmax.

Remark 3.1 Throughout this chapter, there will only be a single limit concept parameterized by N ; no

successive double limits are intended within this context. In a more accurate way, we will neither treat

the case α → 0 while fixing N nor the independent convergences of α and N . The whole study revolves

around the convergence of N to +∞, which leads α to vanish.

4 Faedo-Galerkin approximation and a priori estimates

It is well-known (c.f. [23, Lemma 3.1]) that the trilinear term of the Navier-Stokes equations
∫

D
[z·∇]z∆zdx vanishes if the configurations were set to two-dimensional domain with periodic boundary

conditions. This property is unfortunately inapplicable to b̃(z, z − α2∆z,∆z). Therefore, we must

find a way to achieve high spatial regularity estimates. To this purpose, let N ∈ N\{0} be a large

integer, {ek, k ≥ 1} be a complete orthonormal basis of H consisting of eigenfunctions of the Stokes

operator A whose domain is H
2 ∩ V, and {µk, k ≥ 1} be the associated eigenvalues. Denote by VN :=
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span{e1, . . . , eN} the finite-dimensional vector subspace of H, and by PN : H → H the projection

operator of H onto VN such that for all v ∈ H, it holds that

(v, π) = (PNv, π) , ∀π ∈ VN , and

(∇v,∇π) = (∇PNv,∇π) , ∀π ∈ VN .

We will assume from now on that Cminµ
−3/4
N ≤ α ≤ Cmaxµ

−3/4
N , for some constants Cmin,Cmax > 0

independent of N . That way, when N tends to +∞, the spatial scale α goes to 0, thanks to the property

µ1 < µ2 < . . . < µN → +∞ as N → ∞. N is opted to be significant to ensure that 1/µN ≤ 1.

Consequently, we introduce the following Faedo-Galerkin approximate system:



























(vN (t), ek) + ν

∫ t

0
(∇vN (s),∇ek) ds+

∫ t

0
b̃(ūN (s), vN (s), ek)ds

= (v0, ek) +

(
∫ t

0
g(s, ūk(s))dW (s), ek

)

,

(vN (t), ek) = (ūN (t), ek) + α2 (∇ūN (t),∇ek) ,

(4.1)

for all t ∈ [0, T ], k ∈ {1, . . . , N}, and P-almost surely, with initial datum ūN (0) = PN ū0 i.e. vN (0) =
PNv0 = (PN + α2PNA)ū0. System (4.1) converges to the unique strong solution of the stochastic

Navier-Stokes equations when N tends to +∞ in the sense of Definition 2.3 (see Section 5). We list

down below all concerned a priori estimates for the projected couple (ūN , vN ).

Remark 4.1 Assumption α ≤ Cmaxµ
−3/4
N could have been α ≤ Cmaxµ

−1/2
N if only the convergence of

solutions to equations (1.1) toward solutions to problem (1.2) was intended. The additional negative

exponent on µN is solely required in this context to obtain high spacial regularity for the velocities v and

ū.

Lemma 4.1 Let T > 0, N ∈ N\{0}, p ≥ 1, and assumptions (S1)-(S2) be valid. Then, the finite-

dimensional system (4.1) has a V × H-valued solution (ūN , vN ) that satisfies the following estimates:

(i) sup
0≤t≤T

E

[

||ūN (t)||2pα
]

+ 2pνE

[
∫ T

0
||ūN (t)||2(p−1)

α ||∇ūN (t)||2α dt
]

≤ C1,

(ii) E

[

sup
0≤t≤T

||ūN (t)||2pα

]

≤ C1,

for a certain constant C1 > 0 depending only on E

[

||ū0||2pH1

]

, p,D,K1,K2, and T . Moreover, if one

assumes α ≤ µ
−1/2
N then, it holds that

(iii) E

[

sup
0≤t≤T

||vN (t)||2p
L2

]

+ 2pνE

[
∫ T

0
||vN (t)||2(p−1)

L2 ||∇vN (t)||2
L2 dt

]

≤ C2,

where C2 is a positive constant depending only on C1.

Proof: Problem (4.1) is a finite-dimensional system of ordinary differential equations subject to a

polynomial nonlinearity. Therefore, it has a local solution (ūN , vN ). In order to apply the Itô formula,

we need to define, for n ∈ N\{0}, the following stopping time:

τnN :=

{

inf
{

t ∈ [0, T ] :
∣

∣

∣

∣(I + α2A)−1/2vN (t)
∣

∣

∣

∣

L2 > n
}

if the set is non-empty,

+∞ otherwise.
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For p ≥ 1, and t ∈ [0, T ], we define the process F (vN (t)) :=
∣

∣

∣

∣(I + α2A)−1/2vN (t)
∣

∣

∣

∣

2p

L2 . From

equation (4.1)2, and taking into account that I + α2A is self-adjoint and bĳective from D(A) to H, it is

straightforward that F (vN ) = ||ūN ||2pα . Moreover,

DF (vN ) = 2p||(I + α2A)−1/2vN ||2(p−1)
L2 (I + α2A)−1vN = 2p||ūN ||2(p−1)

α ūN , and

D2F (vN ) = 4p(p− 1)||ūN ||2p−4
α ūN ⊗ ūN + 2p||ūN ||2p−2

α (I + α2A)−1,

where the symbol ⊗ denotes the usual dyadic product. Apply now the Itô formula to the process

F (vN (t ∧ τnN )):

||ūN (t ∧ τnN )||2pα = ||ūN (0)||2pα + 2p

∫ t∧τn
N

0
||ūN (s)||2(p−1)

α (ūN (s), g(s, ūN (s))dW (s))

+ 2p(p − 1)

∫ t∧τn
N

0
||ūN (s)||2p−4

α ||(ūN (s))∗g(s, ūN (s))||2K ds

+ p

∫ t∧τn
N

0
||ūN (s)||2(p−1)

α

∣

∣

∣

∣

∣

∣
(I + α2A)−1/2g(s, ūN (s))

∣

∣

∣

∣

∣

∣

2

L2(K,L2)
ds

+ 2p

∫ t∧τn
N

0
||ūN (s)||2(p−1)

α 〈ūN (s),−νAvN (s)− B̃(ūN (s), vN (s))〉ds.

