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ORDINARY REPRESENTATIONS AND COHOMOLOGY

DEBARGHA BANERJEE

ABSTRACT. We can associate p -adic admissible unitary representation of GL2(Qp) to every lo-

cal Galois representation. We prove if local Galois representations is ordinary then there exists a

sub representation of this representation of GL2(Qp) that appears in ordinary parts of the coho-

mology. We give a positive answer to a question raised by Chojecki [Cho18].

1. INTRODUCTION

Fix a prime p and E a finite extension of Qp with ring of integers OE , uniformiser ω and

maximal ideal m with residue field κ(m) := OE/m. Let ρ : GQ := Gal(Q/Q) → GL2(E) be

a pro-modular global Galois representation as in [Eme11, p. 3]. In other words ρ ≃ ρf for

a cuspidal p-adic modular eigenform of possibly non-integral weights with associated Galois

representation ρf . Let ρp := ρ|Gp
: Gp → GL2(E) local Galois representation obtained by the

restriction of the Galois representation to the decomposition groupGp := Gal(Qp/Qp). We also

assume that the residual Galois representation ρ : GQ := Gal(Q/Q)→ GL2(κ(m)) is absolutely

irreducible. Now, ramified primed will give rise to levels of the p-adic modular forms, we are

starting with. We assume that the levels of p-adic modular forms are of the form Γ(pm)∩Γ1(N)

with (N, p) = 1.

This Galois representation ρp can be very complicated and most importantly are vast. How-

ever, thanks to the work pioneered by Fontaine on p-adic Hodge theory and developed by

several mathematicians (including Colmez, Breuil, and Berger), we have a better understand-

ing of these local Galois representation ρp. Assume that these local Galois representations

satisfy the hypothesis of Fontaine-Mazur conjecture [Eme11, p. 4, Theorem 1.2.4], namely ρp is

de-Rham and hence potentially semi-stable [FO08, §6.5.2]. For this article, we further assume

that ρp is potentially crystalline [FO08]. Now Fontaine-Mazur conjecture has been proved in

a great generality [Kis09] (see also [Kis03], [SW99], and [Pan22]). Hence, we conclude that
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2 DEBARGHA BANERJEE

ρ ≃ ρf for a global Galois representation ρf associated to an elliptic modular form f of level

Γ(pm) ∩ Γ1(N) with (N, p) = 1.

By a program initiated by Breuil starting from the beginning of this century, we can associate

a p-adic admissible, unitary automorphic representation B(ρp) of the group G := GL2(Qp) to

these local Galois representations. By [Eme11], these Galois representations appear in the com-

pleted cohomology groups of the modular curves. Thanks to the work of Scholze [Sch15], the

modular curves break into the ordinary and supersingular parts. It is natural to ask under

what condition of ρp, the corresponding automorphic representation B(ρp) will appear in the

completed cohomology of the ordinary or supersingular part of the cohomology. This arti-

cle aims to investigate this condition. We show that ordinary representations appear in the

ordinary parts of the cohomologies.

For ρp absolutely irreducible, a similar theorem was proved by Chojecki [Cho15, Theorem

6.3] for mop p situation and [Cho18] for p-adic situation. In [Cho18, p. 469], Chojecki asked

if the above theorem can be generalized to the situation when ρp is reducible, non-split. Our

theorem answers the question raised by Chojecki. For totally real fields, we generalize Cho-

jecki’s theorem [BR22] in the mod p situation again under the assumption that ρp is absolutely

irreducible. Our theorem substantiates that ordinary representations will appear in the ordi-

nary part of the cohomology representation similar to Chojecki whose theorem tells that the

supersingular representations appear in the supersingular part of the cohomology.

Recall that for any schemes X and any ring A, H1(X)A := H1
ét(X,A) and H1

ord denotes the

cohomology of the ordinary part of the modular curve (see § 2.1). We also denote by Ĥ1
ord, the

completed cohomology of the ordinary locus. Let B(ρp) be the automorphic representation

associated by the p-adic Langlands correspondences to ρp (cf § 3). Let ǫ be the p-adic cyclo-

tomic character with Bst the semi-stable period ring of Fontaine. Note that this period ring Bst

contains Cp := Q̂p.

