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Sincov’s and other functional

equations and negative interest rates

Gergely Kiss∗ and Jens Schwaiger

Abstract

Investigating the future value F (K;s; t) of a capital K invested at date S at date

t the “natural” condition F (K;s; t) ≥ K has lost its naturality because of the

strange fact of negative interest rates. This leads to the task of describing the

possible solutions of the multiplicative Sincov equation f(s;u) = f(s; t)f(t; u)

for s ≤ t ≤ u where f(s; t) = 0 may happen. In this paper we solve this task and

discuss connections to the theory of investments.

Mathematics Subject Classification (2020). 39B52, 91B74.

Keywords. Sincov equation, business mathematics.

1 Introduction and motivation

A rather well known and elegant application of the theory of functional equation is

given by the deduction of the formula of theoretical interest compounding. As a

starting point some “reasonable” conditions for the future value function

F ∶ [0;∞)× [0;∞)→ R

are given:

F (K +L; t) = F (K; t) + F (L; t); K;L; t ≥ 0 (1)

F (F (K; t); s) = F (K; t + s); K; s; t ≥ 0 and (2)

F (K; t) ≥K; K; t ≥ 0: (3)
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Theorem 1. Let F ∶ [0;∞)× [0;∞)→ R be given. Then (1), (2) and (3) are satisfied

iff there is some q ≥ 1 such that

F (K; t) =Kq

t

; K; t ≥ 0: (4)

The proof can be found in [AJ1966], [EW1978] and in [SJ1988].

Note that (3) together with (1) implies that F (K; t) = K ⋅ f(t), since (1) says that

F (⋅; t) is additive and (3) that this function is bounded from below on [0;∞) (see

[AJ1966]). (2) implies f(t + s) = f(t)f(s) for all s; t ≥ 0 and (3) that f(t) ≥ 1 for all t.

This means that g ∶= ln ○f is additive and ≥ 0 on [0;∞) and therefore there is some

r ≥ 0 such that ln(f(t)) = rt for all t. So q ∶= exp(g(1)) = exp(r) ≥ 1 and f(t) = qt for

all t.

2 Theoretical rule of interest compounding with

negative interest rates allowed

At least for the last decade it has became common in economics to admit interest

rates being zero or even negative. This clearly contradicts (3). So one could ask for a

substitute for Theorem 1 which allows for the new situation.

Note that

F (K; t) ≥ K; K; t ≥ 0 for some  > 0 (5)

instead of (3) does not help. Of course a result as in the theorem would result with

some q > 0. But taking t large enough shows that (5) is only possible when q ≥ 1.
One possibility to characterize the theoretical rule of interest compounding if negative

interest rates are admissible could be the following result.

Theorem 2. A function F ∶ [0;∞) × [0;∞)→ R satisfies

F (K +L; t) = F (K; t)+ F (L; t); K;L; t ≥ 0 (6)

F (F (K; t); s) = F (K; t + s); K; s; t ≥ 0 (7)

F (⋅; t) is monotonic for all t and (8)

F (K; ⋅) is monotonic for all K: (9)

iff there is some q ≥ 0 such that

F (K; t) =Kq

t

; K; t ≥ 0; (10)

where for q = 0 both the cases q

0 = 1 and q

0 = 0 are possible.
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Proof. Obviously F with (10) satisfies all the conditions (6) – (9).

Let on the other hand F satisfy these conditions. Since F (⋅; t) is additive and

monotonic it is bounded from one side on some interval which implies (see [AJ1966])

that F (K; t) =K ⋅ f(t) with f(t) = F (1; t). Condition (7) implies with K = 1 that

f(t)f(s) = f(s + t); s; t ≥ 0:

To solve this we follow [AJ1966] and assume that f(t0) = 0 for some t0 > 0. Then

f(t) = f(t0 + (t − t0)) = f(t0)f(t − t0) = 0 for all t ≥ t0. Since moreover 0 = f(t0) =
f
(
n

t

0

n

) = f ( t0
n

)
n

, t0 may be chosen arbitrarily close to 0. So f(t) = 0 for all t > 0.
f(0) = f(0 + 0) = f(0)2 implies f(0) ∈ {0;1} and therefore f(t) = 0t for all t with 00 ∈
{0;1}. In the remaining case f(t)must be different from 0 for all t > 0. By f(t) = f ( t2)

2

the value f(t)must even be > 0. Note also that f(0) = 1 since f(t) = f(t+0) = f(t)f(0).
Moreover f is monotonic. So using the remarks following Theorem 1 there is some

q > 0 such that f(t) = qt for all t.

3 Future value formulas depending on the interval of

investment

In [SJ1988] a situation is discussed where for ∆ ∶=∆
R

∶= {(s; t) ∈ R2 ∣ s ≤ t} the value of

the function F ∶ [0;∞) ×∆ → [0;∞) at (K;s; t) denotes the future value of the capital

K at time t when invested at time s. Theorem 2 in [SJ1988] reads as follows.