We have 〈ūN (s), AvN (s)〉 = 〈∇ūN (s),∇(I +α2A)ūN (s)〉 = ||∇ūN (s)||2α, and by Proposition 2.1-(i),

the nonlinear term B̃ in the last term on the right-hand side of the above equation vanishes so that

||ūN (t ∧ τnN )||2pα + 2pν

∫ t∧τn
N

0
||ūN (s)||2p−2

α ||∇ūN (s)||2αds

≤ ||ūN (0)||2pα + 2p

∫ t∧τn
N

0
||ūN (s)||2p−2

α (ūN (s), g(s, ūN (s))dW (s))

+ 2p(p− 1)

∫ t∧τn
N

0
||ūN (s)||2p−4

α ||ūN (s)||2
L2 ||g(s, ūN (s))||2

L2(K,L2)ds

+ p

∫ t∧τn
N

0
||ūN (s)||2p−2

α

∣

∣

∣

∣

∣

∣
(I + α2A)−1/2g(s, ūN (s))

∣

∣

∣

∣

∣

∣

2

L2(K,L2)
ds

= ||ūN (0)||2α + I1 + I2 + I3.

(4.2)

Assumption (S2) together with the stopping time τnN yield E[I1] = 0. On the other hand, by virtue of

Proposition 2.3-(i), assumption (S2), and estimate ||(I + α2A)−1/2z||L2 ≤ ||z||L2 , it holds that

I2 + I3 ≤ 2p(p− 1)

∫ t∧τn
N

0
||ūN (s)||2p−4

α ||ūN (s)||2
L2 (K1 +K2||ūN (s)||α)2 ds

+ p

∫ t∧τn
N

0
||ūN (s)||2p−2

α (K1 +K2||ūN (s)||α)2 ds

≤ p(2p− 1)

∫ t∧τn
N

0
||ūN (s)||2p−2

α (K1 +K2||ūN (s)||α)2 ds

≤ 2p(2p − 1)K2
1 t ∧ τnN + 2p(2p − 1)(K2

1 +K2
2 )

∫ t∧τn
N

0
||ūN (s)||2pα ds.

Putting it all together and applying the mathematical expectation to equation (4.2) return

E
[

||ūN (t ∧ τnN )||2pα
]

+ 2pνE

[
∫ t∧τn

N

0
||ūN (s)||2p−2

α ||∇ūN (s)||2αds
]

≤ E
[

||ūN (0)||2pα
]

+ 2p(2p − 1)K2
1E [t ∧ τnN ] + 2p(2p − 1)(K2

1 +K2
2 )

∫ t∧τn
N

0
E
[

||ūN (s)||2pα
]

ds.
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The Grönwall inequality (c.f. [1]) finally implies

sup
0≤t≤T

E
[

||ūN (t ∧ τnN )||2pα
]

+ 2pνE

[
∫ t∧τnN

0
||ūN (s)||2p−2

α ||∇ūN (s)||2αds
]

≤
(

E
[

||ūN (0)||2pα
]

+ 2p(2p − 1)K2
1E [t ∧ τnN ]

)

exp
(

2p(2p − 1)(K2
1 +K2

2 )t ∧ τnN
)

.

(4.3)

Taking into account that E

[

||ūN (0)||2pα
]

≤ E

[

||ū0||2pα
]

, and letting n→ +∞ in equation (4.3) complete

the proof of estimate (i). Now that we have illustrated that ||ūN ||α has finite moments, we can drop the

stopping time in equation (4.2). whose supremum in time returns

E

[

sup
0≤t≤T

||ūN (t)||2pα

]

≤ E
[

||ūN (0)||2pα
]

+ 2pE

[

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0
||ūN (s)||2p−2

α (ūN (s), g(s, ūN (s))dW (s))

∣

∣

∣

∣

]

+ 2p(2p − 1)K2
1T + 2p(2p − 1)(K2

1 +K2
2 )T sup

0≤t≤T
E
[

||ūN (t)||2pα
]

.

(4.4)

By virtue of Proposition 2.3-(i), assumption (S2), the Burkholder-Davis-Gundy (c.f. [8]) and Young

inequalities, the second term on the right-hand side can be bounded by

. E

[

(
∫ T

0
||ūN (t)||4p−2

α ||g(t, ūN (t))||2
L2(K,L2)dt

)1/2
]

. E

[

sup
0≤t≤T

||ūN (t)||
2p−1

2
α ||g(t, ūN (t))||1/2

L2(K,L2)

(
∫ T

0
||ūN (t)||2p−1

α ||g(t, ūN (t))||L2(K,L2)dt

)1/2
]

≤ ε

2
E

[

K1 + (K1 +K2) sup
0≤t≤T

||ūn(t)||2pα

]

+
1

2ε

(

K1T + (K1 +K2)T sup
0≤t≤T

E
[

||ūN (t)||2pα
]

)

