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THE TROPICAL n-GONAL CONSTRUCTION

FELIX RÖHRLE AND DMITRY ZAKHAROV

Abstract. We give a purely tropical analogue of Donagi’s n-gonal construction and investigate its
combinatorial properties. The input of the construction is a harmonic double cover of an n-gonal
tropical curve. For n = 2 and a dilated double cover, the output is a tower of the same type, and
we show that the Prym varieties of the two double covers are dual tropical abelian varieties. For
n = 3 and a free double cover, the output is a tetragonal tropical curve with dilation profile nowhere
(2, 2) or (4), and we show that the construction can be reversed. Furthermore, the Prym variety of
the double cover and the Jacobian of the tetragonal curve are isomorphic as principally polarized
tropical abelian varieties. Our main tool is tropical homology theory, and our proofs closely follow
the algebraic versions.
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1. Introduction

Tropical geometry aims to find polyhedral, piecewise-linear analogues of the objects studied
in algebraic geometry. There are two kinds of algebraic objects for which this correspondence is
particularly well-developed. The tropical analogues of algebraic curves are metric graphs, which
are the subject of an extensive theory, starting with the seminal paper [MZ08]. The tropical ana-
logue of an abelian variety is a real torus with additional integral structure, and tropical abelian
varieties have perhaps received less attention.

There are two standard ways to associate principally polarized abelian varieties (ppavs) to
algebraic curves, and both of these constructions carry over to the tropical setting. The Jacobian
variety Jac(C) of a smooth algebraic curve C of genus g is a ppav of dimension g. The correspond-
ing Torelli map Mg → Ag on the moduli spaces is injective, so a smooth algebraic curve can be
recovered from its Jacobian. The tropical Jacobian of a metric graph was already introduced
in [MZ08]. The tropical Torelli map M

trop
g → A

trop
g is no longer injective, and its non-injectivity

locus was completely described in [CV10].
The Prym variety Prym(rC{C) is a ppav of dimension g associated to an étale double cover

rC→ C of algebraic curves of genera 2g+ 1 and g+ 1, respectively. It is defined as the connected
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component of the identity of the kernel of the norm map Nm : Jac(rC) → Jac(C), and carries
a principal polarization that is half of the polarization induced from Jac(rC). The Prym–Torelli
map Rg+1 → Ag on the corresponding moduli spaces is no longer injective (for example, it has
positive-dimensional fibers for g ď 4), and its fibers have been extensively studied [Don92]. The
tropical Prym variety Prym(rΓ{Γ) associated to a harmonic double cover of metric graphs rΓ → Γ is
defined in a completely analogous manner (see [JL18], [LU21], and [LZ22]). As for the question
of describing the fibers of the tropical Prym-Torelli map R

trop
g+1 → A

trop
g we develop some ideas in

[RZ23], however this is still far from a complete description.
There are several remarkable constructions concerning Prym varieties of double covers of

curves of small gonality. Let p : rC → C be a (possibly ramified) double cover of a smooth curve
C admitting a degree n map f : C → P1. As x varies over P1, the sections of the fiber maps
(f ˝ p)−1(x) → f−1(x) glue together into a 2n-gonal curve rD → P1, which carries two additional
structures. First, exchanging the sheets of p defines an involution on rD, hence a double cover
rD → D of a 2n−1-gonal curve D → P1. Second, if p is étale, then sections have a well-defined
parity and rD decomposes as a disjoint union of two 2n−1-gonal curves (if n is odd then they are
exchanged by the involution, while if n is even then each is itself a double cover of a 2n−2-gonal
curve). For n ď 4, and under certain restrictions on the ramification, the ppavs associated to
these double covers satisfy a number of natural isomorphisms (due ultimately to the symmetries
of the associated Weyl groups):

n = 2: Given a double cover p : rC→ C of a hyperelliptic curve C, we obtain another such double
cover rD→ D, and applying the construction to rD→ D recovers the original double cover.
The double cover p is étale if and only if rD → D is split. If p is ramified, then the Prym
varieties Prym(rC{C) and Prym(rD{D) (which are not in general principally polarized) are
dual to one another [Pan86].

n = 3: This case was the first to be described [Rec74]. Given an étale double cover p : rC → C

of a trigonal curve, the trigonal construction produces a tetragonal curve D (the double
cover rD → D being split), which is generic in the sense that the tetragonal map has
no fibers with ramification profile (4) or (2, 2). This construction can be reversed, and
the Prym variety Prym(rC{C) is isomorphic to the Jacobian Jac(D). The Prym variety
Prym(rC{C) is also principally polarized when p is ramified at two points, and the ramified
trigonal construction was described by Dalalyan in [Dal79] and [Dal84], and was recently
rediscovered in [LO23].

n = 4: This is the general construction, from which the other two may be derived (see [Don81]
and [Don92]). Given an étale double cover p : rC → C of a generic tetragonal curve, we
obtain two more such double covers rC 1 → C 1 and rC2 → C2, and the Prym varieties
Prym(rC{C), Prym(rC 1{C 1), and Prym(rC2{C2) are isomorphic.

The purpose of our paper is to give tropical versions of the bigonal and trigonal construc-
tions (we outline the tropical tetragonal construction as well, but leave the details and proofs to a
future paper). To describe our results, we first discuss the tropical notion of gonality. Baker and
Norine [BN07] define the combinatorial rank r(D) of a divisor D on a finite graph, and show that
it satisfies a Riemann–Roch theorem. This was extended to metric graphs by [GK08] and [MZ08].
One may therefore say that a metric graph Γ is n-gonal if it carries a divisor D of degree n
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and rank r(D) ě 1. This definition is not appropriate in our setting. Instead, following the pa-
pers [Cap14] amd [CD18], we say that a tropical curve Γ is n-gonal if it admits a finite harmonic
morphism Γ → K of degree n, where K is a metric tree. Any fiber of such a map is a divisor of
rank at least one (see [ABBR15], Proposition 4.2), so this definition of gonality is more restrictive.
We note that [CD18] further require the n-gonal map to be effective, which is a numerical condi-
tion imposed on the vertices with local degree df(v) ě 2. This condition does not play a role in
the n-gonal construction, and we do not impose it.

In complete analogy to the algebraic case, we consider a tower

rΓ π
−→ Γ

f
−→ K

of harmonic morphisms of metric graphs, where K is a metric tree and the degrees are degπ = 2

and deg f = n, respectively. To this tower we associate, in a purely combinatorial way, a metric
graph rΠ together with a harmonic map rΠ → K of degree 2n. This map factors as rΠ → rK → K,
where the orientation double cover rK → K is free (and hence split because K is a tree) if and only
if π is free. In addition, there is a natural involution on rΠ with quotient map rΠ → Π. For n = 2

we have Π = rK and hence a tower rΠ → Π → K of the same kind as the original tower, which we
call the tropical bigonal construction. For n = 3 and π free, we instead obtain (a split double cover
of) a tetragonal curve Π → K, which we call the tropical trigonal construction. This construction
can be inverted by the tropical Recillas construction, under certain restrictions on the fibers of the
tetragonal map.

In order to state our results, we first clarify the issue of principal polarizations on trop-
ical abelian varieties. Given a harmonic double cover of graphs π : rΓ → Γ , the Prym variety
Prym(rΓ{Γ) (as defined in [JL18]) carries a polarization induced from the principal polarization
on Jac(rΓ ). The induced polarization is twice a principal polarization if π is a free double cover, or
if it is dilated and the dilation subgraph is connected, but not for general dilated double covers.
A related problem, explored in [GZ24], is that Prym(rΓ{Γ) behaves discontinuously under edge
contractions, specifically those that create additional connected components of the dilation sub-
graph. This suggests that we ought to modify the definition of Prym(rΓ{Γ), which we henceforth
call the divisorial Prym variety of the double cover π : rΓ → Γ and denote Prymd(

rΓ{Γ). To this
end, we introduce an alternative object, the continuous Prym variety Prymc(

rΓ{Γ) of the double
cover π : rΓ → Γ . The continuous Prym variety always carries a natural principal polarization and
comes with a natural isogeny Prymc(

rΓ{Γ) → Prymd(
rΓ{Γ) of degree 2d−1, where d is the num-

ber of connected components of the dilation subgraph of Γ (see Proposition 4.18). In particular,
Prymc(

rΓ{Γ) = Prymd(
rΓ{Γ) if the dilation subgraph is connected or if the double cover is free.

Furthermore, Prymc(
rΓ{Γ) satisfies the expected universal property of the Prym variety (Propo-

sition 4.22), while Prymd(
rΓ{Γ) does not. Finally, we note that Prymc(

rΓ{Γ) behaves continuously
under edge contractions, though we do not use this in our paper.

We can now state the main results of our paper, which are exact analogues of the results
of [Pan86] and [Rec74]. First, we state the tropical analogue of the bigonal construction.

Theorem 1.1 (Theorem 5.6). Let rΓ π
−→ Γ

f
−→ K be a tower of harmonic morphisms of metric graphs of

degrees degπ = deg f = 2, where K is a metric tree. Assume that there is no point x P K with the property

that |f−1(x)| = 2 and |(f ˝ π)−1(x)| = 2. Then the output rΠ π 1

−→ Π
f 1

−→ K of the bigonal construction has

the same property, and applying the bigonal construction to it reproduces the original tower. If moreover rΓ
3



and rΠ are both connected, then there is an isomorphism of polarized tropical abelian varieties

Prymd(
rΠ{Π)∨ – Prymd(

rΓ{Γ),

where the polarization on Prymd(
rΠ{Π)∨ is the pullback of the principal polarization on Prymc(

rΠ{Π)∨.

Although the statement of the theorem involves only the divisorial Prym varieties of the two
double covers, the proof requires using the continuous Prym varieties, and they are also needed
to even define the polarization on the dual Prymd(

rΠ{Π)∨. On the other hand, for the tropical
analogue of the trigonal construction, we consider only free double covers, hence there is no
need to distinguish the continuous and divisorial Pryms.

Theorem 1.2 (Theorem 5.1). Let K be a metric tree. The tropical trigonal and Recillas constructions

establish a one-to-one correspondence






Tropical curves Π with a

harmonic map of degree 4 to K

with dilation profiles nowhere

(4) or (2, 2).











Free double covers rΓ → Γ with

a harmonic map of degree 3

from Γ to K.






Recillas construction

trigonal construction

and under this correspondence, the Prym variety Prym(rΓ{Γ) of a double cover and the Jacobian Jac(Π) of

the associated tetragonal curve are isomorphic as principally polarized tropical abelian varieties.

We would like to highlight the techniques that we use. Abelian varieties and maps between
them are strongly constrained by intersection theory: for example, one may check that an isogeny
is an isomorphism by computing its degree in homology. The tropical analogue of singular ho-
mology for rational polyhedral spaces was introduced in [IKMZ19]. Tropical homology was first
applied to tropical abelian varieties by Gross and Shokrieh [GS23b], who established a number of
fundamental results about tropical abelian varieties and proved a tropical version of the Poincaré
formula for the class of a metric graph in the homology of its Jacobian. The techniques of tropical
homology, at least as they apply to abelian varieties, turn out to be quite powerful: in the proof
of our main Theorem 1.2, we are able to translate the corresponding algebraic proof (see [Rec74]
or [BL04, Theorem 12.7.2]) nearly line-by-line into the tropical setting.

Directions for future research. In Section 2.5 we describe some basic properties of the tropical
tetragonal construction, however we do not yet have a tropical analogue for Donagi’s theorem
relating the construction with Prym varieties. Algebraically, both the Recillas and Donagi theo-
rems were originally proved by working in cohomology (see [BL04, Theorem 12.8.2] for Donagi’s
theorem). It is striking that the techniques of tropical homology allow us to translate the alge-
braic proof of Recillas’s theorem into the tropical setting to give us the proof of Theorem 1.2.
We are confident that our techniques also work for the tetragonal construction, but a number of
additional results in tropical intersection theory will first need to be established, most notably a
tropical version of a formula of Macdonald for the class of a g14 in the fourth symmetric power of
a curve.

Towards a comparison of our tropical construction and the algebraic role model, we em-
phasize again that our work is a tropical analogue in the sense that our definition carries the
underlying geometric ideas of the algebraic construction over to the tropical setting. A priori, it
is not clear whether our definition can be recovered from the algebraic one via tropicalization. For
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example, for certain ramification profiles in the input tower, the algebraic tetragonal construction
produces singular output from smooth input data (see [Don92, Local pictures 2.14]). It would be
very interesting to see how this phenomenon behaves under tropicalization.

Donagi’s original motivation for introducing the tetragonal construction was to study the
fibers of the Prym–Torelli map Rg+1 → Ag. The main theorem of the tetragonal construction
implies that the Prym–Torelli map is never injective, since double covers related by the tetragonal
construction have isomorphic Pryms. Donagi conjectured in [Don92] that the tetragonal con-
struction fully accounts for the non-injectivity of the Prym–Torelli map in g ě 7, however, Izadi
and Lange [IL12] show that the target P1 in the tetragonal construction can be replaced with an
arbitrary curve.

A tropical analogue of Donagi’s theorem would be a first step towards understanding the
non-injectivity of the tropical Prym–Torelli map. We note, however, that it is elementary to con-
struct Torelli non-injectivity loci in the tropical setting. For example, from [MZ08, CV10] we know
that bridge edges can be contracted without changing the Jacobian of a tropical curve. It follows
immediately that in a double cover rΓ → Γ with Γ having a bridge edge e whose preimage edges
re+ and re− are bridge edges in rΓ , one may contract e, re+, and re− simultaneously without chang-
ing the Prym variety. More generally, in [RZ23] we explored the non-injectivity of the tropical
Prym–Torelli map in terms of Zaslavsky’s signed graphic matroid. Giving a complete description
of the fibers of the tropical Prym–Torelli map (the corresponding problem for the tropical Torelli
map was solved in [CV10]) will be the topic of future research.

Organization of the article. We start by introducing the tropical n-gonal construction in Sec-
tion 2. The construction is purely combinatorial and can be understood without any prior knowl-
edge of tropical geometry or the algebraic n-gonal construction. To simplify the exposition, we
work with graphs without edge lengths, and passing to metric graphs involves nothing more
than equipping the target tree with an edge length function. We conclude by proving the first
parts of Theorems 1.1 (Propositions 2.4 and 2.5) and 1.2 (Proposition 2.11).

To establish the isomorphisms of the tropical abelian varieties, we first introduce the nec-
essary background on tropical curves, rational polyhedral spaces and tropical homology in Sec-
tion 3. Section 4 is devoted to tropical abelian varieties. We speak extensively about real tori
with integral structure and develop a theory of morphisms between such objects. In particu-
lar, we refine the definition of the tropical Prym variety compared to the existing literature (see
e.g. [LU21]), introduce the continuous Prym variety Prymc(

rΓ{Γ) of a double cover rΓ → Γ , and
calculate the class of rΓ in the tropical homology of Prymc(

rΓ{Γ) (Theorem 4.25, which is the Prym
version of the tropical Poincaré formula proved in [GS23b]). We believe this section to be of
independent interest.

Finally, we prove the main parts of Theorems 1.1 and 1.2 in Section 5. The structure of the
proof of Theorem 1.2 closely follows the original proof of the algebraic statement in [Rec74], using
tropical instead of singular homology. The original proof of the algebraic bigonal construction
in [Pan86] is based on the tetragonal construction, which we have not yet established, hence to
prove Theorem 1.1 we instead adapt the arguments that are used in Theorem 1.2.

Acknowledgments. The authors would like to thank Martin Ulirsch, Paul Helminck, Dhruv
Ranganathan, and Alejandro Vargas for insightful conversations. The authors would like to es-
pecially thank Madeline Brandt for extended conversations during the beginning of the project,
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would like to thank the anonymous referees for extensive comments on the original version of
the paper, for suggesting a streamlined version of Section 2, and for pointing out a serious flaw
in our original proof of Theorem 1.1.

