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Let S := (s1 < s2 < . . . ) be a strictly increasing sequence of positive inte-
gers and denote e(β) := e2πiβ. We say S is good if for every real α the limit
limN

1
N ∑n≤N e(snα) exists. By the Riesz representation theorem, a se-

quence S is good iff for every real α the sequence (snα) possesses an asymp-
totic distribution modulo 1. Another characterization of a good sequence
follows from the spectral theorem: the sequence S is good iff in any proba-
bility measure preserving system (X,m, T) the limit limN

1
N ∑n≤N f (Tsn x)

exists in L2-norm for f ∈ L2(X).
Of these three characterization of a good set, the one about limit mea-

sures is the most suitable for us, and we are interested in finding out what
the limit measure µS,α := limN

1
N ∑n≤N δsnα on the torus can be. In this

first paper on the subject, we investigate the case of a single irrational α. We
show that if S is a good set then for every irrational α the limit measure µS,α
must be a continuous Borel probability measure. Using random methods,
we show that the limit measure µS,α can be any measure which is absolutely
continuous with respect to the Haar-Lebesgue probability measure on the
torus. On the other hand, if ν is the uniform probability measure supported
on the Cantor set, there are some irrational α so that for no good sequence
S can we have the limit measure µS,α equal ν. We leave open the question
whether for any continuous Borel probability measure ν on the torus there
is an irrational α and a good sequence S so that µS,α = ν.
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1 Introduction, main results

Throughout the paper we will use the arithmetic average operator A: for a
finite index set S, a vector space V and a S → V function f we define
AS f (s)

AS f (s) = As∈S f (s) :=
1

#S ∑
s∈S

f (s) (2.1)

where #S denotes the number of elements in S.
We use the convention that if an interval appears as an index set in

a summation then we consider only the integers in the interval. For
example, ∑n∈[0,N) an = ∑n∈{0,1,...,N−1} an.

We also use Weyl’s notation e(β) := e2πiβ. Note that ep(β) = e(pβ)

for every integer p.
We denote by T the torus R/Z and we represent it as the unit closed

interval [0, 1] with 0 = 1.

1.1 Good sequences, main question

2.1 Definition ▶ Good sequence
We say that a sequence S = (sn)n∈N of integers is good if the limit
limN An∈[1,N] e(snα) exists for every real number α.

Good sequences have been extensively studied in many parts of mathe-
matics, such as in number theory and ergodic theory.
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In this paper we restrict our attention to strictly increasing sequences S
of positive integers in which case we can and will consider S as a subset of
N, and we’ll use the concept of good sequence and good set interchange-
ably.

Among the wellknown good sequences are the full set N of positive
integers1 , the sequence (n2)n∈N of squares2 and the sequence (pn)n∈N of 1 Weyl 1916.

2 Weyl 1916.primes3 where pn denotes the nth prime number. For these sequences the
3 Vinogradow 1937.limits limN An∈[1,N] e(snα) are as follows

lim
N
An∈[0,N) e(nα) =

{
1 if α = 1

0 if α ̸= 0

lim
N
An∈[0,N) e(n2α) =

Ab∈[1,q] e
(

b2 a
q

)
if α = a

q , gcd(a, q) = 1

0 if α is irrational

lim
N
An∈[1,N] e(pnα) =


A b∈[1,q]

gcd(b,q)=1
e(b/q) if α = a

q , gcd(a, q) = 1

0 if α is irrational
(3.1)

In case of a good sequence S = (sn) and a fixed α, the existence of
limN An∈[1,N] e(sn pα) for every p ∈ Z implies, by uniform approxima-
tion of a continuous T → C function by trigonometric polynomials, that
for every continuous T → C function ϕ the limit limN An∈[1,N]ϕ(snα)

exists. By the Riesz representation theorem, this implies that the weak
limit limN An∈[1,N]δsnα of discrete measures An∈[1,N]δsnα on T exists.

By this argument, the existence of limN An∈[1,N] e(snα) for every α

implies the existence of the limit measure limN An∈[1,N]δsnα for every α.
Denote the Haar-Lebesgue probability measure on the torus T by λ and
recall that the Fourier coefficients λ(ep) of λ satisfy

λ(ep) =

{
1 for p = 0

0 for p ∈ Z, p ̸= 0
(3.2)

where for a given measure ν and ν-integrable function ϕ, we use4 the 4 and will use troughout the paper

functional notation ν(ϕ) for the integral of ϕ with respect to ν,

ν(ϕ) =
∫

ϕ dν (3.3)
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For our three good sets the limit measures are as follows.

lim
N
An∈[1,N]δnα =

{
Ab∈[1,q]δb/q if α = a/q, gcd(a, q) = 1

λ if α is irrational

lim
N
An∈[1,N]δn2α =

Ab∈[1,q]δb2 a
q

if α = a
q , gcd(a, q) = 1

λ if α is irrational

lim
N
An∈[1,N]δpnα =


A b∈[1,q]

gcd(b,q)=1
δb/q if α = a

q , gcd(a, q) = 1

λ if α is irrational

(4.1)

What we see in these three examples is that in case of irrational α the
limit measure is the Haar-Lebesgue measure λ and in case of rational
α = a/q, gcd(a, q) = 1, the limit measure is supported on a subset of the
qth roots of unity and appears to be quite uniform on its support. In case
of irrational α, the simplest question is if it’s possible that the limit measure
is not λ. In case of rational α, we can ask if the limit measure always has
to show some kind of uniformity.

Let us consider a good sequence S = (sn). The existence of the limit
limN An∈[1,N] e(snα) for every α implies that the weak limit limN An∈[1,N]δsnα

of discrete measures An∈[1,N]δsnα on T exists for every α. Let us denote
this weak limit measure by µS,α,

µS,α := lim
N
An∈[1,N]δsnα (4.2)

The main question we want to investigate in this paper is

4.1 Question ▶ Main question
What can the limit measure µS,α be? Can it be any Borel probability
measure on T?

1.2 Main results

As we stated earlier, we try to answer question 4.1 for strictly increasing
sequences, and unless we say otherwise, we assume from now on that
S = (sn) is a strictly increasing sequence of positive integers which we
often consider as a subset of N.

Our first observation is that the answer to question 4.1 will depend on
α. If α is a rational number, say, α = a

q with gcd(a, q) = 1, then the limit
measure is clearly supported on the set

Tq := { b/q : b ∈ [1, q] } (4.3)

of qth roots of unity. So the question is if the limit measure µS,a/q can
be any probability measure supported on Tq? The answer is yes. First a
terminology.



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS 5

5.1 Definition ▶ Representable measure at α

Let S be a good set, and let ν be a nonzero, finite Borel measure on T.
We say that S represents ν at α ∈ T if µS,α = 1

ν(T)
ν.

We say ν is representable at α if there is a good set which represents ν at
α.

5.2 Theorem ▶ Every probability measure on Tq can be represented
Let q and a be positive integers with gcd(a, q) = 1, and let ν be a
probability measure supported on the set Tq of qth roots of unity.
Then ν can be represented at a

q , that is, there is a good set S so that
µS, a

q
= ν.

Before discussing the limit measure µS,α for irrational α, let us note the
following fact which will help us appreciate the concept of a good set.

Suppose we are given an irrational number α ∈ T and a Borel prob-
ability measure ν on T. We claim that there exists a sequence (xn) in T
with asymptotic distribution ν, i. e. such that limN An∈[1,N]δxn = ν.
Considering such a sequence and using the density of the sequence (nα)n

in T, we can select a strictly increasing sequence (sn) of integers so that
limn(snα − xn) = 0 mod 1, and we have limN An∈[1,N]δsnα = ν. Taking
S = { sn : n ∈ N }, we could say that µS,α = ν, but nothing insures us
that the set S is good.

There are different ways to prove the preceding claim. For example
we can pick the numbers xn randomly and independently with law ν, and
the strong law of large numbers asserts that the sequence (xn) has, almost
surely, the right asymptotic distribution.

It is particularly simple to get a point-mass as a limit measure. For
example, to get the Dirac measure at 1/2, so ν = δ1/2, take a strictly
increasing sequence (sn) of natural numbers so that snα converges to 1/2
mod 1, and let S := { sn : n ∈ N }. In contrast to this example, for good
sets we have a dramatic departure from the case of rational α.

5.3 Theorem ▶ µS,α is continuous for irrational α

Only continuous measures can be represented at an irrational number.
To spell this out, let S = (sn) be a good sequence and α be an irrational
number.
Then the limit Borel probability measure µS,α = limN An∈[1,N]δsnα is a
continuous measure.

The obvious question in turn is if any given continuous Borel proba-
bility measure can be represented at any irrational number. The answer is
no, as the next result shows.



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS 6

6.1 Theorem ▶ Some continuous measures cannot be represented at every irrational point
Let ν be a Borel probability measure on T so that its Fourier
coefficients do not converge to 0, so

lim sup
p→∞

|µ(ep)| > 0 (6.1)

Then there is a set A ⊂ T of full Lebesgue measure so that ν cannot be
represented at any α ∈ A.

Since a measure ν is called a Rajchman measure5 if its Fourier coeffi- 5 Lyons 1995.

cients vanish at infinity, that is, limp ν(ep) = 0, we can rephrase the-
orem 6.1 by saying that if ν is representable at every irrational α then it
must be a Rajchman measure. A well known non-Rajchman continuous
measure is the uniform measure on the triadic Cantor set.

While theorem 6.1 doesn’t exclude the possibility that A = T, that is,
a non-Rajchman measure cannot be represented anywhere, Christophe
Cuny and François Parreau6 constructed a non-Rajchman measure which 6 Parreau and Cuny 2022.

is representable at uncountably many α’s. Nevertheless, the following
question remains open.

6.2 Question ▶ Is every continuous measure representable somewhere?
Let ν be a continuous Borel probability measure on T.
Is there an irrational α so that ν is representable at α?

The next result says that if ν is absolutely continuous with respect
to the Lebesgue probability measure λ on the torus T, then it can be
represented at every irrational α.

6.3 Theorem ▶ Absolutely continuous measures are representable at every irrational point
Let ν be a Borel probability measure on T which is absolutely
continuous with respect to the Lebesgue probability measure on T. Let
α be an irrational number.
Then ν is representable at α.

Our proof of theorem 6.3 is flexible and enables us to show a more
general result, namely it turns out that a given absolutely continuous
measure can be represented by a good subset of any given good set, pro-
vided it doesn’t increase too fast, it is sublacunary. For a given set R ⊂ N

let R(N) denote the Nth initial segment of R,

R(N) := R ∩ [1, N] (6.2)

We say R is sublacunary7 if it satisfies the growth condition 7 Traditionally, (rn) is called lacunary if
it satisfies lim infn

rn+1
rn

> 1, and such a
sequence satisfies #R(N) = O(log N).
Traditionally, a sublacunary sequence is
one that satisfies limn

rn+1
rn

= 1 and such a

sequence satisfies limN
#R(N)
log N = ∞. Our

definion of a sublacunary sequence in
eq. (7.1) describes sequences which satisfy
lim infn

rn+1
rn

= 1 but may not satisfy
limn

rn+1
rn

= 1.



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS 7

lim
N

#R(N)

log N
= ∞ (7.1)

In case we consider the sequence (rn) instead of the set R, it’s more useful
to write eq. (7.1) in the form

lim
N

N
log rN

= ∞ (7.2)

7.1 Theorem ▶ Absolutely continuous measures can be represented by subsets of a good set
Let R be a sublacunary good set. Let α be an irrational number, and let
the Borel probability measure ν be absolutely continuous with respect
to µR,α.
Then there is a good set S ⊂ R which represents ν at α.

As a consequence of theorem 7.1, every
measure which is absolutely continuous
with respect to the Lebesgue measure
can be represented at any given irrational
α by a subset of the primes, squares, or{ ⌊

n2 log n
⌋

: n ∈ N
}

.