,

for some constant ε > 0 emerging from the Young inequality. Taking ε = 1
K1+K2

, merging the above

result into equation (4.4), and employing assertion (i) complete the proof of estimate (ii). Moving on

to the inequality (iii), we have (vN , ψ) = (ūN , ψ) + α2 (∇ūN ,∇ψ) P-a.s. for all ψ ∈ VN , thanks to

equation (4.1)2. Therefore, substituting ψ by vN (t) and employing the Cauchy-Schwarz inequality to get:

||vN (t)||2
L2 ≤ ||ūN (t)||L2 ||vN (t)||L2 + α2||∇ūN (t)||L2 ||∇vN (t)||L2 . On the other hand, the estimate

||∇vN (t)||L2 ≤ √
µN ||vN (t)||L2 together with the hypothesis α ≤ µ

−1/2
N and the Young inequality lead

to

||vN (t)||L2 ≤
√
2||ūN (t)||α. (4.5)

Following the same technique, but this time replacing ψ by AvN (t) ∈ VN , one obtains

||∇vN (t)||L2 ≤
√
2||∇ūN (t)||α. (4.6)

It suffices now to raise inequality (4.5) to the power 2p, take the supremum over t ∈ [0, T ], apply to it

the mathematical expectation, and employ estimate (ii) to get E

[

sup
0≤t≤T

||vN (t)||2p
L2

]

. C1. Similarly,

||vN (t)||2(p−1)
L2 ||∇vN (t)||2

L2 . ||ūN (t)||2(p−1)
α ||∇ūN (t)||2α, thanks to (4.5) and (4.6). Integrating over

[0, T ], applying the mathematical expectation and employing estimate (i) terminate the proof. �

The next lemma exhibits the regularity of v0 with respect to ū0.
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Lemma 4.2 Let 1 ≤ p < +∞, and assume (S1). If Cminµ
−1/2
N ≤ α ≤ Cmaxµ

−1/2
N for some constants

Cmin,Cmax > 0, then v0 ∈ L2p(Ω;V), and

||∇v0||L2p(Ω;L2) ≤ ||ū0||L2p(Ω;V) .

Proof: By equation (4.1)2, we get

||∇vN (0)||2
L2 = (∇ūN (0),∇vN (0)) + α2 (AūN (0), AvN (0)) .

Taking into account the estimate ||Az||L2 ≤ √
µN ||∇z||L2 for all z ∈ VN , apply it to ||AūN (0)||L2 and

||AvN (0)||L2 , and employ the Cauchy-Schwarz inequality, it follows ||∇vN (0)||L2 ≤ 2||∇ūN (0)||L2 .

Subsequently, E

[

||∇vN (0)||2p
L2

]

. E

[

||∇ū0||2pL2

]

=:M , which implies that (vN (0))N is bounded in the

reflexive Banach space L2p(Ω;H1). Thus, there exists a subsequence (vNℓ
(0))ℓ that converges weakly in

L2p(Ω;H1) toward some limit ξ, and one gets E

[

||ξ||2p
H1

]

≤ lim inf E

[

||vNℓ
(0)||2p

H1

]

≤ CDM , thanks to

the Poincaré inequality. It remains to identify ξ with v0. Indeed, since L2p(Ω;H1) →֒ L2p(Ω;L2), the

weak convergence of (vNℓ
(0))ℓ also takes place in L2p(Ω;L2). Observe that vN (0) = PNv0 converges

strongly (and therefore weakly) toward v0 in L2p(Ω;L2) as N → +∞, thanks to the properties of the

projector PN . Consequently, by the weak limit uniqueness, ξ = v0 P-a.s. and a.e. in D, and the result

follows. �

Owing to Lemma 4.2, high space-regularity estimates are illustrated below for the process (ūN , vN ).

Lemma 4.3 Let N ∈ N\{0}, and p ∈ [1,+∞). Assume that (S1)-(S2) are valid and that α ≤
Cmaxµ

−3/4
N , for some constant Cmax > 0 independent ofN . Then, the solution (ūN , vN ) of equation (4.1)

satisfies

(i) E

[

sup
t∈[0,T ]

||∇ūN (t)||2pα +

(

ν

∫ T

0
||AūN (t)||2α dt

)p
]

≤ C3,

(ii) E

[

sup
t∈[0,T ]

||∇vN (t)||2p
L2 +

(

ν

∫ T

0
||AvN (t)||2

L2 dt

)p
]

≤ C4,

where C3 > 0 depends on C1 and ||ū0||L6p(Ω;V), and C4 depends only on C3 and Cmax.

Proof: Define the stopping time

τnN :=

{

inf
{

t ∈ [0, T ] :
∣

∣

∣

∣A1/2(I + α2A)−1/2vN (t)
∣

∣

∣

∣

L2 > n
}

if the set is non-empty,

+∞ otherwise,

and the process F (vN ) := ||A1/2(I + α2A)−1/2vN ||2
L2 . By equation (4.1)2, one gets F (vN (t ∧ τnN )) =

||∇ūN (t∧τnN )||2α. Moreover,DF (x) = 2A(I+α2A)−1x, andD2F (x) = 2A(I+α2A)−1. In particular,

DF (vN ) = 2AūN , thanks to equation (4.1)2.By applying Itô’s formula to the process F (vN (t∧ τnN )), it

follows that

||∇ūN (t ∧ τnN )||2α + 2ν

∫ t∧τn
N

0
||AūN (s)||2αds = ||∇ūN (0)||2α

+ 2

∫ t∧τn
N

0
(AūN (s), g(s, ūN (s))dW (s)) +

∫ t∧τn
N

0
||A1/2(I + α2A)−1/2g(s, ūN (s))||2

L2(K,L2)ds

− 2

∫ t∧τn
N

0
〈B̃(ūN (s), vN (s)), AūN (s)〉ds = ||∇ūN (0)||2α + I1 + I2 − I3.
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On account of assumption (S2) and the measurability of ūN , we have E [I1] = 0. Now, the fact that for

any z ∈ L
2, the quantity ||A1/2(I + α2A)−1/2z||L2 is optimally bounded by 1

α ||z||L2 justifies the opted

assumption on ||g(·, z)||L2(K,H1). Therewith, (S2) leads to

I2 ≤
∫ t∧τn

N

0
||g(s, ūN (s))||2

L2(K,H1)ds ≤ 2K2
1 t ∧ τnN + 2K2

2

∫ t∧τn
N

0
||ūN (s)||2αds.