Theorem 3. The function F ∶ [0;∞) ×∆ → [0;∞) satisfies the conditions

F (K +L;s; t) = F (K;s; t) + F (L;s; t); K;L ≥ 0; (s; t) ∈∆ (11)

F (F (K;s; t); t; u) = F (K;s;u); K ≥ 0; (s; t); (t; u) ∈∆ and (12)

F (K;s; t) ≥K; K ≥ 0; (s; t) ∈∆; (13)

iff there is some non decreasing function '∶R → (0;∞) such that

F (K;s; t) =K
'(t)
'(s)

; K ≥ 0; (s; t) ∈∆: (14)

Remark 1. (14) is the result of solving the multiplicative Sincov equation f(s; t)f(t; u) =
f(s;u). Moreover, choosing some fixed t0, the function ' is given by

'(t) =
⎧⎪⎪⎨⎪⎪⎩

f(t0; t) , if t ≥ t0
1

f(t;t
0

) , if t < t0:
(15)

Now we want to investigate the situation when (13) is weakened in order to take

care of (generalized) negative interest rates also in the situation when intervals of

investments themselves are considered rather than only the length of them.
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Theorem 4. The function F ∶ [0;∞) ×∆ → [0;∞) satisfies the conditions (11) and

(12) and

F (⋅; s; t) is monotonic on some interval for all (s; t) ∈∆; (16)

iff there is some solution f ∶∆→ [0;∞) of the Sincov equation

f(s; t)f(t; u) = f(s;u); (s; t); (t; u) ∈∆ (17)

such that

F (K;s; t) =Kf(s; t); K ≥ 0; (s; t) ∈∆: (18)

Proof. (11) and (16) implies that F has the form (18) with f(s; t) = F (1; s; t). Ac-

cordingly (12) results in (17).

On the other hand (17) and (18) imply (11), (12) and (16).

Remark 2. The rest of our considerations is devoted to the solution of (17) in the slightly

generalized situation that the function

f ∶∆
J

→ R (19)

is defined on ∆ = ∆
J

∶= {(s; t) ∈ J2 ∣ s ≤ t} for some non-trivial interval J , has R

as the codomain and solves (17). A special case has been considered in [BFM2019].

The problem in its general form was posed by Detlef Gronau as Problem 2.1 in

[Grillhof2022].

From now on we assume that f ∶∆→ R satisfies the Sincov equation (17) and we use

∆○ ∶= {(x;y) ∈∆ ∣ x < y}. And we proceed with some lemmata.

Lemma 1. Assume that (x;y) ∈∆○ and that f(x;y) /= 0. Then

I(x;y) ∶= ⋃
x

′≤x<y≤y′;
(x′;y′)∈�○;f(x′;y′)/=0

[x′; y′] (20)

is an interval, and

f(u;v) /= 0; ∀(u;v) ∈∆ satisfying u;v ∈ I(x;y):

Moreover, f(u;v) = 1, if u = v.

Proof. Of course I(x;y) is an interval since it is the union of a set of intervals with non

empty intersection. Note also that

0 /= f(x′; y′) = f(x′; u)f(u;v)f(v; y′) (x′ ≤ u ≤ v ≤ y′)

implies f(u;v) /= 0.
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Now let u;v ∈ I(x;y), u ≤ v and x0 ≤ u ≤ y0, x1 ≤ v ≤ y1 where (x
i

; y

i

) ∈ ∆○, x
i

≤
x < y ≤ y

i

and f(x
i

; y

i

) /= 0 for i = 0;1. Put x2 ∶= min(x0; x1); y2 ∶= max(y0; y1). Then

x2 ≤ u ≤ v ≤ y2. Thus it is enough to show f(x2; y2) /= 0. Let, for example x0 ≤ x1. Then

f(x2; x) /= 0 since 0 /= f(x0; y0) = f(x0; x)f(x;y0). Analogously we have f(y; y2) /= 0
and therefore f(x2; y2) = f(x2; x)f(x;y)f(y; y2) /= 0.
f(u;u) = f(v; v) = 1, since 0 /= f(u;v) = f(u;u)f(u;v) = f(u;v)f(v; v).

Lemma 2. Let x;y be as in the previous lemma. Then

I(x;y) = ⋃
I∈J

I, where (21)

J ∶= J(x;y) ∶= {I ⊆ J ∣ I is an interval; (22)

x;y ∈ I; f(u;v) /= 0 for all u;v ∈ I such that u < v}:

Proof. Note that by Lemma 1 I(x;y) ∈ J implying I(x;y) ⊆ ⋃
J∈J J .