Theorem 1.1. Let ρ : GQ → GL2(E) be a pro-modular Galois representation with the corresponding

local representation ρp ≃

(
η1 ⋆

0 η2

)
⊗ η with ⋆ 6= 0, η1, η2 : Q×

p → O×

E integral characters and

η : Gp → E×. We also assume that η1 · η2 6∈ {ǫ
±1}.. We assume that ρp is potentially crystalline

reducible non-split with distinct Hodge-Tate between (0, k − 1). Let B(ρp) be the automorphic repre-

sentation associated by the p-adic local Langlands correspondence. Then, there exists a principal series

sub representation π1 of B(ρp) such that

ρp ⊗Cp π1 ⊂ Ĥ
1
Bst,ord.

We also have the inclusion of global representations ρ ⊂ HomG(π1, Ĥ
1
Bst,ord

).
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Here, we take the principal series representations in the category of smooth representations.

Note that the representation H1
ord is smooth but not admissible as GL2(Qp) representation. We

prove our main theorem in § 6 and the main ingredient is a recent result due to Colmez-Niziol-

Dospinescu [CDN20, Theorem 5.8] and vanishing of certain Ext1 proved in § 5 by closely

following Emerton.

2. MODULAR CURVES AND DRINFELD TOWERS

2.1. Modular curves of infinite level. Recall some notation about modular curve at infinity

following [Cho18, p. 460]. Let Af be the set of all finite adeles over Q. Let Wp (respectively

WDp) be the Weil group (respectively the Weil-Deligne group). For a compact open subgroup

K = Kp ×K
p ⊂ GL2(Af ), denote by

Y (K) := GL2(Q)\(C − R)×GL2(AF )/K.

This is a canonical model defined over Q. Following Scholze, we consider these curves as

adic spaces over Spa(Cp, OCp). Consider the compactification X(K) of Y (K) as an adic space

over Spa(Cp, OCp). Recall the notion of equivalence ∼ following [SW13, Definition 2.4.1]. For

sufficiently small compact prime to p level Kp ⊂ GL2(Af ), by now famous theorem due to

Scholze [Sch15, Theorem III.1.2] there exist adic space Y (Kp) and X(Kp) such that

Y (Kp) ∼ lim
←−
Kp

Y (KpK
p);X(Kp) ∼ lim

←−
Kp

X(KpK
p).

Now, we have a notion of supersingular Y (K)ss and ordinary part Y (K)ord (respectively

X(K)ss and Y (K)ord) on the special fiber of these modular curves (respectively on the com-

pactified curves).

First, assumeKp = GL2(Zp), we define the ordinary (respectively supersingular part) of the

modular surface Y (GL2(Zp)K
p)ord (respectively Y (GL2(Zp)K

p)ss) to be the inverse image of

the ordinary (respectively supersingular) part of the special fiber of Y (GL2(Zp)K
p).

By [SW13, Proposition 2.4.3], there exist adic spaces Y ss, Y ord andXss,Xord over Spa(Cp, OCp)

such that

Y ss ∼ lim
←−
Kp

Y (KpK
p)ss;X(Kp)ss ∼ lim

←−
Kp

X(KpK
p)ss;

Y ord ∼ lim
←−
Kp

Y (KpK
p)ord;X(Kp)ord ∼ lim

←−
Kp

X(KpK
p)ord.

For an arbitrary compact open Kp ⊂ GL2(Zp), we define Y (Kp)ord (respectively Y (Kp)ss) as

the pullback of Y (GL2(Zp)K
p)ord (respectively Y (GL2(Zp)K

p)ss).
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For a fixed tame (prime to p) level Kp, write Y = Y (Kp) and X = X(Kp). Let P1,ad be

the adic projective space of dimension 1. Recall that Scholze [Sch15, p. 1012, Theorem 3.3.18]

defined a GL2(Qp)-equivariant Hodge Tate period map

πHT : X → P1,ad

and Xord = π−1
HT (P

1(Qp)) and Xss = π−1
HT (P

1,ad − P1(Qp)).

Following [SW13, Chapter 6], denote by LTKp the Lubin-Tate space for GL2(Qp) at the level

Kp withKp a compact open subgroup of GL2(Qp). These are the local analogs of global objects

like modular curves. By [SW13, Theorem 6.3.4], there exists a perfectoid space LT∞ over

Spa(Cp, OCp) such that

LT∞ ∼ lim
←−
Kp

LTKp .

Now, these two spaces are connected by the p-adic uniformization theorem [Sch15, p. 972]:

Xss ≃ LT∞.

Following [CDN22], we replace the group G = GL2(Qp) by the group G′ = G/

(
p 0

0 p

)Z

. Let

X(Kp)p, Y (Kp)p(respectively LT p
∞) be the quotient of the curves X(Kp)p, Y (Kp)p and LT∞

by the the matrix

(
p 0

0 p

)
.