F. R. has received funding from the Deutsche Forschungsgemeinschaft (DFG, German Re-
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2. Graphs and the tropical n-gonal construction

In this section we recall a number of standard definitions from graph theory, and define
the n-gonal construction for double covers of degree n harmonic covers of trees. While we are
primarily interested in the construction applied to metric graphs, the idea behind the definition
as well as basic properties are best explained in the language of graphs, with an integer-valued
local degree function recording the dilation factors. The description can then be lifted to metric
graphs without much effort: assigning edge lengths to the base tree automatically determines
edge lengths for all covers via the local degree function.

After describing the construction in general, we give more details on the bigonal, trigonal,
and tetragonal constructions, which are the special cases for n = 2, 3, 4, respectively.

2.1. Graphs and harmonic morphisms. A graph G consists of a finite set of vertices V(G), a
finite set of half-edges H(G), a root map r : H(G) → V(G), and a fixed-point-free involution
H(G) → H(G) denoted h Þ→ h. The set of points of G is V(G) Y H(G), which we also denote by
G by abuse of notation. An orbit e = {h, h} of the involution is an edge of G, and the set of edges
is denoted E(G). We allow graphs with loops and multiple edges between a pair of vertices. An
orientation on G is a choice of ordering (h, h) of the half-edges for each edge of G. The tangent

space TvG = r−1(v) to a vertex v P V(G) is the set of half-edges rooted at v, and the valence is
val(v) = |TvG| (so each loop at v contributes twice). The genus of a connected graph is defined as
g(G) = |E(G)| − |V(G)| + 1, and a tree is a connected graph of genus zero.

A morphism of graphs f : G→ K is a map of the underlying sets of points which maps vertices
to vertices and half-edges to half-edges and which commutes with the root and involution maps.
In particular, we only consider finite morphisms, i.e. vertices are sent to vertices and edges to
edges, and no edge is contracted. A harmonic morphism is a pair consisting of a morphism f : G→

K and a function df : G→ Zą0, called the local degree, satisfying the following properties:

(1) The degrees on the two half-edges comprising an edge e = {h, h} P E(G) are equal, and
this quantity df(e) = df(h) = df(h) is the dilation factor of the edge e.

(2) For any vertex v P V(G) and any half-edge h 1 P Tf(v)K we have

df(v) =
ÿ

hPTvGXf−1(h 1)

df(h). (1)
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When K is connected, the sum

deg(f) =
ÿ

yPf−1(x)

df(y) (2)

is the same for any point x (vertex or half-edge) of K and is called the (global) degree of f. Given
harmonic morphisms f : G → K and g : K → L of graphs with degree functions df and dg, the
composition g ˝ f is a harmonic morphism with degree function dg˝f given by

dg˝f(x) = df(x)dg(f(x))

for any point x of G, and global degree deg(g ˝ f) = deg(f)deg(g). We say that a harmonic
morphism f : G → K is free if it has local degree 1 everywhere; such morphisms are covering
spaces in the topological sense.

A double cover π : rG → G is a harmonic morphism of degree 2. A point x P G is either free,
having two preimages π−1(x) = {rx+,rx−} with dπ(rx˘) = 1, or dilated, having a unique preimage
that we label π−1(x) = {rx˘} with dπ(rx˘) = 2. We note that we can choose the labelings on the
preimages of the free points to be vertex-trivial, so that r(rh˘) = rv˘ for any v P V(G) and any

h P TvG, or edge-trivial, so that rh˘ = rh
˘

for any half-edge h P H(G) (in other words, so that the
two edges of rG over any edge {h1, h2} P E(G) are {rh+1 , rh+2 } and {rh−1 , rh−2 }).

The double cover π is free if it has no dilated points, otherwise we say that π is dilated. There
is an induced graph involution ι : rG → rG (not to be confused with the involution that pairs the
half-edges into edges) that exchanges the preimages of the free points and fixes the preimages
of the dilated points. Conversely, given a graph involution ι : rG → rG that does not flip edges
(meaning that ι(h) ‰ h for all h P H(rG)), the quotient map rG → rG{ι naturally has the structure
of a double cover, which is free if and only if the involution has no fixed points.

2.2. The tropical n-gonal construction. Let π : rG → G and f : G → K be harmonic morphisms
of degree 2 and n, respectively. We describe the tropical n-gonal construction, in other words we
construct a graph rP and a harmonic morphism rp : rP → K of degree 2n, together with certain
additional structures. Our exposition is indebted to and closely follows [Don92].

Informally speaking, the points of rP over a fixed point x P K represent the sections f−1(x) →
(f ˝ π)−1(x) of π : rG → G over the fiber of x. To make this precise and correctly assign degrees,

we proceed as follows. Consider the free abelian groups Z
rG, ZG, and ZK generated by the points

(vertices and half-edges) of our graphs, and define the pushforward and pullback homomorphisms
on the generators ry P rG and x P K as

π˚ : Z
rG
−→ ZG, and f˚ : ZK −→ ZG,

π˚(ry) = π(ry), f˚(x) =
ÿ

yPf−1(x)

df(y)y.

For D P Z
rG, we write D ě 0 if all coefficients are non-negative. We now set

rP =
{
D P Z

rG : D ě 0 and π˚D = f˚(x) for some (necessarily unique) x P K
}
,

and define the map rp : rP → K by rp(D) = x. The point x P K is a vertex if and only if any D lying
above x is a linear combination of vertices of rG, and the same is true for half-edges; this defines

7



the vertex and half-edge sets of rP. Finally, the root and involution maps on rP are induced from
those on rG:

r
(ÿ

arh
rh
)

=
ÿ
arhr(

rh) and
ÿ
arh

rh =
ÿ
arh

rh.

It is clear that rP is a (not necessarily connected) graph and that rp : rP → K is a morphism of
graphs. A point D P rP lying above a given point x P K has the form

D =
ÿ

yPf−1(x) free

(

ary+ry+ + ary−ry−
)

+
ÿ

yPf−1(x) dilated

df(y)ry˘.

Here π−1(y) = {ry+, ry−} and π−1(y) = {ry˘} denote the preimages of a point y P G that is respec-
tively free or dilated (with respect to the double cover π), and the ary˘ are nonnegative coefficients
satisfying ary+ + ary− = df(y).

To make rp harmonic, we define the local degree of rp at D P rP to be

drp(D) =
ź

yPf−1(x) free

(

df(y)

ary+

) ź

yPf−1(x) dilated

2df(y), (3)

which does not depend on the choice of labeling of the fiber π−1(y) = {ry+, ry−} by the symmetry
of the binomial coefficient. In Proposition 2.1 we show that the local degree function defined in
Equation (3) gives rp the structure of a harmonic map, and explain the combinatorial meaning of
the coefficient in (3). For now, we note that the number of preimages of x P K is equal to

∣

∣rp−1(x)
∣

∣ =
ź

yPf−1(x) free

(

df(y) + 1
)

.

We now define the orientation double cover k : rK → K of the tower rG → G → K as a quotient
of rP by an equivalence relation. We say that a point x P K is dilated if any point in f−1(x) is dilated
(with respect to the double cover π), and free if all points in f−1(x) are free. For a dilated point x,
we set all points in rp−1(x) Ă rP to be equivalent. For a free point x and two points

D =
ÿ

yPf−1(x)

(

ary+ry+ + ary−ry−
)

, and E =
ÿ

yPf−1(x)

(

bry+ry+ + bry−ry−
)

in rp−1(x) Ă rP, we set D ∼ E if
ř
(ary+ − bry+) is even. This does not depend on the choice of

labeling of π−1(y) = {ry+, ry−}, because ary+ + ary− = df(y) = bry+ + bry− implies that ary+ − bry+ is
even if and only if ary− − bry− is even.

We define V(rK) and H(rK) to be the quotients of respectively V(rP) and H(rP) by the equiva-
lence relation, and induce the root and involution maps from rP. Choosing either vertex-trivial or
edge-trivial labelings for the preimages of the free points in G, we see that this is well-defined.
Hence rK is a graph, and the quotient q : rP → rK and projection k : rK → K maps are graph
morphisms whose composition is rp : rP → K.

We define the local degrees of the orientation double cover k as follows:

dk(rx) =
{
2, if k(rx) is dilated,

1, if k(rx) is free.

It is elementary to verify that k is indeed a harmonic double cover. The orientation double cover
is free if and only if the double cover π : rG→ G is free. If in addition k : rK→ K is a trivial double
cover (which is always the case if K is a tree), then we say that the tower rG→ G→ K is orientable.
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Similarly, we define the local degrees of q by

dq(D) =

{
drp(D){2, if rp(D) is dilated,

drp(D), if rp(D) is free,
(4)

where drp is given by (3). We now verify that the morphisms rp and q are harmonic.

Proposition 2.1. The morphisms rp : rP → K and q : rP → rK are harmonic of degrees 2n and 2n−1,

respectively.

Proof. Pick a vertex u P V(K) and a half-edge l P TuK rooted at u. We consider the fibers of
π : rG → G above the pair (u, l). By (2), the half-edge degrees

{
df(h)

∣

∣ h P f−1(l)
}

are a partition
of n = deg f. Hence we can define a labeling

µl : {1, . . . , n} −→ f−1(l)

of the half-edges of G lying above l such that for each half-edge h P f−1(l) we have |µ−1(h)| =

df(h). We can similarly label the half-edges of rG lying above l:

rµl : {˘1, . . . ,˘n} −→ (f ˝ π)−1(l),

so that rµ−1l (rh+) =
{
+ i

∣

∣ µl(i) = π(rh+)
}

and rµ−1l (rh−) =
{
− i

∣

∣ µl(i) = π(rh−)
}

for free fibers
{rh+, rh−} = π−1(h) of π and rµ−1l (rh) =

{
˘ i

∣

∣ µ(i) = π(rh˘)
}

for dilated fibers {rh˘} = π−1(h).
Composing with the root maps (f ˝π)−1(l) → (f ˝π)−1(u) and f−1(l) → f−1(u), we obtain similar
labelings for the vertices above u:

µu : {1, . . . , n} −→ f−1(u), rµu : {˘1, . . . ,˘n} −→ (f ˝ π)−1(u).

This system of labelings induces a labeling on the n-gonal construction rP → K as follows:

rνu :
{
(ǫi)i=1,...,n

∣

∣

∣
ǫi P {+,−}

}
−→ rp−1(u)

(˘)i Þ−→
ÿ

rµu(˘i),

and similarly rνl for rp−1(l). It is elementary to see that the number
∣

∣rν−1u (D)
∣

∣ of labelings of a
given vertex D P rp−1(u) is equal to the coefficient drp(D) given by Equation (3), and similarly
drp(E) is the number of labelings of a half-edge E P rp−1(l). Moreover, we note that for any vertex
D P rp−1(u) and half-edge E P rp−1(l), we have that r(E) = D if and only if rν−1l (E) Ď rν−1u (D).
Hence the harmonicity condition (1) for rp at the vertex D and the half-edge l

drp(D) =
ÿ

E:r(E)=D and rp(E)=l
drp(E)

is now equivalent to

rν−1u (D) =
ğ

E:r(E)=D and rp(E)=l
rν−1l (E).

This however is clear since the labeling functions rν are compatible with the root map of rP mean-
ing that r ˝ rνl = rνu, and hence rp is harmonic at D. Finally, the global degree of rp is the total
number of sections of {˘1, . . . ,˘n} → {1, . . . , n}, which is the cardinality of the domain of rνu and
equals 2n. The harmonicity of q is proved in the same way, but taking parities into account, and
we omit the details. �
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We introduce one additional structure on rP. The involution ι : rG → rG associated to the
double cover π : rG→ G induces the pushforward involution ι˚ : rP → rP which acts by exchanging
signs, in other words ι˚(ry˘) = ry¯. Denoting the quotient by P = rP{ι˚, we obtain a double cover
rP → P. The involution ι˚ is fixed-point-free (and hence the double cover rP → P is free) if and
only if over every vertex v P V(K) there is a free vertex vi P f−1(v) having odd local degree df(vi).
Hence the double cover rP → P need not be free if rG→ G is free, and vice versa.

Since the involution ι˚ preserves the local degrees of rp, there is an induced harmonic mor-
phism p : P → K of degree 2n−1. If n is even, then the involution ι˚ preserves the fibers of rP → rK,
and our morphisms factor into a tower

rP 2
−→ P

2n−2

−→ rK 2
−→ K.

On the other hand, if n is odd, then the involution ι˚ exchanges the equivalence classes in every
fiber (if they are distinct), and we have a diagram

rP

P rK

K.

2 2n−1

2n−1 2

In particular, if the tower rG→ G→ K is orientable, then the n-gonal construction rp : rP → K splits
as two isomorphic copies of the degree 2n−1 cover p : P → K that are exchanged by ι˚.

We now study the n-gonal construction in detail for n = 2, 3, and 4, and call it the bigo-

nal, trigonal, and tetragonal construction, respectively. To clarify the exposition, we first consider
the case of free covers, for which we can use topological methods (but which are not directly
relevant to us, since a free cover of a tree is trivial). The n-gonal morphism rp : rP → K is free if
and only if both π : rG → G and f : G → K are free. In this case, the entire construction may be
carried out in terms of covering space theory, realizing graphs as topological spaces by gluing

unit intervals in the standard way. The tower rG 2
→ G

n
→ K corresponds to a monodromy repre-

sentation π1(K, x0) → SBn (where x0 P K is a base point) in the signed permutation group SBn Ď S2n.
Recall that SBn consists of permutations of the 2n-element set {˘1, . . . ,˘n} that commute with
the fixed-point-free involution i Þ→ −i. Signed permutations act on the 2n sections of the map
{˘1, . . . ,˘n} → {1, . . . , n}, and the corresponding monodromy representation π1(K, x0) → S2n

gives the n-gonal cover rP 2n
→ K. Furthermore, the tower rG 2

→ G
n
→ K is orientable if and only

if the monodromy representation lies in the even signed permutation group SDn = SBn X A2n. The
groups SBn and SDn are the Weyl groups of the root systems Bn and Dn, respectively, and the
bigonal, trigonal, and tetragonal constructions arise from the symmetries of these root systems
for n = 2, 3, 4.

More precisely, for n = 2, the group SB2 is isomorphic to the dihedral groupD4 and carries an
outer automorphism, namely conjugation by a π{4 rotation. Applying the outer automorphism

to the monodromy representation π1(K, x0) → SB2 of the tower rG 2
→ G

2
→ K, we obtain a second

tower rG 1 2
→ G 1 2

→ K of the same type. Iterating the bigonal construction reproduces the original
tower, because the square of the outer automorphism is an inner automorphism.
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In n = 3, the equality A3 = D3 of root systems corresponds to an isomorphism SD3 – S4 of
the Weyl groups, which we now describe. The map {˘1,˘2,˘3} → {1, 2, 3} has four even sections
(meaning sections such that the product of the images is positive), and the group SD3 acts on this
four-element set. This defines a homomorphism SD3 → S4. Conversely, each pair of even sections
defines a unique element of {˘1,˘2,˘3}, namely the intersection of the images, and this gives the

inverse homomorphism. Given an orientable tower rG 2
→ G

3
→ K, the 3-gonal construction rP 8

→ K

splits as two isomorphic copies of a degree 4 cover P 4
→ K, and the monodromy representation of

the latter is obtained by composing the monodromy representation π1(K, x0) → SD3 of the tower

with the isomorphism SD3 – S4 defined above. Conversely, any degree 4 cover P 4
→ K defines an

orientable tower rG 2
→ G

3
→ K; we call this inverse correspondence the Recillas construction.

Finally, for n = 4 the Dynkin diagram D4 has automorphism group S3, which is also the
group of outer automorphisms of the Weyl group SD4 modulo inner automorphisms. Given an

orientable tower rG 2
→ G

4
→ K, the orientation double cover rK 2

→ K splits, hence the degree 16

morphism rP 2
→ P

4
→ rK 2

→ K splits into two towers rG 1 2
→ G 1 4

→ K and rG2 2
→ G2 4

→ K of the
same type as the original tower. The monodromy representations of the three towers are related
by the outer automorphisms, and the construction is a triality, in other words each of the towers
reproduces the other two.

We now move on to a description in the general, dilated case.

