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Abstract

We investigate the problem of cumulative regret minimization for individual sequence
prediction with respect to the best expert in a finite family of size K under limited access
to information. We assume that in each round, the learner can predict using a convex
combination of at most p experts for prediction, then they can observe a posteriori the
losses of at most m experts. We assume that the loss function is range-bounded and
exp-concave. In the standard multi-armed bandits setting, when the learner is allowed to
play only one expert per round and observe only its feedback, known optimal regret bounds
are of the order O(

√
KT ). We show that allowing the learner to play one additional expert

per round and observe one additional feedback improves substantially the guarantees on
regret. We provide a strategy combining only p = 2 experts per round for prediction
and observing m ≥ 2 experts’ losses. Its randomized regret (wrt. internal randomization
of the learners’ strategy) is of order O

(
(K/m) log(Kδ−1)

)
with probability 1− δ, i.e., is

independent of the horizon T (“constant” or “fast rate” regret) if (p ≥ 2 and m ≥ 3). We
prove that this rate is optimal up to a logarithmic factor in K. In the case p = m = 2, we
provide an upper bound of order O(K2 log(Kδ−1)), with probability 1− δ. Our strategies
do not require any prior knowledge of the horizon T nor of the confidence parameter δ.
Finally, we show that if the learner is constrained to observe only one expert feedback
per round, the worst-case regret is the “slow rate” Ω(

√
KT ), suggesting that synchronous

observation of at least two experts per round is necessary to have a constant regret.

Keywords: Online Learning, Prediction with expert advice, Frugal Learning, Bandits feed-
back, Partial monitoring.

1 Introduction

We study the problem of online individual sequence prediction with expert advice, based on
the setting presented by Cesa-Bianchi and Lugosi [2006, Chap. 2], under limited access to
information. In this game, the learner’s aim is to predict an unknown sequence (y1, y2, . . . )
of an outcome space Y. The mismatch between the learner’s predictions (z1, z2, . . . ), taking
values in a closed convex subset X of a real vector space, and the target sequence is measured
via a loss function `(z, y). The learner’s predictions may only depend on past observations.
Following standard terminology used in prediction games, we will use the word “play” to mean
the prediction output by the learner.

In each round t ∈ JT K (for a non-negative integer n, we denote JnK = {1, . . . , n}), the
learner has access to K experts predictions (F1,t, . . . , FK,t). The performance of the learner is
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compared to that of the best single expert. More precisely, the objective is to have a cumulated
regret as small as possible, where the regret is defined by

RT =
T∑
t=1

`(zt, yt)− min
i∈JKK

T∑
t=1

`(Fi,t, yt).

Experts aggregation is a standard problem in machine learning, where the learner observes
the predictions of all experts in each round and plays a convex combination of those. However,
in many practical situations, querying the advice of every expert is unrealistic. Natural
constraints arise, such as the financial cost of consultancy, time limitations in online systems,
or computational budget constraints if each expert is actually the output of a complex
prediction model. One might hope to make predictions in these scenarios while minimizing
the underlying cost. Furthermore, we will distinguish between the constraint on the number of
experts’ advices used for prediction, and the number of feedbacks (losses of individual experts)
observed a posteriori. This difference naturally arises in online settings where the advices are
costly prior to the prediction task but just observing reported experts’ losses after prediction
can be cheaper. If the learner picks one single expert per round, plays the prediction of that
expert and observes the resulting loss, the game is the standard multi-armed bandits problem.
In this paper, we investigate intermediate settings, where the player has a constraint p ≤ K on
the number of experts used for prediction (via convex combination) in each round and several
feedbacks m ≤ K of actively chosen experts to see their losses. In the standard multi-armed
bandit problem, the played arm is necessarily the observed arm, this restriction is known as
the coupling between exploitation and exploration. In our protocol, we consider a generalization
of that restriction through the Inclusion Condition (IC): when m ≥ p, if IC = True, we require
that the set of played experts for prediction at round t, denoted St , is included in the set
of observed experts, denoted Ct. More precisely, if IC = True, in each round t, the player
first chooses p experts out of K and plays a convex combination of their prediction, then she
observes the feedback (loss) of the individual selected experts, then picks m− p additional
experts to observe their losses. When IC = False, the choice of played and observed experts
is decoupled; this means that the loss incurred by the p experts used for prediction is not
necessarily observed.

A closely related question was considered by Seldin et al. [2014], obtaining O(
√
T ) regret

bounds for a general loss function (see extended discussion in the next section.) Our emphasis
here is on obtaining constant bounds guarantees on regret (i.e. independent of the time horizon
T ). Such “fast" rates, linked to assumptions related to strong convexity of the loss function `,
have been the subject of many works in learning (batch and online, in the stochastic setting)
and optimization, but are comparatively under-explored in fixed sequence prediction.

In the literature on the prediction of fixed individual sequences, no assumptions are made
about the distribution of the sequences. The attainability of fast rates (or constant regrets) is
also possible under certain assumptions on the loss function `: the full information setting
was studied, mainly by Vovk [1990], Vovk [1998], Vovk [2001], where it was shown that fast
rates are attainable under the mixability assumption on the loss function. The reader can find
an extensive discussion of different assumptions considered in the literature for this problem
in van Erven et al. [2015]. In the present paper, we make the following assumption on the loss
function:
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Protocol 1 The Game Protocol (p,m, IC).
Parameters:
p, the number of experts allowed for prediction.
m, the number of experts allowed for observation as feedback.
IC ∈ {False,True}, inclusion condition (if IC = True, we must have p ≤ m).

for each round t = 1, 2, . . . , T do
Choose a subset St ⊆ JKK such that |St| = p, and convex combination weights (αi)i∈St .
Play the convex combination ∑i∈St αi,tFi,t and incur its loss.
if IC = True, then
Choose a subset Ct ⊆ JKK such that: |Ct| = m and St ⊆ Ct.

else if IC = False, then
Choose a subset Ct ⊆ JKK such that: |Ct| = m.

end if
The environment reveals the losses (`(Fi,t, yt))i∈Ct .

end for

Assumption 1. There exist B, η > 0, such that

• Exp-concavity: For all y ∈ Y, `(., y) is η-exp-concave over domain X .

• Range-boundedness: For all y ∈ Y: supx,x′∈X |`(x, y)− `(x′, y)| ≤ B.

Remarks. This assumption is satisfied in some usual settings of learning theory such as the
least squares loss with bounded outputs: X = Y = [xmin, xmax] and `(x, x′) = (x− x′)2. Then
` satisfies Assumption 1, with B = (xmax − xmin)2 and η = 1/(2B).

Remarks. The regret as well as all the algorithms to follow remain unchanged if we replace
` by ˜̀ : X → [0, B] defined by ˜̀(x, y) := `(x, y) −minx∈X `(x, y), so we can assume without
loss of generality ` ∈ [0, B] instead of range-boundedness; the results obtained still hold in the
latter more general case.

Assumption 1 was considered in several previous works tracking fast rates both in batch
and online learning (Koren and Levy, 2015, Mehta, 2017, Gonen and Shalev-Shwartz, 2016,
Mahdavi et al., 2015, van Erven et al., 2015). We introduce a new characterization for the
class of functions satisfying Assumption 1. Let c > 0, define E(c) as the class of functions
f : X → R, such that

∀x, x′ ∈ X : f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− 1

2c
(
f(x)− f(x′)

)2
. (1)

We introduce this class to highlight the sufficient and minimal property of ` required for the
proofs in this paper to work, namely we will only make use of (1) in the proofs of the results
to come.

Lemma 1.1 below relates the class of functions E(.) to the set of functions satisfying
Assumption 1 as well a sufficient condition (Lipschitz and Strongly Convex or LIST condition).
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Lemma 1.1. Let y ∈ Y be fixed.

• If `(., y) is B-range-bounded and η-exp-concave, then: `(., y) ∈ E

 ηB2

4 log
(

1+ η2B2
2

).
• If `(., y) ∈ E(c) and is continuous, then: `(., y) is c-range-bounded and (4/c)-exp-concave.

• If `(., y) is L-Lipschitz and ρ-strongly convex, then `(., y) ∈ E(4L2/ρ).

Figure 1 summarizes bounds on regret for bounded and exp-concave loss functions. We
only consider fixed individual sequences, which corresponds to fully oblivious adversaries (see
Audibert and Bubeck, 2010 for a definition of different types of adversaries).

p = 1 p ≥ 2

Lower bound Upper bound Lower bound Upper bound (p = 2)

m = 1
√
KT

√
KT

√
KT

√
KT

[1] [2] [Thm 5.2] [2]

IC = True : K2 log(K)
m = 2

√
KT

√
KT K IC = False : K log(K)

[3] [2] [Thm 5.1] [Thm 4.2 and 4.1]

m ≥ 3
√

K
mT

√
K
mT log(K) K

m
K
m log(K)

[3] [3] [Thm 5.1] [Thm 4.1]

Figure 1: Existing bounds from the literature ([1] = Auer et al., 2002, [2]=Audibert and
Bubeck, 2010, [3]=Seldin et al., 2014) and new bounds presented in this paper. All bounds hold
up to numerical constant factors. Under Assumption 1, all new upper bounds hold with high
probability if we replace the factor log(K) with log(Kδ−1), δ being the confidence parameter.
Lower bounds are in expectation. When bounds are the same, we omit the distinction between
the settings IC = True and IC = False (coupling between exploration and exploitation, see
Protocol 1).

The remainder of this paper is organized as follows. Section 2 presents some results from
the literature relevant to the studied problem. Section 3 introduces algorithms satisfying
constant regrets in expectation in the case p = 2 and m ≥ 3; that section aims to present a
preliminary view of the intuitions for attaining our objective. Next, we present in Section 4
our main results consisting of algorithms satisfying constant regrets with a high probability
for p,m ≥ 2. Finally, in Section 5, we present lower bounds for all the possible settings.
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2 Discussion of related work

Games with limited feedback and O
(√
T
)
regret: In the standard setting of multi-

armed bandit problem, the learner has to repeatedly obtain rewards (or incur losses) by
choosing from a fixed set of k actions and gets to see only the reward of the chosen action.
Algorithms such as EXP3-IX [Neu, 2015] or EXP3.P [Auer et al., 2002] achieve the optimal
regret of order O

(√
KT

)
up to a logarithmic factor, with high probability. A more general

setting closer to ours was introduced by Seldin et al. [2014]. Given a budget m ∈ JKK, in
each round t, the learner plays the prediction of one expert It, then gets to choose a subset
of experts Ct such that It ∈ Ct in order to see their prediction. A careful adaptation of the
EXP3 algorithm to this setting leads to an expected regret of order O

(√
(K/m)T

)
, which is

optimal up to logarithmic factor in K.
There are two significant differences between our framework and the setting presented

by Seldin et al. [2014]. First, we allow the player to combine up to p experts out of K in
each round for prediction. Second, we make an additional exp-concavity-type assumption
(Assumption 1) on the loss function. These two differences allow us to achieve constant regrets
bounds (independent of T ).

Playing multiple arms per round was considered in the literature of multiple-play multi-
armed bandits. This problem was investigated under a budget constraint C by Zhou and
Tomlin [2018] and Xia et al. [2016]. In each round, the player picks m out of K arms, incurs
the sum of their losses. In addition to observing the losses of the played arms, the learner
learns a vector of costs which has to be covered by a pre-defined budget C. Once the budget is
consumed, the game finishes. An extension of the EXP3 algorithm allows deriving a strategy
in the adversarial setting with regret of order O

(√
KC log(K/m)

)
. The cost of each arm is

supposed to be in an interval [cmin, 1], for a positive constant cmin. Hence the total number of
rounds in this game T satisfies T = Θ(C/m). Another online problem aims at minimizing the
cumulative regret in an adversarial setting with a small effective range of losses. Gerchinovitz
and Lattimore [2016] have shown the impossibility of regret scaling with the effective range
of losses in the bandit setting, while Thune and Seldin [2018] showed that it is possible to
circumvent this impossibility result if the player is allowed one additional observation per
round. However, it is impossible to achieve a regret dependence on T better than the rate of
order O

(√
T
)
in this setting.

Decoupling exploration and exploitation was considered by Avner et al. [2012]. In each
round, the player plays one arm, then chooses one arm out of K to see its prediction (not
necessarily the played arm as in the canonical multi-armed bandits problem). They devised
algorithms for this setting and showed that the dependence on the number of arms K can be
improved. However, it is impossible to achieve a regret dependence on T better than O

(√
T
)
.