We will see that the proof of theorem 7.1 reveals a close connection
between the Radon-Nikodym derivative ρ of ν with respect to µR,α and
the relative mean8 of the set S representing ν. For a given R ⊂ N and

8 The usual terminology is relative density
instead of relative mean, but we will use
the more general concept of the mean of
a R → C function in section 1.3 and we
prefer to use a single terminology and
notation for economical reasons.

S ⊂ R, the relative mean MR(S) of S in R is defined by

MR(S) := lim
N

#S(N)

#R(N)
(7.3)

provided the limit on the right exists. The relative upper mean MR(S) of S
in R is defined by

MR(S) := lim sup
N

#S(N)

#R(N)
(7.4)

In case R = N, we suppress the base set in our notation, and we write
M(S) for MN(S) and M(S) for MN(S).

7.2 Theorem ▶ Connection between dν
dµR,α

, MR(S) and MR(S)

Let R be a sublacunary good set.

a) For an irrational α let the unsigned function ρ ∈ L1(µR,α) with
µR,α(ρ) = 1 be bounded so ∥ρ∥L∞(µR,α) < ∞.

Then there is a good set S ⊂ R representing the measure ρ · µR,α at
α and satisfying MR(S) = 1

∥ρ∥
L∞(µR,α)

.

b) Let S be a good subset of R with positive upper density in R, so
MR(S) > 0.

Then for every irrational β the limit measure µS,β is absolutely
continuous with respect to µR,β. Furthermore, the Radon-Nikodym

derivative ρβ :=
dµS,β
dµR,β

is a bounded function satisfying

∥ρβ∥L∞(µR,β)
≤ 1

MR(S)
.
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We see that theorem 7.1 gives a full characterization of the limit measure
for sets with positive upper mean9, giving an exact relationship between 9 so now R = N

the upper mean of the set and the bound of the RN derivative: On the
one hand if M(S) > 0, the limit measure µS,β for every β must be ab-
solutely continuous with respect to λ with bounded RN derivative ρβ

satisfying ∥ρβ∥L∞(λ) ≤ 1
M(S)

. On the other hand, any Borel proba-
bility measure ν which is absolutely continuous with respect to λ with
bounded, nonzero RN derivative ρ is representable at any irrational α

with a set of positive mean satisfying M(S) = 1
∥ρ∥L∞(λ)

.

Theorem 7.2 (b) has the following consequence.

8.1 Corollary ▶ If the RN derivative ρ is unbounded, then MR(S) = 0

Let R be a good set and α an irrational number. Suppose the unsigned
function ρ ∈ L1(µR,α) with µR,α(ρ) = 1 is unbounded, and that the
good set S ⊂ R represents the measure ρ · µR,α at α.
Then S must have 0 mean in R, so MR(S) = 0.

1.3 Weighted averages

Our results in theorems 7.1 and 6.3 will be consequences, via a random
procedure, of results on weighted averages.

We need to fix some terminology and notation. We define the Besi-
covitch type seminorm ∥∥1 for all complex valued sequences f ∈ CN

by
∥ f ∥1 := lim sup

N
A[1,N]| f |, f ∈ CN (8.1)

The number 1 in the subscript of ∥∥1 expresses the similarity of this norm
to the L1 norm.

For a set S ⊂ N, we may use the notation ∥S∥1 instead of ∥1S∥1,
though in this case we do not get a new concept, since ∥S∥1 = M(S).

For an infinite set R ⊂ N we define the relative 1-norm ∥ f ∥1,R of a
complex valued R → C function by

∥ f ∥1,R := lim sup
N

AR(N)| f |, f ∈ CR (8.2)

If the set R is given as a strictly increasing sequence (rn) and for an f ∈
CR we define F by F(n) := f (rn), then ∥ f ∥1,R = ∥F∥1.

Let R ⊂ N be an infinite set. The R → R function w is called a R-
weight if w is unsigned, so w ≥ 0, and ∑r∈R w(r) = ∞. We may refer to
an R-weight as “a weight supported on R”.

An R-weight w can be considered a measure on the set R and in that
case for S ⊂ R we may briefly write w(S) for the sum ∑s∈S w(s).

For a finite set S ⊂ N let σ be a real valued, unsigned function defined
on S. We can consider σ a measure on S, and as such, we assume σ(S) >
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0. For a vector space V and S → V function f , define the σ-weighted
average Aσ

S f of f on S by

Aσ
S f = Aσ

s∈S f (s) :=
1

σ(S) ∑
s∈S

σ(s) f (s) (9.1)

9.1 Definition ▶ Good weights and represented measures by them
Let R ⊂ N be infinite. Let w be an R-weight.
We say w is a good R-weight if the weak limit limN A

w
r∈R(N)

δrβ exists
for every β ∈ T. We denote this limit by µw,β,

µw,β := lim
N
Aw

r∈R(N)δrβ (9.2)

Let ν be a Borel probability measure on T and let α ∈ T.
We say the R-weight w represents ν at α if w is good and µw,α = ν.

Note the following form of the defini-
tion of the limit measure µw,α when we
consider R as the strictly increasing se-
quence (rn): µw,α = limN A

w
n∈[1,N]δrn β,

so now we have Aw
n∈[1,N]δrn β =

1
∑n∈[1,N] w(rn)

∑n∈[1,N] w(rn)δrnα.

Note the following characterization of good weights: The R-weight w
is good iff the limit limN A

w
r∈R(N)

e(rα) exists for every α.
In the special case of a good set S ⊂ N, we have µS,α = µ1S ,α since the

weighted averages with weight w := 1S correspond to the averages along
S.

In contrast to good sets, the representation of absolutely continu-
ous measures by weights can always be accomplished by weights with
positive, finite mean. In fact, the representing weight has an additional
property.

9.2 Definition ▶ Integrable weight
Let R ⊂ N be infinite.
We call the R-weight w integrable if it can be approximated arbitrary
closely in the seminorm ∥∥1,R by bounded, good weights: for every
ϵ > 0 there is a good R-weight v with ∥v∥∞ < ∞ so that
∥v − w∥1,R < ϵ.

9.3 Theorem ▶ Representation by weights
Let R be a good set.

a) For an irrational α let the unsigned function ρ ∈ L1(µR,α) satisfy
µR,α(ρ) = 1.

Then there is an integrable R-weight w with MR(w) = 1 which
represents the measure ρ · µR,α at α. If ρ ∈ L∞(µR,α) then the
R-weight w representing the measure ρ · µR,α can also satisfy
∥ρ∥L∞(µR,α)

= ∥w∥∞.
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b) Let w be a good, integrable R-weight which satisfies ∥w∥1,R > 0.

Then for every β the limit measure µw,β is absolutely continuous
with respect to µR,β.

1.4 Applications in ergodic theory

Besides the intrinsic interest of our main question, question 4.1, there may
be several applications of studying limit measures. One major application
is in ergodic theory.

Recall that a measure preserving dynamical system is a probability
space (X,m), where m(X) = 1, equipped with a measurable, measure
preserving transformation T of X. By the spectral theorem, a good set has
the following characterization: the sequence S = (sn) of positive integers
is good iff the limit limN An∈[1,N] f (Tsn x) exists in L2(X)-norm in any
measure preserving dynamical system (X,m, T) for any f ∈ L2(X).

This means that our work in describing the possible limit measures
in case of a good set yields an identification of the limit in mean ergodic
theorems. Identification of the limit is often the crucial step in some ap-
plications, and here we just mention two of these, recurrence and almost
sure convergence. In case of studying recurrence, the identification of
the limit readily tells us whether a given set is a set of recurrence. In case
of trying to see if some ergodic averages converge almost everywhere,
after the identification of the L2-limit, we usually want to see if there is
some kind of rate with which the averages converge to the L2-limit. For
example, this is the case when one proves that the ergodic averages along
the squares converge almost surely. The application of the circle method
here is exactly a quantitative expression of how the averages converge in
L2-norm.

1.5 Future work

The techniques developed in this paper allow one to address the simulta-
neous representability of probability measures at several different points
of the torus, and we plan to explore this in a future work. But which
family { να : α ∈ T } of measures can be represented by a single good
set remains open even if we restrict the family to absolutely continuous
measures with respect to the Lebesgue probability measure λ. What we
can say at this point is that for a given good set S, the set of α ∈ T where
the limit measure µS,α is not the Lebesgue measure is small: it is both of
first Baire category and of 0 measure under every Rajchman measure10 on 10 Lyons 1985, Theorem 3; see also Lyons

1995.T, so ν{ α : µS,α ̸= λ } = 0 for every Rajchman measure ν.



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS 11

1.6 Summary of notation

We realize that we use quite extensive notation, many of which are new,
so we give a summary of our notations in table 1.

Symbol Definition Parameters Name

N {1, 2, 3, . . . } Natural numbers
T torus
λ Haar-Lebesgue measure on T
e(θ) exp(2πiθ) θ ∈ T
ep(θ) e(pθ) p ∈ Z
S(N) S ∩ [1, N] S ⊂ N initial segment of S
#S(N) ∑s∈S(N) 1 S ⊂ N counting function of S
AS f 1

#S ∑s∈S f (s) set S is finite average of f on S
Aw

S f 1
w(S) ∑s∈S w(s) f (s) w is a weight on S w-average of f on set S

µS,α limN As∈S(N)δsα S ⊂ N, α ∈ T limit measure of S at α

µw,α limN A
w
s∈S(N)

δsα weight w on S, α ∈ T limit measure of w at α

ν(ϕ)
∫
T

ϕ dν

M( f ) limN A[1,N] f f ∈ CN mean of f
MR( f ) limN AR(N) f R ⊂ N, f ∈ CR relative mean of f
M { f : f ∈ CN, M( f ) exists and is finite } sequences with mean
M( f ) lim supN

∣∣∣A[1,N] f
∣∣∣ f ∈ CN upper mean

MR( f ) lim supN

∣∣∣AR(N) f
∣∣∣ R ⊂ N, f ∈ CR relative upper mean

∥ f ∥1 lim supN A[1,N]| f | f ∈ CN 1-seminorm
∥ f ∥1,R lim supN AR(N)| f | R ⊂ N, f ∈ CR relative 1-seminorm
C+ { ϕ : ϕ : T→ [0, 1], continuous }
∥ν1 − ν2∥V supϕ∈C+ |ν1(ϕ)− ν2(ϕ)| νi finite Borel measures on T variation distance

Table 1: Notations

2 Basic example for representation

In this section we want to work out a rather simple but instructive ex-
ample, which will then motivate and form the basis of many of our con-
structions later on. When we are done with presenting this example, we
in fact proved theorem 7.1 in case the Radon-Nikodym derivative is the
indicator of a Jordan measurable set.

Let α be irrational and let I ⊂ T be an interval. We want to show that
if a probability measure ν is absolutely continuous with respect to λ with
the Radon-Nikodym derivative equal 1I , the indicator of I, then there is a
set S which represents ν at α. Probably the simplest way11 to define such a 11 We could also define such a set by taking

{ n : n ∈ N, n2α ∈ I (mod 1) } or
{ p : p ∈ P , pα ∈ I (mod 1) } where P
is the set of primes.

set S is by taking
S = { n : n ∈ N, nα ∈ I } (11.1)
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There are two things to verify. First, that S is indeed a good set, and to
do that, we need to show that the weak limit µS,β = limN As∈S(N)δsβ

exists for every β. Second, we then have to verify that µS,α = 1
λ(I)1I · λ.