2.2. Drinfeld tower for F = Q. Recall now the construction of the Drinfeld tower [CDN20,

§0.1]. For l 6= p, by the work of Faltings, Fargues, Harris and Taylor, the étale cohomology

groups of the Drinfeld tower encode the classical Langlands and classical Jacquet-Langlands

for GL2(Qp). It is expected that the p-adic étale cohomology groups also encode the hypothet-

ical p-adic local Langlands. Let G = GL2(Qp) and Ǧ be the group of invertible elements of

the quaternion algebra D with center Qp. Let ΩDr,p := P
1,ad
Qp
− P1(Qp) the Drinfeld’s p-adic

upper half plane. In [Dri76], Drinfeld defined certain covering M̆n of ΩDr,p. This covering is

defined over Q̆p := Q̂nr
p . Note that the action of Wp is compatible with the natural action of

Q̆p. There is a natural covering map ˘Mn+1 → M̆n → ΩDr,p compatible with the natural action

of G and Ǧ. Denote by Mn := C ×
Q̆p

M̆n and M∞ is the projective limit of all Mn. Denote by

M̂∞ the p-adic completion of M∞. This is now a perfectoid space in the sense of Scholze. By

[CDN20, p. 316], Mn posses a G × Ǧ ×Wp equivariant semi-stable model over OK with K a

finite extension of Q̆p. Again by Scholze [Sch15, p. 972], LT∞ ≃ M∞. These towers realize

both Jacquet Langlands and classical Langlands even for equal characteristics (for details see

[Str05], [Str08]).
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2.3. Étale sheaves and exact sequences. Let X be a scheme and j : U →֒ X be an open

immersion. Let Z = X \ U and i : Z → X be the inclusion map. Let F be an étale sheaf on X,

we get the following exact sequence of sheaves on X

0→ j!j
∗F→ F→ i∗i

∗F → 0,

which gives the following long exact sequence of cohomology groups

· · · → H0(X, i∗i
∗F)→ H1(X, j!j

∗F)→ H1(X,F)→ H1(X, i∗i
∗F)→ · · ·

The cohomology with compact support is defined by Hr
c (U,G) := Hr(X, j!G), for r ≥ 0 and

any étale sheaf G on U . Also, by definition of i∗ we have H i(X, i∗i
∗F) = H i(Z, i∗F) for i = 0,

1. Therefore we get

· · · → H0(Z, i∗F)→ H1
c (U, j

∗F)→ H1(X,F)→ H1(Z, i∗F)→ · · ·

We will also consider cohomology groups with support on Z . For this let Z be a closed sub-

variety (or subscheme) of X. For any étale sheaf F on X we have the following long exact

sequence of cohomology groups

· · · → Hr
Z(X,F)→ Hr(X,F)→ Hr(U,F)→ Hr+1(X,F) → · · ·

By the general formalism of six operations for Berkovich spaces (see [Ber93]) and by the com-

parison results of étale cohomology of schemes and its analytification (see [Ber95]) we can use

the above two long exact sequence (with compact support and with support on Z) for the

modular curves settings.

We follow the notation of [Cho15, Section 2.1] in this section and write down the above exact

sequence for the elliptic modular curves. Let X1(Np
m) be the Katz-Mazur compactification of

the modular curve associated with the moduli problem Γ(pm) ∩ Γ1(N)) with (N, p) = 1. This

is the model defined over Q (see also [BE10, §3] for adelic definitions of level that are the same

because the class number is 1).

Consider X = X1(Np
m)an, U = X1(Np

m)ss and Z = X1(Np
m)ord and we get the following

long exact sequence with F constant sheaves Qp and F̄p.

· · · → H0(X1(Np
m)ss)→ H1

Xord
(X1(Np

m)an)→ H1(X1(Np
m)an)→ H1(X1(Np

m)ss)→ · · ·

0→ H0
c(X1(Np

m)ss)→ H0(X1(Np
m)) · · · → H0(X1(Np

m)ord)

→ H1
c(X1(Np

m)ss)→ H1(X1(Np
m))→ H1(X1(Np

m)ord)→ · · · ,

Define, the ordinary and supersingular part of the cohomology groups as

H1
ord(Np

m) := H1
ét(X1(Np

m)ord,Qp),H
1
ss(Np

m) := H1
ét(X1(Np

m)ss,Qp).
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Using [Cho18, p. 462], we have an explicit description

H1
ord = Ind

GL2(Qp)
B(Qp)

H0({∞},R1πHT,⋆(Qp)).