Prediction with limited expert advice was also investigated by Helmbold and Panizza
[1997],Cesa-Bianchi and Lugosi [2006, Chap. 6] and Cesa-Bianchi et al. [2005]. However, in
these problems, known as label efficient prediction, the forecaster has full access to the experts
advice but limited information about the past outcomes of the sequence to be predicted. More
precisely, the outcome yt is not necessarily revealed to the learner. In such a framework, the
optimal regret is of order O

(√
T
)
.
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Constant regrets in the full information setting: The setting where the learner plays
a combination of all the experts and is allowed to see all their predictions in each round is
known in the literature as experts aggregation problem. It is a well-established framework
[Cesa-Bianchi and Lugosi, 2006] studied earlier by Freund and Schapire [1997], Kivinen and
Warmuth [1999], Vovk [1998]. This setting was investigated under the assumption that the loss
` function is η-exp-concave (i.e., the function exp(−η`) is concave). The Weighted Average
Algorithm algorithm [Kivinen and Warmuth, 1999] is known to achieve a constant regret of
order O(log(K)/η). While this result holds for any sequence of target variable and experts,
it requires using a combination of all the experts in each round. In several situations, it is
desirable to query and use the least number possible of experts advice for various reasons
(such as cost or time restrictions). In this paper, we aim at achieving the same bounds (with
high probability) under such constraints.

Fast rates in the batch setting: Another line of works investigated the problem of experts
(or estimators) aggregation in the batch setting with stochastic and i.i.d samples (i.e., each
expert’s predictions are assumed to follow an independent and identical distribution, see
Tsybakov, 2003). There are two distinct phases: a first step where the learner has access to
training data points, then a prediction step where she outputs a combination of experts. The
output in this setting is compared against the best expert. A non-exhaustive list of works
considering this problem includes those of Audibert [2008], Lecué and Mendelson [2009], and
Saad and Blanchard [2021], where the emphasis was put on obtaining O(1/T ) “fast” rates
for excess risk with high probability under some convexity assumptions on the loss function.
However, these algorithms are not translatable to the adversarial setting since some of the
previous strategies rely on the early elimination of sub-optimal experts. Saad and Blanchard
[2021] presented a budgeted setting where the learner is constrained to see at most m experts
forecasts per data point and can predict using p experts. This paper is an extension of their
framework in the adversarial setting with a cumulative regret.

Online Convex Optimization with bandit feedback: A different objective is considered
in the online convex optimization framework, where the losses are compared against the best
convex combination of the experts. This problem was studied by Agarwal et al. [2010] and
Shamir [2017] under limited feedback. More precisely, the learner can query the value of the loss
function in two points from the convex envelope of the compact set over which the optimization
is performed. In such a setting, it was shown that for Lipschitz and strongly-convex loss
functions, it is possible to achieve an expected regret bounded by O

(
d2 log(T )

)
, where d is

the dimension of the linear span of experts (which plays a similar role to K in our setting).
Observe that online convex optimization algorithms (eg. as considered in the cited references)
cannot be applied in our setting, where the player is not allowed to play (or observe) an
arbitrary point in the convex envelope of the experts, but rather convex combinations with
support on p (or m) experts. On the other hand, the goal aimed at is different as well, since
we want to minimize the regret with respect to the best expert, not with respect to the best
convex combination of experts (which would not be an attainable goal under the considered
play restrictions).
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Why aim at high probability bounds instead of expectation bounds? Consider an
algorithm with internal randomization. From a practical point of view, bounds on its expected
regret do not necessarily translate into a similar guarantee with high probability. In many
applications, such as finance, controlling the fluctuations of risk is very important. From a
mathematical point of view, the “phenomenon" of negative regrets occurs when the player
has a chance of outperforming the benchmark (such as the best-fixed expert in hindsight) for
some rounds. In this case, an algorithm may have optimal expected regret but sub-optimal
deviations. A manifestation of this problem is for the EXP3 algorithm in multi-armed bandit
setting (p = m = 1 in Protocol 1), which has a worst case regret of

√
KT in expectation, but

the random regret can be linear Ω(T ) with constant probability (see the exercises of Chapter
11 of Lattimore and Szepesvári, 2020).

3 Main results: Algorithm with upper bounds in expectation

In this section, we introduce a new algorithm with constant bounds on the expected regret,
for the setting: p = 2 and m ≥ 3. The aim of this section is to present some central intuitions,
which are complemented in the next section to achieve stronger guarantees. To ease notation,
we denote for each i ∈ JKK and t ∈ JT K: `i,t := `(Fi,t, yt).

The high-level idea of Algorithm 2 is common in the literature. It consists in constructing
unbiased estimates of unseen losses, which are fed to the classical exponential weighting (EW)
scheme over the experts. The first novelty introduced here is that the estimates are centered
in a “data-dependent" way, whose goal is to reduce variance. This variance control is essential
in our analysis (see sketch of the proof below) in order to have constant regrets.

Let us denote p̂t the probability distribution derived by the EW principle using estimated
cumulated losses L̂i,t over the set of experts at round t. The second novelty consists in sampling
just two experts It and Jt, independently at random following p̂t, and m− 2 additional experts
uniformly at random for exploration. Then, we play the mid-point of the predictions of It and
Jt (i.e., predict we predict 1

2FIt,t + 1
2FJt,t).

The main idea for getting a constant regret bound is to compensate the variance term
introduced by the estimates (ˆ̀

i,t) by the negative second order term in inequality (1) satisfied
by the loss. The following theorem presents a constant bound on the expected regret, with a
sketch of the proof.
Define the following constant

λ̄ := min

4 log
(
1 + η2B2

2

)
ηB2 ,

1
B

. (2)

Theorem 3.1. Suppose Assumption 1 holds. For any input parameter: λ ∈
(
0, m−2

4K λ̄
)
, where

λ̄ is defined in (2), the expected regret of Algorithm 2 satisfies:

E[RT ] ≤ log(K)
λ

,

where the expectation is with respect to the learner’s own randomization.
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Algorithm 2 Prediction with limited advice (p = 2,m ≥ 3)
Input Parameters: λ, m.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do
Let

p̂i,t =
exp

(
−λL̂i,t−1

)
∑
j exp

(
−λL̂j,t−1

) .
Draw It and Jt according to p̂t independently.
Play: 1

2FIt,t + 1
2FJt,t, and incur its loss.

Sample m− 2 experts uniformly at random without replacement from JKK. Denote Ut
this set of experts.
Query Ct = Ut ∪ {It, Jt}.
for i ∈ JKK do
Let

ˆ̀
i,t = K

m− 21(i ∈ Ut) `i,t +
(

1− K

m− 21(i ∈ Ut)
)
`It,t.

Update L̂i,t = L̂i,t−1 + ˆ̀
i,t.

end for
end for

Remarks. Comparing this result with the guarantees of the classical exponential weights
averaging (EWA) algorithm, one can notice that in the full information feedback setting
(m = K), our guarantee is of the same order, up to a numerical constant, as the constant
regret bound for EWA for exp-concave losses. The advantage of our procedure is that it
necessitates sampling only two experts from the EW distribution instead of full averaging. In
the partial feedback case (m < K), Algorithm 2 guarantees a regret of order O(K log(K)/m),
as one would expect, the factor K/m reflects the proportion of the information available to the
learner. The last bound is tight, up to a logarithmic factor in K (see Theorem 5.1).

Sketch of the proof. Let (Ft) denote the natural filtration associated to the process of avail-
able information, (St, Ct, (`i,t)t∈Ct), and denote Pt−1 resp. Et−1 the conditional probability
resp. expectation with respect to Ft−1 (“past observations”). The loss functions `t satisfy
Assumption 1. Therefore, using Lemma 1.1, the expected cumulative loss of Algorithm 2 is
given by

T∑
t=1

E
[
`t

(
FIt,t + FJt,t

2

)]
≤

T∑
t=1

E
[

1
2`It,t + 1

2`Jt,t −
λ̄

2 (`It,t − `Jt,t)2
]

=
T∑
t=1

K∑
i=1

E[p̂i,t `i,t]︸ ︷︷ ︸
Term 1

− λ̄2

T∑
t=1

K∑
i,j=1

E
[
p̂i,tp̂j,t(`i,t − `j,t)2

]
︸ ︷︷ ︸

Term 2

. (3)

Observe that by construction of Algorithm 2, the elements in Ut were sampled uniformly at
random without replacement from JKK. Moreover, Ut is independent of It. Therefore, ˆ̀

i,t is
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an unbiased estimator of `i,t conditionally to the available information: Et−1[ˆ̀i,t] = `i,t.

Using the tower rule, Term 1 therefore writes ∑t

∑
i E[p̂i,t ˆ̀i,t]. Next, we use Lemma E.1 in

the Appendix (by cancellation of consecutive logarithmic terms) with µt = ∑K
i=1 p̂i,t`i,t for

each t ∈ JT K. We have the following upper bound for Term 1 in (3):

T∑
t=1

K∑
i=1

E
[
p̂i,t ˆ̀

i,t

]
≤ min

i∈JKK

T∑
t=1

E
[
ˆ̀
i,t

]
+ log(K)

λ
+ λ

T∑
t=1

K∑
i=1

E
[
p̂i,t
(

ˆ̀
i,t − µt

)2
]
. (4)

We use the definition of ˆ̀
i,t and the tower rule to upper bound the last term in (3):

E
[
K∑
i=1

p̂i,t
(

ˆ̀
i,t − µt

)2
]
≤ 2K
m− 2E

[
K∑
i=1

p̂i,t(`i,t − µt)2
]

+ 2K
m− 2E

[
(`It,t − µt)2

]

= 4K
m− 2E

[
K∑
i=1

p̂i,t(`i,t − µt)2
]
.

Finally, we combine (3), (4) and the bound above to obtain

E[RT ] ≤ log(K)
λ

+ λ
4K
m− 2E

[
K∑
i=1

p̂i,t(`i,t − µt)2
]
− λ̄

T∑
t=1

K∑
i,j=1

E
[
p̂i,tp̂j,t(`i,t − `j,t)2

]
.

Recall that if X and Y are two independent and identically distributed variables, we have
E[(X − Y )2] = 2 Var(X). Applying this identity to Term 2 in (3), we have

E[RT ] ≤ log(K)
λ

+
(
λ

4K
m− 2 −

1
B

)
E
[
K∑
i=1

p̂i,t(`i,t − µt)2
]
.

We conclude using λ < m−2
4K λ̄.

4 Main results: Algorithms with high probability upper bounds

In this section, we present new algorithms with guarantees that hold with high probability
with respect to the player’s own randomization. As discussed in Section 2, high probability
guarantees are important to assess any algorithm’s goodness due to potential exposure to
negative regrets phenomena and thus the possibility of deviations having larger order than
the expectation.

We introduce sampling strategies for three different settings: p = 2 and m ≥ 3, (p = 2,m =
2, IC = False) and (p = 2,m = 2, IC = True), presented in Algorithms 3 and 4; Algorithm 3 is
common to the first two settings. To ease notations, we denote for each i ∈ JKK and t ∈ JT K:
`i,t := `(Fi,t, yt).

In Algorithms 3 and 4, we build on the idea presented in Algorithm 2 and construct
estimates of unseen losses, which are fed into an EW scheme from which experts are sampled.
Let p̂t denotes the resulting estimated EW distribution. The main differences between the
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algorithms below and Algorithm 2 are (a) the constructed loss estimates and (b) the sampling
strategy when m = 2 and IC = True.

Modified loss estimates: We start with the same unbiased loss estimates, with data-
dependent centering, from Algorithm 2, but additionally introduce a negative (or “optimistic”)
bias on the estimated losses, which takes into account an estimated variance. This can be
conceptually compared to the uniform confidence bound (UCB) algorithm in the standard
stochastic bandit setting, which will select “optimistically” arms which have the highest
potential reward given past information (here, loss is a negative reward). In this sense, this
term tends to encourage diversity in expert sampling (i.e. encourage sampling experts with a
possibly higher estimated loss but also larger variance than the best estimated experts so far).
This is used in both Algorithms 3 and 4.

In the case m ≥ 3 or (m = 2, IC = False), there is still at least one free observation left
for exploration decoupled from exploitation. In these settings, Algorithm 3 uses the same
sampling scheme as Algorithm 2, namely sampling independently at random two experts
following p̂t and playing the central point of the sampled predictions. The remaining “pure
exploration” observations are sampled uniformly at random, with replacement.