Let, on the other hand I ∈ J . Then there are sequences (a
n

); (b
n

) such that (a
n

) is

decreasing, (b
n

) is increasing, a
n

≤ x < y ≤ b
n

and I = ⋃
n∈N[an; bn]. Since a

n

; b

n

∈ I the

value f(a
n

; b

n

) has to be /= 0. So [a
n

; b

n

] ⊆ I(x;y). Therefore I ⊆ I(x;y) for all I ∈ J .

Lemma 3. Let x;y be as above and assume that u ∈ J ∖ I(x;y). Then either

u < v for all v ∈ I(x;y) or (23)

v < u for all v ∈ I(x;y): (24)

Moreover in case (23) f(u;v) = 0 and in case (24) f(v;u) = 0.

Proof. Assume v ≤ u ≤ w for some v;w ∈ I(x;y). The u ∈ [v;w] ⊆ I(x;y), a contradiction.

So, let u < v for all v ∈ I(x;y), and suppose that f(u;v0) /= 0 for some v0 ∈ I(x;y). Then

there are x0; y0 ∈ I(x;y) such that x0 ≤ v0 ≤ y0, x0 ≤ x < y ≤ y0 and f(x0; y0) /= 0. Then

f(u;y0) = f(u;v0)f(v0; y0) /= 0 since f(u;v0); f(v0; y0) /= 0. But then [u;y0] ⊆ I(x;y)
contradicting u /∈ I(x;y).

The other case, v < u for all v ∈ I(x;y) may be treated similarly.

Lemma 4. Let (x;y) ∈ ∆○ be such that f(x;y) /= 0. Then I(u;v) = I(x;y) for all u;v ∈
I(x;y) satisfying u < v.

Proof. By Lemma 1 we have f(u′; v′) /= 0 for all u′; v′ ∈ I(x;y) with u

′ < v′. Thus using

Lemma 2 results in I(x;y) ⊆ I(u;v). Therefore x;y ∈ I(u;v), which analogously implies

I(u;v) ⊆ I(x;y).

Lemma 5. Let I1; I2 be intervals such that I1 ∩ I2 = {a}. Then either a = min(I1) =
max(I2) or a =min(I2) =max(I1).

Proof. The (simple) considerations are left to the reader.
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Lemma 6. Let (x;y); (u;v) ∈∆○ with f(x;y); f(u;v) /= 0. Then either I(x;y) = I(u;v) or

I(x;y) ∩ I(u;v) = ∅.

Proof. Let I(x;y)∩I(u;v) /= ∅. If this intersection contains two different points a; b with,

say, a < b, then I(x;y) = I(a;b) = I(u;v) by Lemma 4. Otherwise I(x;y) ∩ I(u;v) = {a}. Using

Lemma 5 we may assume, without loss of generality that a = max I(x;y) = min I(u;v).

Therefore x < y ≤ a ≤ u < v and f(x;a); f(a; v) /= 0. Thus also f(x; v) = f(x;a)f(a; v) /=
0 which implies by Lemma 2 that [x; v] ⊆ I(x;y) ∩ I(u;v). So I(x;y) ∩ I(u;v) = {a} is not

possible. Accordingly I(x;y) ∩ I(u;v) /= ∅ implies I(x;y) = I(u;v).

Now we are able to formulate necessary conditions for the solutions f of the Sincov

equation on ∆ =∆
J

.

Theorem 5. Let f ∶∆ = ∆
J

→ R be a solution of (17). Then there is a countable

(possibly empty) system S of pairwise disjoint non-trivial intervals I ⊆ J and

there is a function d∶⋃
I∈S I → R

× ∶= R ∖ {0}, such that

f(x;y) =
d(y)
d(x)

; x; y ∈ I ∈ S ; x ≤ y: (25)

Moreover for any x ∈ I ∈ S

f(x;y) = f(z;x) = 0; I /∋ z < x < y /∈ I: (26)

and

f(x;x) =
⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ ⋃
I∈S I;

0 or 1 otherwise.
(27)

Proof. Let S ∶= {I(x;y) ∣ (x;y) ∈ ∆○; f(x;y) /= 0}. Then the intervals in S are pairwise

disjoint by Lemma 6. Moreover S is countable since every I(x;y) equals I(r;s) with

x ≤ r < s < y and r; s ∈ Q by Lemma 4.

Let I ∈ S and x0 ∈ I. Then d∶ I → R

× ,

d(x) =
⎧⎪⎪⎨⎪⎪⎩

f(x0; x) , if x ≥ x0

1
f(x;x

0

) , if x < x0;
(28)

is well defined and satisfies f(x;y) = d(y)
d(x) for all x;y ∈ I; x ≤ y. This can be easily seen

by distinguishing the cases x ≥ x0, y < x0 and x < x0 ≤ y.

(26) follows from Lemma 3.