For an irreducible principal series representation πp, Scholze [Sch18] defined S1(πp) and there

is a close relation between S1(πp) and H1
ord[πp] [CDN22]. Recall that Judith Ludwig [Lud17]

proved that S2(πp) = 0 and S1(πp) 6= 0. Let A be a Qp algebra. Using [Sch12, Theorem 7.17]

and X ∼ lim
−→Kp

X(KpK
p), we define the p-adic completed cohomology of X to be

Ĥ1
A,ord := lim

←−
n

lim
−→
m

H1
ord(Np

m),Z/pnZ)⊗A.(2.1)

3. p-ADIC AND MOD p LOCAL LANGLANDS FOR GL2(Qp)

Following [BB10] and [Bre10a], we recall some basic facts about p-adic and mod p local

Langlands. This theory is for ℓ = p and there are certain similarities and differences with the

classical local Langlands with ℓ 6= p. Fix a finite extension E of Qp and a vector space V over

E. According to the p-adic local Langlands correspondence, for every p-adic representation

ρp : Gp → GL(V ), we can associate an admissible unitary Banach space representation B(ρp).

Now, the category of p-adic Galois representations is big. According to Fontaine, there are

the following categories of p-adic representations with the inclusions as follows: Crystalline

⊂ Semi-stable ⊂ De-Rham. Explicit construction of the Banach space B(V ) associated with

V can also be found in [CDP14], [BE10], [Eme06b, Conj. 3.3.1, p. 297]. These Banach space

representations satisfy the following properties:

(1) For two representations V, V ′ of Gp, we have V ≃ V ′ if and only if as a GL2(Qp) repre-

sentation, we have topological isomorphism (GL2(Qp) equivariant) betweenB(V ) and

B(V ′). In [Col10b] (see also [Col10a]), Colmez defined the now famous Montreal or

magical functor MF . The property can be deduced using the Montreal functor.

(2) If V has a determinant χ then B(V ) has central character χ · ǫ.

(3) For any continuous character χ : Gp → E×, there is a topological isomorphism of

vector spaces:

B(V ⊗ χ) ≃ B(V )⊗ (χ ◦ det).

(4) The map V → B(V ) is compatible with the extension of scalars.

(5) If V is irreducible then B(V ) is topologically irreducible.
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(6) Recall that mod p and p-adic local Langlands are compatible. In other words, there is a

commutative diagram [GG15]:

V B(V )

B(V ).

Under the above maps,

• If B(V ) is a principal series representation, then B(V ) will again be a principal

series representation.

• If B(V ) is special then B(V ) is a special representation.

• If B(V ) is supercuspidal then B(V ) is a supersingular representation.

Let (ρ, V ) be a two dimensional crystalline representation of the local Galois group Gp with

distinct Hodge Tate weights between (0, k − 1). For i ∈ {1, 2}, let χi : Q
×
p → O×

E be integral

characters. For a character χ = χ1 ⊗ χ2 of the torus T (Qp), denote by (Ind
GL2(Qp)
B(Qp)

(χ)C
0

the

set of all continuous (equivalently locally analytic) functions h : GL2(Qp) → E such that

h(

(
p 0

0 p

)
g) = χ1(a)χ2(d)h(g). On these Banach spaces, the group GL2(Qp) acts by right

translation and makes them unitary GL2(Qp) Banach spaces. Each parabolic P determines a

modulus character δP on the torus T with values in Q×
p . Note that continuous functions are

equivalent to locally analytic functions following [BB10].

Consider the group G = GL2(Qp) and recall that we define IGP (χ) := (Ind
GL2(Qp)
B(Qp)

(χ))C
0

.

In the next proposition, we consider Hom in the category of continuous (equivalently locally

analytic) representation of the group G = GL2(Qp).

Recall that there are few possibilities for B(ρf,p) ([BE10] [Eme06b, §6] (see also [Col14]:

Proposition 3.1. (1) (absolutely reducible) Let ρf,p ≃

(
η1 0

0 η2

)
⊗ η with η1, η2 integral charac-

ters and η : Gp → E× continuous character. In this case,

B(ρf,p) ≃ Ind
G
B(η1 ⊗ η2ǫ

−1)C
0

⊗ η
⊕

IndGB(η2 ⊗ η1ǫ
−1)C

0

⊗ η.