Moreover, by virtue of equation (4.1)2, the identity vN = ūN + α2AūN holds P-a.s. and a.e. in

(0, T ) ×D. Thus, the integrand of I3 can be amended to the following form

(

B̃(ūN (s), ūN (s)), AūN (s)
)

+ α2
(

B̃(ūN (s), AūN (s)), AūN (s)
)

=: B1 +B2.

Proposition 2.1-(ii) yields B1 = ([ūN (s) · ∇]ūN (s), AūN (s))− ([AūN (s) · ∇]ūN (s), ūN (s)). The first

term vanishes thanks to [23, Lemma 3.1], as well as the second term (see Proposition 2.2-(i)). Thereby,

B1 = 0. On the other hand, by Proposition 2.1-(ii), it followsB2 = −α2 ([AūN (s) · ∇]AūN (s), ūN (s)).
Hence,

|I3| ≤ 2α2CD

∫ t∧τn
N

0
||AūN (s)||L2 ||A3/2ūN (s)||L2 ||ūN (s)||1/2

L2 ||AūN (s)||1/2
L2 ds

≤ 2α2CDµ
3/2
N

∫ t∧τn
N

0
||AūN (s)||3/2

L2 ||ūN (s)||3/2
L2 ds

≤ 4C 8
maxC

4
D

ν3

∫ t∧τn
N

0
||ūN (s)||6

L2ds+
3ν

4

∫ t∧τn
N

0
||AūN (s)||2

L2ds.

where Proposition 2.2-(ii), estimate ||A3/2z||L2 ≤ µ
3/2
N ||z||L2 , for all z ∈ VN , condition α ≤ Cmaxµ

−3/4
N

together with the Young inequality with conjugate exponents 1/4 and 3/4 were taken advantage of.

Observe that

||∇ūN (0)||2α = ||∇ūN (0)||2
L2 + α2||AūN (0)||2

L2 ≤ ||∇ūN (0)||2
L2 + C 2

max||∇ūN (0)||2
L2

≤ (1 + C
2
max)||∇ū0||2L2 ,

thanks to α ≤ Cmax/µ
3/4
N ≤ Cmax, and estimate ||Az||L2 ≤ √

µN ||∇z||L2 for all z ∈ VN . Taking into

account that sup
0≤t≤T

||ūN (t)||2qα is almost surely finite for all q ≥ 2 on account of Lemma 4.1, the stopping

time of last and first terms on the right-hand side of I2 and I3 can be omitted. Thereby,

||∇ūN (t ∧ τnN )||2α +
5ν

4

∫ t∧τn
N

0
||AūN (s)||2αds ≤ (1 + C

2
max)||∇ū0||2L2 + 2K2

1 t ∧ τnN

+ 2

∫ t∧τn
N

0
(AūN (s), g(s, ūN (s))dW (s)) + 2K2

2

∫ t

0
||ūN (s)||2αds

+
4C 8

maxC
4
D

ν3

∫ t

0
||ūN (s)||6

L2ds.

(4.7)

Subsequently, taking the mathematical expectation, employing Lemma 4.1 and letting n→ +∞ imply

E
[

||∇ūN (t)||2α
]

+
5ν

4
E

[
∫ t

0
||AūN (s)||2αds

]

≤ (1 + C
2
max)E

[

||∇ū0||2L2

]

+ 2K2
1T + (2K2

2 +
4C 8

maxC
4
D

ν3
)TC1.

(4.8)
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We now raise equation (4.7) to the power p, use Proposition 2.3-(iii), and drop the stopping time τnN ,

thanks to estimate (4.8). We obtain

sup
0≤t≤T

||∇ūN (t)||2pα +

(

5ν

4

∫ T

0
||AūN (t)||2αdt

)p

. ||∇ū0||2pL2 + (K2
1T )

p

+

(

sup
0≤t≤T

∫ t

0
(∇ūN (s),∇g(s, ūN (s))dW (s))

)p

+ (K2
2T )

p sup
0≤t≤T

||ūN (t)||2pα

+ (C 8
maxC

4
DT/ν

3)p sup
0≤t≤T

||ūN (t)||6p
L2 .

(4.9)

We bound the third term on the right-hand side using the Burkholder-Davis-Gundy and Young inequalities,

assumption (S2), and Proposition 2.3-(iii):

E

[(

sup
0≤t≤T

∫ t

0
(∇ūN (s),∇g(s, ūN (s))dW (s))

)p]

. E

[

(
∫ T

0
||∇ūN (t)||2

L2 ||∇g(t, ūN (t))||2
L2(K;L2)dt

)p/2
]

≤ 1

2
E

[

sup
0≤t≤T

||∇ūN (t)||2pα

]

+ 22p−2T p
E

[

K2p
1 +K2p

2 sup
0≤t≤T

||ūN (t)||2pα

]

,

Taking afterwards the mathematical expectation of equation (4.9) and employing Lemma 4.1 complete

the proof of estimate (i). On the other hand, ||∇vN (t)||2
L2 ≤ 2max(1,C 2

max)||∇ūN (t)||2α holds for all

t ∈ [0, T ], thanks to equation (4.6) which is slightly amended here to fit the case α ≤ Cmaxµ
−3/4
N .