The second one, in fact, is almost instantaneous to do since it follows from
the uniform distribution of (nα)n∈N (mod 1). To see how it follows,
it’s enough to show that for every interval J ⊂ T we have µS,α(J) =

λ
(
1J · 1

λ(I)1I

)
, that is

lim
N
As∈S(N)1J(sα) =

1
λ(I)

λ(J ∩ I) (12.1)

The left hand side can be written as

lim
N
As∈S(N)1J(sα) = lim

N

N
#S(N)

An∈[1,N]1I(nα)1J(nα)

since limN
#S(N)

N = λ(I) by the uniform distribution of (nα)n∈N
(mod 1),

=
1

λ(I)
lim

N
An∈[1,N]1I∩J(nα)

again by the unifom distribution of (nα)n∈N (mod 1)

=
1

λ(I)
λ(I ∩ J)

To show that the weak limit µS,β = limN As∈S(N)δsβ exists for every β,
it’s enough to show that limN As∈S(N) e(sβ) exists for every β. Since

As∈S(N) e(sβ) =
N

#S(N)
An∈[1,N]1I(nα) e(nβ) (12.2)

and since limN
#S(N)

N = λ(I), it’s enough to show that the limit limN An∈[1,N]1I(nα) e(nβ)

exists for every β ∈ T. To see this, first note that if we replace 1I by the
character ek the limit of An∈[1,N] ek(nα) e(nβ) = An∈[1,N] e(n(kα + β))

as N → ∞ exists and is as follows

lim
N
An∈[1,N] ek(nα) e(nβ) =

{
1 if β = −kα (mod 1)

0 otherwise
(12.3)

From this we get that if we replace 1I by a trigonometric polynomial ϕ,
the limit of An∈[1,N]ϕ(nα) e(nβ) exists and can be given explicitly as12 12 Notice that in eq. (12.4) λ

(
ϕ ek) is the

kth Fourier coefficient of ϕ.

lim
N
An∈[1,N]ϕ(nα) e(nβ) =

λ
(

ϕ ek
)

if β = −kα (mod 1)

0 otherwise
(12.4)

Using Weierstrass’ theorem on being able to uniformly approximate a
continuous function by trigonometric polynomials, we can verify that in
eq. (12.4) we can take ϕ to be any continuous function.
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Now, to go from continuous functions to the indicator 1I of any in-
terval I, it is enough to know that the indicator 1I can be sandwiched
between two unsigned continuous functions whose integrals (with re-
spect to λ) are arbitrarily close. We thus have

lim
N
An∈[1,N]1I(nα) e(nβ) =

{
λ(1I ek) if β = −kα (mod 1)

0 otherwise.
(13.1)

We finally get, since µS,β(e) = 1
λ(I) limN An∈[1,N]1I(nα) e(nβ),

µS,β(e) =


1

λ(I)λ(1I ek) if β = −kα (mod 1)

0 otherwise
(13.2)

The above shows that µS,β(e) can be nonzero only if β is an integer

multiple of α, and we recognize λ
(
1I ek

)
as the kth Fourier coefficient of

the function 1I , that is, 1
λ(I)λ

(
1I ek

)
is the kth Fourier coefficient of the

measure 1
λ(I)1Iλ.

One can rather easily extend this example in two ways. First, the proof
can be repeated almost verbatim for the case when we take any Jordan
measurable set B in place of the interval I. Indeed, all we need to remark
is that a set B is Jordan measurable iff, for every given ϵ > 0, its indicator
function 1B can be sandwiched between two unsigned, continuous func-
tions ϕa and ϕb so that ϕb ≤ 1B ≤ ϕa and λ(ϕa − ϕb) < ϵ. Another way
of expressing that the indicator of a set can be sandwiched between two
continuous functions is that the boundary of the set has zero Lebesgue
measure.

13.1 Definition ▶ ν-Riemann integrability
Let ν be a finite Borel measure on T and let ϕ be a Borel measurable
T→ C function.
We call the function ϕ ν-Riemann integrable if it’s continuous at
ν-almost every point.
We call the Borel measurable set B ν-Jordan measurable if its indicator
function 1B is ν-Riemann integrable.

As it is well known, the equivalence of approximability by contin-
uous functions and the boundary having zero measure carries over to
the setting of any finite Borel measure on the torus. We can thus extend
the example to the setting when the Lebesgue measure is replaced by an
arbitrary finite Borel measure.

We record our findings in the following result.
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14.1 Proposition ▶ The Radon-Nikodym derivative can be the indicator of a Jordan measurable set
Let R be a good set, α be an irrational number and let B ⊂ T be
µR,α-Jordan measurable with µR,α(B) > 0.
Then the measure 1BµR,α, which is absolutely continuous with respect
to µR,α, can be represented at α by the good set S defined by

S := { r : r ∈ R, rα ∈ B } (14.1)

so we have µS,α = 1
µR,α(B)1BµR,α. We also have µR,α(B) = MR(S).

Let us go back to trying to represent measures which are absolutely
continuous with respect to the Lebesgue measure λ. New ideas are
needed to cover the case when we want to represent the measure 1Bλ

when B is a Borel set which is not Jordan measurable. What is the new
difficulty? We’d like to think that we could just again take the “visit set”
S = { n : n ∈ N, nα ∈ B }, but this is not the case anymore. Indeed, take
B to be an open set with λ(B) < 1 and containing all integer multiples
of our irrational α. This open set is not Jordan measurable anymore. The
set S cannot represent the measure 1Bλ anymore since S = N. In fact,
we show in section 10.3 that for any given irrational α, one can construct
an open set B so that the visit set of B doesn’t even have mean. So we
definitely need new ideas.

We also need new ideas even for the case when we try to represent
a measure which is absolutely continuous with respect to the Lebesgue
measure with a Radon-Nikodym derivative which is not an indicator
function. We need these new ideas even if this Radon-Nikodym deriva-
tive is a continuous function.

3 Proof of theorem 7.1 for indicators

Strictly speaking, we have already begun the proof of theorem 7.1 in
the previous section, when we proved that at an irrational number every
measure with Jordan measurable Radon-Nikodym derivative can be
represented. Our fixed set up in this section is that we are given a good
“base” set R ⊂ N and an irrational number α. Since the set R is fixed
throughout the section, we suppress the set R from our notation for the
limit measure,

µβ := µR,β, for every β (14.2)

Since our focus is to widen the class of the Radon-Nikodym derivatives
with respect to the base limit measure µα, the following definition will
simplify our language.
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15.1 Definition ▶ Representing a function, a Borel set
Let ρ ∈ L1(T, µα) be unsigned and µα(ρ) > 0.
We say that the good set S ⊂ R represents ρ at α if it represents the
measure ρ · µα, that is, µS,α = 1

µα(ρ)
ρ · µα.

If ρ is the indicator of a Borel measurable set B ⊂ T, we then say S
represents B at α.

The sets S ⊂ R we consider in this section have positive mean in
R. For such a set, the non-normalized averages An∈[1,N]1S(rn)δrn β are
easier to handle than the normalized ones As∈S(N)δsβ. The convergence
or divergence properties of the two averages are identical since they are
connected by

lim
N
An∈[1,N]1S(rn)δrn β = MR(S) lim

N
As∈S(N)δsβ (15.1)

as can be seen from writing As∈S(N)δsβ = #R(N)
#S(N)

Ar∈R(N)1S(r)δrβ

and noting that limN
#S(N)
#R(N)

= MR(S) and limN Ar∈R(N)1S(r)δrβ =

limN An∈[1,N]1S(rn)δrn β.
In section 2 we proved that if B is µα-Jordan measurable, then it can be

represented by the set SB defined by

SB = { rn : rnα ∈ B } (15.2)

and we have the relation

MR(SB) = µα(B) (15.3)

We also indicated that this definition of SB may not give a good set if B is
not Jordan measurable. The idea of extending the representation to any
Borel measurable set is via a limit procedure. To explain what we mean
by “a limit procedure”, consider the case when B is an open set, and write
it as a disjoint union of open intervals, B = ∪j Ij. Defining Bk := ∪j∈[1,k] Ij

for every k ∈ N, each Bk is Jordan measurable and the sequence (Bk)

increases monotonically to B. We have limk µα(Bk) = µα(B). Denoting
Sk := SBk , the sequence (Sk) also increases to a set S ⊂ R, but MR(S)
not only may not be equal limk MR(Sk) but MR(S) may not even exist13. 13 See also section 10.3.

The limit procedure which is suitable for our purposes is determined by
the seminorm ∥ f ∥1 which is defined by

∥ f ∥1 := lim sup
N

A[1,N]| f (n)|, f ∈ CN (15.4)

Our main tools will be two lemmas. The first one is modeled after a
result of Marcinkiewicz14 on the completeness of Besicovitch spaces. 14 Marcinkiewicz 1939.



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS 16

16.1 Lemma ▶ Cauchy sequence is convergent in the seminorm ∥∥1

For each k ∈ N, let fk ∈ CN. Suppose that ( fk) is a Cauchy sequence
in the seminorm ∥∥1, so we have

lim
k

sup
l≥k

∥ fl − fk∥1 = 0 (16.1)

Then there is f ∈ CN satisfying

lim
k
∥ fk − f ∥1 = 0 (16.2)

The f in eq. (16.2) is pasted together from the fk’s in the following
way: there are indices N1 < N2 < . . . so that f = fk on the interval
(Nk, Nk+1],

f = ∑
k

fk · 1(Nk ,Nk+1]
(16.3)

16.2 Remark ▶ f inherits properties of ( fk)

Since f is pasted together from the fk’s the way we can see it in
eq. (16.3), f inherits some common properties the fk may have. For
example

a) If fk ≥ 0 for every k then f ≥ 0.

b) If | fk| ≤ c for a constant c for every k then | f | ≤ c.

c) If each fk is 0 − 1 valued then so is f .

d) If each fk is a weight, then the construction can be adjusted so that f
also becomes a weight.

Only remark 16.2 (d) requires some explanation since we need to have
∑n∈N f (n) = ∞. For this, we observe a flexibility in the choice of the
sequence N1 < N2 < . . . in the upcoming proof of lemma 16.1. Namely
the sequence (Nk) is defined recursively, and once N1 < N2 < · · · <
Nk−1 are chosen, the index Nk, Nk > Nk−1, is chosen “large enough”
to satisfy some criteria. So it can always be chosen to be “even larger” to
satisfy additional criteria. For our case the single additional criterion is to
ensure ∑n∈(Nk−1,Nk ]

fk−1(n) > 1, which is possible since fk−1 is assumed
to be a weight, so ∑n∈(Nk−1,∞) fk−1(n) = ∞.

Proof of lemma 16.1. For the recursive definition of the (Nk), define first
the sequence (ϵk) by

ϵk := 2 sup
l≥k

∥ fl − fk∥1 (16.4)

We can assume, without loss of generality, that ϵk > 0 for every k, since
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ϵk = 0 for some k would imply ∥ fl − fk∥1 = 0 for l ≥ k hence we could
take f = fk.

In the first step of the recursion, let N1 = 1.
In the second step, let N2 > N1 to be large enough to satisfy

N1

N2
< ϵ1 (17.1)

A[1,N]| f1 − f2| < ϵ1 for every N ≥ N2 (17.2)

and

A[1,N]| f1 − f3| < ϵ1 for every N ≥ N2 (17.3)

Complete the second step of the recursion by defining f to be equal f1

on the interval (N1, N2]. Let k > 2 and assume that we have defined
N1 < N2 < · · · < Nk−1 and f to be equal f j on the interval (Nj, Nj+1] for
j ∈ [1, k − 2]. For step k of the recursion let Nk > Nk−1 be large enough
to satisfy

1
Nk

∑
[1,Nk−1]

∣∣ f j − f
∣∣ < ϵj, for every j ∈ [1, k − 2] (17.4)

A[1,N]

∣∣ f j − fk−1
∣∣ < ϵj for every N ≥ Nk, j ∈ [1, k − 2] (17.5)

and

A[1,N]

∣∣ f j − fk
∣∣ < ϵj for every N ≥ Nk, j ∈ [1, k − 2] (17.6)

Complete the kth step of the recursion by defining f to be equal fk−1 on
the interval (Nk−1, Nk].