2.3. The tropical bigonal construction. Consider a tower rG→ G→ K of harmonic double covers
of graphs. We first introduce a classification system for points of K:

Definition 2.2. Let rG→ G→ K be a tower of harmonic double covers. A point x P K is called

(1) Type I if it has a unique preimage in G, which in turn has a unique preimage in rG.
(2) Type II if it has a unique preimage in G, which has two preimages in rG.
(3) Type III if it has two preimages in G, one having two preimages in rG, the other having

one.
(4) Type IV if it has two preimages in G, each having two preimages in rG.
(5) Type V if it has two preimages in G, each having a unique preimage in rG.

We note that for types I through IV, the type is the number of preimages in rG. Let rP → P → K

be the bigonal construction (see Subsection 2.2 with n = 2) associated to the tower rG → G → K.
A case-by-case verification shows that the types of points of K with respect to the two towers
change as follows (see Figure 1):

I→ I, II→ III, III→ II, IV → IV, V → I.

We immediately observe that the tropical bigonal construction is not invertible, since type V and
type I points with respect to rG→ G→ K both produce type I points with respect to rP → P → K.
This phenomenon, which we call dilation collapse, also occurs for the trigonal construction (see
Remark 2.13) and forces us to introduce restrictions on the dilation of the n-gonal map.

Definition 2.3. A tower rG→ G→ K of harmonic double covers is called generic if K has no points
of type V.

Restricted to generic towers, the bigonal construction is an involution, and dilation behavior
in fibers is exchanged (this is the tropical analogue of Lemma 2.7 in [Don92]).
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rG −→ G −→ K rP −→ P −→ K

Type I ry˘

1
y1 x Type I 2ry˘

1
x

Type II
ry+1

ry−1
y1 x Type III

2ry+1
2ry−1

ry+1 + ry−1
x

Type III

ry+1
ry−1

ry˘

2

y1

y2

x Type II
ry+1 + ry˘

2

ry−1 + ry˘

2

x

Type IV

ry+1
ry−1
ry+2
ry−2

y1

y2

x Type IV

ry+1 + ry+2
ry−1 + ry−2
ry+1 + ry−2
ry−1 + ry+2

x

Type V
ry˘

1

ry˘

2

y1

y2

x

Type I ry˘

1 + ry˘

2
x

Figure 1. The structure of the bigonal construction locally over a point x P K. The
size of points indicates the dilation factor with respect to K.

Proposition 2.4. Let rG → G → K be a generic tower of harmonic double covers, and let rP → P → K be

the bigonal construction.

(1) The tower rP → P → K is also generic.

(2) Points of K that are dilated with respect to G→ K are in 1:1-correspondence with points of P that

are dilated with respect to rP → P, and the same is true for rG→ G and P → K.

(3) The bigonal construction applied to rP → P → K reproduces the original tower.

Proof. The first two statements follow directly from the type classification shown on Figure 1. For
the last part, let rG 1 → G 1 → K be the bigonal construction of rP → P → K. We claim that there is
a canonical bijection rG→ rG 1 that is equivariant with respect to the double covers.

Let x P K be a type IV point, with preimages y1, y2 P G and ry˘
1 , ry˘

2 P rG. The points of rP over
x are the linear combinations ry+1 +ry+2 and ry−1 +ry−2 (mapping to one point of P over x) and ry+1 +ry−2
and ry−1 +ry+2 (mapping to the other point). The points of rG 1 over x are certain linear combinations
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of these linear combinations, namely

2ry+1 + ry+2 + ry−2 , 2ry−1 + ry+2 + ry−2 , ry+1 + ry−1 + 2ry+2 , ry−1 + ry−1 + 2ry−2 ,
with the first two and the last two mapping to the same point of G 1. Hence the map

ry˘
i Þ−→ 2ry˘

i + ry+3−i + ry−3−i
is a canonical equivariant bijection of the fibers of rG and rG 1 over x. To establish the bijection
of the fibers over a point x P K of types I to III, we use the same formula and set ry˘

1 = ry˘
2

(for type II), ry+2 = ry−2 (for type III), or both (for type I). Choosing vertex-trivial labelings for
the double cover rG → G, we see that the bijection rG → rG 1 commutes with the root map, while
choosing edge-trivial labelings shows that it commutes with the involution. Hence rG→ rG 1 is an
isomorphism of graphs. �

We now restrict our attention to generic towers rG→ G→ K, where the graph K is a tree, so
that the double cover f : G→ K is a hyperelliptic graph. To state the next proposition we introduce
the following notation. The set of dilated edges and vertices form the dilation subgraph Gdil Ď G.
The dilation index of the double cover π : rG→ G is

d = d(rG{G) =

{
number of connected components of Gdil, if π is dilated,

1, if π is free.

Proposition 2.5. Let rG → G → K be a generic tower of harmonic double covers, where rG is connected

and K is a tree, and let rP → P → K be the bigonal construction. Then rP is connected if and only if the

double cover π : rG → G is not free. Furthermore, in this case, the dilation indices d and d 1 of the double

covers π : rG→ G and π 1 : rP → P and the genera of the four graphs are related as follows:

d + d 1 − 2 = g(rG) − g(G) = g(rP) − g(P). (5)

Proof. If the double cover π is free, then so is the orientation double cover rK → K, which is then
trivial since K is a tree. Therefore P = rK is disconnected, and hence so is rP.

Conversely, suppose that π is not free. If K contains a point x of type I with respect to the
tower rG→ G→ K, then x has type I with respect to the tower rP → P → K as well, and therefore
rP is connected. If K contains no points of type I, then it must contain a point of type II (otherwise
G → K is free and hence disconnected) and a point of type III (otherwise π is free). The bigonal
construction exchanges types II and III, hence the tower rP → P → K also contains both type II
and III points. Therefore both rP → P and P → K are dilated, so rP is connected.

Let ei and vi denote respectively the number of edges and vertices of K having type i =
I, . . . , IV with respect to the tower rG → G → K. We claim that the dilation subgraphs Gdil Ă G

and Pdil Ă P are unions of trees. Indeed, if γ Ă Gdil is a nontrivial simple cycle, then the restriction
of the map G → K folds γ in two because K is simply connected, and hence the image of γ in K
contains points of type V. Hence each connected component of Gdil, and similarly Pdil, is a tree.
It follows that

d = |V(Gdil)| − |E(Gdil)| = vI + vIII − eI − eIII,

d 1 = |V(Pdil)|− |E(Pdil)| = vI + vII − eI − eII.

On the other hand, looking at Figure 1, we see that

|V(rG)| − |V(G)| = |V(rP)| − |V(P)| = vII + vIII + 2vIV,
13



and similarly

|E(rG)| − |E(G)| = |E(rP)| − |E(P)| = eII + eIII + 2eIV.

Using
ř
ei −

ř
vi + 1 = g(K) = 0, we obtain Equation (5). �

rG

G

K

rP

P

K

Figure 2. Example of the bigonal construction with thickness indicating dilation
with respect to the base tree K. The involution on rG is reflection along the hori-
zontal axis and similarly for each of the two components of rP.

rG

G

K

I II II IV II II I

rP

P

K

I III III IV III III I

Figure 3. Example of the bigonal construction with connected input and output.
Thickness corresponds to dilation and the involutions are given by reflection along
the horizontal axis. For each point of K we indicate its type.

Example 2.6. Figure 2 shows an example of the bigonal construction. Note that rG → G is a
free double cover and therefore rP is necessarily disconnected. Nevertheless, one can check that
applying the bigonal construction to the tower rP → P → K reproduces the input tower. Let us
modify this example by contracting the extremal edges of K and everything lying above them.
The result is shown in Figure 3. This time the input (and hence the output as well) contains a
vertex of type I. In particular, input and output are connected. Again one can check that the
bigonal construction applied to rP → P → K reproduces the original tower.
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2.4. The tropical trigonal and Recillas construction. Let rG → G → K be an orientable tower of
covers of a graph K of degrees 2 and 3, respectively. In particular, the double cover π : rG → G is
free. The trigonal construction associates to rG → G → K a degree 8 harmonic morphism rP → K

that splits as a tower rP → P → K, where p : P → K has degree 4 and rP → P is the trivial double
cover. The Recillas construction inverts this correspondence, by associating to a degree 4 cover
P → K (satisfying certain restrictions on local degrees) an orientable tower rG→ G→ K of covers
of degrees 2 and 3.

Similarly to the bigonal case, we classify the points of K according to the structure of the
fibers. We recall that the points of rP over a given point x P K have the form D =

ř
(a+i ry+i +a−i ry−i ),

where the yi are the preimages of x in G, and the a˘
i satisfy a˘

i ě 0 and a+i + a−i = df(yi) for
all i. Since the tower rG → G → K is orientable, we can represent points of P as those linear
combinations D =

ř
(a+i ry+i + a−i ry−i ) for which the quantity

ř
a+i has a fixed parity, and we

choose
ř
a+i ” 1 mod 2.

Definition 2.7. Let rG→ G→ K be an orientable tower consisting of a free double cover π : rG→ G

and a degree 3 harmonic morphism f : G → K, and let p : P → K be the associated harmonic
morphism of degree 4. A point x P K is said to be

(1) Type I if it has a unique preimage y1 in G with df(y1) = 3. The corresponding points of P
are 3ry+1 and ry+1 + 2ry−1 , at which p has degrees 1 and 3, respectively.

(2) Type II if it has two preimages in G, namely y1 with df(y1) = 1 and y2 with df(y2) = 2.
The corresponding points of P are ry+1 + 2ry+2 , ry+1 + 2ry−2 , and ry−1 + ry+2 + ry−2 , at which p has
degrees 1, 1, and 2, respectively.

(3) Type III if it has three preimages y1, y2, and y3. The corresponding points of P over x are
ry+1 + ry+2 + ry+3 , ry+1 + ry−2 + ry−3 , ry−1 + ry+2 + ry−3 , and ry−1 + ry−2 + ry+3 . The local degrees of f and
p are all equal to one.

We note that the type of a point x P K is the number of its preimages in G, and that a half-
edge may be rooted at a vertex of equal or lower type. There are thus six possible pairings of a
half-edge and a vertex, and the local structure of the tower and the degree four map are shown
on Figure 4. We also observe that the degree 4 harmonic morphism p : P → K has the property
that the fibers of p cannot have degree profiles (4) or (2, 2). Note that, in the algebraic setting,
an identical restriction is imposed on the ramification profile of the degree four map. We give a
corresponding definition:

Definition 2.8. A degree 4 harmonic morphism p : P → K is called generic if every point x P K

has a preimage in P at which the local degree of p is equal to one. Given a generic p : P → K, a
point x of K is said to be of type I, II, or III if the degree profile of the fiber is (3, 1), (2, 1, 1), or
(1, 1, 1, 1), respectively.

We now invert the tropical trigonal construction for a generic degree 4 harmonic morphism.

Definition 2.9. Let p : P → K be a generic degree 4 harmonic morphism. The Recillas construction

associated to p : P → K is a tower consisting of a free double cover π : rG → G and a harmonic
morphism f : G→ K of degree 3, defined as follows. The points of rG over a given point x P K are
unordered pairs of points of P lying in the same fiber of p:

rG =
{
D1 +D2 P ZP : D1,D2 P P and D1 +D2 ď p˚(x) for some (necessarily unique) x P K

}
.
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rG

G

K

π

f

P

K

p

Figure 4. Overview of the trigonal construction and its inverse, locally over a
half-edge of K. Thickness of edges and vertices corresponds to dilation.

The vertices and half-edges of rG lie over the vertices and half-edges of K, respectively, and the
root and involution maps are induced from P. It is clear that rG is a graph and rf : rG → K,
D1 +D2 Þ→ x is a morphism of graphs.

There is a natural involution on rG given by

D1 +D2 Þ−→ p˚(x) −D1 −D2,

and the assumption that p is generic implies (indeed, is equivalent to assuming) that this invo-
lution is fixed-point-free. Hence rf : rG→ K factors as a free quotient double cover π : rG→ G and
an induced map f : G→ K.

Finally, we define the local degrees of f and rf. Let x P K. If x is a type III point, then
p˚(x) = D1 +D2 +D3 +D4 for distinct Di and we set drf(Di +Dj) = 1 for all pairs. If x is a type
II point, then p˚(x) = D1 +D2 + 2D3 and we set

drf(D1 +D2) = drf(2D3) = 1, drf(D1 +D3) = drf(D2 +D3) = 2.

If x is a type I point, then p˚(x) = D1 + 3D2 and we set

drf(D1 +D2) = drf(2D2) = 3.

For any ry P rG we set df(π(ry)) = drf(ry), and it is elementary to verify that f is a harmonic
morphism of degree 3.

Remark 2.10. Generalizing Definition 2.9, we can naturally associate to a harmonic morphism
P → K of degree n a degree

(

n
k

)

harmonic morphism rG→ K, for any k ď n.

We now assume that K is a tree, and refer to harmonic morphisms G → K and P → K

of degrees 3 and 4 as respectively trigonal and tetragonal graphs (we note that this condition is
stronger than carrying a g13 or a g14 in the sense of Baker and Norine [BN07], see [ABBR15]). The
following establishes the first part of Theorem 1.2 in the case of graphs.
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Proposition 2.11. Let K be a tree. The trigonal construction and the Recillas construction establish a

bijection between free double covers of trigonal graphs rG→ G→ K and generic tetragonal graphs P → K.

The graph rG is connected if and only if P is connected, in which case

g(P) = g(G) − 1. (6)

Example 2.12. Consider the tower rG→ G→ K on the left of Figure 5. Applying the tropical trig-
onal construction to it produces the generic tetragonal graph on the right. Conversely, applying
the tropical Recillas construction to P → K recovers the original tower. We will verify by hand in
Example 5.2 that the Prym variety Prym(rG{G) and the Jacobian variety Jac(P) (which are defined
after K has been equipped with arbitrary edge lengths) are isomorphic.

rG

G

K

P

K

Figure 5. Example of a tower and a tetragonal graph corresponding to each other
under the tropical trigonal construction. Thickness indicates dilation factors.

Proof of Prop. 2.11. Let π : rG → G be a free double cover of a trigonal graph f : G → K. The
orientation double cover rK → K is free and hence trivial, hence the tower rG → G → K is
orientable. We have already seen that the associated tetragonal graph p : P → K is generic, and
let rG 1 → G 1 → K denote its Recillas construction.

As in the bigonal case, we construct a canonical equivariant bijection rG→ rG 1. Let x P K be a
type III point, with preimages y1, y2, y3 in G and ry˘

1 , ry˘
2 , ry˘

3 in rG. The points of P over x are the
four linear combinations

ry+1 + ry+2 + ry+3 , ry+1 + ry−2 + ry−3 , ry−1 + ry+2 + ry−3 , ry−1 + ry−2 + ry+3 ,
and the points of rG 1 over x are the six pairwise sums of these combinations. Hence we see that

ry˘
i Þ−→ 2ry˘

i +
ÿ

j‰i

(ry+j + ry−j )

is the required bijection, which is equivariant since it preserves signs. For points of types II and
I, we use the same formula specialized to ry˘

2 = ry˘
3 and ry˘

1 = ry˘
2 = ry˘

3 , respectively. As in the
proof of Proposition 2.4, choosing either vertex-trivial or edge-trivial labelings for rG→ G shows
that the bijection rG→ rG 1 is an isomorphism of graphs.

17



Conversely, let P 1 → K be the trigonal construction of the Recillas construction rG → G → K

of a generic tetragonal graph P → K. Then the map

Di Þ−→ 3Di +
ÿ

j‰i

Dj

establishes a bijection between the fibers of P and P 1 over x, preserves root and involution maps,
and is hence a graph isomorphism P → P 1. Hence the trigonal and Recillas constructions are
inverses.

To show the second part of the claim, suppose that the tower rG→ G→ K and the tetragonal
graph p : P → K correspond to one another under the trigonal and Recillas construction. Assume
that P = P1\P2 is disconnected, and further assume without loss of generality that deg(p|P1) ě 2.
Viewing points of rG as linear combinations D1 +D2 P ZP (with possibly D1 = D2), we define the
function

deg1 :
rG −→ Z, D1 +D2 Þ−→

∣

∣{i : Di P P1}
∣

∣.

Each fiber of p contains at least two points of P1 (counted with multiplicity) and at least one
point of P2, hence deg1 takes values 1 and 2. On the other hand, deg1 is preserved by the root
and involution maps, and is therefore a locally constant function on rG. Hence rG is disconnected.