Since f(x;x)f(x;y) = f(x;y) ≠ 0 for x;y ∈ I ∈ S , hence f(x;x) = 1 which is the first

case of (26). The second case of (26) follows from f(x;x) = f(x;x)f(x;x) and from

Lemma 3. (Note also that f(x;y) = 0 for all x;y /∈ ⋃
I∈S I with x < y.)
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Finally we prove that all Sincov functions on ∆ =∆
J

may be obtained by using the

just derived necessary conditions.

Theorem 6. Let J be a non-trivial interval and S at most countable (maybe empty)

set of disjoint subintervals of J. Let furthermore d∶⋃
I∈S I → R

× be an arbitrary

function. Then f ∶∆ =∆
J

→ R defined by

f(x;y) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(y)
d(x) ; if x;y ∈ I ∈ S ;

0; if x;y not in the same I ∈ S ;

0 or 1 arbitrarily; if x = y /∈ ⋃
I∈S I

(29)

satisfies (17).

Proof. Let x ≤ y ≤ z. If x; z ∈ I(∈ S) then also y ∈ I. Moreover

f(x;y)f(y; z) =
d(y)
d(x)

d(z)
d(y)

=
d(z)
d(x)

= f(x; z):

If x ∈ I and z /∈ I we have f(x; z) = 0. Assuming y ∈ I implies f(y; z) = 0 and therefore

0 = f(x; z) = f(x;y)f(y; z). This also holds true when also y /∈ I.
If x /∈ ⋃

I∈S I we have f(x; z) = 0 for x < z and therefore 0 = f(x; z) = 0 ⋅ f(y; z) =
f(x;y)f(y; z) if additionally x < y. In case y = x we have f(y; z) = 0 implying (17). If

finally x = y = z we again have f(x; z) = f(x;y)f(y; z).

Remark 3. Gronau in [Grillhof2022] gave two types of solutions. The first one with

f(x;y) = Æ
x

(y) for all x ≤ y is the special case S = ∅; g = 1 of Theorem 6. The second

one may be described by S = {[x0; y0]}, � = d[x
0

;y

0

] and g(x) = 0 for all x /∈ [x0; y0].

Remark 4 (Generalization). The codomain of the function f may be chosen much more

general without altering the results.

Let (G; ⋅) be an arbitrary non necessarily abelian group with neutral element 1 and

add an absorbing element 0, such that 0 /∈ G and in G

′ ∶= G⊍{0} we have x ⋅0 = 0 ⋅x = 0.
Then the only elements in G

′ with x

2 = x are 0 and 1. This, more or less, implies that

Theorems 5, 6 also hold in the new situation with the modification that the functions

d are defined as

d(x) =
⎧⎪⎪⎨⎪⎪⎩

f(x0; x) , if x ≥ x0

f(x;x0)−1 , if x < x0;
(30)

because then f(x;y) = d(x)−1d(y) in Theorem 5 and

f(x;y)f(y; z) = d(x)−1d(y)d(y)−1d(z) = d(x)−1d(z) = f(x; z)

in the proof of Theorem 6.
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Examples for groups with added absorbing elements are G⊍{0} where G is subgroup

of K× for division algebras K, in particular R and [0;∞) and also,for any n and any

field K, the union G ⊍ {0} where G is a subgroup Gl
n

(K) and 0 the null matrix. The

last example itself is a special case of G ⊍ {0} where G is a subgroup of the group of

units in a unitary ring R and 0 the zero element in R.

Remark 5. In [BFM2019] the Sincov equation is considered in the form

g(x; z) = g(x;y)g(y; z); x > y > z;x; y; z ∈ J; (31)

with J = (0;1). The general solution of (31) is easily derived from Theorems 5 and 6

by

i) considering f defined by f(y;x) = g(x;y) when x > y and

ii) by observing that we may extend f to the pairs (x;x) by choosing f(x;x) ∈ {0;1}
as in Theorems 5 and 6.

As a result of Theorems 6 and 5 we obtain the following characterization of F (K;s; t)
satisfying (11), (12) and (16).

Corollary 1. The function F ∶ [0;∞) ×∆
J

→ [0;∞) satisfies the conditions (11), (12)

and (16) iff there is a countable (possibly empty) system S of pairwise disjoint

non-trivial intervals I ⊆ J and there is a function d∶⋃
I∈S I → R

×, such that

F (K;s; t) =K
d(s)
d(t)

; s; t ∈ I ∈ S ; s ≤ t: (32)

Moreover for any s ∈ I ∈ S

F (K;s; t) = F (K;u; s) = 0; I /∋ u < s < t /∈ I: (33)

and

F (K;s; s) =
⎧⎪⎪⎨⎪⎪⎩

K if s ∈ ⋃
I∈S I;

0 or K otherwise.
(34)

Remark 6. This corollary also implies Theorem 3 by observing that (13) implies S = {R}
and also that d is monotonically increasing.
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