Let us fix j and let N be large enough so that for some k ≥ j + 2 we
have

Nk ≤ N < Nk+1 (17.7)

We want to show that
A[1,N]

∣∣ f j − f
∣∣ < 3ϵj (17.8)

Let us estimate A[1,N]

∣∣ f j − f
∣∣ as,

A[1,N]

∣∣ f j − f
∣∣ = 1

N ∑
[1,Nk−1]

∣∣ f j − f
∣∣ (17.9)

+
1
N ∑

(Nk−1,Nk ]

∣∣ f j − f
∣∣ (17.10)

+
1
N ∑

(Nk ,N]

∣∣ f j − f
∣∣ (17.11)

We can estimate the term in eq. (17.9), using eq. (17.4) and that N ≥ Nk,
as

1
N ∑

[1,Nk−1]

∣∣ f j − f
∣∣ < ϵj (17.12)
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For the term in eq. (17.10) we have

1
N ∑

(Nk−1,Nk ]

∣∣ f j − f
∣∣ < ϵj (18.1)

This follows from eq. (17.5) since f = fk−1 on the interval (Nk−1, Nk].
For the term in eq. (17.11) we have

1
N ∑

(Nk ,N]

∣∣ f j − f
∣∣ < ϵj (18.2)

This follows from eq. (17.6) since f = fk on the interval (Nk, N].
Putting the estimates in eqs. (18.1), (18.2) and (17.12) together we obtain

eq. (17.8).

The second lemma shows that the family M of sequences f for which
M( f ) = limN A[1,N] f exists is closed with respect to the upper mean M()

defined by
M( f ) := lim sup

N

∣∣∣An∈[1,N] f (n)
∣∣∣, f ∈ CN (18.3)

18.1 Lemma ▶ M is closed with respect to M()

Let ( f j) be a sequence from M. Suppose that ( f j) converges to
f ∈ CN in the seminorm M(), so

lim
j

M( f j − f ) = 0 (18.4)

Then f ∈ M and
M( f ) = lim

j
M( f j) (18.5)

Proof. First note that, as a consequence of eq. (18.4), the sequence ( f j) is a
Cauchy sequence, meaning that for a given ϵ > 0 there is J so that

M( f j − f J) < ϵ for every j ≥ J (18.6)

Since
∣∣M( f j)− M( f J)

∣∣ = ∣∣M( f j − f J)
∣∣ = M( f j − f J) we see,∣∣M( f j)− M( f J)

∣∣ < ϵ for every j ≥ J (18.7)

so the sequence M( f j) of means is a Cauchy sequence of numbers. De-
note L := limj M( f j). We want to show that M( f ) = L. For a given
ϵ > 0, choose a j so that

∣∣M( f j)− L
∣∣ < ϵ and M( f − f j) < ϵ. We then

have, for an arbitrary N,∣∣∣A[1,N] f − L
∣∣∣ ≤ ∣∣∣A[1,N]( f − f j)

∣∣∣+ ∣∣∣A[1,N] f j − L
∣∣∣ (18.8)

Taking lim supN of both sides, we get

lim sup
N

∣∣∣A[1,N] f − L
∣∣∣ ≤ M( f − f j) +

∣∣M( f j)− L
∣∣ (18.9)
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Since M( f − f j) < ϵ and
∣∣M( f j)− L

∣∣ < ϵ, we get lim supN

∣∣∣A[1,N] f − L
∣∣∣ <

2ϵ. Since ϵ > 0 was arbitrary, we have limN

∣∣∣A[1,N] f − L
∣∣∣ = 0 which

means M( f ) = L = limj M( f j).

How do we now show that every open set can be represented? Let
B ⊂ T be open with positive µα measure, let B = ∪j Ij be its decomposi-
tion into pairwise disjoint open intervals Ij and set Bk := ∪j∈[1,k] Ij. Since
µα(B) > 0, we have µα(Bk) > 0 for large enough k. For simplicity, we
assume that µα(Bk) > 0 for every k. The sets Bk increase to B monoton-
ically, hence, in particular, we have limk µα(Bk△B) = 0. According to
proposition 14.1, the set Bk can be represented by the set Sk ⊂ R defined
by

Sk := { rn : rnα ∈ Bk } (19.1)

and we have MR(Sk) = µα(Bk). Since for every k, l the set Bk△Bl is
Jordan measurable, we also have

MR(Sk△Sl) = µα(Bk△Bl) (19.2)

For each k let us define the sequence fk by

fk(n) := 1Sk (rn), n ∈ N (19.3)

We have
M( fk) = MR(Sk) for every k ∈ N (19.4)

and we can rewrite eq. (19.2) as

M| fk − fl | = µα(Bk△Bl) (19.5)

Since (Bk) is a Cauchy sequence, so limk supl≥k µα(Bk△Bl) = 0,
eq. (19.5) implies that ( fk) is also a Cauchy sequence in ∥∥1, so we have
limk supl≥k M| fk − fl | = 0. Since M| fk − fl | = ∥ fk − fl∥1, accord-
ing to lemma 16.1, there is f to which the ( fk) converges, that is, so
limk∥ fk − f ∥1 = 0, and by lemma 18.1, M( f ) = limk M( fk). Since
M( fk) = µα(Bk) and limk µα(Bk) = µα(B), we have M( f ) = µα(B) > 0.
According to remark 16.2 (c) f is 0 − 1 valued hence we can define a set
S ⊂ R by its indicator as

1S(rn) := f (n), n ∈ N (19.6)

We have
MR(S) = M( f ) (19.7)

We want to show that S is good and it represents B at α. To this end, let
β ∈ T be arbitrary and define the sequences f β

k and f β by

f β
k (n) := fk(n) e(rnβ) for n ∈ N (19.8)

f β(n) := f (n) e(rnβ) for n ∈ N (19.9)
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Since M( f ) = limk M( fk) > 0 and M( fk) = MR(Sk), we have M(S) >
0. It follows that, by eq. (15.1), to show that S is good, it’s enough to show
that M( f β) exists for every β and to show that S represents B at α it’s
enough to show that M( f pα) = µα(ep 1B) for every p ∈ Z.

Let us first show that M( f β) exists for every β. Since each set Sk is
good with M(Sk) > 0, we have, as a consequence of eq. (15.1), that
f β
k ∈ M for every k, β. The fact that for every β, the sequence ( f β

k )

converges to f β in the norm M() follows from the uniform estimate

M( f β
k − f β) ≤ ∥ fk − f ∥1 for every β (20.1)

By lemma 18.1, f β ∈ M and

M( f β) = lim
k

M( f β
k ) (20.2)

Let us now show that S represents B at α, that is, M( f pα) = µα(ep 1B) for
every p ∈ Z. Since the sequence (Bk) converges to B in L1(µα)-norm we
have

lim
k

µα

(
ep 1Bk

)
= µα(ep 1B) for every p ∈ Z (20.3)

Since M( f pα
k ) = µα

(
ep 1Bk

)
and, by eq. (20.2), limk M( f pα

k ) = M( f pα),
eq. (20.3) implies that M( f pα) = µα(ep 1B).

We record the general idea we used as proposition 20.1 (b) below.

20.1 Proposition ▶ Limit of good sets with positive mean is good
Let (Sk) be a sequence of good subsets of R with mean which
converge to S ⊂ R in ∥∥1,R-seminorm, that is, limk∥Sk△S∥1,R = 0.
Assume that lim supk MR(Sk) > 0.
Then we have the following.

a) limk MR(Sk) exists and MR(S) = limk MR(Sk) > 0.

b) S is a good set.

c) The sequence
(
µSk ,β

)
k of limit measures converge to µS,β in

variation distance and uniformly in β,

lim
k

sup
β

∥∥µSk ,β − µS,β
∥∥

V = 0 (20.4)

d) Let ν be a Borel measure on T.

If for some α, µSk ,α is absolutely continuous with respect to ν with
Radon-Nikodym derivative ρk for every k, then µS,α is also
absolutely continuous with respect to ν with Radon-Nikodym
derivative ρ which satisfies

lim
k
∥ρk − ρ∥L1(ν) = 0 (20.5)
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Proof. The proof of proposition 20.1 (a) follows from the triangle inequal-
ity for the ∥∥1-seminorm, since we then have

|MR(Sk)− MR(S)| =
∣∣∣∥Sk∥1,R − ∥S∥1,R

∣∣∣
≤ ∥Sk△S∥1,R

and just use the assumption that limk∥Sk△S∥1,R = 0.
The argument we gave just before the enunciation of our proposition

proves that S is a good set.
For the proof of proposition 20.1 (c) note that in the argument pre-

ceding our proposition we proved that the sequence
(
µSk ,β

)
k of measures

converges weakly to µS,β for every β but an estimate similar to eq. (20.1)
enables us to draw the stronger conclusion of eq. (20.4).

The following lemma gives us the estimates we need.

21.1 Lemma ▶ ∥∥1,R dominates ∥∥V and ∥∥L1

Let v1, v2 be good R-weights. Assume that

max
{
∥v1∥1,R, ∥v2∥1,R

}
> 0 (21.1)

Then we have the following.

a)

sup
β

∥∥µv1,β − µv2,β
∥∥

V ≤ 2

max
{
∥v1∥1,R, ∥v2∥1,R

}∥v1 − v2∥1,R

(21.2)

b) If, for some α, the limit measures µv1,α and µv2,α are absolutely
continuous with respect to a Borel measure ν on T with Radon-
Nikodym derivatives ρ1 and ρ2, respectively, then

∥ρ1 − ρ2∥L1(ν) ≤
4

max
{
∥v1∥1,R, ∥v2∥1,R

}∥v1 − v2∥1,R (21.3)

Proof. To prove lemma 21.1 (a), that is, the inequality in eq. (21.2), fix β

and ϕ ∈ C+, so ϕ is a continuous T → C function with 0 ≤ ϕ ≤ 1.
We can assume without loss of generality that max

{
∥v1∥1,R, ∥v2∥1,R

}
=

∥v1∥1,R. Let (Nl)l be a strictly increasing sequence of indices so that

lim
l
A[1,Nl ]

v1 = ∥v1∥1,R (21.4)
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Let us estimate as∣∣∣Av1
n∈[1,Nl ]

ϕ(rnβ)−Av2
n∈[1,Nl ]

ϕ(rnβ)
∣∣∣

=

∣∣∣∣∣ 1
A[1,Nl ]

v1
An∈[1,Nl ]

v1(rn)ϕ(rnβ)− 1
A[1,Nl ]

v2
An∈[1,Nl ]

v2(rn)ϕ(rnβ)

∣∣∣∣∣
adding 0 = − 1

A[1,Nl ]
v1
An∈[1,Nl ]

v2(rn)ϕ(rnβ)+ 1
A[1,Nl ]

v1
An∈[1,Nl ]

v2(rn)ϕ(rnβ)

inside the absolute value and using the triangle inequality,

≤ 1
A[1,Nl ]

v1

∣∣∣An∈[1,Nl ]
v1(rn)ϕ(rnβ)−An∈[1,Nl ]

v2(rn)ϕ(rnβ)
∣∣∣

+

∣∣∣∣∣ 1
A[1,Nl ]

v1
− 1
A[1,Nl ]

v2

∣∣∣∣∣∣∣∣An∈[1,Nl ]
v2(rn)ϕ(rnβ)

∣∣∣
≤ 1
A[1,Nl ]

v1
A[1,Nl ]

|v1 − v2|+
A[1,Nl ]

|v1 − v2|
A[1,Nl ]

v1A[1,Nl ]
v2
A[1,Nl ]

v2

=
2

A[1,Nl ]
v1
A[1,Nl ]

|v1 − v2|

so we have∣∣∣Av1
n∈[1,Nl ]

ϕ(rnβ)−Av2
n∈[1,Nl ]

ϕ(rnβ)
∣∣∣ ≤ 2

A[1,Nl ]
v1
A[1,Nl ]

|v1 − v2| (22.1)

Since liml A
vi
n∈[1,Nl ]

ϕ(rnβ) = µvi ,β(ϕ), liml A[1,Nl ]
v1 = ∥v1∥1,R and

lim supl
2

A[1,Nl ]
v1
A[1,Nl ]

|v1 − v2| ≤ 2
∥v1∥1,R

∥v1 − v2∥1,R, we get

∣∣µv1,β(ϕ)− µv2,β(ϕ)
∣∣ ≤ 2

∥v1∥1,R
∥v1 − v2∥1,R (22.2)

which is independent of β and ϕ ∈ C+, proving eq. (21.2).
To prove lemma 21.1 (b), observe first that, since µvi ,α = ρiν and ρi

are probability densities with respect to ν, we have ∥ρ1ν − ρ2ν∥V =
1
2∥ρ1 − ρ2∥L1(ν). It follows that

∥µv1,α − µv2,α∥V =
1
2
∥ρ1 − ρ2∥L1(ν) (22.3)

and now just use eq. (21.2).