Furthermore, multiplying in L
2 the identity vN (t) = ūN (t) + α2AūN (t) by A2vN and making use of

Cauchy-Schwarz inequality give

||AvN (t)||2
L2 ≤ ||AūN (t)||L2 ||AvN (t)||L2 + α2||A3/2ūN (t)||L2 ||A3/2vN (t)||L2 .

We use α ≤ Cmaxµ
−3/4
N , ||A3/2vN ||L2 ≤ √

µN ||AvN ||L2 , and simplify by ||AvN (t)||L2 to obtain

eventually

||AvN (t)||L2 ≤ max(1,Cmax)
(

||AūN (t)||L2 + α||A3/2ūN (t)||L2

)

.

Squaring both sides offers ||AvN (t)||2
L2 ≤ 2max(1,C 2

max)||AūN (t)||2α. The proof of inequality (ii)

follows after applying estimate (i). �

5 Convergence of system (4.1)

This section is devoted to proving the convergence of (ūN , vN ) towards the unique strong solution of

the stochastic Navier-Stokes equations. The followed steps are typical: we first need to bound each item

of system (4.1) in a reflexive Banach space. Then, limits identification shall be carried out to match all

Navier-Stokes problem’s terms.

Boundedness and convergence: Now that all data are clear, we begin by bounding each term of

equations (4.1) in a suitable reflexive Banach space. The bilinear operator {B̃(ūN , vN )}N is bounded

in L2(Ω;L2(0, T ;V′)). Indeed, Proposition 2.1-(iii), the embedding H
1 →֒ L

4, the Cauchy-Schwarz

inequality, and Lemma 4.3 yield

E

[
∫ T

0

∣

∣

∣

∣

∣

∣
B̃(ūN (t), vN (t))

∣

∣

∣

∣

∣

∣

2

V′

dt

]

≤ CDE

[

sup
t∈[0,T ]

||∇ūN (t)||2
L2

∫ T

0
||∇vN (t)||2

L2 dt

]

≤ CDC3C4.
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Therefore, setting R(ūN ) := −ν∆vN + B̃(ūN , vN ), we conclude from Lemma 4.1 that {R(ūN )}N
is bounded in L2(Ω;L2(0, T ;V′)). Moreover, by virtue of Lemma 4.1 and assumption (S2), {vN}N ,

{ūN}N are bounded in L2(Ω;L∞(0, T ;H) ∩ L2(0, T ;V)), and {g(·, ūN )}N too in the Hilbert space

L2(Ω;L2(0, T ;L2(K,L
2))). This implies the existence of of two subsequences {vNℓ

}ℓ, {ūNℓ
}ℓ of

{vN}N , {ūN}N respectively, and four limiting functions vNS , uNS ∈ L2(Ω;L∞(0, T ;H)∩L2(0, T ;V)),
R0 ∈ L2(Ω;L2(0, T ;V′)), and g0 ∈ L2(Ω;L2(0, T ;L2(K,L

2))) such that

vNℓ
⇀ vNS & ūNℓ

⇀ uNS (weakly) in L2(Ω;L2(0, T ;V)), (5.1)

vNℓ

∗
⇀ vNS & ūNℓ

∗
⇀ uNS (weakly-∗) in L2(Ω;L∞(0, T ;H)), (5.2)

R(ūNℓ
)⇀ R0 (weakly) in L2(Ω;L2(0, T ;V′)), (5.3)

g(·, ūNℓ
)⇀ g0 (weakly) in L2(Ω;L2(0, T ;L2(K,L

2))). (5.4)

As a result, the limiting function vNS satisfies P-a.s. and for all t ∈ [0, T ] the equation:

(vNS(t), ϕ) +

∫ t

0
〈R0(s), ϕ〉ds = (v0, ϕ) +

(
∫ t

0
g0(s)dW (s), ϕ

)

, ∀ϕ ∈ V, (5.5)

where we recall the v0 is the limit of PNv0 as N → +∞ in L4(Ω;H). Making use of the classical

approach in [20], and taking into account equation (5.5) which is fulfilled by vNS , it is straightforward to

show that vNS ∈ L2(Ω;C([0, T ];H)). Besides, identity vNℓ
= ūNℓ

+ α2AūNℓ
grants equality between

processes uNS and vNS . Indeed, for all ϕ ∈ H, it holds that

∣

∣

∣

∣

α2
E

[
∫ T

0
(AūNℓ

(t), ϕ) dt

]∣

∣

∣

∣

≤ α||ϕ||L2E

[
∫ T

0
α2||AūNℓ

(t)dt||2
L2dt

]1/2

≤ α||ϕ||L2C1 → 0

as ℓ → +∞, thanks to the hypothesis α ≤ Cmaxµ
−3/4
N . Subsequently, {α2AūNℓ

}ℓ converges weakly in

L2(Ω;L2(0, T ;L2)) to 0, which offers, by the use of the aforementioned identity together with (5.1), the

equality uNS = vNS P-a.s. and a.e. in [0, T ] ×D. The only remaining task in this section consists in

identifying R0 and g0 with their solution-dependent counterparts. To this purpose, we must first state

one essential property that enables such an identification.

Proposition 5.1 For N ∈ N\{0}, assume that α ≤ Cmaxµ
−3/4
N . Let v1N , v

2
N be two vector fields in VN

such that v1N = ū1N + α2Aū1N and v2N = ū2N + α2Aū2N . If Lg ≤
√
ν

CP

√
2

then, there exists a constant

K > 0 depending only on D and Cmax such that

〈

−ν∆(v1N − v2N ) + B̃(ū1N , v
1
N )− B̃(ū2N , v

2
N ) +

K

ν3
∣

∣

∣

∣ū2N
∣

∣

∣

∣

4

L4 wN , wN

〉

−
∣

∣

∣

∣g(·, ū1N )− g(·, ū2N )
∣

∣

∣

∣

2

L2(K,L2)
≥ 0,

where CP > 0 is the Poincaré constant and wN := ū1N − ū2N .