Modified sampling scheme: the case (m = 2, IC = True) is more difficult since
there is no “free exploration” observation possible. This is the counterpart of the explo-
ration/exploitation tradeoff of the standard bandit setting, in the framework where we aim
at constant regrets (so that playing combinations of at least two arms is necessary, see next
section). Taking inspiration from the standard bandit setting literature (p = m = 1), intro-
ducing a small uniform exploration component appears necessary for the sampling strategy
for algorithms achieving optimal high probability guarantees (Audibert and Bubeck, 2010,
Auer et al., 2002, Beygelzimer et al., 2011, Bubeck and Cesa-Bianchi, 2012). For example,
EXP3.P mixes the EW sampling rule with a uniform distribution over the arms. On the other
hand, EXP-IX [Neu, 2015] incorporates the exploration component implicitly through a biased
estimate of the losses. However, this uniform exploration costs O(

√
KT ) on the cumulative

regret. Hence, aiming at constant regret necessitates a more subtle sampling rule.
We introduce a two-step sampling strategy. The first expert, denoted At, is sampled

following p̂t. The second expert, denoted Bt, is sampled uniformly at random (possibly Bt
and At are identical). The predictions of (At, Bt) are observed after making a prediction. For
the playing strategy, we sample two experts independently (conditionally to At and Bt) at
random, following the restriction of the law p̂t on {At, Bt}, and we play the central point
of the two sampled experts. Therefore, depending on the outcome of the second step, the
algorithm’s prediction can be either one of the two pre-selected experts or the central point of
the two experts. This strategy ensures the necessary uniform exploring component needed in
the adversarial problems.

The possibility of having constant regrets guarantees is due to Property (1), satisfied for
the loss functions ` under Assumption 1: Lemma 1.1 suggests that when predicting the central
point of two experts, the learner benefits from the distance between the played predictions.
This remark is exploited in constructing of the distribution p̂t.

To summarize, the playing strategy relies on three essential ideas: the (conditional for
m = 2) independence of the played experts, the centering scheme for the losses estimates, and
the second order term to diversify the played arms.
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Algorithm 3 (p = 2, m ≥ 3) or (p = 2, m = 2, IC = False)
Input Parameters: λ,m.
Initialize: L̂i,0 = 0, V̂i,0 = 0 for all i ∈ JKK.
Let m̃ = max{m− 2, 1}.
for each round t = 1, 2, . . . do
Let

p̂i,t =
exp

(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑K
j=1 exp

(
−λL̂j,t−1 + λ2V̂j,t−1

) . (5)

Sample It and Jt according to p̂t from JKK independently.
Play: 1

2FIt,t + 1
2FJt,t, and incur its loss.

Sample m̃ experts without replacement, independently and uniformly at random from
JKK. Denote Ut this set of experts.
if m ≥ 3 then
Let Ct = {It, Jt} ∪ Ut.

else if m = 2 then
Let Ct = {It} ∪ Ut.

end if
Observe: `i,t for i ∈ Ct.
for i ∈ JKK do
Let

ˆ̀
i,t = K

m̃
1(i ∈ Ut) `i,t +

(
1− K

m̃
1(i ∈ Ut)

)
`It,t (6)

v̂i,t =
(

ˆ̀
i,t − `It,t

)2
(7)

Update L̂i,t = L̂i,t−1 + ˆ̀
i,t and V̂i,t = V̂i,t−1 + v̂i,t.

end for
end for

Remarks. • The proposed algorithm can be implemented in an efficient way, so that after
a one-time computational cost of O(K) for initialization, the computational cost of each
round, including suitably keeping track of the distribution p̂t and sampling from it, is
O(m logK) (see Appendix K for details). Therefore, the computational complexity also
depends mildly on the number of experts K.

• Since our analysis suggests that we can restrict possible plays to mid-points of just two
experts, one could argue that the coupled setting (p = m = 2, IC=True) looks quite similar
to learning with expert advice with bandit feedback, where the possible arms would be the
K2 “bi-experts” that are mid-points of original experts (i, j). One could therefore think of
a more direct approach: simply applying a bandit-type strategy, say EXP3.P or EXP3-IX
(Auer et al., 2002 and Neu, 2015, respectively) to these K2 “arms”. However, existing
generic results only guarantee a “slow” O(

√
T ) regret with respect to the best “bi-expert”,

and this cannot be compensated in general by exp-concavity, as the best “bi-expert” may
not be much better than the best expert (if the experts are “correlated”: see proof of lower

11



Algorithm 4 (p = 2, m = 2, IC = True)
Input Parameters: λ.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do
Let

p̂i,t =
exp

(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑K
j=1 exp

(
−λL̂j,t−1 + λ2V̂j,t−1

) .
Sample one expert from JKK, denoted At, according to p̂t, and one expert from JKK,
denoted Bt, independently and uniformly at random. Let Ct = {At, Bt}.
for i ∈ Ct do
Let

q̂i,t =
exp

(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑
j∈Ct exp

(
−λL̂j,t−1 + λ2V̂j,t−1

) .
Draw It from Ct according to q̂t.
Draw Jt from Ct according to q̂t independently from It.
Play: 1

2FIt,t + 1
2FJt,t, and incur its loss.

Observe: `i,t for i ∈ Ct.
end for
for i ∈ JKK do
Let

ˆ̀
i,t = K 1(Bt = i) `i,t + (1−K 1(Bt = i)) `At,t

v̂i,t =
(

ˆ̀
i,t − `At,t

)2

Update: L̂i,t = L̂i,t−1 + ˆ̀
i,t and V̂i,t = V̂i,t−1 + v̂i,t.

end for
end for

bounds in Theorem 5.1 and 5.2). Furthermore, in the playing strategy of EXP3.P and
EXP3-IX, each pair of experts is played Ω(

√
K2T ) times, due the uniform exploration

component of their sampling schemes. This will lead regrets scaling with
√
T .

Theorem 4.1. Suppose Assumption 1 holds.
Consider the case (m ≥ 3 and p = 2) or (m = 2 and p = 2 and IC = False). For any

input parameter λ ∈
(
0, m−1

128K λ̄
)
, where λ̄ is defined in (2), the regret of Algorithm 3 satisfies

with probability at least 1− 8δ, with respect to the player’s own randomization

RT ≤ c
1
λ

log
(
λ̄K

λδ

)
,

where c is a numerical constant.

Theorem 4.2. Suppose Assumption 1 holds.

12



Consider the case p = m = 2 and IC = True. For any input parameter λ ∈
(
0, λ̄

352K2

)
,

where λ̄ is defined in (2), the regret of Algorithm 4 satisfies with probability at least 1− 8δ,
with respect to the player’s own randomization

RT ≤ c
( 1
λ

+ K

λ̄

)
log
(
λ̄K

λδ

)
,

where c is a numerical constant.

Discussion Notice that prior knowledge on the confidence level δ is not required by Al-
gorithms 3 and 4. The presented bounds in theorems above are valid for any δ ∈ (0, 1).
Observe that taking λ close to m/(128K) λ̄ leads to a bound of the order O(K log(Kδ−1)/m)
in Theorem 4.1, which is minimax optimal up to a log(K) factor (Theorem 5.1). Taking λ
close to 1/(352K2) λ̄, leads to a bound of the order O(K2 log(Kδ−1)) in the special setting
p = m = 2 with IC = True. This bound presents a gap of factor K with the lower bound
presented in Theorem 5.1. We emphasize that in the last setting, the player chooses two
experts to combine their predictions and observes only the feedback of these two experts.
Hence, unlike the setting considered in Theorem 4.1, the player is deprived of additional ’freely
chosen’ experts to explore their losses. This constraint necessitates a more careful playing
strategy, presented in Algorithm 4.

5 Lower bounds

In this section, we provide lower bounds matching the upper bounds in Theorem 4.1, up to a
logarithmic factor in K (except for the case p = m = 2, where we have a gap of factor K).
The techniques of the proof are similar to the ones presented by Auer et al. [1995]. The main
difference comes from the construction of the experts’ distributions.

Theorem 5.1. Let ` be the squared loss: `(x, y) = (x− y)2 on X = Y = [0, 1]. Consider the
game protocol presented in Algorithm 1 with m ≥ 2 and p ≥ 2 and IC ∈ {False,True}. The
expected regret satisfies:

inf supE[RT ] ≥ c K
m
,

where c is a numerical constant, the infinimum is over all playing strategies and the supremum
is over all individual sequences.

Remarks. The lower bound presented in Theorem 5.1 is valid for any p ≤ K. Algorithms 3
and 4 match it (up to a log factor in K) using only p = 2, suggesting that no significant
improvements can be obtained if we are allowed to predict using more than two experts.

Theorem below is of theoretical interest, it shows that if only one feedback is received per
round, then constant regrets are not achievable.

Theorem 5.2. Let ` be the squared loss: `(x, y) = (x− y)2 on X = Y = [0, 1]. Consider the
game protocol presented in Algorithm 1 with m = 1 and p ∈ JKK and IC ∈ {False,True}, we
have

inf supE[RT ] ≥ c
√
KT,
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where c is a numerical constant, the infinimum is over all playing strategies and the supremum
is over all individual sequences.

For the sake of completeness, we state the following lower bound from Seldin et al. [2014].

Theorem 5.3 (Direct consequence of Seldin et al., 2014). Let ` be the squared loss: `(x, y) =
(x − y)2 on X = Y = [0, 1]. Consider the game protocol presented in Algorithm 1 with
p = 1 and m ∈ JKK and IC ∈ {False,True}, we have

inf supE[RT ] ≥ c
√
K

m
T,

where c is a numerical constant, the infinimum is over all playing strategies and the supremum
is over all individual sequences.

6 Discussion and open questions

• In the setting p = m = 2 with coupled exploration-exploitation (IC = True), Algorithm 4
presents a strategy with a bound of order O(K2 log(Kδ−1)), while the lower bound
presented in Theorem 5.1 is of order O(K). It would be of interest to close this gap.

• Previous works on achieving constant regret under a full observation model only assumed
exp-concavity of the loss (see e.g. Cesa-Bianchi and Lugosi, 2006, Chap. 3). In the
limited observation setting, we additionally assume that the loss function is bounded by
a constant B known to the player. It would be of interest to determine if this condition
is necessary. We note, however that loss boundedness is an important ingredient in
applying Bernstein-type inequalities for bounds in high probability.

• In the stochastic (i.i.d. experts and target variables) setting, a variation of the expert
elimination strategy proposed by Saad and Blanchard [2021] (suitably adapted to tackle
cumulative regret) can be shown to have fast rates for regret in an instance-free setting,
as well as suitable instance-dependent performance bounds (i.e., the bound depends on
the average performance of experts and their correlation, eliminating clearly sub-optimal
experts earlier). This a fairly different strategy from the exponential weighting variations
proposed here. In the bandit setting, Seldin and Slivkins [2014] have proposed a strategy
that reaches almost optimal bounds both in the stochastic and the adversarial settings.
It would be interesting to investigate whether such an omnibus strategy exists.

• We have shown that p = 2 is sufficient to get constant regret with respect to the best
expert, using a strong convexity-type assumption on the loss. For p = K, for an exp-
concave loss there exist strategies having constant regret with respect to the best convex
combination of experts (e.g. Cesa-Bianchi and Lugosi, 2006, Theorem. 3.3), albeit with
a O(K) scaling of the regret. It would be interesting to study if “intermediate” situations
exist, for example if it is possible to have constant regret with respect to k-combinations
of experts using only p = O(k) expert predictions.
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Appendix: detailed proofs

A Notation

The following notation pertains to all the considered algorithms, where t is a given training
round and T is the game horizon:

• For any x > 0, let log+
2 (x) = max{0, log2(x)}.

• Let RT denote the cumulative random regret of the player over T rounds.

• Let St denote the set of combined experts to make a prediction at round t.

• Let Ct denote the set of observed experts after making the prediction at round t.

• For each i ∈ St, let αi,t denote the weight of expert i in the convex combination played
in round t.

• Let (Ft)t denote the natural filtration associated with the process (St, Ct, (`i,t)i∈Ct)t.

• Denote the conditional expectation with respect to Ft by Et[.] = E[.|Ft].

• For each expert i ∈ JKK, let Ni denote the number of times the prediction of expert i
was observed during the game (over T rounds).

• For each expert i ∈ JKK, let Mi denote the number of times the prediction of expert i
was used for prediction during the game (over T rounds): Mi := |{t ∈ JT K : i ∈ St}|.

• For each expert i ∈ JKK, we define `i,t = `(Fi,t, yt).

• Denote by `t : X → R such that ∀x ∈ JXK : `t(x) = `(x, yt).

Notation associated to Algorithms 3 and 4

• Let It and Jt denote the experts used for prediction in round t.

• Let Ut the set of experts queried for exploration (sampled uniformly without replacement
from JKK). In Algorithm 4 let Ut = {Bt}.

• Let m̃ = max{1,m− 2}.

B Some preliminary technical results

The following device is standard (it is used for instance for proving Bennett’s inequality).