Conversely, assume that rG is disconnected. We distinguish two cases. If G is connected, then
the double cover rG → G is trivial, i.e. rG = rG+ \ rG− and rG+ – rG− – G, and we can globally
label the preimages of y P G in rG as ry+ P rG+ and ry− P rG−. Viewing points of rP as sections of the
double cover rG→ G, the map

deg2 :
rP −→ Z,

3ÿ

i=1

(

a+i ry+i + a−i ry−i
)

Þ−→
3ÿ

i=1

a+i

defines a locally constant function on rP with image {0, 1, 2, 3}. By definition, two points D,D 1 P rP
over the same point of K map to the same point in P if and only if deg2(D) ” deg2(D

1) mod 2.
Hence deg2 induces a locally constant, surjective Z{2Z-valued function on the quotient P of rP,
and therefore P is disconnected.

For the second case we assume that G is disconnected as well. Since f : G→ K is harmonic of
degree 3, at least one of the connected components of G maps with degree 1 to K and is therefore
isomorphic to K. We write G = G1 \K and correspondingly rG = rG1 \K\K for the double cover.
Any point D P rP has the form D = D1 + y, where D1 is a point of the bigonal construction of
rG1 → G1 → K and y is a point in one of the two copies of K Ď rG, with D1 and y lying over the
same point of the target tree. In other words, rP consists of two copies of the bigonal construction
of rG1 → G1 → K and these are exchanged by the involution on rP. Hence P itself is precisely the
bigonal construction of rG1 → G1 → K. By Proposition 2.4, we see that it is disconnected, because
rG1 → G1 is free.

To complete the proof, we determine the relationship between the genera. Looking at the
local structure in Figure 4, we see that p−1(x) has one more element than f−1(x) for each point
x P K. It follows that

g(P) = |E(P)| − |V(P)| + 1 = |E(G)| + |E(K)| − |V(G)| − |V(K)|+ 1 = g(G) − 1,

because K is a tree and hence |E(K)| − |V(K)| = −1. This completes the proof. �
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Remark 2.13. The trigonal construction can be applied to towers rG → G → K where rG → G is
not free. The result is a tower rP → P → K where, depending on the degree profiles of the first
tower, rP → P may be dilated, P → K non-generic, or both. Conversely, the Recillas construction
can be extended to non-generic tetragonal graphs P → K to produce towers rG → G → K where
rG → G is not free (for example, a point x of K with degree profile (2, 2) with respect to the
tetragonal map has two preimages in G, one having degree 2 and a single preimage in rG, the
other having degree 1 and two preimages). However, applying the trigonal construction to the
resulting tower rG → G → K does not reproduce the original tetragonal graph P → K. Hence the
bijective correspondence fails for these generalizations.

2.5. The tetragonal construction. In this section, we briefly summarize the harmonic tetragonal
construction, which we plan to study in detail in a future paper. Let rG → G → K be a tower
of harmonic morphisms of degrees 2 and 4, and let rP → K be the outcome of the tetragonal
construction. In general, the graph rP does not split (if rG → G → K is not orientable), and the
involution ι : rP → rP may have fixed points. However, imposing some natural restrictions on the
dilation produces an outcome that exactly corresponds to the free case, and mirrors the algebraic
construction.

Proposition 2.14. Let K be a tree, and let rG→ G→ K be a free double cover of a generic (in the sense of

Definition 2.8) tetragonal graph G → K. The tetragonal construction applied to rG → G → K splits as a

disjoint union of rGi → Gi → K for i = 1, 2, where each tower is a free double cover of a generic tetragonal

graph.

Proof. If rG → G is free then so is the orientation double cover rK → K, which is then trivial since
K is a tree. Hence rP → K splits as a disjoint union of morphisms rP1 → K and rP2 → K of degree
eight. Since G→ K is generic, each point x P K has a preimage in G at which the tetragonal map
has odd degree (specifically, equal to one) and which has two preimages in rG (since rG → G is
free). Hence the sign involution ι : rP → rP acts without fixed points. Since the involution restricts
to each connected component, we take quotients and obtain two towers rPi → Pi → K for i = 1, 2.
It is then a direct verification to show that if a point x P K has type I, II, or III in the sense of
Definition 2.8 with respect to the original tower, then x has the same type with respect to each of
the two new towers. In particular, the Pi → K are generic tetragonal graphs. �

3. Rational polyhedral spaces and tropical homology

In this section, we review a number of standard notions of tropical geometry. The ambient
category containing all tropical objects that we consider in this article is the category of rational

polyhedral spaces. In particular, tropical curves are purely 1-dimensional rational polyhedral spaces
satisfying a smoothness condition. We rephrase the tropical n-gonal construction and the tropical
Recillas construction for tropical curves (thus justifying the name). Finally, we summarize some
basic properties of tropical cycles and tropical homology that will serve as essential tools to prove
Theorems 1.1 and 1.2. Tropical homology was introduced in [IKMZ19], but our exposition closely
follows the sheaf-theoretic approach [GS23a].

3.1. Rational polyhedral spaces. A (rational) polyhedron in Rn is a finite intersection of half-spaces
of the form

{
x P Rn

∣

∣ xm,xy ď a
}
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for somem P (Zn)˚ and a P R. Consider the partial compactification R
n

of Rn, where R = RY{∞},
endowed with the order topology. It is stratified by sets of the form

R
n
I =

{
(xi)i=1,...,n

∣

∣ xi = ∞ if and only if i P I
}

for I Ă {1, . . . , n}. A polyhedron in R
n

is the closure of a polyhedron in one of the R
n
I . A polyhedral

subset X Ď R
n

is a finite union of polyhedra.
Let X Ď R

n
be a polyhedral subset. An integral affine linear function on X, or affine function for

short, is a function f : X→ R such that locally at every point of X it is of the form x Þ→ xm,xy + a

for some m P (Zn)˚ and a P R. An affine function is not allowed to take an infinite value, so the
local expression xm,xy + a is required to satisfy mi = 0 near any point x of X with xi = ∞. In
other words, at infinite points, affine functions are locally constant in those directions in which
infinite coordinates become finite. Affine functions form a sheaf on X, denoted AffX.

A rational polyhedral space X is a second countable Hausdorff topological space together with
a sheaf of continuous functions AffX such that for every point x P X there is an open neighborhood
x P U Ď X, an open subset V Ď Y of a polyhedral set Y Ď R

n
, and a homeomorphism φ : U → V

such that pullback of affine functions along φ is an isomorphism φ−1 AffV → AffU. If all these
polyhedral sets Y can be taken to live in Rn, then X is called boundaryless. A point x P X is called
regular if it has an open neighborhood isomorphic to an open subset of Rn, where n is the local

dimension at x. The subset of regular points in X is denoted Xreg. A rational polyhedral space X is
said to be purely n-dimensional if each point of Xreg has local dimension n.

A morphism of rational polyhedral spaces is a continuous map f : X → Y that induces a mor-
phism f−1 AffY → AffX. It is proper if the preimage of every compact subset of Y is compact. In
particular, if X is compact, then f is proper.

The cotangent sheaf Ω1
X of a rational polyhedral space X is the quotient of the sheaf AffX by

the subsheaf of locally constant functions. A morphism f : X → Y of rational polyhedral spaces
induces a morphism of cotangent sheaves

f−1Ω1
Y −→ Ω1

X.

For x P X, the dual TZx X = HomZ(Ω
1
X,x,Z) of the stalk of the cotangent sheaf is the integral tangent

space at x. Dualizing the morphism of cotangent sheaves gives the differential dxf : TZx X→ TZf(x)Y.

3.2. Tropical curves and harmonic morphisms. Let Γ be a connected and compact purely 1-
dimensional rational polyhedral space. The underlying topological space of Γ has the combina-
torial structure of a connected and finite graph G. Furthermore, we can define an edge length
function ℓ : E(G) → (0,∞] by setting ℓ(e) to be the smallest positive increment of an affine func-
tion along e. The pair (G, ℓ), which is a metric graph, is called a model for Γ . We say that Γ is a
tropical curve if all edges of infinite length are extremal (in other words, there are finitely many
vertices at infinity, and they are univalent). We always implicitly choose a model when talking
about a tropical curve, and we note that the model recovers the curve if the latter is smooth,
which we always assume (see below). The genus of Γ is the genus of any graph model. By a
point x of Γ we mean a point in the metric space, which may correspond to either a vertex or an
interior point of an edge with respect to a chosen model (an edge e P E(G) of the model may be
viewed as a generic point of the corresponding edge in Γ ).
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An affine function f on a tropical curve Γ has a well-defined slope along each oriented edge
e of Γ . A tropical curve Γ is called smooth if locally around every finite vertex it is isomorphic to

ď

i=0,...,n

eiRě0 Ď Rn+1{(1, . . . , 1)R (7)

for some n ě 1. This condition ensures that Γ has sufficiently many affine functions, in the
following sense: given an affine function defined near a point x P Γ , the only condition on the
slopes along the outgoing edges is that they sum to zero. Furthermore, the univalent vertices of a
smooth tropical curve Γ are at infinity. We note that an arbitrary metric graph can be augmented
to produce a smooth tropical curve in a canonical way, by attaching a compact infinite ray to each
finite univalent vertex.

Conversely, let G be a finite graph and let ℓ : E(G) → (0,∞] be an edge length assignment
such that an edge is infinite if and only if it is extremal. We construct a smooth tropical curve
Γ with model (G, ℓ) by gluing real intervals [0, ℓ(e)] for every edge e P E(G) according to the
adjacency determined by G, and choosing the smooth local model (7) at each vertex of valence
3 or higher (cf. Proposition 3.6 in [MZ08]). We henceforth assume that all tropical curves are
smooth, in other words we consider metric graphs (G, ℓ) having finitely many univalent points
at infinity. In particular, trees are assumed to have all of their leaf vertices at infinity.

Let Γ be a (smooth) tropical curve with a chosen orientation. A harmonic 1-form is a global
section of Ω1

Γ . More explicitly, a harmonic 1-form ω =
ř
ePE(Γ) aede is given by the choice of a

coefficient ae P Z subject to the condition
ÿ

e entering v

ae −
ÿ

e leaving v

ae = 0

at every vertex v of Γ .
A harmonic function on Γ is a section of AffΓ , i.e. a continuous function f : U→ R on an open

subset U Ă Γ that is linear with integer slope on every edge, and such that the sum of outgoing
slopes of f at every vertex is zero. Recording the slopes of f, we obtain a harmonic 1-form on U.
We note that harmonic functions are constant near infinite extremal vertices.

Let Γ1 = (G1, ℓ1) and Γ2 = (G2, ℓ2) be tropical curves, and let f : G1 → G2 be a harmonic
morphism of graphs with degree function df, where we recall that we do not allow graph mor-
phisms to contract edges. If df(e) =

ℓ2(f(e))
ℓ1(e)

for each edge e P E(G1), then we define the associated
harmonic morphism of tropical curves f : Γ1 → Γ2, which is an affine linear map on each edge e of Γ1
with slope or dilation factor equal to df(e). It is elementary to verify that f is a morphism of ratio-
nal polyhedral spaces. Conversely, a surjective morphism of rational polyhedral spaces f : Γ1 → Γ2
induces a harmonic morphism of graphs (with respect to appropriately chosen models) if it does
not contract any edges, and such a morphism has a well-defined global degree deg f. Given a
harmonic morphism f : Γ1 → Γ2 and a point x P Γ1, we denote df(x) = df(e) if x lies in the interior
of the edge e, and df(x) = df(v) if x corresponds to a vertex v (with respect to an appropriate
model). We observe that, given a harmonic morphism of graphs f : G1 → G2, a choice of edge
lengths on G2 uniquely determines edge lengths on G1 in such a way that f induces a harmonic
morphism of tropical curves.

In parallel to the graph case, we say that a harmonic morphism f : Γ1 → Γ2 of tropical curves
is free if df(x) = 1 for all x P Γ1 (equivalently, if it is a covering isometry), dilated if it is not free,
and a double cover if it has global degree 2.
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We note that an arbitrary harmonic morphism f : (G1, ℓ1) → (G2, ℓ2) of metric graphs can
be augmented to a harmonic morphism of smooth tropical curves in the following way. For each
univalent vertex v2 P V(G2), attach a compact infinite ray l to v2, then for each v1 P f−1(v2)

attach df(v1) compact infinite rays to v1 and map them with degree 1 to l. From now on we
will always assume that harmonic morphisms are in fact harmonic morphisms between smooth
tropical curves.

Remark 3.1. A tropical curve Γ arising as the tropicalization of an algebraic curve naturally comes
with a vertex weight function, recording the genera of the irreducible components of the special
fiber. These vertex weights appear to play no role in the tropical n-gonal construction, and we do
not consider them.

3.3. Divisors on tropical curves. Let Γ be a tropical curve. A divisor D on Γ is a finite formal
Z-linear combination of points on Γ , i.e. D =

ř
ax ¨ x with ax = 0 for almost all x P Γ . Denote the

group of divisors on Γ by Div(Γ). The degree of a divisor D is degD =
ř
ax. A divisor is called

effective if ax ě 0 for all x P Γ , in which case we write D ě 0. Denote the set of effective divisors
of degree n by Div+

n (Γ).
A rational function f : Γ → R is a piecewise linear function with integer slopes. A rational

function induces a divisor as follows

div f =
ÿ

xPΓ

(

sum of outgoing slopes at x
)

¨ x.

Any divisor of the form div f is called a principal divisor, and the subgroup of principal divisors
is denoted by Prin(Γ) Ď Div(Γ). Two divisors D1 and D2 are linearly equivalent if D1 − D2 is a
principal divisor, in which case we write D1 ∼ D2. The Picard group of Γ is defined as

Pic(Γ) = Div(Γ){ Prin(Γ) and Pick(Γ) =
{
[D] P Pic(Γ) | degD = k

}
.

Every Pick(Γ) is a torsor over the Picard variety Pic0(Γ).

3.4. The n-gonal and Recillas construction for tropical curves. In this section, we extend the
n-gonal and Recillas construction to tropical curves. We recall that our definition of gonality
involves maps to trees instead of Baker–Norine rank.

Definition 3.2. An n-gonal tropical curve is a tropical curve Γ together with a harmonic map
f : Γ → K of degree n to a metric tree K. For n = 2, 3, 4 we will also use the terms hyperelliptic,
trigonal, and tetragonal, respectively. A tetragonal curve is called generic if for all x P K the fiber
f−1(x) has dilation profile (3, 1), (2, 1, 1), or (1, 1, 1, 1). A double cover rΓ → Γ → K of a hyperellipic
curve is called generic if K has no point which has two preimages in Γ , each of which has a unique
preimage in rΓ .

A harmonic morphism of tropical curves is uniquely specified by giving a harmonic mor-
phism of graphs together with an edge length function on the target. This observation allows
us to directly lift the tropical n-gonal construction and the tropical Recillas construction from
graphs to tropical curves:

Definition 3.3. Let rΓ → Γ → K be a double cover of an n-gonal tropical curve. The n-gonal

construction is the degree 2n harmonic morphism of tropical curves rΠ→ K that arises by running
the construction of Section 2.2 on the underlying tower of graphs, and then endowing rΠ with
the edge-length function induced by K. Similarly, the tropical Recillas construction associates to a
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generic tetragonal curve Π→ K a tower rΓ → Γ → K consisting of a free double cover of a trigonal
curve.

All results from Section 2 carry over to the setting of tropical curves. In particular, the
fiberwise description over a point x P K still holds, where x may now correspond to a vertex or
an interior edge point. We may view an edge e of a graph model of K as a generic point for the
points of that edge in K. In this sense our definition of the construction for generic fibers ensures
that the fibers of the n-gonal construction depend continuously on the metric realization. With
this point of view, the root map at the level of graphs can now be understood as the continuous
limit for x P K approaching a vertex.