Proof: 〈−ν∆(v1N − v2N ), wN 〉 = ν
(

A1/2(I + α2A)wN , A
1/2wN

)

= ν||∇wN ||2α. Besides, Proposi-

tion 2.1-(i) and (iii) yield

∣

∣

∣
〈B̃(ū1N , v

1
N )− B̃(ū2N , v

2
N ), wN 〉

∣

∣

∣
=
∣

∣

∣
〈B̃(ū2N , v

1
N − v2N ), wN 〉

∣

∣

∣

≤ CD||ū2N ||L4 ||∇(v1N − v2N )||L2 ||wN ||
1

2

L2 ||∇wN ||
1

2

L2 ,

(5.6)
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where identity v1N − v2N = wN + α2AwN implies ∇(v1N − v2N ) = ∇wN + α2∇AwN and therefore,

it follows that ||∇(v1N − v2N )||L2 ≤ (1 + Cmax)||∇wN ||L2 , thanks to the condition α ≤ Cmaxµ
−3/4
N .

Plugging this result back into equation (5.6) and applying the Young inequality to get
∣

∣

∣
〈B̃(ū1N , v

1
N )− B̃(ū2N , v

2
N ), wN 〉

∣

∣

∣
≤ ν

4
||∇wN ||2

L2 +
K

ν3
||ū2N ||4

L4 ||wN ||2
L2 ,

whereK > 0depends only onCD andCmax. Assumption (S2) implies−||g(·, .ū1N )−g(·, ū2N )||2
L2(K,L2) ≥

−L2
g||wN ||2α in addition. Putting it all together and employing the Poincaré inequality, we obtain

〈−ν∆(v1N − v2N ) + B̃(ū1N , v
1
N )− B̃(ū2N , v

2
N ) +

K

ν3
||ū2N ||4

L4wN , wN 〉 − ||g(·, ū1N )− g(·, ū2N )||2
L2(K,L2)

≥ (
ν

2
− L2

gC
2
P )||∇wN ||2

L2 + α2(ν − L2
gC

2
P )||AwN ||2

L2

which is nonnegative when Lg ≤
√
ν

CP

√
2
. �

Remark 5.1 The quantities ū1N and ū2N in the statement of Proposition 5.1 exist and are unique, thanks

to the bĳectivity of operator I + α2A from D(A) to H.

Limits identification: For clarity’s sake, the subsequences’ subscript Nℓ will be henceforth denoted N .

Let 0 < m < N be a fixed integer, and z, z̄ ∈ L∞(Ω × (0, T );Vm) be such that z = z̄ + α2Az̄. For

t ∈ [0, T ], define the real valued process ρ(ω, t) := 2K

ν3

∫ t
0 ||z(ω, s)||

4
L4 ds, where the constant K is that

of Proposition 5.1. Due to the properties of z, the process ρ is clearly time-continuous and adapted. By

application of Itô’s formula to the process t 7→ e−ρ(t)||vN (t)||2
L2 , it follows that

e−ρ(t)||vN (t)||2
L2 = ||vN (0)||2

L2 + 2

∫ t

0
e−ρ(s) (vN (s), g(s, ūN (s))dW (s))

− 2K

ν3

∫ t

0
e−ρ(s)||z(s)||4

L4 ||vN (s)||2
L2ds − 2

∫ t

0
e−ρ(s) (vN (s), R(ūN (s))) ds

+

∫ t

0
e−ρ(s)||PNg(s, ūN (s))||2

L2(K,L2)ds,

where we recall that R(ūN ) = νAvN + B̃(ūN , vN ). The mathematical expectation of the second term

on the right-hand side is null, thanks to assumption (S2) and the measurability of vN . Therefore, the

above equation transforms into

E

[

e−ρ(T )||vN (T )||2
L2 − ||vN (0)||2

L2

]

=
2K

ν3
E

[
∫ T

0
e−ρ(t)||z(t)||4

L4

{

||z(t)||2
L2 − 2 (vN (t), z(t))

}

dt

]

− 2E

[
∫ T

0
e−ρ(t)

(

R(ūN (t))−R(z̄(t)) +
K

ν3
||z(t)||4

L4 (vN (t)− z(t)) , vN (t)− z(t)
)

dt

]

− 2E

[
∫ T

0
e−ρ(t) (R(ūN (t))−R(z̄(t)), z(t)) dt

]

− 2E

[
∫ T

0
e−ρ(t) (R(z̄(t)), vN (t)) dt

]

+ E

[
∫ T

0
e−ρ(t)||PNg(t, ūN (t))− PNg(t, z̄(t))||2L2(K,L2)dt

]

+ 2E

[
∫ T

0
e−ρ(t) (PNg(t, ūN (t)), PN g(t, z̄(t)))L2(K,L2) dt

]

− E

[
∫ T

0
e−ρ(t)||PNg(t, z̄(t))||2L2(K,L2)dt

]

=: I1 + . . . + I7,

(5.7)
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where the notation (·, ·)
L2(K,L2) represents the L2(K,L

2)-scalar product. By convergence 5.1, I1

converges toward 2K

ν3
E

[

∫ T
0 e−ρ(t)||z(t)||4

L4

{

||z(t)||2
L2 − 2 (vNS(t), z(t))

}

dt
]

as N → +∞. Moreover,

I2 =− 2E

[
∫ T

0
e−ρ(t)

(

R(ūN (t))−R(z̄(t)) +
K

ν3
||z(t)||4

L4

(

ūN (t), z̄(t)
)

, ūN (t)− z̄(t)
)

dt

]

− 2α2
E

[
∫ T

0
e−ρ(t)

(

R(ūN (t))−R(z̄(t)) +
K

ν3
||z(t)||4

L4(ūN (t)− z̄(t)), AūN (t)−Az̄(t)
)

dt

]

− 2K α2

ν3
E

[
∫ T

0
e−ρ(t)||z(t)||4

L4 (AūN (t)−Az̄(t), vN (t)− z(t)) dt

]

=: I2,1 + I2,2 + I2,3.