Lemma B.1. Let X be a random variable with finite variance, such that X ≤ b almost surely
for some b > 0. For any λ > 0:

log
(
EeλX

)
≤ λE[X] + φ(λb)

b2
E[X2].

Where φ(x) = exp(x)− 1− x.
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Proof. The function x 7→ x−2φ(x) is non-decreasing on R. As a consequence, if X ≤ b a.s., for
any λ > 0 it holds exp(λX) ≤ φ(λb)

b2 X2 + 1 + λX, a.s. Taking the expectation, then applying
the inequality log(1 + t) ≤ t yields the result.

Corollary B.2. Let X be a random variable with finite variance, such that X ≥ −b almost
surely for b > 0. For any λ ∈

(
0, 1

b

)
:

log
(
Ee−λX

)
≤ −λE[X] + λ2E[X2].

Proof. This corollary is a direct consequence of applying Lemma B.1 to the variable −X ≤ b,
then using the fact that ∀x ≤ 1 : φ(x) ≤ x2.

We now introduce some technical lemmas used in the proofs. Let us start by reminding
the following standard result (see Theorem 1.1.4 Niculescu and Persson, 2006).

Lemma B.3. A continuous function f : X → R, where X is a convex set, is convex if and
only if: for any x, x′ ∈ X :

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′).

Lemmas below give some bounds for some functions.

Lemma B.4. • We have for any x ∈ R

1 + x2

2 ≤ cosh(x) ≤ exp(x2/2).

• Let c > 0. We have for any x ∈ [0, c]

log(1 + x) ≥ log(1 + c)
c

x.

Proof. The first and third result is a direct consequence of Taylor’s expansion. The second
result follows simply by concavity of x→ log(1 + x).

Lemma B.5. We have for any x, y > 0

log+
2 (x)− x

y
≤ log+

2 (y).

Proof. Let x, y > 0, we have

log2(y) = log2(x)− log2

(
x

y

)
≥ log2(x)− x

y
,

where we used the fact that log2(t) ≤ t for any t > 0. To conclude we use the inequality

(a)+ − b ≤ (a− b)+,

valid for any a ∈ R and b > 0.
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C Proof of Lemma 1.1

Let y ∈ Y. In this proof, we will denote `(.) instead of `(., y) so as to ease notation.

C.1 First claim

By exp-concavity of `, we have for any x, x′ ∈ X

1
2 exp{−η`(x)}+ 1

2 exp
{
−η`(x′)

}
≤ exp

{
−η`

(
x+ x′

2

)}
.

Multiplying both sides by exp
{

1
2η`(x) + 1

2η`(x′)
}
, we have

1 + η2(`(x)− `(x′))2

2 ≤ exp
{
η

2 `(x) + η

2 `(x
′)− η`

(
x+ x′

2

)}
,

where we used the first result of Lemma B.4 to lower bound the left hand side.
Introducing the logarithm and using the second result of Lemma B.4, we obtain

2 log
(
1 + η2B2

2

)
η2B2 η2(`(x)− `(x′)

)2 ≤ η

2 `(x) + η

2 `(x
′)− η`

(
x+ x′

2

)
.

We conclude that

`

(
x+ x′

2

)
≤ 1

2`(x) + 1
2`(x

′)− 1
2c
(
`(x)− `(x′)

)2
,

where
c = ηB2

4 log
(
1 + η2B2

2

) .

C.2 Second claim

Let c > 0, we denote E(c) the set of functions f : X → R, such that for any x, x′ ∈ X :

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− 1

2c
(
f(x)− f(x′)

)2
. (8)

Lemma C.1. For any c > 0, we have for any f ∈ E(c)

sup
x,x′∈X

∣∣f(x)− f(x′)
∣∣ ≤ c.

Proof. Put ∆xx′ = f(x′) − f(x), and ∆∗ = supx,x′∈X ∆xx′ . We first prove that ∆∗ ≤ 3c.
Assume this is not the case and let x, x′ ∈ X be such that ∆xx′ > 3c. Let z := 1

2(x+ x′).
Using f ∈ E(c), we obtain

∆xz = f(z)− f(x) ≤ 1
2
(
f(x′)− f(x)

)
− 1

2c(f(x′)− f(x))2 = 1
2∆xx′ − 1

2c∆2
xx′ ≤ −∆xx′ ,
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where the last inequality holds because ∆xx′ > 3c. Hence ∆zx > 3c and in turn, if x1 :=
1
2(x+ z), reiterating the above argument we get ∆x1z > 3c and in particular f(x1) < f(z).
Also, we have ∆zx′ = ∆zx + ∆xx′ > 3c, therefore putting x′1 := 1

2(x′ + z), again by the same
token we get f(x′1) < f(z). This is a contradiction, since z = 1

2(x1 + x′1), thus Assumption 1
implies that f(z) ≤ max(f(x1), f(x′1)).

Since ∆∗ is finite, m := infx∈X f(x) is finite. For any ε > 0, let xε be such that
f(xε) ≤ m + ε. For any x′ ∈ X, putting again z := 1

2(x+ x′), it must be the case that
∆xεz ≥ −ε, and using again the above display it must hold −ε ≤ ∆xεz ≤ 1

2∆xεx′ − 1
2c∆2

xεx′ .
This implies ∆xεx′ ≤ c+G(ε) for any x′ ∈ X , with G(ε) = O(ε). Since ∆∗ ≤ ε+supx′∈X ∆xεx′ ,
we conclude to ∆∗ ≤ c by letting ε→ 0.

Lemma C.2. For any c > 0, we have for any continuous function f ∈ E(c): f is (4/c)-exp-
concave.

Proof. Fix c > 0 and f ∈ E(c). Let x, x′ ∈ X . Let us prove that

1
2 exp

{
−4
c
f(x)

}
+ 1

2 exp
{
−4
c
f(x′)

}
≤ exp

{
−4
c
f

(
x+ x′

2

)}
. (9)

Recall that since f ∈ E(c), inequality (8) gives

2
c2
(
f(x)− f(x′)

)2 ≤ 2
c
f(x) + 2

c
f(x′)− 4

c
f

(
x+ x′

2

)
.

We introduce the exp function on both sides of the inequality and use the first result of
Lemma B.4 to lower bound the left hand side. We have

1
2 exp

{2
c

(
f(x)− f(x′)

)}
+1

2 exp
{2
c

(
f(x′)− f(x)

)}
≤ exp

{2
c
f(x) + 2

c
f(x′)

}
exp

{
−4
c
f

(
x+ x′

2

)}
,

which proves (9). We conclude using the characterization provided by Lemma B.3.

C.3 Third claim

Lemma C.3. Let f : X → R be a L-Lipschitz and ρ-strongly convex function, then f ∈
E
(
4L2/ρ

)
.

Proof. By strong convexity of f , we have for any x, x′ ∈ X

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− ρ

8
∥∥x− x′∥∥2

.

Moreover, f(.) is L-Lipschitz, hence: |f(x)− f(x′)| ≤ L‖x− x′‖. Therefore

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− ρ

8L2
(
f(x)− f(x′)

)2
.
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D Concentration inequality for martingales

We recall Bennett’s inequality:

Theorem D.1. Let Z,Z1, . . . , Zn be i.i.d random variables with values in [−B,B] and let
δ > 0. Then with probability at least 1− δ in (Z1, . . . , Zn) we have∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ ≤
√

2 Var[Z] log(2/δ)
n

+ 2B log(2/δ)
3n .

We recall Freedman’s inequality (the exposition here is lifted from Fan et al., 2015). Let
(ξi,Fi)i≥1 be a (super)martingale difference sequence. Define Sn := ∑n

i=1 ξi (then (Sn,Fn) is
a (super)martingale), and 〈S〉n := ∑n

i=1 E
[
ξ2
i |Fi−1

]
the quadratic characteristic of S.

Theorem D.2 (Freedman’s inequality). Assume ξi ≤ B for all i ≥ 1, where B is a constant.
Then for all t, v > 0:

P
[
Sk ≥ t and 〈S〉k ≤ v

2 for some k ≥ 1
]
≤ exp

(
− t2

2(v2 +Bt)

)
. (10)

The following direct consequence also appears in [Kakade and Tewari, 2008, Lemma 3]
for fixed k. Here we give a version that holds uniformly in k. See also [Gaillard et al., 2014,
Theorem 12] for a related result.

Corollary D.3. Assume ξi ≤ B for all i ≥ 1, where B is a constant. Then for all δ ∈ (0, 1/3),
with probability at least 1− 3δ it holds

∀k ≥ 1 : Sk ≤ 2
√
〈S〉kε(δ, k) + 4Bε(δ, k),

where ε(δ, k) := log δ−1 + 2 log(1 + log+
2 (〈S〉k/B2)).

If |ξi| ≤ B for all i ≥ 1, observe that ε(δ, k) ≤ log δ−1 +O(log log k).

Proof. By standard calculations, it holds that if t ≥ v
√

2 log δ−1 + 2B log δ−1, then t2

2(v2+Bt) ≥
log δ−1. Therefore (10) implies that for any v > 0 and δ ∈ (0, 1), it holds

P
[
∃k ≥ 1 : Sk ≥

√
2v2 log δ−1 + 2B log δ−1 and 〈S〉k ≤ v

2
]
≤ δ. (11)

Denote v2
j := 2jB2, δj := (j ∨ 1)−2δ, j ≥ 0, and define the non-decreasing sequence of stopping

times τ−1 = 1 and τj := min
{
k ≥ 1 : 〈S〉k > v2

j

}
for j ≥ 0. Define the events for j ≥ 0:

Aj :=
{
∃k ≥ 1 : Sk ≥

√
2v2
j log δ−1

j + 2B log δ−1
j and 〈S〉k ≤ v

2
j

}
,

A′j :=
{
∃k with τj−1 ≤ k < τj : Sk ≥ 2

√
〈S〉kε(δ, k) + 4Bε(δ, k)

}
.

From the definition of v2
j , δj , we have j = log2(v2

j /B
2) for j ≥ 1. For j ≥ 1, τj−1 ≤ k < τj

implies v2
j−1 = v2

j /2 < 〈S〉k ≤ v2
j , and further

log δ−1
j = log δ−1 + 2 log log2(v2

j /B
2) ≤ ε(δ, k).
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Therefore it holds A′j ⊆ Aj . Furthermore, for j = 0, we have v2
0 = B2, δ0 = δ. Further, if

k < τ0 it implies 〈S〉k < B2 and therefore ε(δ, k) = log δ−1. Thus, provided log δ−1 ≥ 1 i.e.
δ ≤ 1/e, it holds

A′0 ⊆
{
∃k with k < τ0 : Sk ≥ 4B log δ−1

0

}
⊆
{
∃k ≥ 1 : Sk ≥

√
2v2

0 log δ−1
0 + 2B log δ−1

0 and 〈S〉k ≤ v2
0

}
= A0.

Therefore, since by (11) it holds P[Aj ] ≤ δj for all j ≥ 0:

P
[
∃k ≤ n : Sk ≥ 2

√
〈S〉kε(δ, k) + 4Bε(δ, k)

]
= P

[ ⋃
j≥0

A′j

]
≤ P

[ ⋃
j≥0

Aj

]
≤ δ

∑
j≥0

(j ∨ 1)−2 ≤ 3δ.

Corollary D.4. Assume ξi ≤ b for all i ≥ 1, where b is a constant. Let (νt)t denote an
Ft-measurable sequence, such that for any k ≥ 1: 〈S〉k ≤

∑k
i=1 νi. Then for all c > 0 and

δ ∈ (0, 1/3), with probability at least 1− 3δ it holds

∀k ≥ 1 : Sk −
c

b

k∑
i=1

νk ≤
(8
c

+ 4
)(

log(δ−1) + 2 log+
2

(32 + 16c
c2

))
b.

Proof. Let c > 0 and fix δ ∈ (0, 1/3), we have using Corollary D.3: with probability at least
1− 3δ, it holds for any k ≥ 1

Sk −
c

b

k∑
i=1

νi ≤ 2
√
〈S〉kε(δ, k) + 4bε(δ, k)− c

b

k∑
i=1

νi

≤ 2
√
〈S〉kε(δ, k) + 4bε(δ, k)− c

b
〈S〉k

≤ 2
(
c

4b〈S〉k + 4b
c
ε(δ, k)

)
+ 4bε(δ, k)− c

b
〈S〉k

≤
(8
c

+ 4
)
bε(δ, k)− c

2b〈S〉k

=
(8
c

+ 4
)
b
(
log δ−1 + 2 log

(
1 + log+

2 (〈S〉k/b2)
))
− c

2b〈S〉k

≤
(8
c

+ 4
)
b
(
log δ−1 + 2 log+

2 (〈S〉k/b2)
)
− c

2b〈S〉k

The result follows by upper-bounding the function x → log+
2 (x) − x/y, for x, y > 0 using

Lemma B.5.