Now, let us come back to the proof of proposition 20.1. Using eq. (21.2)
with v1 = 1Sk and v2 = 1S, we get

sup
β

∥∥µSk ,β − µS,β
∥∥

V ≤ 2

max
{
∥Sk∥1,R, ∥S∥1,R

}∥Sk△S∥1,R (22.4)

Using the assumption that limk∥Sk△S∥1,R = 0 and that, by proposi-
tion 20.1 (a), we have limk∥Sk∥1,R = limk MR(Sk) = MR(S) = ∥S∥1,R >

0, we get eq. (20.4).
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For the proof of proposition 20.1 (d), by proposition 20.1 (a), we can
assume, without loss of generality that MR(Sk) > 0 for every k. Using
eq. (21.3) with v1 = 1Sk and v2 = 1Sl we get

∥ρl − ρk∥L1(ν) ≤
4

max
{
∥Sk∥1,R, ∥Sl∥1,R

}∥Sk△Sl∥1,R (23.1)

This implies, since the sequence (Sk) is convergent in ∥∥1,R-seminorm
and hence is Cauchy, that the sequence (ρk) is Cauchy in L1(ν)-norm.
Since L1(ν) is complete and ν(ρk) = 1 for every k, there is a ρ ∈ L1(ν)

with ν(ρ) = 1 so that
lim

k
∥ρk − ρ∥L1(ν) = 0 (23.2)

Since ∥ρk − ρ∥L1(ν) = 2∥ρkν − ρν∥V and ρkν = µSk ,α, we get

lim
k

∥∥µSk ,α − ρν
∥∥

V = 0 (23.3)

But by proposition 20.1 (c) we also have limk
∥∥µSk ,α − µS,α

∥∥
V = 0 hence

we must have µS,α = ρν.

We can use proposition 20.1 in an argument similar to the one we used
to show that any open set can be represented at α to prove that if a Gδ set
B has positive µα-measure then it can be represented at α. Only the initial
setup of the proof is different. This time let (Bk) be a decreasing sequence
of open sets which converges to B. Let Sk ⊂ R represent Bk at α. We
again have the isometry eq. (19.2) from which everything follows: the
existence of a good set S which represents B at α and M(S) = µα(B).

Since every Borel measurable set differs from a Gδ set on a set of µα-
measure zero, we in fact showed that every Borel set of positive µα-
measure can be represented. So we proved the following more precise
version of theorem 7.1 for the case when the Radon-Nikodym derivative
of a measure with respect to µα is an indicator.

23.1 Proposition ▶ Theorem 7.1 for indicators
Let R ⊂ N be a good set, α be an irrational number, and let B be a
Borel set with µα(B) > 0.
Then B can be represented at α by a set S ⊂ R which satisfies

MR(S) = µα(B) > 0 (23.4)

4 Measures that cannot be represented at every irrational α

For this section, we suspend the proof of theorem 7.1 just to see how
proposition 23.1 can be used to prove theorem 5.3. We will also prove
theorem 6.1.
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4.1 Proof of theorem 5.3

In this section we want to prove that if the Borel probability measure ν

has a point-mass at a point γ ∈ T and α is irrational then ν cannot be
represented at α.

The proof is by contradiction: let us assume that for some γ ∈ T,
ν({γ}) > 0 and that ν can be represented by the set R at α, so µR,α = ν.
Then the Dirac mass δγ is absolutely continuous with respect to µR,α with
Radon-Nikodym derivative equal 1

ν(γ)
1{γ}. By proposition 23.1 there is a

good set S ⊂ R which represents δγ at α, so µS,α = δγ. Let us define the
function ϕ : T→ C as

ϕ(β) := µS,β(e) (24.1)

Then, by the definition of µS,β(e), ϕ is the limit of the sequence (ϕN) of
continuous functions defined by ϕN(β) := An∈[1,N] e(snβ) where (sn) is
the elements of S arranged in increasing order. Since for every p ∈ Z we
have µS,pα(e) = µS,α(ep) and µS,α(ep) = ep(γ), we have

|ϕ| = 1 on the dense set { pα : p ∈ Z } (24.2)

By Weyl’s theorem,15 ϕ = 0 on a set of full Lebesgue measure, so, as a 15 Weyl 1916, Satz 21; Kuipers and Nieder-
reiter 1974, Theorem 4.1.consequence,

ϕ = 0 on a dense set. (24.3)

By Baire’s theorem,16 eqs. (24.2) and (24.3) together are impossible to 16 Baire 1905, Page 83.

hold simultaneously for the limit of continuous functions.

4.2 Proof of theorem 6.1

So in this section we want to prove that if ν is a Borel probability measure
on T with lim supp→∞|ν(ep)| > 0 then there is an irrational α where
ν cannot be represented. In fact the set of such α’s is of full Lebesgue
measure.

From the assumption that lim supp→∞|ν(ep)| > 0 it follows that there
is an ϵ > 0 and a infinite sequence p1 < p2 < . . . of indices so that

|ν epk | > ϵ for k ∈ N (24.4)

By Weyl’s result,17 the set A ⊂ T defined by 17 Weyl 1916, Satz 21; Kuipers and Nieder-
reiter 1974, Theorem 4.1.

A :=
{

α : { pkα : k ∈ N } has nonempty interior (mod 1)
}

(24.5)

has full λ measure. We want to show that A is a subset of those α’s at
which the measure ν cannot be represented.

Let α ∈ A, and suppose the measure ν can be represented at α, say, by
the set S = (sn), that is, µS,α = ν. Let us define the function ϕ : T→ C as

ϕ(β) := µS,β(e) (24.6)
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Then, by the definition of µS,β(e), ϕ is the limit of the sequence (ϕN) of
continuous functions defined by ϕN(β) := An∈[1,N] e(snβ). Since for
every p ∈ Z we have µS,pα(e) = µS,α(ep) and µS,α(ep) = ν(ep), by
eq. (24.4) we have ∣∣µS,pkα(e)

∣∣ > ϵ for every k ∈ N (25.1)

By the definition of ϕ, we can write the above as

|ϕ| > ϵ on the set { pkα : k ∈ N } (25.2)

Since α ∈ A, the set { pkα : k ∈ N } is dense in a nondegenerate interval
I ⊂ T.

By Weyl’s theorem,18 ϕ = 0 on a set U of full Lebesgue measure 18 Weyl 1916, Satz 21; Kuipers and Nieder-
reiter 1974, Theorem 4.1.

ϕ = 0 on U (25.3)

Since both { pkα : k ∈ N } and U are dense in the interval I, by Baire’s
theorem,19 eqs. (25.2) and (25.3) cannot be true together for the limit ϕ of 19 Baire 1905, Page 83.

continuous functions.

5 Representing by weights

In this section, we fix the good set20 R and the irrational number α, and 20 Note that we make no further assump-
tion on R, such as sublacunaritywe continue in the tradition of section 3 suppressing the set R in our

notation for the limit measure, so µα = µR,α.
In trying to extend the class of representable functions ρ from indica-

tors, we first consider an easier problem. Instead of representing by sets,
we represent by R-weights.

25.1 Definition ▶ Function represented by a weight
Let ρ be an unsigned L1(T, µα) function with µα(ρ) > 0.
We say the R-weight w represents ρ at α if w is good and it represents
the measure ρ · µα, that is, µw,α = 1

µα(ρ)
ρ · µα.

The R-weights w we consider in this section have positive mean
in R, so MR(w) > 0. For such a weight, the non-normalized aver-
ages An∈[1,N]w(rn)δrn β are easier to handle than the normalized ones
Aw

n∈[1,N]
δrn β. The convergence or divergence properties of the two aver-

ages are identical since they differ only by the nonzero factor MR(w),

lim
N
An∈[1,N]w(rn)δrn β = MR(w) lim

N
Aw

n∈[1,N]δrn β (25.4)

as can be seen from writing Aw
n∈[1,N]

δrn β = N
∑n∈[1,N] w(rn)

An∈[1,N]w(rn)δrβ.

In section 2 we have already seen that if ρ is an unsigned continuous
function with µα(ρ) > 0 then the R-weight w defined by

w(rn) := ρ(rnα) (25.5)
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is good, unsigned and it represents ρ at α. Since every unsigned µα-
integrable function can be approximated arbitrary closely by unsigned
continuous functions in L1(T, µα)-norm, the proof of theorem 9.3 (a)
requires only an approximation argument similar to what we had in
section 3. We restate theorem 9.3 (a) in the following form for the readers
convenience.

26.1 Proposition ▶ Any integrable function is representable with weights
Let ρ be an unsigned function from L1(T, µα) with µα(ρ) > 0.
Then there is an R-weight w which represents ρ at α. In particular, we
have

MR(w) = µα(ρ) (26.1)

Furthermore, if ρ is a bounded function then the representing
R-weight w can be chosen to be bounded.

The proof of proposition 20.1 can be easily adjusted to obtain the
following analog for weights.

26.2 Proposition ▶ Limit of good weights with positive mean is good
Let (wk) be a sequence of good R-weights with mean which converge
to the R-weight w in ∥∥1,R-seminorm, so limN∥wk − w∥1,R = 0.
Assume that lim supk MR(wk) > 0.
Then we have the following.

a) limk MR(wk) exists and limk MR(wk) = MR(w) > 0.

b) w is a good R-weight.

c) The sequence
(
µwk ,β

)
k of limit measures converge to µw,β in

variation distance and uniformly in β,

lim
k

sup
β

∥∥µwk ,β − µw,β
∥∥

V = 0 (26.2)

d) Let ν be a Borel measure on T.

If for some α, µwk ,α is absolutely continuous with respect to ν with
Radon-Nikodym derivative ρk for every k then µw,α is also
absolutely continuous with respect to ν with Radon-Nikodym
derivative ρ which satisfies

lim
k
∥ρk − ρ∥L1(ν) = 0 (26.3)

With this proposition, we can complete the proof of proposition 26.1
exactly as we proved proposition 23.1, using a sequence (ρk) of unsigned
continuous functions that converge to ρ in L1(µα)-norm. We need to
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remark only that if ρ is a bounded function, then the sequence (ρk) of
continuous functions can be chosen to be uniformly bounded.

6 Proof of theorem 7.1 for bounded ρ

In this section, we still are working with a fixed good set R of positive
integers, an irrational number α, but now we also fix a bounded Borel
measurable, unsigned function ρ with µα(ρ) > 0. We proved in section 5
that ρ can be represented at α by a good, bounded R-weight w. In this
section we will show that there is a good set S ⊂ R which also represents
ρ at α, hence proving theorem 7.1 for bounded ρ. It follows from the
definition of representation that if the good R-weight w represents ρ then
so does the R-weight cw for every positive constant c. In particular, we
can assume that the R-weight w representing ρ is bounded by 1. We will
show that then there is a set S ⊂ R so that

lim
N

sup
β

∣∣∣An∈[1,N]1S(rn) e(rnβ)−An∈[1,N]w(rn) e(rnβ)
∣∣∣ = 0 (27.1)

The “construction” of S satisfying eq. (27.1) is done randomly. Our ran-
dom method requires that we limit the growth of the set R; we need to
assume that R is sublacunary.21 We need the concept of a sublacunary 21 Jones, Lacey, and Wierdl 1999, Theorem

B.weight.