Remark 3.4. We can restate the n-gonal and Recillas constructions directly for tropical curves in
the language of divisors, in a way that is consistent with the graph-theoretic definitions given in
Sections 2.2 and 2.4. Let π : rΓ → Γ be a free double cover of an n-gonal curve f : Γ → K, and
let rΠ → K be the output of the n-gonal construction. As a set rΠ is given by the construction of
Section 2.2 applied pointwise in the metric graphs:

rΠ =
{
x1 + ¨ ¨ ¨ + xn P Div+

n (
rΓ)
∣

∣

∣
Dx P K : π(x1) + ¨ ¨ ¨ + π(xn) =

ÿ

yPf−1(x)

df(y) ¨ y
}
. (8)

Even more is true: since K is a tree, the natural graph model for rΓ is loop-free and hence [BU22]
gives a polyhedral structure on Div+

n(
rΓ ). The graph structure of rΠ is precisely the restriction of

this polyhedral structure. A similar description can be given for the tropical Recillas construction.
Let k : Π → K be a generic tetragonal tropical curve, and let rΓ → Γ → K be the output of the
tropical Recillas construction. Then as a set

rΓ =
{
x1+x2 P Div+

2 (Π)
∣

∣

∣
Dx3+x4 P Div+

2 (Π) and x P K such that x1+x2+x3+x4 =
ÿ

yPk−1(x)

dk(y)¨y
}
,

(9)
and the involution whose quotient is the double cover rΓ → Γ is the one sending x1+x2 to x3+x4.
However, it turns out that defining rΠ and rΓ in this way does not naturally induce the correct
edge lengths. For example, in the context of the trigonal construction, consider a (2, 3)-tower
rΓ 2
→ Γ

3
→ K with an edge e P E(K) of Type I (in the language of Definition 2.7). Then both edges

re+ and re− in rΓ above e are of the same length, say a (so that the length of e is 3a). For the
construction of Π there are two relevant cells in Div+

3 (
rΓ ), namely

(re+ ˆ re+){S2 ˆ re− and (re− ˆ re− ˆ re−){S3.
The two edges of Π arising from re+ and re− are given as the diagonals of these cells, both of which
have lattice length a, in contrast to the correct edge lengths a and 3a. This is one of the main
reasons that we define the n-gonal and Recillas constructions for combinatorial graphs first, and
then import the construction into the setting of tropical curves.

3.5. Tropical cycles. We will now recall the definition of the tropical cycle class groups Zk(X)
associated to a rational polyhedral space X. We first recall the definition in affine space, follow-
ing [GS23a].

Definition 3.5. Let Rn be endowed with the integral structure Zn Ď Rn. A tropical fan k-cycle on
Rn is a function A : Rn → Z satisfying the following properties:
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(1) For all x P Rn and λ P Rą0 we have A(λx) = A(x).
(2) The support |A| = {x P Rn | A(x) ‰ 0} is a purely k-dimensional rational polyhedral set.
(3) A is locally constant on |A|reg and is equal to 0 on |A| − |A|reg.
(4) A satisfies the so-called balancing condition. This is a condition at every codimension 1

cell τ of the rational polyhedral structure of |A| and requires the sum of the outwards
facing lattice normal vectors of incident maximal cells, weighted by the values of A, to
be contained in the tangent space of τ. The condition does not depend on the chosen fan
structure of |A| and we will only need to check balancing when k = 1, in which case the
only codimension one cell is the origin τ = 0. Let e range over the 1-dimensional cones in
|A| and for each e let ηe P eX Zn be an outwards facing primitive tangent vector of e. The
balancing condition at 0 is ÿ

e

A(ηe)ηe = 0. (10)

We note that for a 1-cycle A (whose support |A| is a graph), verifying balancing does not
involve the values at the vertices (points of |A|− |A|reg), and we will often ignore condition
(3) and allow A to have arbitrary vertex values.

The idea is now to define a tropical k-cycle on an arbitrary rational polyhedral space by
requiring it to look locally like a tropical fan k-cycle.

Definition 3.6. Let X be a rational polyhedral space. A local face structure at a point x P X is a
finite polyhedral complex Σ such that

(1) x is contained in the topological interior of |Σ|,
(2) there exists a chart U→ V Ď R

n
of X such that |Σ| Ď U,

(3) x is contained in every inclusion maximal cell of Σ.

Face structures are higher-dimensional analogues of graph models for tropical curves.

Definition 3.7. Let X be a rational polyhedral space. A tropical k-cycle is a function A : X → Z

such that the following properties hold.

(1) A is locally constructible, i.e. for every x P X there is a local face structure Σ at x such that
the restriction to the relative interior A|relint(σ) is locally constant for every σ P Σ.

(2) For every x P X the germ of A at x (extended to be constant along all lines through the
origin) defines a tropical fan k-cycle on the real tangent space TZx (X) bZ R at x.

The set of tropical k-cycles on X is denoted Zk(X).

The following two examples show that smooth tropical curves behave well from the view-
point of intersection theory. Ultimately this is the reason for our standing smoothness assump-
tion.

Example 3.8. Let Γ be a tropical curve (which we assume be to smooth as always). A function
A : Γ → Z with value 0 on every vertex of valence ą 2 is balanced if and only if its value on every
edge is the same. If this value is 1 everywhere, then this defines the fundamental cycle [Γ ] P Z1(Γ)

of Γ .
We emphasize that if Γ is not smooth then it does not admit a fundamental cycle. For ex-

ample, the balancing condition (10) cannot be satisfied at a finite 1-valent vertex. At a 1-valent
vertex at infinity, however, the balancing condition is trivially satisfied, since all affine functions
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are locally constant and hence the tangent space is 0. In particular, the primitive tangent vector
of an infinite edge at the vertex at infinity is 0 and Equation (10) is satisfied.

Example 3.9. Let Γ be a (smooth) tropical curve and define [∆Γ ] : Γ
2 → Z by [∆Γ ](x, y) = 1 if x = y

and x is not a vertex of valence ą 2 and [∆Γ ](x, y) = 0 otherwise. We claim that this is a tropical
1-cycle on Γ 2, the diagonal cycle.

A choice of graph model on Γ provides a polyhedral complex structure on Γ 2. Subdividing
cells of the form e ˆ e for any edge e of Γ provides a face structure that shows that [∆Γ ] is
(locally) constructible. We check balancing. Locally at a point (x, x), where x is not a vertex of
Γ , the support of [∆Γ ] looks like the diagonal in R2. This is clearly balanced because the sum
of outwards facing primitive tangent vectors at the origin is 0. Now assume x is a vertex of
Γ . Denote the primitive tangent vectors of the edges of Γ incident to x by η1, . . . , ηn. Then the
primitive tangent vectors of [∆Γ ] at (x, x) are

(

ηi
ηi

)

P TZ(x,x)(Γ
2) – TZx (Γ) ˆ TZx (Γ) for i = 1, . . . , n,

and again we see that the sum is 0 because Γ was assumed smooth, i.e.
ř
i ηi = 0.

Let A,B : X→ Z be tropical k-cycles on X. The sum function A+B : X→ Z is not, in general,
a tropical k-cycle. However, there exists a tropical k-cycle agreeing with the algebraic sum A+ B

away from the non-regular locus |A| \ |A|reg Y |B| \ |B|reg. Denoting this cycle A + B by abuse of
notation, we obtain a group structure on Zk(X).

Now let f : X → Y be a proper and surjective morphism of k-dimensional rational polyhe-
dral spaces. There is a pushforward f˚ : Zk(X) → Zk(Y) defined as follows (see Definition 3.6 of
[GS23a]). Let A P Zk(X). At y P Yreg \ f(X \ Xreg) define

f˚A(y) =
ÿ

xPf−1(y)

[

TZy Y : dxf(T
Z
x X)

]

A(x), (11)

where the lattice index is taken to be 0 if it is not finite and we set f˚A(y) = 0 for all other points
of Y. Similar to the case of addition of tropical cycles, this f˚A is in general not a tropical cycle,
but there is a tropical pushforward cycle (also denoted f˚A) that coincides with f˚A away from
a locus of dimension at most k− 1.

Example 3.10. Let Γ and Π be smooth tropical curves and let π : Γ → Π be a harmonic map of
degree d. Then π˚[Γ ] = d[Π]. To see this, it suffices to check that π˚[Γ ](y) = d for every y in the
interior of an edge of Π. By definition of pushforward and Equation (2) we have

π˚[Γ ](y) =
ÿ

xPπ−1(y)

[

TZyΠ : dxπ(T
Z
x Γ)
]

=
ÿ

xPπ−1(y)

dπ(x) = n,

where dπ(x) is the dilation factor on the edge to which x belongs and dxπ is the differential of π
at x.

3.6. Tropical homology. Finally, we give a brief introduction to tropical homology and coho-
mology groups (which were introduced in [IKMZ19]), following the paper [GS23a]. Let X be a
rational polyhedral space, possibly with boundary.

Definition 3.11. Let p ě 1. Define the sheaf Ωp
X of tropical p-forms to be the image of

pľ
Ω1
X −→ i˚

(

pľ
Ω1
X|Xreg

)

,
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where i : Xreg → X is the inclusion.

There is a maximal stratification of X such that Ω1
X is locally constant on every stratum. A

singular q-simplex, i.e. a continuous map σ : ∆q → X, is allowable if every open face of ∆q maps
into a single stratum of X. Denote by Zσ(∆q) the constant sheaf on σ(∆q) with values in Z. Then
the (p, q)-th chain group is defined as

Cp,q(X) =
à

σ:∆q
→X allowable

Hom
(

Ω
p
X,Zσ(∆q)

)

.

Elements in Cp,q(X) are denoted as
ř
σ σb ησ, where ησ P Hom

(

Ω
p
X,Zσ(∆q)

)

. The boundary map
of Cp,‚(X) is given as

Cp,q+1(X) −→ Cp,q(X), σb η Þ−→
ÿ

τPBσ

τb (rτ ˝ η),

where B is the boundary map from singular homology and rτ : Zσ(∆q+1) → Zτ(∆q) is the restriction
map. By abuse of notation we denote the boundary maps of Cp,‚(X) again by B and we define
the (p, q)-th tropical homology group Hp,q(X) = Hq(Cp,‚(X)). The cochain complexes are Cp,‚ =

Hom(Cp,‚,Z) and the tropical cohomology groups are Hp,q(X) = Hq(Cp,‚(X)).
Recall that there is a tropical cycle class map

cyc : Zk(X) −→ Hk,k(X)

which assigns to any tropical k-cycle a class in tropical homology. We often suppress cyc from
the notation and identify a tropical cycle in Zk(X) with its image in Hk,k(X). This map is defined
for rational polyhedral spaces with boundary in [GS23a, Section 5], and is given a convenient
description in the k = 1 case for boundaryless polyhedral spaces in [GS23b]. We recall the latter
formula for A P Z1(X), generalized to the case when the support of |A|, which is a graph, is
allowed to have boundary vertices, but no boundary edges.

For every edge e in |A| choose a generator for TZx |A| for some x P e. By parallel transport this
gives rise to a generator for any TZy |A| with y P e and hence a morphismΩ1

|A|
→ Ze. Precomposing

with Ω1
X → Ω1

|A|
induced by the inclusion |A| →֒ X we obtain ηe P Hom(Ω1

X,Ze). Let γe : ∆1 → X

be a parametrization of e in the direction given by ηe. Then

cyc(A) =
ÿ

e

A(e)γe b ηe P C1,1(X).

Let us check that B cyc(A) = 0. To do so, let v be a finite vertex of |A| and assume that all edges
e incident to v have been oriented away from v. Then each e contributes −A(e)ηe|v to B cyc(A).
But now the sum over these contributions is 0 because A was assumed to be a tropical cycle and
in particular balanced. On the other hand, if v is an infinite vertex, then the stalk of Ω1

|A| at v is
trivial, hence the element ηe (corresponding to any incident edge e) is equal to 0.

There are natural pushforward maps of tropical homology classes and pullback maps of
tropical cohomology classes along morphisms of rational polyhedral spaces. These maps are
compatible with the cycle class map in the sense that proper pushforward of tropical cycles and
pushforward of tropical homology classes commute with the cycle class map [GS23a, Proposi-
tion 5.6]. Finally, there are cup and cap products [GS23a, Section 4.6],

⌣: Hp,q(X) ˆHp
1,q 1

(X) −→ Hp+p
1,q+q 1

(X), ⌢: Hp,q(X) ˆHi,j(X) −→ Hp−i,q−j(X),
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and the latter gives rise, if X is smooth, to Poincaré duality [GS23a, Corollary 6.8]

Hp,q(X) – Hn−p,n−q(X), c Þ−→ cyc[X] ⌢ c.

Smoothness is defined in Definition 6.1 in [GS23a] and we do note repeat the general definition,
but simply note that we only use this isomorphism when X is a power of a smooth tropical curve,
which is smooth or when X is a tropical abelian variety, which is also smooth. Moreover, note
that if X is smooth, it has a fundamental class.

3.7. Tropical Cartier divisors. Let X be a rational polyhedral space. A rational function on X is a
continuous function f : X→ R that is piecewise affine on every chart. Denote the sheaf of rational
functions by MX. Clearly, every affine function is rational, so there is an inclusion AffX → MX.
Denote the quotient MX{ AffX by Div(X), so that there is a short exact sequence of sheaves

0 −→ AffX −→ MX −→ Div(X) −→ 0. (12)

The group of global sections Div(X) = Γ
(

X,Div(X)
)

is the group of Cartier divisors on X. If
f : X→ Y is a morphism of rational polyhedral spaces, then there is an induced pullback map on
Cartier divisors f˚ : Div(Y) → Div(X).

The group H1(X,AffX) classifies tropical line bundles on X, and the short exact sequence (12)
gives rise to a boundary homomorphism Div(X) = H0

(

X,Div(X)
)

→ H1(X,AffX) that associates
to a Cartier divisor D a tropical line bundle L(D). Pullback of Cartier divisors commutes with
this association [GS23a, Proposition 3.15]. Furthermore, the short exact sequence defining Ω1

X

0 −→ RX −→ AffX −→ Ω1
X −→ 0

gives rise to the first Chern class map c1 : H
1(X,AffX) → H1(X,Ω1

X) = H
1,1(X).

Finally, there is a natural intersection pairing

Div(X) ˆ Zk(X) Þ−→ Zk−1(X), (D,A) Þ−→ D ¨A.

If X is smooth, then in particular X admits a fundamental cycle and for k = dimX this gives an
isomorphism Div(X) – ZdimX−1(X). Again, we note that we only use this isomorphism when X
is a power of a tropical curve, which is smooth. We recall from [GS23a, Proposition 5.12] that
cyc(D ¨A) = cyc(A) ⌢ c1(L(D)) for every Cartier divisor D and tropical cycle A.

4. Tropical abelian varieties

In this section, we recall the theory of tropical abelian varieties. The definitions that we use
were introduced in [LZ22] and differ slighly from the standard definitions (see e.g. [FRSS18]),
but are equivalent to them. We prove a number of elementary results concerning morphisms
of tropical abelian varieties. We then recall the Jacobian variety of a tropical curve (already in-
troduced in [MZ08]) and introduce the continuous Prym variety of a double cover (modifying
the original construction from [JL18]), and show that they satisfy natural universal properties.
Finally, we prove Theorem 4.25, which is a tropical version of the homological formula for the
pushforward of the fundamental class under the Abel–Prym map (which is classically a part of
Welters’s criterion characterizing Prym varieties).
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4.1. Integral tori. Let Λ and Λ 1 be finitely generated free abelian groups of the same rank and let
[¨, ¨] : ΛˆΛ 1 → R be a non-degenerate pairing. The triple (Λ,Λ 1, |¨, ¨]) defines a real torus with inte-

gral structure Σ = Hom(Λ,R){Λ 1, or simply an integral torus, where the inclusion Λ 1 Ď Hom(Λ,R)

is given by λ 1 Þ→ [¨, λ 1]. The dual torus Σ∨ = Hom(Λ 1,R){Λ is defined by the transposed triple
(Λ 1, Λ, [¨, ¨]t). The dimension of an integral torus is dimR Σ = rkΛ = rkΛ 1. We note that integral
tori admit a group structure, which is the descent of the group structure of the universal cover
Hom(Λ,R). From now on we abuse notation and refer to the triples as integral tori as well.