E Additional technical results

The following lemma is a consequence of Corollary B.2, the chaining rule (i.e cancellation
in the sum of logarithmic terms) and Fubini’s theorem. Let (ĥi,t)t∈JT K,i∈JKK be a Ft-adapted
process.
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For each i ∈ JKK and t ∈ JT K we define: Ĥi,t := ∑t
i=1 ĥi,s, we use the convention that

Ĥi,0 = 0. Let t ∈ JT K and λ > 0, we define the sequence (p̂i,t)i∈JKK:

p̂i,t :=
exp

{
−λĤi,t−1

}
∑K
j=1 exp

{
−λĤj,t−1

} . (12)

For each t ∈ JT K, define:

Ẑt :=
K∑
i=1

exp{−λĤi,t} (13)

Mt := log
(
Ẑt
)
− Et−1

[
log(Ẑt)

]
. (14)

Lemma E.1. Let b > 0 and (ĥi,t)t∈JT K,i∈JKK be a sequence of numbers taking values in an
interval of length b. For each i ∈ JKK and t ∈ JT K, let Et−1[ĥi,t] = hi,t. Let (αt)t∈JT K be a
sequence such that αt is Ft−1-measurable and:

∀i ∈ JKK, t ∈ JT K,
∣∣∣ĥi,t − αt∣∣∣ ≤ b.

Then for any λ ∈ (0, 1/b), for all t ∈ JT K we have:

T∑
t=1

K∑
i=1

p̂i,t hi,t ≤ min
i∈JKK

T∑
t=1

ĥi,t + log(K)
λ

+ 1
λ

T−1∑
t=1

Mt + λ
T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − αt

)2
]
,

where the sequence (p̂i,t)t∈JT K,i∈JKK is defined by (12) and (Mt) is defined by (14).

Proof. Let t ∈ JT K, we denote by p̂t the probability distribution on JKK defined by the weights
(p̂i,t)i∈JKK. We apply Corollary B.2 to the random variable Xt := ĥI,t − αt, where I is drawn
from JKK following p̂t: for any λ ∈ (0, 1/b),

log
(

K∑
i=1

p̂i,t exp
{
−λ
(
ĥi,t − αt

)})
≤ −λ

K∑
i=1

p̂i,t
(
ĥi,t − αt

)
+ λ2

K∑
i=1

p̂i,t
(
ĥi,t − αt

)2
.

Rearranging terms we obtain:

K∑
i=1

p̂i,t ĥi,t ≤ αt −
1
λ

log
((

K∑
i=1

p̂i,t exp{−λĥi,t}
)

exp{λαt}
)

+ λ
K∑
i=1

p̂i,t
(
ĥi,t − αt

)2

= − 1
λ

log
(

K∑
i=1

p̂i,t exp{−λĥi,t}
)

+ λ
K∑
i=1

p̂i,t
(
ĥi,t − αt

)2

= − 1
λ

(
log
(
Ẑt
)
− log

(
Ẑt−1

))
+ λ

K∑
i=1

p̂i,t
(
ĥi,t − αt

)2
,

where Ẑt is defined by (13). Taking the conditional expectation with respect to Ft−1 gives

K∑
i=1

p̂i,thi,t ≤ −
1
λ

(
Et−1

[
log
(
Ẑt
)]
− log

(
Ẑt−1

))
+ λ

K∑
i=1

p̂i,tEt−1

[(
ĥi,t − αt

)2
]
.
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Summing over t ∈ JT K we obtain:

T∑
t=1

K∑
i=1

p̂i,t hi,t ≤
log(Z0)
λ

−
log
(
ẐT
)

λ
+ 1
λ

T−1∑
t=1

Mt + λ
T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − αt

)2
]
.

Finally observe that Z0 = K and that:

− 1
λ

log
(
ẐT
)

= − 1
λ

log
(∑

i

exp{−λĤi,t}
)

≤ min
i∈JKK

Ĥi,t.

F A preliminary result for the proof of Theorem 4.1 and 4.2

In this section we present two key results for the proof of Theorem 4.1 and 4.2. Lemma F.5
provides a bound for the cases (p = 2,m ≥ 3) and (p = 2,m = 2, IC = False). Lemma F.6
presents a similar bound for the particular case (p = 2,m = 2, IC = True). We decided to
separate these two settings because each one requires a different condition on λ.

We consider the notation of Algorithms 3 and 4. In Algorithm 3 (m ≥ 3), we take At = It.
Recall that m̃ = max{1,m− 2} (as defined in Section A).

Lemma F.1. For any k ≥ 1,

Et−1

[(
ˆ̀
i,t − `At,t

)k]
=
(
K

m̃

)k−1
Et−1

[
(`i,t − `At,t)k

]
,

where m̃ = max{1,m− 2}.

Proof. Suppose that m ≥ 3. Consider the notation of Algorithm 3. Let k ≥ 1, we have

Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[(
K

m− 21(i ∈ Ut)`i,t +
(

1− K

m− 21(i ∈ Ut)
)
`At,t − `At,t

)k]

= Et−1

[(
K

m− 21(i ∈ Ut)`i,t −
K

m− 21(i ∈ Ut)`At,t
)k]

=
(

K

m− 2

)k
Et−1[1(i ∈ Ut)](`i,t − `At,t)k

=
(

K

m− 2

)k−1
Et−1

[
(`i,t − `At,t)k

]
,

where we used the fact that Ut and At are independent conditionally to Ft−1.
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Suppose that m = 2. Consider the notation of Algorithm 4. Let k ≥ 1, we have

Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[
(K1(Bt = i)`i,t + (1−K1(Bt = i))`At,t − `At,t)k

]
= KkEt−1

[
1(Bt = i)(`i,t − `At,t)k

]
= Kk−1Et−1

[
(`i,t − `At,t)k

]
.

Introduce the notation

µ̂t :=
∑
i∈JKK

p̂i,t`i,t, (15)

ξ̂t := 1
2

∑
i,j∈JKK

p̂i,tp̂j,t (`i,t − `j,t)2, (16)

where (p̂i,t) is defined in (12). For each t ∈ JT K, let

Ẑt =
K∑
i=1

exp
{
−λL̂i,t + λ2V̂i,t

}
Mt = log

(
Ẑt
)
− Et−1

[
Ẑt
]
, (17)

where L̂i,t = ∑t
s=1

ˆ̀
i,t and V̂i,t = ∑t

s=1 v̂i,t, in agreement with the notation used in Algorithms 3
and 4, and in Section E.

Lemma F.2. Let λ ∈
(
0, 2m̃

K λ̄
)
, where λ̄ is defined in (2) and m̃ = max{m− 2, 1}. For each

i ∈ JKK, t ∈ JT K, let ĥi,t = ˆ̀
i,t − λv̂i,t. We have

T∑
t=1

µ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+ 11λK
m̃

T∑
t=1

ξ̂t,

where µ̂t is defined in (15), ξ̂t is defined in (16) and Mt is defined in (17).

Proof. Let hi,t := Et−1[ĥi,t] = `i,t − λEt−1[v̂i,t], we apply Lemma E.1 to the sequence (ĥi,t)i,t.
We take αt = µ̂t, which is an Ft−1-measurable process. For each i ∈ JKK and t ≥ 0, we have

T∑
t=1

K∑
i=1

p̂i,thi,t ≤ min
i∈JKK

T∑
t=1

ĥi,t + log(K)
λ

+ 1
λ

T∑
t=1

Mt + λ
T∑
t=1

K∑
i=1

p̂i,tEt−1

[(
ĥi,t − µ̂t

)2
]
. (18)

Now, let us develop a lower bound on the left hand side of the inequality above. Recall that in
Algorithm 3, we take At = It, then At ∼ p̂t. In Algorithm 4, Lemma G.1 shows that At ∼ p̂t.
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Fix t ∈ JT K, we have:

K∑
i=1

p̂i,thi,t =
K∑
i=1

p̂i,t(`i,t − λEt−1[v̂i,t])

=
K∑
i=1

p̂i,t`i,t − λ
K∑
i=1

p̂i,tEt−1

[(
ˆ̀
i,t − `At,t

)2
]

=
K∑
i=1

p̂i,t`i,t − λ
K

m̃

(
K∑
i=1

p̂i,t(`i,t − µ̂t)2
)
− λK

m̃
Et−1

[
(`At,t − µ̂t)2

]
= µ̂t − 2λK

m̃
ξ̂t, (19)

where we used in the second line the definition v̂i,t =
(

ˆ̀
i,t − `At,t

)2
, Lemma F.1 with k = 2 in

the third line, and the fact that At is distributed following p̂ in the third and fourth line.
Next, we develop an upper bound on the last term of the right hand side of (18). We have

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 2

T∑
t=1

K∑
i=1

p̂i,t

{
Et−1

[(
ˆ̀
i,t − µ̂t

)2
]

+ λ2Et−1
[
v̂2
i,t

]}
. (20)

Fix t ∈ JT K. Let us bound each of the terms in the right hand side of the inequality above

K∑
i=1

p̂i,tEt−1

[(
ˆ̀
i,t − µ̂t

)2
]
≤

K∑
i=1

2p̂i,t
(
Et−1

[(
ˆ̀
i,t − `At,t

)2
]

+ Et−1
[
(`At,t − µ̂t)2

])

= 2Et−1
[
(`At,t − µ̂t)2

]
+ 2K

m̃

K∑
i=1

p̂i,tEt−1
[
(`i,t − `At,t)2

]

= 2ξ̂t + 2K
m̃

K∑
i=1

p̂i,t
{

(`i,t − µ̂t)2 + Et−1
[
(`At,t − µ̂t)2

]}
≤ 6K

m̃
ξ̂t, (21)

where we used Lemma F.1 for the second line. Moreover, using the same Lemma F.1 with
k = 4, we have

K∑
i=1

p̂i,tEt−1
[
v̂2
i,t

]
=

K∑
i=1

p̂i,t

(
K

m̃

)3
Et−1

[
(`i,t − `At,t)4

]

≤
(
K

m̃

)3
B2

K∑
i=1

p̂i,tEt−1
[
(`i,t − `At,t)2

]
= 2

(
K

m̃

)3
B2ξ̂t. (22)

We plug the bounds obtained from (21) and (22) into inequality (19), and obtain

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 2

(
6K
m̃

+ 2λ2 K3

(m̃)3B
2
)

T∑
t=1

ξ̂t. (23)
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Recall that by definition (2), λ̄ ≤ 1
B . Hence, λ <

2m̃
K λ̄ gives

λ2K
2

m̃2B
2 ≤ 4,

we plug this bound into (23) and obtain

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 20K

m̃

T∑
t=1

ξ̂t. (24)

Next, we plug the bounds obtained in (19) and (24) into (18) to obtain

T∑
t=1

µ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+ 22λK
m̃

T∑
t=1

ξ̂t.

Lemma F.3. Let λ ∈
(
0, 2m̃

K λ̄
)
, where λ̄ is defined in (2) and m̃ = max{1,m− 2}. Consider

the martingale difference sequence (Mt)t∈JT K defined in (17). We have

• ∀t ∈ JT K : |Mt| ≤ 3λKm̃B.

• ∑T
t=1 E

[
M2
t

]
≤ 5Km̃λ2∑T

t=1 ξ̂t.

Proof. Observe that the sequence (Mt,Ft)t∈JT K is a martingale difference. For any t ∈ JT K,
we have

Mt = E
[
log
(
Ẑt+1

)
|Ft
]
− log

(
Ẑt
)

= log
(

Ẑt

Ẑt−1

)
− Et−1

[
log
(

Ẑt

Ẑt−1

)]

= log
(

K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)
− Et−1

[
log
(

K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)]
,

where we used the fact that Ẑt−1 is Ft−1-measurable in the second line.
The loss function `(., y) is B-range-bounded for any y. Let cmin and cmax denote the lower

and upper bounds, respectively, for the values of ` (cmax − cmin ≤ B). Therefore, for any
i ∈ JKK, ˆ̀

i,t ∈
[
cmin − K

m̃B, cmax + K
m̃B

]
and v̂i,t ∈ [0, (Km̃ )2B2]. Therefore

exp
(
λcmax −

K

m̃
λB

)
≤ exp

(
−λˆ̀

i,t + λ2v̂i,t
)
≤ exp

(
−λcmin + λ

K

m̃
B + 2λ2K

2

m̃2B
2
)
.