27.1 Definition ▶ Sublacunary weight
The R-weight w is called sublacunary if it satisfies

lim
N

w(R(N))

log N
= ∞ (27.2)

We often consider the sequence (rn) instead of the set R in which case
we can use the following more convenient version of eq. (27.2).

lim
N

∑n∈[1,N] w(rn)

log rN+1
= ∞ (27.3)

Our main tool in this section is the following.

27.2 Proposition ▶ There is a set representing the same measures as a bounded weight
Let w be a bounded, sublacunary R-weight.
Then there is a set S ⊂ R so that

lim
N

max
β∈T

∣∣∣As∈S(N) e(sβ)−Aw
r∈R(N) e(rβ)

∣∣∣ = 0 (27.4)

As a consequence, if the R-weight w is good then so is the set S and we
have

µS,β = µw,β for every β (27.5)
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Proof. Since we can always assume that the bound of the R-weight w is 1,
proposition 27.2 follows from the following lemma.

28.1 Lemma ▶ Random selection of a good set
Let σ be an R-weight bounded by 1. We assume that for a constant
b > 0 we have

lim inf
N

σ
(

R(N)
)

log N
> b (28.1)

Let (Ω, P) be a probability space and and let (Xr)r∈R be a sequence of
totally independent Ω → {0, 1} random variables indexed by R and
with distribution P(Xr = 1) = σ(r) (so P(Xr = 0) = 1 − σ(r)).
Then we have

P

ω : sup
N

max
β∈T

∣∣∣∑r∈R(N)

(
Xr(ω)− σ(r)

)
e(rβ)

∣∣∣√
(log N)σ

(
R(N)

) < ∞

 = 1

(28.2)

To see that proposition 27.2 indeed follows from lemma 28.1, let
σ = w

∥w∥∞
, so σ is bounded by 1. Here we make a bit more compli-

cated argument than needed to show that there is a rate of convergence in
eq. (27.4).

The sublacunarity assumption on w implies that σ is sublacunary. We
then have, as a consequence of eq. (28.2), that there is a measurable subset
Ω1 of Ω with P(Ω1) = 1 so that for every ω ∈ Ω1 there is a finite
positive constant Cω with

max
β∈T

∣∣∣∣∣∣ 1
σ(R(N)) ∑

r∈R(N)

Xr(ω) e(rβ)− 1
σ(R(N)) ∑

r∈R(N)

σ(r) e(rβ)

∣∣∣∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
)

(28.3)
For β = 0, we then have∣∣∣∣∣∣ 1

σ(R(N)) ∑
r∈R(N)

Xr(ω)− 1

∣∣∣∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
) (28.4)

This implies that if we replace σ(R(N)) by ∑r∈R(N) Xr(ω) in 1
σ(R(N)) ∑r∈R(N) Xr(ω) e(rβ)

we make a O

(√
log N

σ
(

R(N)
)) error, hence eq. (28.3) implies

max
β∈T

∣∣∣∣∣∣ 1
∑r∈R(N) Xr(ω) ∑

r∈R(N)

Xr(ω) e(rβ)− 1
σ(R(N)) ∑

r∈R(N)

σ(r) e(rβ)

∣∣∣∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
)

(28.5)
Defining Sω ⊂ R by

Sω := { r : r ∈ R, Xr(ω) = 1 } (28.6)



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS 29

we can write eq. (28.5) as

max
β∈T

∣∣∣As∈Sω(N) e(sβ)−Aσ
r∈R(N) e(rβ)

∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
) for every ω ∈ Ω1

(29.1)
Since σ is a constant multiple of w, we can replace σ by w in eq. (29.1),

max
β∈T

∣∣∣As∈Sω(N) e(sβ)−Aw
r∈R(N) e(rβ)

∣∣∣ ≤ Cω

√
∥w∥∞ log N
w
(

R(N)
) for every ω ∈ Ω1

(29.2)
Since limN

∥w∥∞ log N

w
(

R(N)
) = 0, due to the sublacunarity assumption on the

R-weight w, we get eq. (27.4) if we take S = Sω for any ω ∈ Ω1.

Proof of lemma 28.1. To see clearly what we need to do, denote

ZN(β) := ∑
r∈R(N)

(
Xr(ω)− σ(r)

)
e(rβ)

and

tN := c ·
√
(log N)σ

(
R(N)

)
where we’ll choose the constant c appropriately later. By the Borel-
Cantelli lemma, it’s enough to prove

∑
N

P
(

max
β∈T

|ZN(β)| ≥ tN

)
< ∞ (29.3)

The first idea in proving eq. (29.3) is that we do not have to take the max-
imum over all β ∈ T, but over a finite subset B of T which contains N3

elements22. Since the degree of the trigonometric polynomial ZN(β) is at 22 In fact, we can take a set B with as few
elements as 10N, but in our applications,
10N won’t improve anything over N3.

most N, we can readily see that supβ∈T |Z′
N(β)| ≤ N2 supβ∈T |ZN(β)|.

It follows that if we take BN ⊂ T to be an arithmetic progression with
|BN | = N3 then

max
β∈T

|ZN(β)| ≤ 2 max
β∈BN

|ZN(β)| (29.4)

Hence we have

P
(

max
β∈T

|ZN(β)| ≥ tN

)
≤ P

(
max
β∈BN

|ZN(β)| ≥ tN/2
)

(29.5)

Using the union estimate, we get

P
(

max
β∈BN

|ZN(β)| ≥ tN/2
)
≤ N3 max

β∈BN
P(|ZN(β)| ≥ tN/2) (29.6)

Thus eq. (29.3) follows from

∑
N

N3 max
β∈BN

P(|ZN(β)| ≥ tN/2) < ∞ (29.7)
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This follows if we prove

P
(
|ZN(β)| ≥ tN/2

)
<

2
N5 for every β ∈ T (30.1)

To prove eq. (30.1), we use the Bernstein-Chernoff exponential esti-
mate.23 This estimate says that if Yk, k ∈ [1, K], are totally independent, 23 Tao and Vu 2006, Exercise 1.3.4 with

t = λσ.mean zero, complex valued random variables with |Yk| ≤ 1, then

P

∣∣∣∣∣∣ ∑
k∈[1,K]

Yk

∣∣∣∣∣∣ ≥ t

 ≤ 4 max

{
exp

(
− t2/8

∑k∈[1,K] E|Yk|2

)
, exp(−t/3)

}
for every t > 0

(30.2)
Take K = #R(N) and Yr(β) := (Xr − σ(r))e(rβ) for r ∈ R(N). Then

|Yr(β)| ≤ 1 so the Yr satisfy the assumption in Bernstein’s inequality,
hence, with t = tN/2, we get the estimate

P
(
|ZN(β)| ≥ tN/2

)
≤ 4 max

{
exp

(
−

t2
N/32

∑r∈R(N) E|Yr|2

)
, exp(−tN/6)

}
(30.3)

Since E|Yr(β)|2 = σ(r)(1 − σ(r)) we have

∑
r∈R(N)

E|Yr(β)|2 ≤ σ
(

R(N)
)

(30.4)

Using that tN = c ·
√
(log N)σ

(
R(N)

)
, we get

t2
N/32

∑r∈R(N) E|Yr(β)|2 =
(c2/32)(log N)σ

(
R(N)

)
∑r∈R(N) E|Yr(β)|2

using the estimate in eq. (30.4)

≥
(c2/32)(log N)σ

(
R(N)

)
σ
(

R(N)
)

= (c2/32)(log N)

hence

exp

(
−

t2
N/32

∑r∈R(N) E|Yr(β)|2

)
≤ e−(c2/32)(log N) (30.5)

In order to get e−(c2/32)(log N) ≤ N−5 = e−5 log N , we need to have
c2/32 ≥ 5, so it enough to have, since

√
160 < 13,

c ≥ 13 (30.6)

We also have

tN/6 = (c/6) ·
√
(log N)σ

(
R(N)

)
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by the assumption in eq. (28.1) for all large enough N

≥ (c/6)
√

b log N

It follows that
exp(−tN/6) ≤ e−(c/6)

√
b log N (31.1)

We again need to have e−(c/6)
√

b log N ≤ N−5 = e−5 log N which poses the
requirement (c/6)

√
b ≥ 5, that is,

c ≥ 30√
b

(31.2)

Thus choosing the constant c large enough to satisfy both eqs. (31.2)
and (30.6), the estimate in eq. (30.3) implies the one in eq. (30.1).

6.1 Notes to lemma 28.1

The type of method we used in lemma 28.1 to estimate trigonometric
polynomials goes back to Salem-Zygmund.24 Recent developments have 24 Salem and Zygmund 1954, Chapter IV.

been given for example by Weber25 and by Cohen-Cuny.26 25 Weber 2000.
26 Cohen and Cuny 2006.

7 Absolute continuity and positive mean

The general theme of this section is that if a good set or weight has pos-
itive mean then it can represent only an absolutely continuous measure.
To be specific, we want to prove theorems 7.2 (b) and 9.3 (b).

Our standing assumption is that R is a sublacunary good set, and hence
we suppress it in our notation for the limit measure, so we write µα in-
stead of µR,α.

7.1 Proof of theorem 7.2 (b)

Theorem 7.2 (a) says that if ρ is an unsigned L∞(µα) function with
µα(ρ) > 0 and α is an irrational number then ρ can be represented at
α with a good set S ⊂ R satisfying MR(S) =

µα(ρ)
∥ρ∥L∞(µα)

. We have proved

this in section 6.
Theorem 7.2 (b) says that the converse is also true: if the good set S ⊂

R satisfies ∥S∥1,R > 0 then the limit measure µS,β is absolutely continuous
with respect to µβ with a bounded Radon-Nikodym derivative ρβ which
must satisfy ∥∥ρβ

∥∥
L∞(µβ)

≤ 1
∥S∥1,R

for every β (31.3)

This is what we intend to prove now. Since β ∈ T is fixed, we suppress
it in our notation, so for example we write µ for µβ and µS for µS,β. Let
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S ⊂ R be such that ∥S∥1,R > 0. Let us first show that for every β, the
limit measure µS is absolutely continuous with respect to µ.

This will follow if we show that for every Borel set B we have

µS(B) ≤ 1
∥S∥1,R

µ(B) (32.1)

To see this, it’s enough to show that for every unsigned, continuous func-
tion ϕ on T we have

µS(ϕ) ≤
1

∥S∥1,R
µ(ϕ) (32.2)

Let ϕ be such a function and let N1 < N2 < . . . be a sequence of indices
for which limkAr∈R(Nk)

1S(r) = ∥S∥1,R. We can then estimate as

µS(ϕ) = lim
N
As∈S(N)ϕ(sβ)

= lim
k
As∈S(Nk)

ϕ(sβ)

= lim
k

1
Ar∈R(Nk)

1S(r)
Ar∈R(Nk)

1S(r)ϕ(rβ)

≤ lim sup
k

1
Ar∈R(Nk)

1S(r)
Ar∈R(Nk)

ϕ(rβ)

since limk
1

An∈[1,Nk ]
1S(n)

= 1
∥S∥1,R

and limN Ar∈R(Nk)
ϕ(rβ) exists,

=
1

∥S∥1,R
lim

N
Ar∈R(Nk)

ϕ(rβ)

since limN Ar∈R(Nk)
ϕ(rβ) = µ(ϕ),

=
1

∥S∥1,R
· µ(ϕ)

proving eq. (32.2).
Now, inequality µ

(
ρβ1B

)
≤ 1

∥S∥1,R
µ(B) applied to the Borel set

B =
{

ρβ > 1
∥S∥1,R

}
readily gives eq. (31.3).