Proposition 5.1 implies that I2,1 + I5 ≤ 0. Additionally, by turning (·, ·) into 〈·, ·〉, it follows that

|I2,2| ≤ 2α2
E

[
∫ T

0

(

||R(ūN )||H−1 + ||R(z̄)||H−1 +
K

ν3
||z||4

L4 ||ūN − z̄||H−1

)

||AūN −Az̄||H1dt

]

.

By the definition of operator R, one gets

||R(ūN (t))||H−1 ≤ ν||AūN (t)||H−1 + ||B̃(ūN (t), vN (t))||H−1

≤ ν||∇ūN (t)||L2 + CD||ūN (t)||
1

2

L2 ||∇ūN (t)||
1

2

L2 ||∇vN (t)||L2 ,

thanks to Proposition 2.1-(iii) and the Gagliardo-Nirenberg inequality. Therefore,

2α2
E

[
∫ T

0
||R(ūN (t))||H−1 ||AūN (t)−Az̄(t)||H1dt

]

≤ 2ανE

[

sup
t∈[0,T ]

||∇ūN (t)||2
L2

]
1

2

E

[
∫ T

0
α2||AūN (t)−Az̄(t)||2

H1dt

]

1

2

+ 2αCDE

[

sup
t∈[0,T ]

||ūN (t)||L2 ||∇ūN (t)||L2||∇vN (t)||2
L2

]
1

2

E

[
∫ T

0
α2||AūN (t)−Az̄(t)||2

H1dt

]

1

2

. 2ανC3 + 2αCDC3C4 → 0 as N → +∞,

thanks to Lemma 4.3 and the assumption α ≤ Cmaxµ
−3/4
N . The same goes for the remaining terms of

I2,2, which are easier to handle. Thus, I2,2 → 0 as N → +∞. Moving on to I2,3, we have

|I2,3| ≤
2K α

ν3
E

[

sup
t∈[0,T ]

||z(t)||8
L4 ||vN (t)− z(t)||2

L2

]
1

2

E

[
∫ T

0
α2||AūN (t)−Az̄(t)||2

L2dt

]

1

2

.
2K α

ν3
C2C1 → 0 as N → +∞,

by virtue of Lemma 4.1 and α ≤ Cmaxµ
−3/4
N . It is straightforward to show that when N → +∞, z

and z̄ become equal P-a.s. and a.e. in [0, T ] × D. We exploit this fact and convergence 5.3 to obtain

I3 → −2E
[

∫ T
0 e−ρ(t)〈R0(t)−R(z(t)), z(t)〉dt

]

asN → +∞, and convergence 5.1 to accomplish I4 →

−2E
[

∫ T
0 e−ρ(t)〈R(z(t)), vNS(t)〉dt

]

. Similarly, I6 → 2E
[

∫ T
0 e−ρ(t) (g0(t), g(t, z(t)))L2(K,L2) dt

]

,

thanks to result (5.4), the continuity of g with respect to its second variable, and the properties of

projector PN which also grant the convergence of I7 i.e. I7 → −E

[

∫ T
0 e−ρ(t)||g(t, z(t))||2

L2(K,L2)dt
]

.
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Consequently, we pass to the limit in equation (5.7) while taking advantage of all generated results to

achieve eventually:

E

[

e−ρ(T )||vNS(T )||2L2 − ||vNS(0)||2L2

]

≤ lim inf
N→+∞

E

[

e−ρ(T )||vN (T )||2
L2 − ||vN (0)||2

L2

]

≤ 2K

ν3
E

[
∫ T

0
e−ρ(t)||z(t)||4

L4

{

||z(t)||2
L2 − 2 (vNS(t), z(t))

}

dt

]

− 2E

[
∫ T

0
e−ρ(t)〈R0(t)−R(z(t)), z(t)〉dt

]

− 2E

[
∫ T

0
e−ρ(t)〈R(z(t)), vNS(t)〉dt

]

+ 2E

[
∫ T

0
e−ρ(t) (g0(t), g(t, z(t)))L2(K,L2) dt

]

− E

[
∫ T

0
e−ρ(t)||g(t, z(t))||2

L2(K,L2)dt

]

.

(5.8)

Next, we apply Itô’s formula to the process t 7→ e−ρ(t)||vNS(t)||2L2 , where we recall that vNS satisfies

equation (5.5). It holds that

E

[

e−ρ(T )||vNS(T )||2L2 − ||vNS(0)||2L2

]

= −2K

ν3
E

[
∫ T

0
e−ρ(t)||z(t)||4

L4 ||vNS(t)||2L2dt

]

− 2E

[
∫ T

0
e−ρ(t)〈R0(t), vNS(t)〉dt

]

+ E

[
∫ T

0
e−ρ(t)||g0(t)||2L2(K,L2)dt

]

.

(5.9)

Plugging result (5.9) in equation (5.8) grants:

2K

ν3
E

[
∫ T

0
e−ρ(t)||z(t)||4

L4 ||vNS(t)− z(t)||2
L2dt

]

+ 2E

[
∫ T

0
e−ρ(t)〈R0(t)−R(z(t)), vNS(t)− z (t)〉dt

]

≥ E

[
∫ T

0
e−ρ(t)||g0(t)− g(t, z(t))||2

L2(K,L2)dt

]

, ∀z ∈ L∞(Ω × (0, T );Vm).