Remark 4.1. Integral tori are rational polyhedral spaces as follows. Identifying Hom(Λ,Z) with
Zg endows the universal cover Hom(Λ,R) with the structure of a rational polyhedral space. An
integral affine linear function on Hom(Λ,R) is the sum of a linear function taking integer values
on the lattice Hom(Λ,Z) and a constant real shift. In other words, affine functions are precisely
elements of Hom

(

Hom(Λ,Z),Z
)

‘R – Λ‘R. The torus inherits the rational polyhedral structure
from the universal covering via the quotient map. Note that Ω1

Σ(Σ) = Λ and H1(Σ,Z) = Λ 1 for
any integral torus Σ = (Λ,Λ 1, [¨, ¨]). Moreover, it is easy to see e.g. via [GS23a, Lemma 6.3] that
integral tori are smooth rational polyhedral spaces.

We first classify morphisms of integral tori (as rational polyhedral spaces). Recall that a
holomorphic map of complex tori factors as a group homomorphism followed by a translation.
An identical classification holds for integral tori. We first define the two types of maps.

Definition 4.2. Let Σ be an integral torus. For every y P Σ the translation ty : Σ → Σ is given by
ty(x) = x+ y.

It is clear that translations are morphisms of rational polyhedral spaces, inducing identity
maps on Ω1

Σ(Σ) and Hp,q(Σ).

Definition 4.3. A homomorphism of integral tori f = (f#, f#) : (Λ1, Λ
1
1, [¨, ¨]1) → (Λ2, Λ

1
2, [¨, ¨]2) consists

of a pair of homomorphisms f# : Λ2 → Λ1 and f# : Λ 1
1 → Λ 1

2 satisfying the relation
[

f#(λ2), λ
1
1

]

1
=
[

λ2, f#(λ
1
1)
]

2
(13)

for all λ 1
1 P Λ 1

1 and λ2 P Λ2. The maps f# and f# necessarily have the same rank, denoted rk f. The
dual homomorphism of f is given by the transposed pair f∨ = (f#, f

#) : Σ∨
2 → Σ∨

1 . Given another
homomorphism of integral tori g = (g#, g#) : (Λ2, Λ

1
2, [¨, ¨]2) → (Λ3, Λ

1
3, [¨, ¨]3), the composition with

f is given by g ˝ f = (f# ˝ g#, g# ˝ f#).

Note that for a homomorphism f = (f#, f#), the Hom-dual Hom(Λ1,R) → Hom(Λ2,R) of f#

restricts to f# on Λ 1
1 and hence descends to a group homomorphism on the underlying tori

Σ1 = Hom(Λ1,R){Λ
1
1 −→ Σ2 = Hom(Λ2,R){Λ

1
2, (14)

which is a map of rational polyhedral spaces. By abuse of notation we denote the map in Equa-
tion (14) again by f and from now on we will conflate the representation of a homomorphism as
a pair (f#, f#) and its underlying description as a (point-wise) map of rational polyhedral spaces.
This is compatible with composition of homomorphisms.

Lemma 4.4. Let Σi = (Λi, Λ
1
i , [¨, ¨]i) for i = 1, 2 be integral tori and let f : Σ1 → Σ2 be a map of rational

polyhedral spaces. Then f factors uniquely as a homomorphism g = (g#, g#) : Σ1 → Σ2 followed by a

translation t : Σ2 → Σ2.
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Proof. Define g = t−f(0) ˝ f, then clearly g is a map of rational polyhedral spaces with g(0) = 0.
In particular, g pulls back affine linear functions defined in a neighborhood of 0 P Σ2 to affine
linear functions on a neighborhood of 0 P Σ1. Since g(0) = 0, the pullback of a linear function
is in fact linear. But for any integral torus Σ = (Λ,Λ 1, [¨, ¨]), linear functions in a neighborhood
of 0 are simply given by elements of Hom

(

Hom(Λ,Z),Z
)

– Λ, see Remark 4.1. Hence pullback
defines a group homomorphism g# : Λ2 → Λ1 whose Hom-dual induces the map g on the tori,
which is therefore a homomorphism of integral tori. �

Lemma 4.5. Let Σi = (Λi, Λ
1
i , [¨, ¨]i) for i = 1, 2 be integral tori and let f = (f#, f#) be a homomorphism

Σ1 → Σ2. Then for any y P Σ1 the diagram

Σ1 Σ2

Σ1 Σ2

ty

f

tf(y)

f

commutes.

Proof. This is clear because f is a homomorphism with respect to the group structures of the
integral tori Σ1 and Σ2, in other words f(x+ y) = f(x) + f(y). �

We now define the kernel, cokernel, and image of a homomorphism of integral tori. For an
abelian group A, we denote by Atf = A{Ator the quotient by its torsion subgroup. For a pair of
lattices Λ Ă Λ 1, we define the saturation of Λ in Λ 1 as

Λsat = Λ 1 X (Λb Q) =
{
λ 1 P Λ 1 : nλ 1 P Λ for some n P Z

}
,

and note that (Λ 1{Λ)tf – Λ 1{Λsat. Let Σi = (Λi, Λ
1
i , [¨, ¨]i) for i = 1, 2 be integral tori and let

f = (f#, f#) be a homomorphism Σ1 → Σ2. We consider the following integral tori:

(Ker f)0 =
(

(Coker f#)tf, Ker f#, [¨, ¨]K

)

, Coker f =
(

Ker f#, (Coker f#)
tf, [¨, ¨]C

)

, (15)

Im f =
(

Λ2{ Ker f#, (Im f#)
sat, [¨, ¨]I

)

, (16)

where the pairings [¨, ¨]K, [¨, ¨]C, and [¨, ¨]I are induced by the pairings [¨, ¨]1, [¨, ¨]2, and [¨, ¨]2, re-
spectively. The natural maps on the lattices induce the following sequence of homomorphisms of
integral tori:

(Ker f)0
i

−→ Σ1
p

−→ Im f
j

−→ Σ2
q

−→ Coker f. (17)

We now compare these definitions to their group-theoretic counterparts. We start by showing
that Im f is in fact the group-theoretic image of f.

Lemma 4.6. Let f : Σ1 → Σ2 be a homomorphism of integral tori. The homomorphism j : Im f → Σ2
identifies Im f with the group-theoretic image

{
f(x) P Σ2 : x P Σ1

}
.

Proof. Let f˚ : Hom(Λ1,R) → Hom(Λ2,R) denote the Hom-dual of f#. The group-theoretic image
of f is the image of f˚ descended to the torus Σ2. This image vector space is easily seen to be

Im f˚ =
{
φ P Hom(Λ2,R) : φ(Ker f#) = 0

}
– Hom

(

Λ2{ Ker f#,R
)

.

Descending this to Σ2 amounts to taking the quotient by the lattice

L = [−, Λ 1
2]2 X Im f˚ =

{
λ 1
2 P Λ 1

2

∣

∣ [−, λ 1
2] vanishes on Ker f#}.
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For any λ 1
1 P Λ 1

1 the map [−, f#(λ
1
1)]2 = [f#(−), λ 1

1]1 clearly vanishes on Ker f# and hence we see
that [−, Im f#]2 Ď L. Note that this is in fact a full rank sublattice of L:

rk L = dim f˚ = rk(Λ2{ Ker f#) = rk f# = rk f = rk f# = rk[−, Im f#]2

where the final equality holds since [−,−]2 is a non-degenerate pairing. But this means that λ 1
2 P L

if and only if λ 1
2 P Λ 1

2X(Im f#)bQ = (Im f#)
sat. In summary we see that the group-theoretic image

of f is the integral torus Im f. �

We carry on to (Ker f)0 and we claim that it is the connected component of the identity of
the group-theoretic kernel, and that it is the kernel object in the category of integral tori.

Proposition 4.7. Let f : Σ1 → Σ2 be a homomorphism of integral tori.

(1) The map i : (Ker f)0 → Σ1 identifies the integral torus (Ker f)0 with the connected component of

the identity of the group-theoretic kernel Ker f =
{
x P Σ1 : f(x) = 0

}
. The group of connected

components of Ker f is naturally identified with the quotient f#(Λ
1
1)

sat{f#(Λ
1
1).

(2) Given an integral torus Π = (∆,∆ 1, [¨, ¨]∆) and a homomorphism g : Π→ Σ1 such that f ˝ g = 0,

there exists a unique homomorphism u : Π→ (Ker f)0 such that

(Ker f)0 Σ1

Π

i

u
g

commutes.

Proof. (1) We compute the group theoretic-kernel explicitly. As in the proof of Lemma 4.6, let
f˚ denote the Hom-dual of f#. The kernel Ker f is the quotient of (f˚)−1

(

[−, Λ 1
2]2
)

by the
lattice [−, Λ 1

1]1. By basic linear algebra we know that if there exists a φ P Hom(Λ1,R) such
that φ ˝ f# = [−, λ 1

2]2, then the fiber (f˚)−1
(

[−, λ 1
2]2
)

is given by the coset φ + Ker f˚. The
set of all [−, λ 1

2]2 which lie in the image of f˚ was determined in the proof of Lemma 4.6:
it is precisely [−, (Im f#)

sat]2, which as a set is in bijection with (Im f#)
sat. Using

V = Ker f˚ – Hom(Coker f#,R) – Hom
(

(Coker f#)tf,R
)

,

we see that the group-theoretic kernel of f is isomorphic to V ˆ (Im f#)
sat modulo [−, Λ 1

1]1.
Under this quotient a connected component V ˆ {λ 1} gets identified with the image of
V ˆ {0} if and only if [−, λ 1]2 is the f˚-image of a lattice point in [−, Λ 1

1]1. This in turn is
the case if and only if the defining point λ 1 lies in Im f#. Finally note that V X [−, Λ 1

1]1 =

[−,Ker f#]1. Therefore we see that

Ker f =
Hom

(

(Coker f#)tf,R
)

[−,Ker f#]1︸ ︷︷ ︸
=(Ker f)0

ˆ
(Im f#)

sat

Im f#
.

(2) The assumption f˝g = 0 means that g# ˝f# = 0 and f# ˝g# = 0. By the universal properties
of kernels and cokernels of abelian groups, and using the fact that ∆ is torsion free, we
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obtain unique morphisms u# and u# such that the diagrams

(Coker f#)tf Λ1

∆

u#

i#

g#

and

Ker f# Λ 1
1

∆ 1

i#

u#
g#

commute. We need to verify that u = (u#, u#) is a homomorphism of integral tori. Let
λ P Λ1 and δ 1 P ∆ 1. Denote the class of λ in (Coker f#)tf by λ. Then

[

λ, u#(δ
1)
]

K
=
[

λ, u#(δ
1)

︸ ︷︷ ︸
=g#(δ

1)

]

1
=
[

g#(λ)
︸ ︷︷ ︸

=u#(λ)

, δ 1
]

∆
,

as required. �

The universal property for Coker f is stated and proved in complete analogy, and it is ele-
mentary to verify that

(Ker f)∨0 – Coker(f∨).

We may classify homomorphisms of integral tori according to two properties: the structure of
the induced map on the underlying groups, and the dilation properties of the map of rational
polyhedral spaces.

Definition 4.8. Let Σi = (Λi, Λ
1
i , [¨, ¨]i) for i = 1, 2 be integral tori of dimensions gi. A homomor-

phism f = (f#, f#) : Σ1 → Σ2 of integral tori is said to be

(1) surjective if rk f = g2 (equivalently, if f# is injective),
(2) finite if rk f = g1 (equivalently, if f# is injective),
(3) injective if it is finite and f#(Λ

1
1) is saturated in Λ 1

2,
(4) an isogeny if it is surjective and finite (equivalently, if rk f = g1 = g2),
(5) a free isogeny if it is an isogeny and f#(Λ2) = Λ1 (equivalently, if f# is an isomorphism),
(6) a dilation if is an isogeny and injective (equivalently, if f# is an isomorphism), and
(7) an isomorphism if f# and f# are isomorphisms.

In the sequence (17), the maps i and j are injective, while p and q are surjective. By Propo-
sition 4.7 and Lemma 4.6, a homomorphism of integral tori f is surjective, finite, injective, or
a dilation if and only if the corresponding group homomorphism f : Σ1 → Σ2 is respectively
surjective, has finite kernel (identified with the quotient f#(Λ

1
1)

sat{f#(Λ
1
1)), injective, or is an iso-

morphism.
For an isogeny f : Σ1 → Σ2, we can define several notions of degree. The image lattices f#(Λ

1
1)

and f#(Λ2) have finite index in Λ 1
2 and Λ1, respectively, and we define the dilation degree degd f,

the geometric degree degg f, and the total degree deg f as

degd f =
[

Λ1 : f
#(Λ2)

]

, degg f =
[

Λ 1
2 : f#(Λ

1
1)
]

, deg f = degd f ¨ degg f.

By Proposition 4.7, the geometric degree is the order of the group-theoretic kernel of f, while
the dilation degree is the factor by which f stretches volume. All three degrees are multiplicative
in compositions, and an isogeny f is a free isogeny, a dilation, and an isomorphism if and only
if respectively degd f = 1, degg f = 1, and deg f = 1. We note that the dual of a surjective
homomorphism is finite (and vice versa), the dual of an isogeny is an isogeny (the geometric

31



and dilation degrees are exchanged), and the dual of a free isogeny is a dilation (and vice versa).
Finally, we may canonically factor any isogeny as follows:

Lemma 4.9. Let f = (f#, f#) : (Λ1, Λ
1
1, [¨, ¨]1) → (Λ2, Λ

1
2, [¨, ¨]2) be an isogeny of integral tori. Then there

exists an integral torus Σ3 together with a free isogeny h : Σ1 → Σ3 and a dilation g : Σ3 → Σ2 such that

f factors as f = g ˝ h. Moreover, this factorization is unique in the sense that for any other factorization

Σ1 → Π → Σ2 into a free isogeny followed by a dilation, there is a unique isomorphism φ of integral tori

such that

Σ3

Σ1 Σ2

Π

gh

φ

commutes.

We note that we can also uniquely factor an isogeny as a dilation followed by a free isogeny.

Proof. In order to factor f, we define a third integral torus Σ3 = (Λ1, Λ
1
2, [¨, ¨]3). To define the

pairing [¨, ¨]3 note the following. By the existence of a Smith normal form for f#, we may choose
Z-bases e1, . . . , eg of Λ 1

1 and f1, . . . , fg of Λ 1
2 such that f#(ei) = aifi for nonzero integers ai P Z.

We now define

[λ, fi]3 =
1

ai
[λ, ei]1

for any λ P Λ1 and factor f as

Σ1 Σ3 Σ2

Λ1 Λ1 Λ2

Λ 1
1 Λ 1

2 Λ 1
2.

h g

Id f#

f# Id

It is easy to check Condition (13) for h and g, hence they are homomorphisms. Moreover, h is a
free isogeny because h# = Id is an isomorphism, and g is a dilation because g# = Id is surjective.

In order to show uniqueness, let Π = (∆,∆ 1, [¨, ¨]Π) be another integral torus and let Σ1
rh

−→

Π
rg

−→ Σ2 be another factorization of f as a free isogeny rh followed by a dilation rg. In particular,
rh# and rg# are isomorphisms. In order to define an isomorphism φ as in the claim, we need to
ensure that h = φ ˝ rh and rg = g ˝φ, which means that the only candidate is φ = ((rh#)−1, rg#). We
verify that this is indeed a homomorphism, i.e. we need to check Condition (13). Let δ1, . . . , δg be
the basis of ∆ 1 such that rg#(δi) = fi. Then rh#(ei) = aiδi because Id ˝h# = rg# ˝ rh# and it becomes
clear that

[

(rh#)−1(λ), δi
]

Π
=
1

ai
[λ, ei]1 = [λ, fi]3 =

[

λ, rg#(δi)
]

3

for all λ P Λ1 and i = 1, . . . , g. �

In some sense the key observation to prove Lemma 4.9 was simply that an isogeny f is free
if and only if f# is an isomorphism and it is a dilation if and only if f# is an isomorphism.
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4.2. Polarizations and tropical homology. Let Σ = (Λ,Λ 1, [¨, ¨]) be an integral torus. A polariza-

tion on Σ is a group homomorphism ζ : Λ 1 → Λ such that (¨, ¨) = [ζ(¨), ¨] : Λ 1
R ˆ Λ 1

R → R is a
symmetric and positive definite bilinear form. A polarization is necessarily injective, and is called
principal if it is bijective. The invariant factors (a1, . . . , ag) of the Smith normal form (where ai ě 1

and ai|ai+1 for i = 1, . . . , g− 1) define the type of a polarization ζ, and a polarization is principal
if and only if all ai = 1. A polarization defines an isogeny (ζ, ζ) : Σ → Σ∨ to the dual, which is
an isomorphism if and only if the polarization is principal.