7.2 Proof of theorem 9.3 (b)

Since the good set R is fixed, we suppress it in our notation for the limit
measures, so we write µα instead of µR,α.

In this section, we need to prove that if the good R-weight w has pos-
itive relative 1-norm and it is integrable, that is, it can be approximated
arbitrary closely by bounded, good R-weights in ∥∥1,R-seminorm, then
for every irrational β the limit measure µw,β is absolutely continuous with
respect to µβ.

Let (wk) be a sequence of good, bounded R-weights which converges
to w in ∥∥1,R-seminorm, limk∥wk − w∥1,R = 0. Since

∣∣∣∥wk∥1,R − ∥w∥1,R

∣∣∣ ≤
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∥wk − w∥1,R, we have limk∥wk∥1,R = ∥w∥1,R > 0, and hence we can as-
sume without loss of generality that ∥wk∥1,R > 0 for every k. That for
every k the measure µwk ,β is absolutely continuous with respect to µβ for
every β follows from

µwk ,β(B) ≤ ∥wk∥∞
∥wk∥1,R

µβ(B) for every Borel set B (33.1)

The proof of this inequality is almost identical to the proof of the inequal-
ity in eq. (32.1), hence we omit it.

Now the rest of the proof of theorem 9.3 follows from lemma 21.1.

8 Proof of theorem 7.1 for unbounded ρ

In this section we again work with a fixed, sublacunary good set R ⊂ N

which we view as a sequence (rn) arranged in increasing order. We omit
R from our notation for the limit measures, so we write µβ instead of
µR,β. We also fix an irrational number α. Let ρ ∈ L1(µα). We want to
find a good set27 S ⊂ R which represents ρ at α. According to proposi- 27 Which can be shown to be sublacunary

as a consequence of the sublacunarity of
the weight v below.

tion 26.1 there is a good R-weight w which represents ρ at α. Since this
weight w has positive relative mean with respect to R, it’s a sublacunary
weight. The problem is that, as per construction, w is not a bounded
weight if ρ is unbounded, hence we cannot use our proposition 27.2 to
construct the desired set S.

Our main job in this section hence will be to construct a good R-
weight v satisfying the following properties

• v is bounded by 1;

• v is sublacunary;

• v represents the same measure at every β as w, so µv,β = µw,β for every
β.

Once we have such a good weight v, we can use proposition 27.2 to
“construct” the desired good set S.

The weight v will be of the form σ · w where the weight σ is a decreas-
ing weight, that is, σ(rn) ≥ σ(rn+1) for every n ∈ N. That a weight v of
this form represents the same measures everywhere is a consequence of a
general but probably familiar result—our main new tool in this section.
Not to get bugged down with unnecessary notation, we will state the re-
sult for weights with the reindexing w(n) = w(rn) with which R weights
become N-weights.

First recall the definition of a dissipative sequence of measures on N.
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34.1 Definition ▶ Dissipative sequence of measures
Let (vN)N∈N be a sequence of finite measures on N.
We say, the sequence (vN)N∈N is dissipative if

lim
N

vN(j)
vN(N)

= 0, for every j ∈ N (34.1)

34.2 Proposition ▶ Decreasing weights preserve limits
Let w be a weight, (σN)N∈N be a sequence of finite measures on N and
let x = (xn) be a sequence from a normed space (X, ∥∥). Denoting
vN := σN · w, we assume the following

a) Each σN has finite support.

b) The sequence (vN) is dissipative.

c) For each N the measure σN is decreasing, σN(1) ≥ σN(2) ≥ . . . .

d) The sequence
(
Aw

n∈[1,N]
xn

)
N

converges to some y ∈ X,

lim
N
Aw

n∈[1,N]xn = y (34.2)

Then, the sequence
(
A

vN
j∈Nxj

)
N

of averages converge to the same limit
as the w-weighted averages,

lim
N
A

vN
j∈Nxj = y (34.3)

At the heart of this result is the following quantitative estimate: For a
given ϵ > 0, if K is such that

∥∥∥Aw
n∈[1,j]xn − y

∥∥∥ < ϵ for j ≥ K then we
have∥∥∥AvN

j∈Nxj − y
∥∥∥ ≤ ϵ + max

j∈[1,K]

∥∥∥Aw
n∈[1,j]xn − y

∥∥∥ · vN([1, K])
vN(N)

(34.4)

for every N ≥ K.

Note that the estimate in eq. (34.4) indeed implies the conclusion
of the proposition in eq. (34.3). To see this, let N → ∞ in eq. (34.4).
Then, since (vN) is a dissipative sequence so limN

vN([1,K])
vN(N)

= 0, we

get that lim supN

∥∥∥AvN
j∈Nxj − y

∥∥∥ ≤ ϵ. Since ϵ > 0 is arbitrary, we get

limN

∥∥∥AvN
j∈Nxj − y

∥∥∥ = 0.

Proof of proposition 34.2. The main idea of the proof is to write AvN
j∈Nxj as
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an average of the w-averages with respect to another measure qN on N

A
vN
j∈Nxj = A

qN
j∈NA

w
n∈[1,j]xn for all N (35.1)

These measures qN will also satisfy

qN(N) = vN(N) for every N ∈ N (35.2)

The measure qN appears during performing summation by parts: setting
σN(0) := 0, w(0) := 0 and x0 := 0, we have

A
vN
j∈Nxj =

1
vN(N) ∑

j∈N
σN(j)w(j)xj

=
1

vN(N) ∑
j∈N

σN(j)

 ∑
n∈[1,j]

w(n)xn − ∑
n∈[j−1]

w(n)xn


=

1
vN(N) ∑

j∈N

(
σN(j)− σN(j + 1)

)
∑

n∈[1,j]
w(n)xn

=
1

vN(N) ∑
j∈N

(
σN(j)− σN(j + 1)

)
· w([1, j]) ·Aw

n∈[1,j]xn

Thus, defining the measure qN by

qN(j) :=
(

σN(j)− σN(j + 1)
)
· w([1, j]), for j ∈ N (35.3)

we get the identity in eq. (35.1) once we show that qN really is a measure
satisfying eq. (35.2). That qN(j) is unsigned follows from the assumption
that the sequence (σN(j))j∈N is decreasing for fixed N. That qN(N) =

vN(N) follows by setting xj = 1 for every j in the summation by parts
argument above since then we get exactly qN(N) = vN(N):

1 = A
vN
j∈N1

=
1

vN(N) ∑
j∈N

(
σN(j)− σN(j + 1)

)
· w([1, j]) ·Aw

n∈[1,j]1

=
1

vN(N) ∑
j∈N

qN(j) · 1

=
1

vN(N)
· qN(N)

Using the now obvious identity y = A
qN
j∈Ny together with eq. (35.1),

we can now write AvN
j∈Nxj − y as

A
vN
j∈Nxj − y = A

qN
j∈N

(
Aw

n∈[1,j]xn − y
)

(35.4)

Let ϵ > 0. Since we assumed limN A
w
n∈[1,N]

xn = y, there is an K =

K(ϵ) so that ∥∥∥Aw
n∈[1,j]xn − y

∥∥∥ < ϵ, for j ≥ K (35.5)
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Splitting the summation on j in AqN
j∈N

(
Aw

n∈[1,j]xn − y
)

into two parts at
K and using the triangle inequality, we get the estimate

∥∥∥AqN
j∈N

(
Aw

n∈[1,j]xn − y
)∥∥∥ ≤

∥∥∥∥∥∥ 1
qN(N) ∑

j∈[1,K]
qN(j)

(
Aw

n∈[1,j]xn − y
)∥∥∥∥∥∥

+

∥∥∥∥∥ 1
qN(N) ∑

j>K
qN(j)

(
Aw

n∈[1,j]xn − y
)∥∥∥∥∥ (36.1)

We can estimate the first term as∥∥∥∥∥∥ 1
qN(N) ∑

j∈[1,K]
qN(j)

(
Aw

n∈[1,j]xn − y
)∥∥∥∥∥∥ ≤ max

j∈[1,K]

∥∥∥Aw
n∈[1,j]xn − y

∥∥∥ · qN([1, K])
qN(N)

(36.2)
Using the definition of qN(j) as given in eq. (35.3), we can estimate
qN([1, K]) as

qN([1, K]) = ∑
j∈[1,K]

(
σN(j)− σN(j + 1)

)
· w([1, j])

= ∑
j∈[1,K]

σN(j)
(

w([1, j])− w([j − 1])
)
− σN(K + 1)w([1, K])

= ∑
j∈[1,K]

σN(j)w(j)− σN(K + 1)w([1, K])

= ∑
j∈[1,K]

vN(j)− σN(K + 1)w([1, K])

≤ vN([1, K])

Using this estimate and that qN(N) = vN(N) in eq. (36.2) we get∥∥∥∥∥∥ 1
qN(N) ∑

j∈[1,K]
qN(j)

(
Aw

n∈[1,j]xn − y
)∥∥∥∥∥∥ ≤ max

j∈[1,K]

∥∥∥Aw
n∈[1,j]xn − y

∥∥∥ · vN([1, K])
vN(N)

(36.3)
The second term in eq. (36.1) can be estimated, using eq. (35.5), as∥∥∥∥∥ 1

qN(N) ∑
j>K

qN(j)
(
Aw

n∈[1,j]xn − y
)∥∥∥∥∥ ≤ ϵ (36.4)

Putting the estimates in eqs. (36.3) and (36.4) into eq. (36.1) and using the
identity in eq. (35.4) we get eq. (34.4).

36.1 Corollary ▶ Decreasing weights preserve limit measures of weights
Let w and σ be R-weights. Denoting v := σ · w, we assume the
following
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a) v(R) = ∞.

b) The R-weight σ is decreasing σ(r1) ≥ σ(r2) ≥ . . . .

c) The R-weight w is good.

Then v is a good R-weight and it represents the same measures
everywhere as w,

µv,β = µw,β for every β (37.1)

Proof. We need to show that for a given β we have

lim
N
Av

n∈[1,N] e(rnβ) = µw,β(e) (37.2)

to do this, use proposition 34.2 with σN defined by

σN(n) := σ(rn)1[1,N](n) (37.3)

and (xn) defined by
xn := e(rnβ) (37.4)

Let us now go back to our good R-weight w which represents ρ at α.
Since we now consider R as the sequence (rn), its sublacunarity assump-
tion is expressed more conveniently as

lim
N

N
log rN

= ∞ (37.5)

as we noted in eq. (7.2). Since the weight w satisfies MR(w) > 0,
eq. (37.5) implies that w is also sublacunary. Writing N+1

log rN+1
= N+1

N ·
N

log rN+1
we see that eq. (37.5) implies

lim
N

N
log rN+1

= ∞ (37.6)

According to the proof of lemma 16.1, we obtained w as the limit of a
sequence (wk) of bounded good weights by pasting the wk together piece
by piece in a sense that after choosing indices N1 < N2 < . . . , we define
w to be equal wk on the interval (Nk, Nk+1]

w(rn) := ∑
k

wk(rn)1(Nk ,Nk+1]
(n) (37.7)

Now, in order to obtain a good weight v which is bounded by 1 and
would represent the same measures as w, we could do the following.
Define σ by

σ(rn) :=
1

maxj∈[1,k]
∥∥wj

∥∥
∞

· 1(Nk ,Nk+1]
(n) (37.8)
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Then σ is decreasing and v := σw is bounded by 1. The remaining issue
is to ensure that v is sublacunary, and to do that it’s enough to ensure

lim
N

∑n∈[1,N] v(rn)

log rN+1
= ∞ (38.1)

as we noted in eq. (27.3). This would also ensure that both σ and v are
weights. It turns out that in the recursive process of choosing the indices
(Nk) if we choose Nk large enough compared to Nk−1 we can ensure that
v is sublacunary. We want to show that we can choose the indices Nk so
that we will have eq. (38.1). Let us note that in the proof of lemma 16.1
the choice of Nk is flexible, since it just has to be large enough to staisfy
some criteria. So we now add one additional criterion, namely we want
to choose Nk large enough to also satisfy

N
maxj∈[1,k]

∥∥wj
∥∥

∞

> k log rN+1 for every N ≥ Nk (38.2)

This is possible because of the sublacunarity condition in eq. (37.6), and
eq. (38.2) ensures the sublacunarity of v, that is, eq. (38.1).