(5.10)

Arguing by density, the above inequality holds for all z ∈ L4(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)).
Setting z = vNS in equation (5.10) yields g(·, vNS) = g0 P-a.s. and a.e. in (0, T ) ×D. Furthermore,

for an arbitrary w ∈ L4(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)) and θ ∈ R
∗
+, we set z = vNS + θw, and

make use of equation (5.10) once again to obtain:

K θ

ν3
E

[
∫ T

0
e−ρ(t)||vNS(t) + θw(t)||4

L4 ||w(t)||2L2dt

]

− E

[
∫ T

0
e−ρ(t)〈R0(t)−R(vNS(t) + θw(t)), w(t)〉dt

]

≥ 0.

Letting θ go to 0 and using the hemi-continuity of the operator R lead to

E

[

e−ρ(t)〈R0(t)−R(vNS(t)), w(t)〉dt
]

≤ 0, ∀w ∈ L4(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)),

which eventually implies R0 = R(vNS) in L2(Ω;L2(0, T ;H−1)). The acquired limiting function vNS

satisfies the following lemma.

Lemma 5.1 Let T > 0, 1 ≤ p < +∞, and N ∈ N\{0} be given. Assume that hypotheses (S1)-(S2)

are fulfilled, and that for some constant Cmax > 0 independent of N , the spatial scale α ≤ Cmaxµ
−3/4
N .

Then, the process {vNS(t), t ∈ [0, T ]} fulfills:
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(i) E

[

sup
t∈[0,T ]

||vNS(t)||2pL2 + 2pν

∫ T

0
||vNS(t)||2(p−1)

L2 ||∇vNS(t)||2L2 dt

]

≤ C2,

(ii) E

[

sup
t∈[0,T ]

||∇vNS(t)||2pL2 +

(

ν

∫ T

0
||AvNS(t)||2L2

)p
]

≤ C4,

where C2 > 0 depends on constants Cmax, C1 of Lemma 4.1 and its parameters, and C4 > 0 depends on

C1, ||ū0||L6p(Ω;V) and Cmax.

Proof: We only illustrate here the proof of estimate (ii) as (i) can be concluded from (ii). Let p ≥ 1.

On account of Lemma 4.3-(ii), the sequence (vN )N is bounded in L2p(Ω;L∞(0, T ;V)) which implies

the existence of a function ξ ∈ L2p(Ω;L∞(0, T ;V)) such that for some subsequence (vNℓ
)ℓ, it holds that

vNℓ

∗
⇀ ξ in L2p(Ω;L∞(0, T ;V)) →֒ L2(Ω;L∞(0, T ;H)), and

E

[

sup
t∈[0,T ]

||ξ(t)||2p
V

]

≤ lim inf E

[

sup
t∈[0,T ]

||vNℓ
(t)||2p

V

]

≤ C4,

thanks to Lemma 4.3-(ii). By convergence 5.2 and the weak limit uniqueness, we infer that ξ = vNS P-a.s.

and a.e. in (0, T )×D. This is valid because vNS is the unique solution to equations (1.2) which means

that the whole sequence (vN )N is convergent. Arguing in a similar fashion, and owing to Lemma 4.3-(ii),

(vN )N is bounded in the reflexive Banach space L2p(Ω;L2(0, T ;D(A))), which signifies that for some

(vNℓ
)ℓ and η ∈ L2p(Ω;L2(0, T ;D(A))), we have vNℓ

⇀ η in L2p(Ω;L2(0, T ;D(A))) and

E

[

(

ν

∫ T

0
||Aη(t)||2

L2dt

)p
]

≤ lim inf E

[

(

ν

∫ T

0
||AvNℓ

||2
L2dt

)p
]

≤ C4.

As done earlier in this proof, one obtains η = vNS P-a.s. and a.e. in (0, T )×D. �

6 Conclusion

Owing to Section 5, the limiting function vNS satisfies for all t ∈ [0, T ], and P-a.s. the following

equation:

(vNS(t), ϕ) + ν

∫ t

0
(∇vNS(s),∇ϕ) +

∫ t

0
b̃(vNS(s), vNS(s), ϕ)ds

= (v0, ϕ) +

(
∫ t

0
g(s, vNS(s))dW (s), ϕ

)

, ∀ϕ ∈ V.

By virtue of Proposition 2.1, one gets

b̃(NS(s), vNS(s), ϕ) = −b̃(ϕ, vNS(s), vNS(s)) = ([vNS(s) · ∇]vNS(s), ϕ) .

Moreover, as mentioned in Section 5, vNS belongs to L2(Ω;C([0, T ];H)). Besides the latter fact,

Lemma 5.1 guarantees that vNS ∈ L2(Ω;L2(0, T ;V)). Consequently, collecting all results and compar-

ing them with Definition 2.3, it follows that vNS is the unique solution to equations (1.2) in the sense of

Definition 2.3.

The convergence analysis followed in this paper could have been carried out differently. For instance,

instead of controlling the spatial scale α with a quantity that vanishes at the limit, a convergence rate of



18 Convergence analysis of the stochastic NS-α toward the NS equations

the difference ||vNS − ū|| in terms of α could have made up an alternative approach, as conducted in [2]

for the stochastic Leray-α equations. We emphasize the uselessness of the imposed periodic boundary

conditions if high spatial regularities of the solution were not utilized. In this case, Dirichlet boundary

conditions are required.

The demonstration techniques employed in this paper are only functional for two-dimensional do-

mains. In three dimensions. another approach must be applied to acquire a solution to the stochastic

Navier-Stokes problem from the stochastic LANS-α model, as performed in article [12].
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