(2) (reducible non-split, case I)

If ρf,p ≃

(
η1 ⋆

0 η2

)
⊗ η with η1, η2, η as above. We assume that ⋆ 6= 0 and η1 · η

−1
2 6= ǫ±1,

then the corresponding automorphic representation B(ρf,p) satisfies the exact sequence:

0→ π1 ⊗ η → B(ρf,p)→ π2 ⊗ η → 0;

with π1 := Ind
GL2(Qp)
B(Qp)

(η2 ⊗ η1)
C0

and π2 := Ind
GL2(Qp)
B(Qp)

(η1 ⊗ η2)
C0

.
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(3) (reducible non-split, case II) If ρf,p ≃

(
η1 ⋆

0 η2

)
⊗ η with η1, η2 and η as above. Suppose

that ⋆ 6= 0 and η1 · η
−1
2 = ǫ±1 then the corresponding automorphic representation B(ρf,p)

has a Jordan-Hölder filtration 0 ⊂ π1 ⊂ π2 ⊂ π with π1 ≃ (χ ◦ det) ◦ St ⊗ η and π
π2
≃

IndGB(η2 ⊗ η1ǫ
−1)⊗ η.

(4) If ρf,p is absolutely irreducible the B(ρf,p) is irreducible.

The reducible non-split case I is the analog of principle series representation, while case II is

the analog of the twists of Steinberg or special representations of the classical local Langlands

correspondences. Note that since case II is of interest to us, we analyze the same following

[BE10, §2.3]. Recall that by our assumption, ρp is potentially crystalline. We write

ρf,p ≃

(
χ1| · |

1−kǫk−2 0

0 χ2| · |
k−1ǫ1−k

)
⊗ η;

for a continuous character η : Gp → E× and a unique natural number k > 1. Here, χ1 ⊗ χ2 is

classical of weight k > 1. Note that χ1, χ2 are locally constant characters such that vp(χ1(p)) =

1− k and vp(χ2(p)) = k − 1. Here,

η1 := χ1| · |
1−kǫk−2 = χ1| · |

−1zk−2; η2 = χ2| · |
k−1ǫ2−k = χ2z

2−k.

3.1. The Banach space B(ρf,p). Recall that functions f : Zp → E is of class Ck−1 if the Mahler

series development

f(z) =
∞∑

n=0

an(f)

(
z

n

)

is such that nk−1|an(f)| → 0 as n → ∞. Here,
(
z
0

)
= 1,

(
z
n

)
:= z(z−1)...(z−n+1)

n! if n > 0.

Let Ck−1(Zp, E) the E vector space of all functions. It is a Banach space with norm ||f || :=

Supnn
k−1|an(f)|.

Suppose V is the L vector space of functions f : Qp → L such that f1(z) := f(pz) and

f2(z) := (χ2χ
−1
1 )(z)f(1

z
) is of classCk−1(Zp, E). It is a Banach space with norm Sup(||f1||, ||f2||).

For 0 ≤ j ≤ k−2 and a ∈ Qp, the functions f(z) = zj and f(z) = (z−a)−j(χ2χ
−1
1 )(z−a) are

in V . We define W to be L vector space generated by these functions. Recall [BE10, Theorem

2.2.2, p. 14], the Banach space quotient V/W with the induced action of G is the universal

unitary completion [Eme05] of the locally analytic space (IndG
B(Qp)

(χ1 ⊗ χ2))
an. Our p-adic

automorphic representation B(ρf,p) is the twist by η of the universal unitary completion of

the locally analytic induction (IndG
B(Qp)

(χ1 ⊗ χ2))
an. Now this representation (IndG

B(Qp)
(χ1 ⊗

χ2)
an is of topological length 2 and it is non-trivial extension of Ind

GL2(Qp)
B(Qp)

(η1ǫ ⊗ η2ǫ
−1)C

0

by
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Ind
GL2(Qp)
B(Qp)

(η2 ⊗ η1)
C0

[BE10, Theorem 2.2.2, p. 14]. In [Eme10a, p. 362]. Emerton studied the

following categories of GL2(Qp) representations:

Admissible −֒→ Locally Admissible −֒→ Smooth.

Thanks to [BB10], we know thatB(ρf,p) (and hence π1) is a non-zero, admissible representation.

4. LOCAL GALOIS REPRESENTATIONS AND COHOMOLOGIES OF MODULAR CURVES

In this section, we prove Theorem 1.1. For any de Rham representation V , we can associate

a two-dimensional filtered (φ,N,Gp) module M to V . Now with this M thanks to recent

development due to Breuil, Berger, Colmez, Paskunas, and Dospinescu, we can associate p-

adic local Langlands correspondenceB(V ) := LL(M). We defined modular curves at infinity

in Section 2.1. For a representation π of G, we denote by π∗ the dual representation of π and

let us recall nrα,H as in [CDN20, p. 346].