Let f : Σ1 → Σ2 be a finite homomorphism of integral tori. Given a polarization ζ2 on Σ2,
we define a polarization f˚(ζ2) = f

# ˝ ζ2 ˝ f# on Σ1, called the induced polarization. We note that a
polarization induced from a principal polarization need not itself be principal.

Definition 4.10. An integral torus together with a (principal) polarization is called a (principally)

polarized tropical abelian variety or (p)ptav for short. An isomorphism of ptavs is an isomorphism
f : Σ1 → Σ2 of integral tori such that the polarization on Σ1 is the polarization induced from Σ2.

Finally, we recall the tropical homology and cohomology groups of an integral torus Σ =

(Λ,Λ 1, [¨, ¨]), and the relationship with polarizations. The groups can be computed explicitly (see
[GS23b, Section 6]):

Hp,p(Σ) –
pľ
Λ˚ bZ

pľ
Λ 1, (18)

Hp,p(Σ) –
pľ
ΛbZ

pľ
(Λ 1)˚. (19)

Here (¨)˚ = Hom(¨,Z) denotes the dual lattice. In particular, H1,1(Σ) = Λb (Λ 1)˚ = Hom(Λ 1, Λ).
Via this identification, we may view a polarization ζ : Λ 1 → Λ as an element ζ P H1,1(Σ). Alter-
natively, we may define ζ = cyc[Θ], where Θ is the theta divisor (see Section 3.7, and see [MZ08]
for the definition of the theta divisor in terms of tropical theta functions). By Poincaré duality,
we may view the cup product ζp as an element of either Hp,p(Σ) or Hg−p,g−p(Σ), where g is the
dimension of Σ.

We now state a homological criterion that allows us to check whether two pptavs are iso-
morphic, which is our principal reason for introducing tropical homology.

Proposition 4.11. Let f : Σ1 → Σ2 be an isogeny of pptavs of dimension g with principal polarizations

ζi P H1,1(Σi). If

f˚(ζ
g−1
1 ) = Nζ

g−1
2 P H1,1(Σ2)

for some integer N ě 1, then the total degree of f is equal to deg f = Ng, and furthermore

f˚(ζ2) = Nζ1 P H1,1(Σ1).

In particular, if this condition holds for N = 1, then f is an isomorphism of pptavs.

Proof. Via the Smith normal form construction we may pick bases Λ 1
1 = xλ 1

1, . . . , λ
1
gy and Λ 1

2 =

xµ 1
1, . . . , µ

1
gy such that f#(λ

1
i) = aiµ

1
i for some integers ai. Setting λi = ζ1(λ 1

i) and µi = ζ2(µ 1
i), we

obtain corresponding bases of Λ1 and Λ2, respectively. With this notational setup we have

ζ1 =

gÿ

i=1

λi b (λ 1
i)

˚ P H1,1(Σ1).
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In terms of the explicit descriptions (18)-(19), the cup and cap products are given by the formulas

(αbω˚) ⌣ (βb ξ˚) = (α∧ β) b (ω˚ ∧ ξ˚), (α˚ bω) ⌢ (βb ξ˚) = (α˚
y β) b (ω y ξ˚),

where y denotes the interior product on the exterior algebra [GS23b, Section 6]. Therefore

ζ
g−1
1 = (g− 1)!

gÿ

i=1

(

λ1 ∧ ¨ ¨ ¨ ∧ pλi ∧ ¨ ¨ ¨ ∧ λg

)

b
(

(λ 1
1)

˚ ∧ ¨ ¨ ¨ ∧ z(λ 1
i)

˚ ∧ ¨ ¨ ¨ ∧ (λ 1
g)

˚
)

P Hg−1,g−1(Σ1).

The fundamental cycle of a pptav was computed in [GS23b] (see Lemma 9.6, where the calcula-
tion was done for the Jacobian of a tropical curve, but the same argument works for any pptav):

cyc[Σ1] =
(

λ˚
1 ∧ ¨ ¨ ¨ ∧ λ˚

g

)

b
(

λ 1
1 ∧ ¨ ¨ ¨ ∧ λ 1

g

)

P Hg,g(Σ1).

Hence the Poincaré dual of ζg−11 is

ζ
g−1
1 = (g− 1)!

gÿ

i=1

λ˚
i b λ 1

i P H1,1(Σ1).

In terms of (18), the pushforward map f˚ : H1,1(Σ1) → H1,1(Σ2) is f˚ = (f#)˚ b f#, hence

f˚(ζ
g−1
1 ) = (g − 1)!

gÿ

i=1

(f#)˚(λ˚
i ) b f#(λ

1
i) = (g − 1)!

gÿ

i=1

(f#)˚(λ˚
i ) b aiµ

1
i P H1,1(Σ2).

On the other hand, computing the Poincaré dual of ζg−12 in the same way, we see that the condi-
tion f˚(ζ

g−1
1 ) = Nζ

g−1
2 implies that

gÿ

i=1

(f#)˚(λ˚
i ) b aiµ

1
i = N

gÿ

i=1

µ˚
i b µ 1

i P H1,1(Σ1).

If follows that each ai divides N, that f# is diagonalized by our choice of bases for Λ1 and Λ2,
and that f#(µi) =

N
ai
λi. Hence the dilation, geometric, and total degrees of f (see Definition 4.8)

are equal to

degd f =
gź

i=1

N

ai
, degg f =

gź

i=1

ai, deg f = degd f ¨ degg f = N
g.

Passing back to the dual lattices, the pullback map f˚ : H1,1(Σ2) → H1,1(Σ1) is f˚ = f# b (f#)
˚,

hence f˚(ζ2) = Nζ1. �

4.3. Tropical Jacobians. Let Γ be a tropical curve (which is assumed smooth as always). Given
an oriented model G of Γ , the simplicial chain group C1(G,Z) is the free abelian group on the
edges of G, containing the simplicial homology group H1(G,Z). These groups fit into a directed
system with respect to refinements of models (see [BF11] for details), and we denote the direct
limit by C1(Γ,Z). The images of the H1(G,Z) are all equal and are denoted H1(Γ,Z).

There is a natural isomorphism d : H1(Γ,Z) → Ω1
Γ (Γ) sending a cycle

ř
ae e to the 1-formř

ae de. In addition, the integration pairing

[¨, ¨] : Ω1
Γ(Γ) ˆ C1(Γ,Z) −→ R

(ω,γ) =
(ÿ

aede,
ÿ
bee
)

Þ−→

∫

γ

ω =
ÿ
aebeℓ(e)
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restricts to a non-degenerate pairing Ω1
Γ (Γ) ˆH1(Γ,Z) → R. Hence we have a pptav

Jac(Γ) =
(

Ω1
Γ(Γ), H1(Γ,Z), [¨, ¨]

)

= Hom
(

Ω1
Γ (Γ),R

)

{H1(Γ,Z)

of dimension equal to the genus g(Γ), the tropical Jacobian variety of Γ .

Definition 4.12. Fix a base point q P Γ . The Abel–Jacobi map relative to q is given by

φq : Γ −→ Jac(Γ)

p Þ−→
(

ω Þ→

∫

γp

ω
)

,

where γp denotes any path from q to p.

The Abel–Jacobi map naturally extends to symmetric powers of Γ and hence to divisors.
This map respects linear equivalence, and the tropical Abel–Jacobi theorem (see Theorem 6.3
in [MZ08]) states that the induced map Pic0(Γ) → Jac(Γ) (which does not depend on the choice
of a base point) is an isomorphism. Under this identification, the Abel–Jacobi map can also be
described as p Þ→ p− q.

We now prove that the Abel–Jacobi map enjoys a universal property among morphisms of
rational polyhedral spaces to integral tori, which is an exact analogue of the algebraic property
(see Proposition 11.4.1 in [BL04], and see Section 1.4 in [BN07] for the corresponding property of
the Jacobian of a finite graph). We first make the following elementary observation, which does
not appear to have a proof in the literature.

Proposition 4.13. The Abel–Jacobi map φq : Γ → Jac(Γ) is a map of rational polyhedral spaces. Moreover,

the identification Ω1
Jac(Γ)(Jac(Γ)) – Ω1

Γ (Γ) (see Remark 4.1) is induced by pullback along φq.

Proof. Let η P Ω1
Jac(Γ)(Jac(Γ)) be a 1-form. We need to show that its pullback along φq is a 1-form

on Γ . Recall that Ω1
Jac(Γ)(Jac(Γ)) – Ω1

Γ(Γ) and denote the 1-form on Γ that corresponds to η under
this identification by ω =

ř
ePE(Γ) aede with ae P Z. We show that the pullback of η along φq is

ω. Thinking of η as a linear function on Hom(Ω1
Γ (Γ),R), we easily see that

η
(

φq(p)
)

= η
(

∫

γp

−
)

=

∫

γp

ω mod H1(Γ,Z)

for any p P Γ and γp a path from q to p. The second equality is simply the identification of η P

Hom
(

Hom(Ω1
Γ (Γ),R),R

)

with ω P Ω1
Γ (Γ). But now we are already done because the coefficients

ae of ω are precisely 1
ℓ(e)

∫
e
ω, with e parametrized with the orientation indicated by de. �

Proposition 4.14. Let χ : Γ → X be a morphism of rational polyhedral spaces from a tropical curve Γ to

an integral torus X = (Λ,Λ 1, [¨, ¨]). Then there exists a unique homomorphism µ : Jac(Γ) → X of integral

tori such that the diagram

Γ X

Jac(Γ) X

χ

φq t−χ(q)

µ

(20)

commutes for all q P Γ .
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Proof. Using the Abel–Jacobi isomorphism Pic0(Γ) = Jac(Γ), we could simply define µ by the rule

µ
(ÿ

aipi

)

=
ÿ
aiχ(pi).

However, we want to carefully define µ as a homomorphism of integral tori.
Fix q P Γ . Clearly, the composition χ0 = t−χ(q) ˝ χ maps q to 0. We show that χ0 factors via

the Abel–Jacobi map. To do so, we need to describe maps µ# : Λ → Ω1
Γ(Γ) and µ# : H1(Γ,Z) →

Λ 1 which are compatible with the pairings on the integral tori such that µ = (µ#, µ#) makes
Diagram (20) commute.

The morphism χ0 of rational polyhedral spaces induces a morphism of cotangent sheaves

χ˚
0 : (χ0)

−1Ω1
X −→ Ω1

Γ .

We recall from Remark 4.1 that Ω1
X(X) – Λ, and recall from Proposition 4.13 that φ˚

q is the
isomorphism Ω1

Jac(Γ)(Jac(Γ)) – Ω1
Γ(Γ). Hence, the only possible choice for µ# which ensures com-

mutativity of Diagram (20) is µ# = (φ˚
q)

−1 ˝ χ˚
0 . Passing to singular homology, the continuous

map χ0 induces a pushforward map H1(Γ,Z) → H1(X,Z). Identifying H1(X,Z) = Λ 1, we let µ# be
the pushforward map. To show that the pair µ = (µ#, µ#) defines a homomorphism of integral
tori we need to verify compatibility with pairings, in other words we need to show that

[

λ, µ#(γ)
]

=

∫

γ

µ#λ (21)

for all λ P Λ and γ P H1(Γ,Z).
We now show that the pairing [¨, ¨] on X can be interpreted as integration as well. Indeed, let

λ P Λ = Ω1
X(X), which we view as the differential of a locally well-defined affine linear function

f on X. Choose the integration constant so that f(0) = 0, then f is linear and can be extended to a
globally well-defined linear function on the universal cover Hom(Λ,R), namely

F : Hom(Λ,R) −→ R

u Þ−→ u(λ).

Let γ P H1(X,Z) = Λ
1. Choose a piecewise smooth representative and lift γ to a path γ 1 : [0, 1] →

Hom(Λ,R) on the universal cover of X going from 0 to some point λ 1 P Λ 1 Ď Hom(Λ,R).
Then

∫
γ λ =

∫
γ 1 λ = F(γ 1(1)) − F(γ 1(0)) = F(λ 1) = λ 1(λ). But now recall that Λ 1 is embedded

in Hom(Λ,R) as [¨, λ 1]. This shows that [¨, ¨] is just integration of 1-forms along closed paths,
and Equation (21) is simply the change-of-variables formula for line integrals. Hence µ is a
homomorphism of integral tori.

Finally, we show that µ makes the diagram (20) commute for any q 1 P Γ (and not just the
q that we fixed at the beginning of the proof). Indeed, it is clear that φq 1 = t−φq(q 1) ˝ φq. By
Lemma 4.5 we obtain

Jac(Γ) X

Jac(Γ) X

µ

t−φq(q 1)
tµ(−φq(q 1))

µ

(22)

But now µ
(

−φq(q
1)
)

= −µ
(

φq(q
1)
)

= −t−χ(q)
(

χ(q 1)
)

= χ(q) − χ(q 1), where the second equality
uses the already established commutativity of Diagram (20) for q. Combining Diagram (20) for
q with Diagram (22), we obtain the claim for q 1 and hence we are done.
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The uniqueness of µ follows from the fact that the image of Γ under the Abel–Jacobi map φq
spans Jac(Γ) as a torus, and hence any two homomorphisms on Jac(Γ) that agree on the image of
Γ are equal. �

Remark 4.15. For the proof of Theorem 1.2 it is essential that all tropical curves be smooth
and hence carry a fundamental cycle. Given a metric graph with finite univalent vertices, this
is achieved by adding compact infinite rays to such vertices (see Example 3.8). We emphasize
that the universal property in Proposition 4.14 is still valid in this context: any morphism of
polyhedral spaces Γ → X maps each infinite ray to a single point in X, because any affine linear
function on the ray is eventually constant.

4.4. Tropical Prym variety. In this section, we recall the definition of the tropical Prym variety
Prym(rΓ{Γ) of a harmonic double cover π : rΓ → Γ of tropical curves. The tropical Prym variety was
defined in [JL18] and further studied in [LU21] and [LZ22]. We also define an alternative object,
the continuous Prym variety Prymc(

rΓ{Γ), which is more naturally suited to our purposes, and
investigate its relationship with Prym(rΓ{Γ), which we henceforth call the divisorial Prym variety

and denote Prymd(
rΓ{Γ).

We assume a choice of graph model for π. Recall from Section 2 that an edge or vertex of Γ is
called free if it has two preimages in rΓ each of which has dilation factor equal to 1, and dilated if it
has a unique preimage with dilation factor equal to 2. The set of dilated edges and vertices form
the dilation subgraph of Γdil Ď Γ . We say that π is free if the dilation subgraph is empty and dilated

otherwise. The dilation index of the double cover π : rΓ → Γ is

d(rΓ{Γ) =

{
number of connected components of Γdil, if π is dilated,

1, if π is free,

where we note that a free double cover has dilation index 1, not the expected 0.

Remark 4.16. The tropicalization of an algebraic étale double cover has the additional prop-
erty of being unramified. This condition involves vertex weights, which we do not use, and also
imposes a restriction on the dilation subgraph: each vertex must have even valence (see [JL18,
Corollary 5.5]). This restriction does not naturally arise in the tropical setting, and we do not
impose it.