Hence

λcmax − λ
KB

m̃
≤ log

(
K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)
≤ −λcmin + λ

KB

m̃
+ 2λ2K

2B2

m̃2

Recall that Mt is a centered variable and λ < m̃
128KB . Therefore
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|Mt| ≤ 4λK
m̃
B. (25)

Now, let us bound the quadratic characteristic of (Mt)t. We have

Et−1
[
M2
t

]
= Vart−1

(
log
(
Ẑt
))

= Vart−1
(
log
(
Ẑt
)
− log

(
Ẑt−1

))
, (26)

where we used the fact that Ẑt−1 is Ft−1-measurable.
Furthermore we have

Ẑt =
K∑
i=1

exp
(
−λL̂i,t + λ2V̂i,t

)

=
K∑
i=1

exp
(
−λL̂i,t−1 + λ2V̂i,t

)
exp

(
−λˆ̀

i,t + λ2v̂i,t
)

=
K∑
i=1

p̂i,tẐt−1 exp
(
−λˆ̀

i,t + λ2v̂i,t
)
.

Hence
Ẑt

Ẑt−1
=

K∑
i=1

p̂i,t exp
(
−λˆ̀

i,t + λ2v̂i,t
)

=
K∑
i=1

p̂i,t exp
(
−λ
(
`At,t + K

m̃
1(i ∈ Ut)(`i,t − `At,t)

)
+ λ2K

2

m̃21(i ∈ Ut)(`i,t − `At,t)2
)

= exp(−λ`At,t)
K∑
i=1

p̂i,t exp
(
−λK

m̃
1(i ∈ Ut)(`i,t − `At,t) + λ2K

2

m̃21(i ∈ Ut)(`i,t − `At,t)2
)

= exp(−λ`At,t)EA′
t

[
exp

(
−λK

m̃
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t) + λ2K

2

m̃21
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

)]
,

(27)

where A′t is a random variable, independent of At, such that for each i ∈ JKK, P(A′t = i) = p̂i,t,
and EA′

t
is the expectation with respect to the random variable A′t. So as to ease notation,

denote
Dt := K

m̃
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)− λ

K2

m̃21
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2.

We take the logarithm of both sides of inequality (27), we have

log
(
Ẑt
)
− log

(
Ẑt−1

)
= −λ`At,t + log

(
EA′

t
[exp(−λDt)]

)
.

We inject the equality above in (26). We obtain

Et−1
[
M2
t

]
= Vart−1

(
−λ`At,t + log

(
EA′

t
[exp(−λDt)]

))
≤ 2 Vart−1(λ`At,t) + 2 Vart−1

(
log
(
EA′

t
[exp(−λDt)]

))
≤ 2 Vart−1(λ`At,t) + 2Et−1

[
log2

(
EA′

t
[exp(−λDt)]

)]
. (28)
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Observe that

|λDt| =
∣∣∣∣∣λKm̃1(A′t ∈ Ut)

(
`A′

t,t
− `At,t

)
− λ2K

2

m̃21
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

∣∣∣∣∣ ≤ 1
5 .

where we used λ ∈
(
0, m̃

128KB

)
.

The function x 7→ log2(x) is convex on [e−1, e]. Hence, using Jensen’s inequality, we have

Et−1
[
log2

(
EA′

t
[exp(−λDt)]

)]
≤ Et−1EA′

t

[
log2(exp(−λDt))

]
= Et−1EA′

t

[
λ2D2

t

]
(29)

From (28) and (29), we conclude that

Et−1
[
M2
t

]
≤ 2λ2 Vart−1(`At,t) + 2Et−1EA′

t

[
λ2D2

t

]
≤ 2λ2ξ̂t + 2Et−1EA′

t

[
λ2D2

t

]
. (30)

where we used Vart−1(`At,t) = ξ̂t. Furthermore:

Et−1EA′
t

[
λ2D2

t

]
≤ 2Et−1EA′

t

[
λ2K2

m̃2 1
(
A′t ∈ Ut

)(
`A′

t,t
− `At,t

)2
+ K4λ4

m̃4 1
(
A′t ∈ Ut

)(
`A′

t,t
− `At,t

)4
]

≤ 2
(
λ2K2

m̃2 + λ4K4

m̃4 B2
)
Et−1EA′

t

[
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

]
≤ 3λ

2K2

m̃2 Et−1EA′
t

[
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

]
≤ 3λ

2K2

m̃2 EA′
t

[
Et−1

[
1
(
A′t ∈ Ut

)]
Et−1

[
(`A′

t,t
− `At,t)2

]]
= 3λ

2K2

m̃2
m̃

K

K∑
i,j=1

p̂i,tp̂j,t(`i,t − `j,t)2

= 3K
m̃
λ2ξ̂t, (31)

where we used the independence of Ut and At conditionally to Ft−1.
We plug (31) into (30). Therefore, it holds

T∑
t=1

Et−1
[
M2
t

]
≤

T∑
t=1

(
2λ2ξ̂t + 3K

m̃
λ2ξ̂t

)

≤ 5K
m̃
λ2

T∑
t=1

ξ̂t.

The following lemma provides a bound with high probability on the quantity L̂i,T − λV̂i,T ,
for each i ∈ JKK.
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Lemma F.4. For any i ∈ JKK and λ ∈ (0, m̃λ̄
128K ), with λ̄ defined in (2) and m̃ = max{1,m−2}.

We have for any δ ∈ (0, 1/3), with probability at least 1− 6δ:

L̂i,T − λV̂i,T ≤ Li,T + 721
λ

log
(

m̃

KBλδ

)
.

Proof. Let i ∈ JKK. Recall that we have for any t ∈ JT K

ˆ̀
i,t − `i,t =

(
K

m̃
1(i ∈ Ut)− 1

)
(`i,t − `At,t)

ˆ̀
i,t − `At,t = K

m̃
1(i ∈ Ut)(`i,t − `At,t).

We introduce the following notation

νi,t := Et−1
[
(`i,t − `At,t)2

]
.

We have

L̂i,T − λV̂i,T = Li,T +
T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ

T∑
t=1

(
K

m̃

)2
1(i ∈ Ut)(`i,t − `At,t)2

= Li,T +
T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ K2m̃

T∑
t=1

νi,t︸ ︷︷ ︸
Term 21

+ λ
K

2m̃

T∑
t=1

νi,t − λ
T∑
t=1

(
K

m̃

)2
1(i ∈ Ut)(`i,t − `At,t)2

︸ ︷︷ ︸
Term 22

. (32)

Bounding Term 21: Observe that (ˆ̀
i,t − `i,t)t is a martingale difference with respect to

the filtration F , bounded in absolute value by K
m̃B. Let us bound its quadratic characteristic.

Recall that At and Ut are independent conditionally to Ft−1. We have
T∑
t=1

Et−1
[
(ˆ̀
i,t − `i,t)2

]
=

T∑
t=1

Et−1

[(
1− K

m̃
1(i ∈ Ut)

)2
(`i,t − `At,t)2

]

=
T∑
t=1

Et−1

[(
1− K

m̃
1(i ∈ Ut)

)2
]
Et−1

[
(`i,t − `At,t)2

]

≤ K

m̃

T∑
t=1

Et−1
[
(`i,t − `At,t)2

]

= K

m̃

T∑
t=1

νi,t.

Next, we apply Corollary D.4 to the sequence (ˆ̀
i,t − `i,t)t∈JT K: We take c = λKB/(4m̃) ≤ 1,

with probability at least 1− 3δ, it holds

T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ K2m̃

T∑
t=1

νi,t ≤
720
λ

log
(

m̃

KBλδ

)
. (33)
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Bounding Term 22: Define the sequence (Qt)t∈JT K as follows:

Qt := −λK
2

m̃21(i ∈ Ut)(`i,t − `At,t)2 + λ
K

m̃
νi,t.

Notice that (Qt) is a martingale difference sequence with respect to the filtration F , and
bounded in absolute value by 2λK2B2

m̃2 . Let us bound its quadratic characteristic. We have

T∑
t=1

Et−1
[
Q2
t

]
≤ λ2

T∑
t=1

Et−1

[
K4

m̃41(i ∈ Ut)(`i,t − `At,t)4
]

≤ λ2K
4B2

m̃4

T∑
t=1

Et−1[1(i ∈ Ut)]Et−1
[
(`i,t − `At,t)2

]

= K3λ2B2

m̃3

T∑
t=1

νi,t.

Next, we apply Corollary D.4 to this sequence. We take c = 1, we have with probability at
least 1− 3δ:

T∑
t=1

Qt − λ
K

2m̃

T∑
t=1

νi,t ≤ 36λK
2

m̃2B
2 log

(
δ−1

)
≤ 9

32B log(δ−1). (34)

Conclusion: To conclude, we inject bounds obtain in (33) and (34) into (32).

We provide a key lemma that will be used in the proof of Theorem 4.1 and 4.2.

Lemma F.5. Let λ ∈
(
0, m̃

128K λ̄
)
, where λ̄ is defined in (2). Consider Algorithm 3 with inputs

(λ,m). We have with probability at least 1− 9δ

T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
(
m̃

Bλδ

)

where m̃ = max{1,m− 1} and c is a numerical constant.

Proof. For each i ∈ JKK and t ∈ JT K, let ĥi,t := ˆ̀
i,t − λv̂i,t and hi,t := Et−1

[
ĥi,t
]
. Using

Lemma F.2, we have

T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+
(11λK

m̃
− 7

32 λ̄
) T∑
t=1

ξ̂t

≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt −
λ̄

8

T∑
t=1

ξ̂t + log(K)
λ

, (35)
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where we used the fact that λ ∈
(
0, m̃

128K λ̄
)
.

In order to conclude, we only need bounds on the terms mini∈JKK
∑T
t=1 ĥi,t and 1

λ

∑T
t=1Mt.

Recall that Lemma F.3 shows that (Mt) is a martingale difference sequence and provides
a bound on its conditional variance. Hence, applying Corollary D.4 to this sequence with
c = 3Bλ̄/40, with probability at least 1− 3δ, it holds

1
λ

T∑
t=1

Mt −
m̃λ̄

40λ̄2K

T∑
t=1

5K
m̃
λ2ξ̂t ≤

324K
m̃λ̄

(
log δ−1 + 2 log+

2

( 7024
B2λ̄2

))
.

We conclude that
1
λ

T∑
t=1

Mt −
λ̄

8

T∑
t=1

ξ̂t ≤ 8428 K
m̃λ̄

log
( 1
Bλ̄δ

)
. (36)

Next, to bound the term mini∈JKK
∑T
t=1 ĥi,t we use Lemma F.4. We have with probability at

least 1− 6δ

min
i∈JKK

T∑
t=1

ĥi,t = min
i∈JKK

L̂i,T − λV̂i,T

≤ min
i∈JKK

Li,T + 721
λ

log
(
m̃

Bλδ

)
. (37)

Finally, we inject (36) and (37) into (35) and use λ ∈
(
0, m̃

128K λ̄
)
. We obtain that with

probability at least 1− 9δ
T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
(
m̃

Bλδ

)
,

where c is a numerical constant.

The following Lemma is specific to the case m = p = 2 and IC = True in Algorithm 4.

Lemma F.6. Let λ ∈
(
0, λ̄

352K2

)
, where λ̄ is defined in (2). Consider Algorithm 4 with input

λ. We have with probability at least 1− 9δ
T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
( 1
Bλδ

)
,

where c is a numerical constant.

Proof. For each i ∈ JKK and t ∈ JT K, let ĥi,t := ˆ̀
i,t − λv̂i,t and hi,t := Et−1

[
ĥi,t
]
. Using

Lemma F.2, we have
T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+
(

11λK − 3λ̄
32K

)
T∑
t=1

ξ̂t

≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt −
λ̄

16K

T∑
t=1

ξ̂t + log(K)
λ

, (38)
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where we used the fact that λ ∈
(
0, λ̄

352K2

)
.

The remainder of the proof is similar to the proof of Lemma F.5.
Lemma F.3 provides the following bound with probability at least 1− 3δ

1
λ

T∑
t=1

Mt −
λ̄

16K

T∑
t=1

ξ̂t ≤
3520
λ̄

log
( 1
Bλ̄δ

)
. (39)

Moreover, Lemma F.4 provides the following bound with probability at least 1− 6δ

min
i∈JKK

T∑
t=1

ĥi,t = min
i∈JKK

Li,T + 721
λ

log
( 1
Bλδ

)
. (40)

Finally, we inject (39) and (40) into (38). We obtain that with probability at least 1− 9δ

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
( 1
Bλδ

)
,

where c is a numerical constant.

G On the sampling strategy in the case m = p = 2, IC = True

Let p denote a distribution over JKK. Let E = {A,B} denote a random set of elements in JKK,
such that A is sampled from JKK following p and B is sampled independently and uniformly
at random from JKK (possibly A = B and E is a singleton). Therefore, we have for each
u, v ∈ JKK, such that u 6= v:

P(E = {u, v}) = pu + pv
K

,

and
P(E = {u}) = pu

K
.