Consider the group G = GL2(Qp) and recall that we define IGP (χ) := (Ind
GL2(Qp)
B(Qp)

(χ)C
0

. In

the next proposition, we consider Hom in the category of smooth representation of the group

G = GL2(Qp).

Proposition 4.1. Let B(ρp) as in Theorem 1.1. Then, we have

HomCp[G](B(ρp),Bst ⊗Qp H
1
et(LT∞,Qp)) = 0.

Proof. First, we show that HomCp[G](B(ρp),Bst ⊗Qp H
1
et(LT

p
∞,Qp)) = 0. If possible, there exists

a non-zero φ : π → Cp⊗QpH
1
et(LT

p
n ,Qp) for some n. By [Niz21] and [Ben22, Thoerem 13.4.10,p.

177], there exists a period isomorphsim

αst : Bst ⊗Qp H
1
et(LT

p
n ,Qp) ≃ H1

dR(LT
p
n)⊗Qnr

p
Bst.

Hence, we get a non-zero homomorphism π → H1
dR,c(LT

p
n)⊗Qnr

p
Bst.

We use [CDN20, p. 352] and follow the notation of loc. cit. that says that

(4.1) H1
dR,c(LT

p
n) =

⊕

M∈ΦNω

JL1(M)
⊗

C

WD1(M)
⊗

C

(LL1(M))⋆.

In Equation 4.1 the direct summation is over modules M which are indecomposable as the

Weil Deligne representations and most importantly of rank 2. In particular, there will not be

any contribution in equation 4.1 from B(ρf,p) as in Proposition 3.1(2). By our assumption for

all modules M , there exists a homomorphism

B(ρp)→ (LL1(M))⋆ ⊗Qnr
p

Bst.

By §3, there doesn’t exist a homomorphism as above.
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Finally, we use [CDN20, p. 346] given by φ→ φ⊗nrα,G with inverse given by ψ → ψ⊗nr−1
α,G

to get

HomG(B(ρp),H
1
dR,c(LT∞)⊗Qnr

p
Bst) =

HomG(B(ρp)⊗ nrα,G,H
1
dR,c(LT

p
∞)⊗Qnr

p
Bst)⊗ nr

−1
α,Ǧ
⊗ nr−1

α,Wp
.

That completes the proof of the proposition.

�

The integral version of the above comparison isomorphism theorem is proved by a recent

work due to Scholze-Bhatt-Morrow [BMS18].

5. EMERTON’S RESULTS ON THE VANISHING OF Ext1

Consider the parabolic subgroup P of a reductive group G with Levi decomposition P =

M ·N . Let P be the opposite parabolic of P . Let G (respectively M) be the category of smooth

G representations (respectively smooth M representations). The Jacquet module [Cas93] of V

is the set of all N co-invariants VN . The Jacquet functor JP : G→M is the functor JP (V ) = VN .

This functor has the following important properties:

• The functor JP is exact (both left and right).

• If V 6= 0 and irreducible then the Jaquet module JP (V ) 6= 0 if and only if V appears as

sub-representations of the parabolically induced representations.

Emerton generalized this functor to slightly general (locally analytic or equivalently contin-

uous) classes of representations in [Eme06a] and [Eme07]. Soon after, Emerton invented the

functor OrdP [Eme10b], [Eme10c] that works for representations over Artinian rings (rather

than only over fields) and that is again an adjoint of induced representations. Now, the Jacquet

functor and OrdP functors are closely related [Sor17].

We have left exact additive functors F : G→ M given by V → F(V ) := OrdP (V ) (Ordinary

modules of V ). We have another exact sequence from the category of M representations to the

M representations given by G(V ) := HomM (U, V ) this is again left exact. Note that F(V ) takes

injective objects to G acyclic objects.

We consider Ext1 in the category of smooth representations over an Artinian ring Rn :=

O/ωn for some n. By the Grothendieck spectral sequence and Frobenius reciprocity, we have

[Eme10c, p. 429]

Ei,j
2 := ExtiM (U,RjOrdP (V ))⇒ Exti+j

G (IG
P
(U), V )).

In particular, it gives rise to the exact sequence:

0→ Ext1M (U,OrdP (V ))→ Ext1G(I
G
P
(U), V ))→ HomM (U,R1(OrdP (V )))→ ....(5.1)
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Recall that the cohomology group H1
c(X

ss) is a smooth representation of GL2(Qp) [DLB17,

Proposition 3.6] but not admissible. Using these functors, Emerton proved the following

Proposition 5.1 regarding the vanishing of Ext groups.