That v represents the same measures as w at every β follows from
corollary 36.1. As in the last step of our proof of theorem 7.1, we use
proposition 27.2 to show the existence of a good set S ⊂ R which
represents the same measures as v at every β, hence at β = α we have
µS,α = ρµα.

9 The limit measure at rational points

In this section we want to prove theorem 5.2. The base set is N which we
suppress in our notation, so we write µβ instead of µN,β.

Given the probability measure ν on Tq and the rational number a
q ,

gcd(a, q) = 1, let us see what properties a good set S would need to have
so that µS,a/q = ν.

Introducing the sets Sj by

Sj := { s : s ∈ S, sa ≡ j (mod q) }, for every j ∈ [1, q] (38.3)

let us write, using that the Sj are pairwise disjoint,

As∈S(N) =
1

#S(N) ∑
s∈S(N)

δsa/q

=
1

#S(N) ∑
j∈[1,q]

∑
s∈Sj(N)

δj/q

= ∑
j∈[1,q]

#Sj(N)

#S(N)
δj/q
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If we make the assumption28 that limN
#Sj(N)

#S(N)
exists for every j then, 28 In fact, the existence of limN

#Sj(N)

#S(N)

follows from S being a good set.letting N → ∞, we get

µS,a/q = ∑
j∈[1,q]

δj/q lim
N

#Sj(N)

#S(N)
(39.1)

Since µS,a/q is supposed to be equal ν, we get

lim
N

#Sj(N)

#S(N)
= ν(j/q) (39.2)

This gives us the idea how to construct S: we start out from the set Rj

defined by

Rj := { n : na ≡ j (mod q) }, for every j ∈ [1, q] (39.3)

Note that Rj is a full residue class mod q, namely, if j′ denotes the
unique solution to the congruence j′a ≡ j (mod q), then Rj is the
arithmetic progression { kq + j′ : k ∈ N }. Note that Rj is a good set, as
are all arithmetic progressions. We clearly have

M(Rj) =
1
q

for every j ∈ [1, q] (39.4)

Now what remains is to find a set Sj ⊂ Rj with relative mean ν
(

j
q

)
and make sure that Sj is a good set. Let γ be an irrational number and
consider

Sj :=
{

r : r ∈ Rj, rγ ∈
[

0, ν

(
j
q

))}
for every j ∈ [1, q] (39.5)

Using proposition 14.1 with α = γ and R = Rj, we deduce that Sj is a

good set with MRj(Sj) = ν
(

j
q

)
, as desired. We finally define S as

S :=
⋃

j∈[1,q]

Sj (39.6)

The set S is good since it’s the finite union of pairwise disjoint good sets
with mean. Indeed, we have M(Sj) =

1
q · ν

(
j
q

)
and hence M(S) = 1

q .

10 Examples

10.1 Two good sets, but their intersection has no mean.

Here we construct randomly two good sets, R, S with M(R) = M(S) =
1/2 but M(R ∩ S) doesn’t exist.

Let (Xn) be a iid sequence of random variables on the probability space
(Ω, P), modeling fair coin flipping, so with distribution P(Xn = 1) =
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P(Xn = 0) = 1/2. Let us also consider another sequence of random
variables (Yn) defined by

Yn =

Xn if n ∈ [2k, 2k+1) for even k

1 − Xn if n ∈ [2k, 2k+1) for odd k
(40.1)

The (Yn) is also an iid sequence with the same distribution as the (Xn).
Define the sets Rω, Sω by Rω := { n : Xn(ω) = 1 } and Sω := { n : Yn(ω) = 1 }.
By lemma 28.1 both Rω and Sω are good sets almost surely with M(Rω) =

M(Sω) = 1/2. We claim that M(Rω ∩ Sω) almost surely doesn’t exists.
To see this, denote Tω := Rω ∩ Sω and observe that if M(Tω) existed
then limk

Tω∩[2k ,2k+1)
2k would exist. But, denoting by O the odd numbers

and by E the even numbers, we almost surely have

lim
k∈O

Tω ∩ [2k, 2k+1)

2k = 0

lim
k∈E

Tω ∩ [2k, 2k+1)

2k =
1
2

10.2 R1 ∪ R2 and R1 ∩ R2 have means but are not good

Here is an example of two good sets R1 and R2 each with mean 2/3,
M(R1 ∩ R2) = 1/2 but R1 ∩ R2 is not good and M(R1 ∪ R2) = 5/6 but
R1 ∪ R2 is not good.

Both sets will be defined in blocks of intervals. Partition N into a
sequence of disjoint intervals In so that their lengths go to infinity but
slower than the left endpoints go to infinity. For example, In = [n2, (n +

1)2) will do.
The first good set R1 will contain all iNtegers from I1, then only Odd

numbers from I2 then Even numbers from I3 then repeat this pattern for
I4, I5, I6 etc:

NOENOE . . . (40.2)

The set R2 is defined similarly, except it will have one pattern in inter-
vals Jk := [3k, 3k+1) for even k and another for odd k.

EONEON . . . for even k (40.3)

ONEONE . . . for odd k (40.4)

Both of these sets are good and they represent the same (uniform)
measure at every β.

The intersection R1 ∩ R2 has the patterns

EOEEOE . . . for even k (40.5)

OOEOOE . . . for odd k (40.6)
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Clearly M(R1 ∩ R2) = 1/2 but the average of e(n/2) is different on
Jk for even k from those on odd k: for even k the average will go to 1/3
while for odd k it goes to −1/3.

As for the union R1 ∪ R2, it has the patterns

NONNON . . . for even k (41.1)

NNENNE . . . for odd k (41.2)

Clearly M(R1 ∪ R2) = 5/6 but the average of e(n/2) is different on Jk

for even k from those on odd k: for even k the average will go to −1/3
while for odd k it goes to 1/3.

10.3 Open set U with visit set { n : nα ∈ U } not good

Let α be an irrational number in the torus T. We show that there exists
an open subset U of the torus such that the sequence

(
An∈[1,N]1U(nα)

)
N

does not converge when N goes to infinity.

The construction does not use at all the
group structure or the dimensional prop-
erties of the torus. This can be extended
in a general context of a sequence in a
compact metric space with a non purely
atomic asymptotic distribution.

We want to construct an open subset U of the torus and an increasing
sequence of positive integers (Nk)k≥0 such that the averages An∈[1,N2k ]

1U(nα),
k = 0, 1, 2, . . . , with even indices are large whereas the averages An∈[1,N2k+1]

1U(nα),
k = 0, 1, 2, . . . with odd indices are small.

The sequence (Nk) will be constructed by induction and each Nk will
be associated to ϵk := 1/(2k+4Nk). In this induction process, we construct
also a sequence of open subsets (Uk)k≥0.

We start with N0 > 1 fixed and we define

U0 :=
⋃

n∈[1,N0]

(nα − ϵ0, nα + ϵ0)

We have of course

An∈[1,N0]1U0(nα) = 1 and 0 < λ
(
U0
)
≤ 2N0ϵ0

This is the initial step of our construction. In order to be understand-
able, let us describe the two next steps.

By the uniform distribution of the sequence (nα)n in the torus, there
exists a number N1 > N0 such that

An∈[1,N1]
1U0

(nα) ≤ 2λ(U0) ≤ 4(N0ϵ0)

We fix such a N1. To any n ∈ [1, N1] with nα /∈ U0 we associate a real δn

that
0 < δn ≤ ϵ1 and (nα − δn, nα + δn) ∩ U0 = ∅

We define
U1 :=

⋃
n∈[1,N1]
nα/∈U0

(nα − δn, nα + δn)
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We have

An∈[1,N1]
1U1(nα) ≥ 1 − 4N0ϵ0 and 0 < λ

(
U1
)
≤ 2N1ϵ1

Note also that by construction U0 ∩ U1 = ∅.
By the uniform distribution of the sequence (nα)n in the torus, there

exists a number N2 > N1 such that

An∈[1,N2]1U1
(nα) ≤ 2λ

(
U1
)
≤ 4(N1ϵ1)

We fix such a N2. To any n ∈ [1, N2] with nα /∈ U1 we associate a real δn

satisfying

0 < δn ≤ ϵ2 and (nα − δn, nα + δn) ∩ U1 = ∅

Note that the values of the δn ’s are reini-
tialized.We define

U2 := U0 ∪
⋃

n∈[1,N2]
nα/∈U1

(nα − δn, nα + δn)

We have

An∈[1,N2]1U2(nα) ≥ 1 − 4N1ϵ1 and λ
(
U2
)
≤ 2N0ϵ0 + 2N2ϵ2

Note also that by construction U2 ∩ U1 = ∅ and U0 ⊂ U2.
Let us state now our induction hypothesis. Suppose that, for a fixed inte-
ger k > 0 we have already constructed two sequences

(Uℓ)0≤ℓ≤k and N0 < N1 < N2 < . . . < Nk

such that

• U0 ⊂ U2 ⊂ U4 ⊂ . . . and U1 ⊂ U3 ⊂ U5 ⊂ . . .,

• If ℓ is even and ℓ′ is odd, then Uℓ and Uℓ′ are disjoint,

• Each Uℓ is a finite union of open intervals,

• If 0 ≤ 2ℓ ≤ k, then

λ(U2ℓ) ≤ 2(N0ϵ0 + N2ϵ2 + . . . + N2ℓϵ2ℓ)

and

An∈[1,N2ℓ ]
1U2ℓ(nα) ≥ 1 − 4(N1ϵ1 + N3ϵ3 + . . . + N2ℓ−1ϵ2ℓ−1)

• If 1 ≤ 2ℓ+ 1 ≤ k, then

λ(U2ℓ+1) ≤ 2(N1ϵ1 + N3ϵ3 + . . . + N2ℓ+1ϵ2ℓ+1)

and

An∈[1,N2ℓ+1]
1U2ℓ+1(nα) ≥ 1 − 4(N0ϵ0 + N2ϵ2 + . . . + N2ℓϵ2ℓ)
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Here begins the induction process. By the uniform distribution of the
sequence (nα)n in the torus, there exists a number Nk+1 > Nk such that

An∈[1,Nk+1]
1Uk

(nα) ≤ 2λ
(
Uk
)

We fix such a Nk+1. To any n ∈ [1, Nk+1] with nα /∈ Uk we associate a
real δn that

0 < δn ≤ ϵk+1 and (nα − δn, nα + δn) ∩ Uk = ∅

We define Note that the values of δn ’s are reinitial-
ized at each induction step.

Uk+1 := Uk−1 ∪
⋃

n∈[1,Nk+1]

nα/∈Uk

(nα − δn, nα + δn)

The items of the induction hypothesis are now satisfied by the se-
quences (Uℓ)0≤ℓ≤k+1 and (Nℓ)0≤ℓ≤k+1.

We can consider these sequences as infinite, and we define U :=⋃
k≥0 U2k.
Recalling our choice Nkϵk = 2−k−4, we obtain

An∈[1,N2k ]
1U(nα) ≥ An∈[1,N2k ]

1U2k (nα)

≥ 1 − 4 ∑
ℓ

N2ℓ+1ϵ2ℓ+1

= 5/6

and

An∈[1,N2k+1]
1U(nα) ≤ An∈[1,N2k+1]

1Uc
2k+1

(nα)

≤ 4 ∑
ℓ

N2ℓϵ
2ℓ

= 1/3
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