Finally, let pE denote the restriction of the distribution p on E , conditional to E . Let X denote
a random variable following pE

∀i ∈ E : pE(X = i) = p(X = i|E) = pi∑
j∈E pj

.

Let I and J denote two random variables on JKK sampled conditionally to E , independently
following pE (with replacement).

In this section, we prove two results: the marginal distribution of I on JKK is identical to
p, and a bound on the probabilities of the joint unconditional distribution of (I, J).

Lemma G.1. For each i ∈ JKK,
P(I = i) = pi.
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Proof. Fix i ∈ JKK. Let K denote the set of subsets of JKK, constituted of at most two
elements.

For any subset a ∈ K, define
pa :=

∑
i∈a

pi.

We have

P(I = i) =
∑
a∈K

P(I = i, E = a)

= P(I = i|E = {i}) P(E = {i}) +
∑

u∈JKK\{i}
P(I = i|E = {u, i}) P(E = {u, i})

= pi
K

+
∑

u∈JKK\{i}

pi
pu + pi

pu + pi
K

= pi
K

+ pi
K

(K − 1)

= pi.

Lemma G.2. For each i, j ∈ JKK,

P(I = i, J = j) ≥ 1
K

pipj .

Proof. Fix i, j ∈ JKK. Let K denote the set of subsets of JKK, constituted of at most two
elements.

Suppose that i = j. We have

P(I = i, J = i) =
∑
a∈K

P(I = i, J = i, E = a)

=
∑
a∈K

P(I = i, J = i|E = a)P(E = a)

=
∑
a∈K

P(I = i|E = a)2P(E = a),

where we used the fact that I and J are independent conditionally to E and that I and J
follow the same distribution. We use Jensen’s inequality:

P(I = i, J = i) ≥
(∑
a∈K

P(I = i|E = a)P(E = a)
)2

= p2
i .
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Now suppose that i 6= j. We have

P(I = i, J = j) = P(I = i, J = j, E = {i, j})
= P(I = i|E = {i, j})P(J = j|E = {i, j})P(E = {i, j})

= pi
pi + pj

pj
pi + pj

pi + pj
K

= pipj
K

.

H Proof of Theorems 4.1 and 4.2

We consider the notation of Algorithms 3 and 4. Let π̂ij,t = P(It = i, Jt = j|Ft−1). Introduce
(µ̂t and ξ̂t are the same quantities as in the previous section):

µ̂t :=
∑
i∈JKK

p̂i,t`i,t,

ν̂t := 1
2

∑
i,j∈JKK

π̂ij,t (`i,t − `j,t)2

ξ̂t := 1
2

∑
i,j∈JKK

p̂i,tp̂j,t (`i,t − `j,t)2

We have, using (8) with c = 1/λ̄ (implied by Assumption 1, see Lemma 1.1):

T∑
t=1

`t

(
FIt + FJt

2

)
≤

T∑
t=1

(
1
2`It,t + 1

2`Jt,t −
λ̄

2 (`It,t − `Jt,t)2
)

= 1
2

T∑
t=1
Ut + 1

2

T∑
t=1
U′t −

m̃λ̄

32K

T∑
t=1

ξ̂t −
λ̄

2

T∑
t=1
Wt −

λ̄

4

T∑
t=1

ν̂t︸ ︷︷ ︸
Term 1

+
T∑
t=1

µ̂t + m̃λ̄

32K

T∑
t=1

ξ̂t −
λ̄

4

T∑
t=1

ν̂t︸ ︷︷ ︸
Term 2

,

where
Ut := `It,t − µ̂t; U′t := `Jt,t − µ̂t; Wt := (`It,t − `Jt,t)2 − ν̂t.

Section H.1 below is common to Theorem 4.1 and 4.2. In Section H.2, we distinguish between
the case where (p = m = 2, IC = True) and (p = 2,m ≥ 3) or (p = 2,m = 2, IC = False).

H.1 Bounding Term 1

Recall that in Algorithm 3 we have by definition of It, conditionally to Ft−1: It ∼ p̂t.
Furthermore, in Algorithm 4, using Lemma G.1, conditionally to Ft−1, we have: It ∼ p̂t.
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Hence, (Ut)t∈JT K is a martingale difference sequence bounded in absolute value by B. Moreover,
we have for all t ∈ JT K

E
[
U2
t |Ft−1

]
= ξ̂t.

Next we apply the high probability bound provided by Corollary D.4 to the sequence (Ut)t∈JT K,
with c = m̃Bλ̄/(32K). We have with probability at least 1− 3δ

T∑
t=1
Ut −

m̃

32K λ̄
T∑
t=1

ξ̂t ≤ 7700 K
m̃λ̄

log
(

K

m̃Bλ̄δ

)
. (41)

Recall that in Algorithm 3 and 4, It and Jt have the same marginal distribution. Therefore,
with probability at least 1− 3δ, (41) holds with Ut replaced by U′t.
Similarly, the sequence ((−λ̄/2)Wt)t∈JT K is a martingale difference bounded in absolute value
by λ̄B2. For any t ∈ JT K,

λ̄2

4 E
[
W2

t |Ft
]
≤ λ̄2

4 E
[
(`It,t − `Jt,t)4|Ft−1

]
≤ λ̄2B2

4 ν̂t.

Next, we apply Corollary D.4 to the sequence ((−λ̄/2)Wt)t∈JT K: We take c = 1, we have with
probability 1− 3δ:

− λ̄2

T∑
t=1
Wt −

λ̄

4

T∑
t=1

ν̂t ≤ 72λ̄B2 log(δ−1)

≤ 72B log(δ−1). (42)

Using (41) and (42), we conclude that with probability 1− 9δ

Term 1 ≤ 7772 K
m̃λ̄

log
(

K

m̃Bλ̄δ

)
. (43)

H.2 Bounding Term 2

We divide this part of the proof into two section (depending on the expression of the joint
distribution π̂t).

H.2.1 Case (p = 2 and m ≥ 3) or (p = 2, m = 2 and IC = False)

Recall that conditionally to Ft−1, the played experts It and Jt are sampled independently
according to p̂t from JKK. Therefore for any i, j ∈ JKK, π̂ij,t = p̂i,tp̂j,t and ν̂t = ξ̂t.
Hence, Term 2 satisfies the following bound

Term 2 ≤
T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t.
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Using the first claim of Lemma F.5, we have if λ ∈
(
0, m̃

128K λ̄
)

Term 2 ≤ min
i∈JKK

Li,T + c
1
λ

log
(
m̃

Bλδ

)
, (44)

where c is a numerical constant. The conclusion of the theorem follows by combining the
upper bounds obtained in (43) and (44).

H.2.2 Case m = p = 2 and IC = True:

Using Lemma G.1 we have It ∼ p̂t. Furthermore, using Lemma G.2 we have that for any
i, j ∈ JKK, any t ∈ JT K:

π̂ij,t ≥
1
K
p̂i,tp̂j,t.

Therefore ν̂t ≥ 1
K ξ̂t, and we have the following bound on Term 2:

Term 2 ≤
T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t.

Using the second claim of Lemma F.6, we have if λ ∈
(
0, λ̄

352K2

)
T∑
t=1

µ̂t −
7

32B

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
( 1
λBδ

)
. (45)

The conclusion of the theorem follows by combining the upper bounds obtained in (43) and
(45).

I Proofs of lower bounds, Theorem 5.1 and Theorem 5.2

The proofs of Theorem 5.1 and Theorem 5.2 are presented in four steps. The only difference
between the proofs is in the last step. Thus the first three steps are common to both proofs.

We adapt the main steps of Auer et al. [1995] to our setting. The gist of the proof is the
following. We construct a distribution with very correlated experts. In this situation, going
from a weighted average of experts to a single expert with the largest weight does not change
the prediction risk much. Then, we use some classical arguments in deriving lower bounds for
the expected regret using information theory results.

Let T > 0 be fixed, we consider that the loss function is the squared loss and we focus on
the particular setting where the target variables (Yt) are identically 0.

First step: Specifying the distributions. We start by considering a deterministic fore-
caster. We denote by Pi the joint distribution of expert predictions, where all experts are
identical and distributed as one and the same Bernoulli variable with parameter 1/2, except
the optimal expert i who has distribution B

(
1
2 − ε

)
but is still strongly correlated to the

others.
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More precisely, let (Ut)t∈JT K be a sequence of independent random variables distributed
according the uniform distribution on [0, 1]. We consider that in each round the expert
predictions have the following joint distribution Pi:

• For j 6= i: Fj,t = 1
(
Ut ≤ 1

2

)
.

• Fi,t = 1
(
Ut ≤ 1

2 − ε
)
.

Recall that in this setting we have for any k, j ∈ JKK \ {i}

Ei[Fj,tFk,t] = 1
2

Ei[Fi,tFj,t] = 1
2 − ε.

Finally, we denote by P0 the joint distribution where all experts are equal to the same
Bernoulli(1/2) variables, i.e., experts predictions are defined by Fi,t = 1(Ut ≤ 1/2), i ∈ JKK.

Second step: Strategy Reduction. Suppose that the player follows a deterministic
strategy A. In each round t, given Ft−1, this strategy selects a subsets St of JKK of size m
and a sequence of non-negative weights (αi,t)i∈St , such that ∑i αi,t = 1, and plays the convex
combination ∑i∈St αi,tFi,t.

For such a strategy A, we associate a strategy Â, such that in each round, we run the
strategy A except that we play only the expert with the largest weight ît ∈ Arg Maxi∈St αi,t.

Let us analyse the difference of the cumulative loss between the strategies A and Â. Let
lt(A) denote the loss of the strategy A at round t. We have

Ei
[
lt(A)− lt(Â)

]
= Ei

( ∑
j∈St

αj,tFj,t

)2
− Ei

( ∑
j∈St

1
(
ît = j

)
Fj,t

)2
.

If i /∈ St then we have Ei[lt(A)− lt(Â)] = 0.
If i ∈ St and ît = i, we have (let j ∈ JKK such that j 6= i)

Ei
[
lt(A)− lt(Â)

]
= Ei

[
((1− αi,t)Fj,t + αi,tFi,t)2

]
− Ei[Fi,t]

= (1− αi,t)2 1
2 + α2

i,t

(1
2 − ε

)
+ 2αi,t(1− αi,t)

(1
2 − ε

)
− 1

2 + ε

= ε(1− αi,t)2

≥ 0.

39



If i ∈ St and ît 6= i, we have (let j ∈ JKK such that j 6= i)

Ei
[
lt(A)− lt(Â)

]
= Ei

[
((1− αi,t)Fj,t + αi,tFi,t)2

]
− Ei[Fj,t]

= (1− αi,t)2 1
2 + α2

i,t

(1
2 − ε

)
+ 2αi,t(1− αi,t)

(1
2 − ε

)
− 1

2
= εα2

i,t − 2εαi,t

≥ −3
4ε,

where we used the fact that αi,t ∈ [0, 1/2], since ît 6= i.
To summarize, in the worst case, the excess loss between A and Â is −3

4ε. Hence, we have
the following lower bound on the expected regret between the two strategies:

RT (A)−RT (Â) ≥ −3
4Tε. (46)

Third step: Information theoretic tools. Let us introduce the following notation:
assume the player follows a deterministic strategy A, and let Zt = (Ct, łt(Fi,t)i∈Ct) denote the
information disclosed to the player at time t. Denote Zt = (Z1, . . . , Zt) the entire information
available to the player since the start. The quantities Zt,Zt are considered as random variables,
whose distribution is determined by the underlying experts distribution, and the player strategy
A.

Lemma I.1. Let F (ZT ) be any fixed function of the player observations, taking values in
[0, B]. Then for any i ∈ JKK and any player strategy A,

Ei
[
F
(
ZT

)]
≤ E0

[
F
(
ZT

)]
+ B

2

√
E0[Ni] log(1− 2ε)−1,

where Ni = ∑T
i=1 1{i ∈ Ct}.