Recall the following vanishing results due to Emerton. Note that although, Emerton wrote

the proof for n = 1 the same proof works for arbitrary n [BH15, Propostion B.2]. Hauseux

generalized these theorems [Hau16] and [Hau17] regarding the vanishing of Ext groups to

more general reductive groups. By interchanging P and P in the short exact sequence 5.1, we

get the following Proposition:

Proposition 5.1. (Emerton) [Eme10c, p. 443]

(1) (Lemma 4.3.12) If α1, α2, χ are characters Q×
p → Rn. If (α1, α2) 6= (χ, χ) then

Ext1G(I
G
P (α⊗ α2), χ ◦ det ◦St) = 0;

(2) (Lemma 4.3.12) If α1, α2, are characters Q×
p → Rn. If V is a supersingular representation of

G then

Ext1G(I
G
P (α⊗ α2), V ) = 0;

In the following Lemma, by suitable twisting we assume that the principal series repre-

sentations are coming from integral characters. Suppose V (respectively W ) be an admissible,

unitary representation of G with unit balls V0 (resp. W0). Let Vn (resp. Wn) be reduction of U0

(resp. V0) modulo ωn.

Lemma 5.2. Let π1 be a principal series sub representation of B(ρp). For any sub-representation W of

H1
c(X

ss), we have

Ext1G(π1,W ) = 0.

Proof. Since η1 · η2 6= ǫ±1 and η1 6= η2, let N ∈ N be the maximal integer such that η1 ·

η2 = ǫ2 (mod ωN ) and η1 = η2 (mod ωN ). We now consider all the representations modulo

ωn [Eme10c, Lemma 4.3. 10] (see also [BH15, Propostion B.2]).

First assume that W = H1
c(X

ss). By [Hau16, Propostion B.2, p. 267], we have

dimE(Ext
1
G(V,W )) ≤ dimRn(Ext

1
G(Vn,Wn)).

We show that Ext1G(I
G
P (χ)n,Wn) = 0 for a sub-representation W of H1

c(X
ss).

By 4.1 as G representation, we have

H1
c(X

ss) ≃
⊕

Ui

with Ui either supercuspidal or Steinberg. By [DF04, p. 793, ex. 10], we have

Ext1G(V,
⊕

i

Ui) =
⊕

i

Ext1G(V,Ui).
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By Proposition 5.1, we know that Ext1(V,Ui) = 0. Note that by our assumption χ1 6= χ2.

We now prove our assertion for a proper subspace W of H1
c(X

ss). Suppose, we have an

exact sequence:

0→ W → V → V/W → 0.

This gives rise to a long exact sequence

0→ HomG(π1,W )→ HomG(π1, V )→

HomG(π1, V/W )→ Ext1G(π1,W )→ Ext1G(π1, V )..;

By above HomG(π1,W ) = HomG(π1, V ) = Ext1G(π1, V ) = 0. Now, since V =
⊕
Wi with Wi

irreducible, henceW that in turn, V/W is again the direct sum of Wi’s. But there is no non-zero

map from π1 →Wi. Hence, HomG(π1, V/W ) = 0 that in turn implies Ext1G(π1,W ) = 0. �

6. MAIN THEOREM

We now proceed to prove our main theorem. Consider the following subgroups of the

cohomology groups [BE10]. Let c ∈ GQ be the complex conjugation. For any cohomology

group H , denote by H± the ± eigenspace of c. Let f be a p-adic cusp form of weight k ≥ 2,

level N = Mpm with m ≥ 1 and (M,p) = 1 and character χ : (Z/NZ)× → Q
×

defined over a

finite extension E of Qp contained in Qp. Assume that f is a Hecke eigenform with Tlf = alf

for all l ∈ N. For any Hecke module X, denote by

Xf := {x|x ∈ X;Tlx = alx}.

We now prove Theorem 1.1.

Proof. Let ρ : Gal(Q/Q) → GL2(E) be a global Galois representation (continuous, irreducible

representation associated with a modular form that is unramified outside a finite set of primes)

with ρp : Gp → GL2(E) local Galois representation obtained by the restriction of the Galois

representation to the decomposition group Gp := Gal(Qp/Qp). As discussed in the introduc-

tion, we may assume ρ = ρf for some elliptic Hecke eigenform f for some modular form of

level Npm. Denote the modular curve over Q by X = X1(Np
m) (cf. § 2.3).

Since ρp is reducible and non-split with the corresponding characters satisfying the assump-

tion of the theorem, we have an inclusion (cf. Proposition 3.1),

π1 −֒→ B(ρp).
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Recall that HomG(B(ρp),Cp ⊗Qp H
1(LT∞)) = 0 by Proposition 4.1 and observe that Xss ≃

LT∞ (cf. §2.1). By the long exact sequence in § 2.3, we have

0→ H0
c(X

ss)f,± ⊗Cp Bst → H0(X)f,± ⊗Cp Bst

· · · → H0(Xord)f,± ⊗Cp Bst

→ H1
c(X)ss)f,± ⊗Cp Bst

f1
−→ H1(X)f,± ⊗Cp Bst

f2
−→ H1(Xord)f,± ⊗Cp Bst → · · · .

From the long exact sequence, we get a short exact sequence

0→ Ker(f1)→ H1
c(X

ss)f,± ⊗Cp Bst → Im(f1)→ 0.

Applying the left exact Hom functor, we get

0→ HomG(π1, ker(f1))→ HomG(π1,Bst ⊗H1
c(X

ss)f,±)

→ HomG(π1, Im(f1))→ Ext1G(π1, ker(f1))

Ext1G(π1,H
1
c(X

ss)f,± ⊗Cp Bst).....

Note that HomG(π1,H
1
c(X

ss)f,± ⊗Cp Bst) = 0 and hence

HomG(π1, Im(f1)) −֒→ Ext1G(π1, ker(f1)).

By Lemma 5.2, we have Ext1G(π1, ker(f1)) = 0 and hence

HomG(π1, Im(f1)) = 0.

We also have an exact sequence

0→ Im(f1)→ H1(X)f,± ⊗ Bst → Im(f2)→ 0.

By applying Hom functor [DF04, Theorem 10, p. 785, Chapter 17], we get

0→ HomG(π1, Im(f1))→ HomG(π1,Bst ⊗Cp H
1(X)f,±)

→ HomG(π1, Im(f2))→ Ext1Cp[G](π1, Im(f1))

→ Ext1G(π1,Bst ⊗H1(X)f,±)→ Ext1G(π1, Im(f2)).....

We have inclusions of cohomology groups:

HomG(π1,Bst ⊗Cp H
1(X)f,±) −֒→ HomG(π1, Im(f2)) −֒→ HomG(π1,Bst ⊗H1(Xord)).
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As a consequence, we have

π1 ⊗HomG(π1,Bst ⊗Cp H
1(X)f,±) −֒→ π1 ⊗HomG(π1,Bst ⊗Qp H

1(Xord)).

Now, π1 is irreducible as G representation (cf. §3). We deduce that

π1 ⊗HomG(π1,Bst ⊗H1(X)f,±) ⊂ Bst ⊗H1(Xord).(6.1)

As f is a cusp form, we have [Bre10b, Lemma 2.1.4]

H1
c(X)f,± ≃ H1(X)f,±.

On the other hand by [BE10, Proof of Theorem 5.7.3], we have

(1) HomGQ
(ρf ,HomG(B(ρp),H

1
c(X)f,±) ≃ E.

(2) HomCp[G](π1,H
1
c(X)f,±) ≃ HomCp[G](π,H

1
c(X)f,±).

From the above, we have an inclusion ρf ⊂ HomG(B(ρp),H
1
et(X)f,±) ≃ HomCp[G](π1,H

1
c(X)f,±).

By 6.1, we deduce that (as the field Cp is flat)

ρf ⊗Cp π1 ⊂ HomG(π1,Bst ⊗H1(X)f,±)⊗ π1 ⊂ Bst ⊗Cp H1(Xord)f,± ⊂ Bst ⊗Cp H1(Xord);

proving the first part of our theorem by Proposition 2.1.

We now proceed to prove the second part. Since Im(f2) ⊂ H1(Xord)f,±, we have

ρf −֒→ HomG(π1,Bst ⊗Qp ⊗H
1(X)f,±) −֒→

HomG(π1, Im(f2)) −֒→ HomG(π1,Bst ⊗Qp H
1(Xord)).

Again, we complete the proof by Proposition 2.1. �

The Main theorem of Chojecki [Cho18] and our Theorem 1.1 together give a nice dichotomy:

Corollary 1. • If ρp is absolutely irreducible then ρ⊗Cp B(ρf,p) →֒ Ĥ1
Bst,ss

.

• If ρp is reducible and non-split then there exists a principal series subrepresentation π1 ofB(ρp)

such that ρp ⊗Cp π1 ⊂ Ĥ
1
Bst,ord

.
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