In the case where |Ct| = 1 for all t, the following sharper bound holds:

Ei
[
F
(
ZT

)]
≤ E0

[
F
(
ZT

)]
+ B

2

√
E0[Ni] log(1− 4ε2)−1,

Proof. Fix i ∈ JKK. Denote Qi the distribution of ZT induced by expert distribution Pi and
a fixed player strategy A (omitted from the notation for simplicity). For any function G
bounded by R, it is well-known that it holds |EX∼P[G(X)]− EX∼Q[G(X)]| ≤ 2R‖P−Q‖TV ,
where ‖·‖TV denotes the total variation distance. Hence, by shifting F by −B/2, we get

Ei
[
F (ZT )

]
− E0

[
F (ZT )

]
≤ B‖Qi −Q0‖TV ≤ B

√
1
2KL(Q0‖Qi),

by Pinsker’s inequality, where KL(.) denotes the Kullback-Leibler divergence.
Next, we will compute the quantity KL(Q0‖Qi). The chain rule for relative entropy

(Theorem 2.5.3 in Cover, 1999) gives:

KL(Q0‖Qi) =
T∑
t=1

KL
(
Q0
{
Zt|Zt−1

}
‖Qi

{
Zt|Zt−1

})
, (47)
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where

KL
(
Q0
{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
:=
∑
zt

Q0
{

zt−1
}
Q0
{
zt|zt−1

}
log
(
Q0
{
zt|zt−1}

Qi{zt|zt−1}

)

=
∑
zt

s.t. i∈Ct

Q0
{

zt−1, Ct
}
Q0{zt|Ct} log

(Q0{zt|Ct}
Qi{zt|Ct}

)
.

The last line holds becauseQ•
{
zt|zt−1} = Q•

{
zt|zt−1, Ct

}
Q•
{
Ct|zt−1}, and it holdsQ0

{
Ct|zt−1} =

Qi
{
Ct|zt−1} since the strategy’s play only depends on past observations; alsoQ•

{
zt|zt−1, Ct

}
=

Q•{zt|Ct} since the observed experts’ losses at round t are independent of the past given the
choice of Ct. Furthermore, if i 6∈ Ct, one has Q0{zt|Ct} = Qi{zt|Ct}.

On the other hand, if zt is such that i ∈ Ct, then:

• under Q0 since all experts are identical and equal to the same Ber(1/2) variable (and Yt
is identically 0), Q0(zt|Ct) only charges the two points with all observed losses equal to
0 (denote this u0) or all equal to 1 (denote this u1), each with probability 1/2;

• under Qi, it holds Qi(u1|Ct) = 1
2 − ε and Qi(u0|Ct) ≥ 1

2 . In fact, if |Ct| ≥ 2, then
Qi(u0|Ct) = 1

2 (since with probability ε under Qi, we observe a state that is neither u0 nor
u1, namely when all observed experts err but Fi), and if |Ct| = 1, then Qi(u0|Ct) = 1

2 + ε
(since Fi alone is observed then).

Therefore, in general

KL
(
Q0
{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
≤ P0(i ∈ Ct)

(1
2 log

( 1/2
1/2− ε

)
+ 1

2 log
(1/2

1/2

))
≤ 1

2P0(i ∈ Ct)log(1− 2ε)−1.

In the case where |Ct| = 1 for all t, we get the sharper bound

KL
(
Q0
{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
= P0(i ∈ Ct)

(1
2 log

( 1/2
1/2− ε

)
+ 1

2 log
( 1/2

1/2 + ε

))
= 1

2P0(i ∈ Ct)log
(
1− 4ε2

)−1
.

Plugging this into (47), we obtain
KL(Q0‖Qi) ≤ −1

2E0[Ni] log(1− 2ε), resp. KL(Q0‖Qi) ≤ −1
2E0[Ni] log

(
1− 4ε2

)
, if |Ct| = 1

for all t, leading to the claims.

Fourth step for Theorem 5.1: lower bounding the regret of Â in the case |Ct| ≥ 2.
Recall ît denotes the single expert played by the “reduced” strategy Â. At round t, the
expected loss for the player playing Â is given by

Ei
[
lt,̂it

]
=
(1

2 − ε
)
Pi
(
ît = i

)
+ 1

2Pi
(
ît 6= i

)
= 1

2 − ε Pi
(
ît = i

)
.
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For each j ∈ JKK let Mj := ∑T
t=1 1

{
ît = j

}
. Hence

T∑
t=1

Ei
[
lt,̂it

]
= T

2 − ε Ei[Mi],

and the regret with respect to the optimal arm i under Pi is

Ei
[
RT (Â)

]
= ε(T − Ei[Mi]). (48)

We can apply Lemma I.1 to F (Zt) = Mi: since we assume the player follows a deterministic
strategy, Mi is a function of the information Zt available to the player, bounded by T . Thus
it holds:

Ei[Mi] ≤ E0[Mi] + T

2

√
E0[Ni] log(1− 2ε)−1. (49)

Observe that ∑K
i=1Mi = T and ∑K

i=1Ni = mT . Hence

K∑
i=1

Ei[Mi] ≤
K∑
i=1

E0[Mi] + T

2

K∑
i=1

√
E0[Ni] log(1− 2ε)−1

≤ E0

[
K∑
i=1

Mi

]
+ TK

2

√√√√ 1
K

K∑
i=1

E0[Ni] log(1− 2ε)−1

= T + T
3
2
√
mKε,

where we used the fact that for ε ∈ (0, 1/4) : − log(1− 2ε) ≤ 4ε. Let P∗ = 1
K

∑K
i=1 Pi the

adversary choosing uniformly at random among the expert distributions Pi at the start of the
game (i.e. choosing at random the optimal expert). From the above and (48) we deduce

E∗
[
RT (Â)

]
≥ 1
K

K∑
i=1

Ei
[
RT (Â)

]
≥ ε

(
T

(
1− 1

K

)
− T

3
2

√
mε

K

)

Using inequality (46), we obtain

E∗[RT (A)] ≥ ε
(
T

(1
4 −

1
K

)
− T

3
2

√
mε

K

)
≥ εT

 1
20 −

√
Tmε

K

,
if K ≥ 5. Choosing ε = 1

900
K
mT , we get

E∗[RT (A)] ≥ 10−5 K

m
.

Recall that this lower bound was derived for deterministic players. Generalizing this bound
to random players follows simply by applying Fubini’s theorem. Also since the bound is in
expectation over expert predictions drawn according to P∗, for any strategy A there exists at
least one deterministic sequence of expert forecasts with regret larger than its expectation.
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Fourth step for Theorem 5.2: lower bounding the regret of Â in the case |Ct| = 1.
The only difference between the proof in this case and the proof in the previous case is the
bound given by Lemma I.1. The regret with respect to the optimal arm i under Pi is

Ei
[
RT (Â)

]
= ε(T − Ei[Mi]). (50)

We can apply Lemma I.1 to F (Zt) = Mi: since we assume the player follows a deterministic
strategy, Mi is a function of the information Zt available to the player, bounded by T . Thus
it holds:

Ei[Mi] ≤ E0[Mi] + T

2

√
E0[Ni] log(1− 4ε2)−1.

Observe that ∑K
i=1Mi = T and ∑K

i=1Ni = T . Hence

K∑
i=1

Ei[Mi] ≤
K∑
i=1

E0[Mi] + T

2

K∑
i=1

√
E0[Ni] log(1− 4ε2)−1

≤ E0

[
K∑
i=1

Mi

]
+ TK

2

√√√√ 1
K

K∑
i=1

E0[Ni] log(1− 2ε2)−1

= T + T
3
2
√

2Kε2,

where we used the fact that for ε ∈ (0, 1/4) : − log
(
1− 4ε2

)
≤ 8ε2. Let P∗ = 1

K

∑K
i=1 Pi the

adversary choosing uniformly at random among the expert distributions Pi at the start of the
game (i.e. choosing at random the optimal expert). From the above and (50) we deduce

E∗
[
RT (Â)

]
≥ 1
K

K∑
i=1

Ei
[
RT (Â)

]
≥ ε

T(1− 1
K

)
− T

3
2

√
2 ε

2

K


Using inequality (46), we obtain

E∗[RT (A)] ≥ ε

T(1
4 −

1
K

)
− T

3
2

√
2 ε

2

K

 ≥ εT
 1

20 −

√
2Tε

2

K

,
if K ≥ 5. Choosing ε = 1

30

√
K
T , we get

E∗[RT (A)] ≥ 10−5 √KT.

The generalization for the random players follows directly using the same argument as in
the fourth step of the proof of Theorem 5.1.

J Proof of Theorem 5.3

Let ` be the squared loss: l(x, y) = (x− y)2 on X = Y = [0, 1]. Consider the game protocol
presented in Algorithm 1 with p = 1 and m ∈ JKK. Suppose that the target variable y is
identically equal to 0 (yt = 0 for all t ∈ JT K). Suppose that at each round t ∈ JT K, for each
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expert i ∈ JKK, the prediction Fi,t follows a Bernoulli distribution of a parameter denoted `i,t.
We have

E[RT ] =
T∑
t=1

E[FIt,t]− min
i∈JKK

T∑
t=1

E[Fi,t].

The game protocol presented in Algorithm 1 reduces to the K-armed bandit game with m
feedbacks in each round, analysed in Seldin et al. [2014].

Theorem below presented in Seldin et al. [2014] (the full version including appendices) as
Theorem 2, provides a lower bound for the regret.

Theorem J.1 (Seldin et al. [2014]). For the K-armed bandit game with mT observed rewards
and T ≥ 3

16
K
m ,

inf supE[RT ] ≥ 0.03
√
K

m
T,

where the infinimum is over all playing strategies and the supremum is over all individual
sequences.

The result stated in Theorem 5.3 is a direct consequence of the Theorem J.1 and the
setting described above.

K Some implementation details and algorithmic complexity

We discuss here some details of the implementation of Algorithms 2, 3, 4, more specifically
concerning the cost of keeping track of the distribution p̂t and of sampling from it at each
round. We concentrate on Algorithm 3 for simplicity, but the arguments below apply to all
algorithms.

We start with a fundamental observation. While the definitions (6), (7) for ˆ̀
i,t and v̂i,t

were written in order to emphasize the unbiased character of the loss estimates, the algorithm
is unchanged if we use instead the shifted “pseudo-loss” estimates

˜̀
i,t := ˆ̀

i,t − `It,t = K

m̃
1(i ∈ Ut)(`i,t − `It,t), (51)

and further observe that it holds v̂i,t = ˜̀2
i,t. Using the above pseudo-losses in place of the

estimated losses does not change the sampling distribution p̂t, since all estimated losses are
shifted by the same quantity `It,t, which gets cancelled through the normalization in the
definition (5) of the EW distribution p̂t.

Observe that the pseudo-loss estimates ˜̀
i,t (as well as the corresponding variance estimates

v̂i,t) are equal to zero for all i 6∈ Ut. Therefore, to keep track of the cumulative pseudo-loss
estimates L̃i,t = ∑

k≤t
˜̀
i,k, only |Ut| = max{m − 2, 1} of them have to be updated at each

round.
In order to keep track and sample efficiently from p̂t, we propose the following construction.

Let T be a balanced binary tree of depth dlog2(K)e, with K leaves, such that each leaf i ∈ ∂T
is identified to an expert index. Furthermore, assume that each internal node u of T stores the
partial sum Su,t = ∑

v∈∂Tu exp
(
−λL̃v,t + λ2V̂v,t

)
, where Tu is the subtree of T rooted at node
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u. Then, by the above considerations, it holds that Su,t = Dt
∑
v∈∂Tu p̂u,t = Dtp̂t(∂Tu), where

Dt is a factor depending only on t but not on the node u. Note also that Dt = S∅, where
∅ denotes the root note of T . It is then possible to sample efficiently It ∼ p̂t in a standard
manner, as follows:

1. Generate U ∼ Unif[0, 1], and put Z = S∅U . Let v = ∅.

2. If v is a leaf of T , stop and output v.

3. Let vleft, vright denote the two descendent nodes of v.

4. If Z < Svleft , then let v ← vleft and go to step 2.

5. Otherwise, i.e. Z ≥ Svleft , let v ← vright, Z ← Z − Svleft , and go to step 2.

It easy to check that the above sampling returns a random sample from the probability
p̂t. (Namely, each time that step 2 is reached, conditionally to past steps Z is uniformly
distributed in the interval [0, Sv], and therefore the left or right descendent of u is picked with
probability p̂t(∂Tvleft |∂Tv) resp. p̂t(∂Tvright |∂Tv); the chain rule yields the claim.) Obviously,
the computing complexity of the above is O(logK) (the depth of the tree).

Furthermore, to update the quantities stored at the nodes of T at each round, since only
the estimated cumulative pseudo-losses of experts i ∈ Ut have their value modified, it is
sufficient to do the following for each i ∈ Ut:

1. Let v be the leaf representing i. Update Sv ← Sv exp
(
−λ˜̀

i,t + λ2v̂i,t
)
.

2. Go up the tree to the root and sequentially update all ancestors w of v according to
Sw = Swleft + Swright .

Again, the computing complexity of this update operation is O(logK).
All in all, the computational cost of the initialization of the tree is O(K), but then at each

round the computational cost of the sampling and update operations is O(m log(K)).
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