A free edge e of Γ has two distinct preimages that we arbitrarily label re+ and re−, while a
dilated edge e has a unique preimage that we denote re+ = re− by abuse of notation. The double
cover π : rΓ → Γ has an associated involution ι : rΓ → rΓ defined by ι(re˘) = re¯, in other words
ι exchanges the preimages of a free edge and fixes the preimage of a dilated edge. The double
cover π and the involution ι induce maps

π˚ : Ω1
Γ (Γ) −→ Ω1

rΓ(
rΓ )

ÿ
aede Þ−→

ÿ
ae(dre+ + dre−)

π˚ : H1(rΓ ,Z) −→ H1(Γ,Z)ÿ
are˘re˘ Þ−→

ÿ
(are+ + are−)e

and

ι˚ : Ω1
rΓ(

rΓ ) −→ Ω1
rΓ(

rΓ )
ÿ
are˘dre˘ Þ−→

ÿ
are˘dre¯

ι˚ : H1(rΓ ,Z) −→ H1(rΓ ,Z)ÿ
are˘re˘ Þ−→

ÿ
are˘re¯

(23)

We have two associated maps on the Jacobians. The pair of maps (π˚, π˚) defines the tropical norm

homomorphism π : Jac(rΓ) → Jac(Γ). Under the Abel–Jacobi identifications Pic0(rΓ ) = Jac(rΓ) and
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Pic0(Γ) = Jac(Γ), the norm homomorphism is the pushforward map on divisors. The involution
ι : rΓ → rΓ induces an involution ι = (ι˚, ι˚) : Jac(rΓ) → Jac(rΓ), which again is simply the involution
acting on divisors, and the composition π ˝ (Id−ι) : Jac(rΓ) → Jac(Γ) is the zero map.

We now define the two Prym varieties associated to the double cover π : rΓ → Γ .

Definition 4.17. The divisorial Prym variety of the double cover π : rΓ → Γ is the connected compo-
nent of the identity of the kernel of π (see (15) and Proposition 4.7):

Prymd(
rΓ{Γ) = (Kerπ)0 =

(

(Cokerπ˚)tf, Kerπ˚, [¨, ¨]P

)

. (24)

The continuous Prym variety of the double cover π : rΓ → Γ is the integral torus

Prymc(
rΓ{Γ) =

(

Ω1
rΓ (

rΓ){ Ker(Id−ι˚), Im(Id−ι˚), [¨, ¨]P

)

. (25)

The pairing [¨, ¨]P on both tori is induced by the integration pairing on Jac(rΓ).

Under the Abel–Jacobi identifications, the divisorial Prym variety is the connected compo-
nent of the identity of the norm homomorphism π˚ : Pic0(rΓ) → Pic0(Γ). It is the obvious tropical
analogue of the algebraic Prym variety and is the object studied in [JL18] and [LU21]. The con-
tinuous Prym variety, to the best of our knowledge, has not been considered before, and is not
naturally a subset of the Jacobian (however, it is in some sense a tropical analogue of the variety
constructed in [BL04, Proposition 12.1.8]). We summarize the properties of the two Pryms and
their relationship below.

We first determine the relationship between the two Pryms and Jac(rΓ{Γ). Consider the homo-
morphism Id−ι : Jac(rΓ) → Jac(rΓ). Looking at (16), we see that Prymc(

rΓ{Γ) is defined in the same
way as the image torus Im(Id−ι), except that we do not saturate the second lattice. In particular,
the surjective map Jac(rΓ) → Im(Id−ι) factors through a free isogeny Prymc(

rΓ{Γ) → Im(Id−ι),
whose geometric degree is the index of the lattice Im(Id−ι˚) in its saturation. On the other hand,
π ˝ (Id−ι) = 0 and the universal property of the kernel (see Proposition 4.7) implies that the map
Im(Id−ι) → Jac(rΓ) factors through the kernel Prymd(

rΓ{Γ). We now show that the latter is in fact
the image of Id−ι, compute the geometric degree of the free isogeny, and determine the induced
polarizations.

Proposition 4.18. Let π : rΓ → Γ be a double cover with dilation index d(rΓ{Γ).

(1) The group-theoretic kernel Ker
(

π : Jac(rΓ) → Jac(Γ)
)

has two connected components if π is free

and one if π is dilated (see [JL18, Proposition 6.1]).
(2) The divisorial Prym variety Prymd(

rΓ{Γ) is the group-theoretic image of Id−ι:

Prymd(
rΓ{Γ) = Im(Id−ι) =

(

Ω1
rΓ(

rΓ ){ Ker(Id−ι˚), (Im(Id−ι˚))
sat, [¨, ¨]K

)

.

Hence the map Id−ι factors as

Jac(rΓ ) ǫ
−−→ Prymc(

rΓ{Γ)
γ

−−→ Prymd(
rΓ{Γ)

i
−֒→ Jac(rΓ), (26)

and the middle map γ : Prymc(
rΓ{Γ) → Prymd(

rΓ{Γ) is a free isogeny of geometric degree 2d(
rΓ{Γ)−1

(and dilation degree 1). In particular, Prymc(
rΓ{Γ) = Prymd(

rΓ{Γ) if d(rΓ{Γ) = 1, in other words

if π is free or if the dilation subgraph is connected.

(3) The polarization on Prymd(
rΓ{Γ) induced from the principal polarization on Jac(rΓ) via i has type

(1, . . . , 1, 2, . . . , 2), where the number of 1’s equals d(rΓ{Γ) − 1.
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(4) There exists a principal polarization ζc on Prymc(
rΓ{Γ) such that ζ = 2ζc is the polarization

induced from the principal polarization on Jac(rΓ ) via i ˝ γ.

The proof of this proposition is rather laborious, and involves finding formulas for the push-
forward and pullback maps (23) in terms of explicit bases. Before we give the proof, we propose
three reasons why it is more natural to consider Prymc(

rΓ{Γ) than Prymd(
rΓ{Γ).

(1) The induced polarization on Prymd(
rΓ{Γ) is twice a principal polarization if and only if

d(rΓ{Γ) = 1, in other words if π is free or has a connected dilation subgraph. The induced
polarization on Prymc(

rΓ{Γ), however, is always twice a principal polarization, just as in
the algebraic setting.

(2) The divisorial Prym variety Prymd(
rΓ{Γ) does not behave continuously under contractions

of the edges of Γ , specifically those that change the dilation index. This behavior was
explored in detail in [GZ24]. Hence Prymd(

rΓ{Γ) is unsuitable from a moduli-theoretic
viewpoint. We do not explore this behavior here, but simply state without proof that
Prymc(

rΓ{Γ) is in fact continuous in families.
(3) The continuous Prym variety Prymc(

rΓ{Γ) satisfies a natural universal property (see Propo-
sition 4.22), while Prymd(

rΓ{Γ) does not.

To simplify notation, we temporarily identify H1(rΓ ,Z) = Ω1
rΓ (

rΓ) and H1(Γ,Z) = Ω1
Γ (Γ) using

the principal polarizations. In terms of this identification, we have ι˚ = ι˚ and there is a pullback
map π˚ : H1(Γ,Z) → H1(rΓ ,Z) on homology. It is easy to verify that

π˚ ˝ π˚ = Id+ι˚.

For a free double cover π : rΓ → Γ we have g(rΓ) = 2g(Γ) − 1 and therefore the dimension of
the Prym is g0 = g(Γ) − 1. For a dilated double cover, we denote by rΓdil Ă rΓ the isomorphic
preimage of the dilation subgraph Γdil Ă Γ , and recall that d(rΓ{Γ) is the number of connected
components of Γdil. Let mdil = |E(Γdil)| and ndil = |V(Γdil)| denote the number of dilated edges
and dilated vertices, respectively. The numbers mdil and ndil depend on the choice of model but
their difference does not, and we introduce the invariants

A = g(Γ) −mdil + ndil − d(rΓ{Γ),

B = d(rΓ{Γ) − 1,

C = mdil − ndil + d(rΓ{Γ).

(27)

It is easy to see that |E(rΓ)| = 2|E(Γ)| −mdil and |V(rΓ)| = 2|V(Γ)| − ndil, therefore

A + B = g(Γ) −mdil + ndil − 1 = |E(Γ)| − |V(Γ)| −mdil + ndil = g(rΓ) − g(Γ) = g0.

We first consider the case of free double covers.

Proposition 4.19. Let π : rΓ → Γ be a connected free double cover and let g(Γ) = g and g(rΓ) = 2g − 1.

Then there exists a basis α1, . . . , αg−1, γ1 of H1(Γ,Z) and a basis rα˘
1 , . . . , rα˘

g−1, rγ1 of H1(rΓ ,Z) such that

ι˚(rα˘
i ) = rα¯

i , π˚(rα˘
i ) = αi, π˚(αi) = rα+

i + rα−
i , i = 1, . . . , g− 1,

ι˚(rγ1) = rγ1, π˚(rγ1) = 2γ1, π˚(γ1) = rγ1.
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Proof. The proof of this statement is included as part of Constructions A and B in [LZ22], and
we briefly summarize it. Choose an orientation on Γ and a spanning tree T Ă Γ , and denote the
complementary edges by E(Γ)\E(T) = {e0, . . . , eg−1}. Let re˘

i and rT˘ Ă rΓ denote the preimages of
ei and T , respectively. Let S Ă {e0, . . . , eg−1} denote the set of those complementary edges whose
lifts connect the two trees rT˘. The set S is nonempty since rΓ is connected, so we assume without
loss of generality that e0 P S. It follows that rT = rT+ Y rT− Y {re+0 } is a spanning tree for rΓ .

For a cycle γ P H1(Γ,Z) and an oriented edge e P E(Γ), denote by xγ, ey the coefficient with
which e appears in γ, and similarly for H1(rΓ ,Z). We denote εi P H1(Γ,Z) for i = 0, . . . , g − 1

the unique cycle on the graph T Y {ei} such that xεi, eiy = 1 Similarly, let rε0 P H1(rΓ ,Z) and
rε˘
i P H1(rΓ ,Z) for i = 1, . . . , g − 1 denote the unique cycles on rT Y {re−0 } and rT Y {re˘

i } such that
xrε0,re−0 y = 1 and xrε˘

i ,re˘
i y = 1, respectively. The cycles ε0, . . . , εg−1 form a basis for H1(Γ,Z), and

furthermore the coordinates of any γ P H1(Γ,Z) with respect to this basis are given by

γ = xγ, e0yε0 + ¨ ¨ ¨ + xγ, eg−1yεg−1,

and a similar statement holds for rε0,rε˘
1 , . . . ,rε˘

g−1.
The action of ι˚, π˚, and π˚ on these bases is computed by looking at the coefficients of the

edges ei and re˘
i . Since xrε0,re−0 y = 1, we see that ι˚(rε0) = rε0, π˚(rε0) = 2ε0, and π˚(ε0) = rε0. Now

denote ci = xrε+i ,re+0 y for i = 1, . . . , g−1 (this number is equal to 0 or ˘1 since rε+i is a simple cycle).
Comparing the coefficients of re−0 and re−i , we see that ι˚(rε+i ) = rε−i + cirε0 and ι˚(rε−i ) = rε+i − cirε0.
Similarly, comparing the coefficients of e0 and ei, we see that π˚(rε˘

i ) = εi ˘ ciε0. Finally, using
the relation π˚ ˝ π˚ = Id+ι˚ we find that

π˚(2ε0) = π
˚(π˚(rε0)) = (Id+ι˚)(rε0) = 2rε0

and
π˚(2εi) = π

˚π˚(2rε+i − cirε0) = (Id+ι˚)(2rε+i − cirε0) = 2(rε+i + rε−i ),
for i = 1, . . . , g − 1. To complete the proof, we now set for i = 1, . . . , g− 1

rα+
i = rε+i ,

rα−
i = rε−i + cirε0,
αi = εi + ciε0,

and rγ1 = rε0, γ1 = ε0. �

We now consider the dilated case.

Proposition 4.20. Let π : rΓ → Γ be a dilated double cover. Then there exists a basis α1, . . . , αA, γ1, . . . , γC
of H1(Γ,Z) and a basis rα˘

1 , . . . , rα˘
A , rβ1, . . . , rβB, rγ1, . . . , rγC of H1(rΓ ,Z) with A, B, and C as defined in

Equation (27), such that

ι˚(rα˘
i ) = rα¯

i , π˚(rα˘
i ) = αi, π˚(αi) = rα+

i + rα−
i , i = 1, . . . , A,

ι˚(rβj) = −rβj, π˚(rβj) = 0, j = 1, . . . , B,

ι˚(rγk) = rγk, π˚(rγk) = γk, π˚(γk) = 2rγk, k = 1, . . . , C.

Proof. Let d = d(rΓ{Γ) be the dilation index of π. We begin by contracting each dilated edge of
Γ and the corresponding edge of rΓ . The result is a double cover π 1 : rΓ 1 → Γ 1 with associated
involution ι 1 : rΓ 1 → rΓ 1, whose dilated vertices correspond to the connected components of Γdil.
Denote these vertices by v 1

0, . . . , v
1
d−1 P V(Γ 1) and their preimages by rv 1

0, . . . ,rv 1
d−1 P V(rΓ 1). We now
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consider the free cover p2 : rΓ 2 → Γ 2 obtained from p 1 : rΓ 1 → Γ 1 in the following way. For each
i = 0, . . . , d−1, we replace v 1

i with an undilated vertex v2
i with an attached loop ei, and replace rv 1

i

with a pair of vertices rv2˘
i connected by a pair of edges re2˘

i . For each half-edge h P H(Γ 1) rooted
at v 1

i , we attach its preimages rh˘ to the vertices rv2˘
i in any manner. The result is a free cover

π2 : rΓ 2 → Γ 2 whose contraction along the loops e0, . . . , ed−1 is the edge-free cover π 1 : rΓ 1 → Γ 1.
We denote g(Γ 2) = g, so that g(Γ) = g+mdil − ndil.

We now pick a spanning tree T Ă Γ 2 and let E(Γ 2)\E(T) = {e0, . . . , eg−1} be the comple-
mentary edges, where the first d of the ei are the loops at the vertices vi, as defined above.
Let ε2

0 , . . . , ε
2
g−1 and rε2

0 ,rε2˘
1 , . . . ,rε2˘

g−1 be the bases of H1(Γ 2,Z) and H1(rΓ 2,Z) defined in Proposi-
tion 4.19. The edges e0, . . . , ed−1 are loops, so they form closed cycles and hence in fact εi = ei
for i = 0, . . . , d − 1. Furthermore, the edges re2+

i and re2−
i have the same root vertices rv2˘

i for
i = 0, . . . , d− 1. This implies that rε2

0 = re2+
0 + re2−

0 , since the edge re2+
0 is contained in the spanning

tree rT . Also, for i = 1, . . . , d− 1 the cycle rε2−
i is obtained from rε2+

i by replacing re2+
i with re2−

i and
reversing the direction of the remaining path.

We now let ε 1
0, . . . , ε

1
g−1 and rε 1

0,rε 1˘
1 , . . . ,rε 1˘

g−1 denote the cycles in respectively H1(Γ 1,Z) and

H1(rΓ 1,Z) obtained by contracting the cycles ε2
0 , . . . , ε

2
g−1 and rε2

0 ,rε2˘
1 , . . . ,rε2˘

g−1 defined above, in
other words by setting e2

i and re2˘
i to zero for i = 0, . . . , d − 1. We see that rε 1

0 = 0 and ε 1
i = 0 for

i = 0, . . . , d− 1. The remaining cycles ε 1
d, . . . , ε

1
g−1 form a basis for H1(Γ 1,Z). Furthermore, we see

that rε 1−
i = −rε 1+

i for i = 1, . . . , d− 1, and the cycles rε 1+
1 , . . . ,rε 1+

d−1 and rε 1˘
d , . . . ,rε 1˘

g−1 form a basis for

H1(rΓ 1,Z). These bases satisfy the relations

ι 1
˚(rε 1+

i ) = −rε 1+
i , π 1

˚(rε 1+
i ) = 0, i = 1, . . . , d− 1,

ι 1
˚(rε 1˘

i ) = rε 1¯
i , π 1

˚(rε 1˘
i ) = εi, π 1˚(ε 1

i) = rε 1+
i + rε 1−

i , i = d, . . . , g− 1.

The edge set E(Γ 1) is identified with the set of non-dilated edges of E(Γ), hence we can view
each cycle rε 1+

i as a simplicial chain rε+i in Γ , with boundary B(rε+i ) supported on the set of dilated
vertices. We claim that rε+i is in fact closed. Indeed, since ι˚(rε+i ) = −rε+i , it consists of a linear
combination of expressions of the form re+ − re− for certain non-dilated pairs of edges, and if a
root vertex of re+ is dilated, then it is also a root vertex of re−. Hence B(rε+i ) = 0 and rε+i is a cycle,
and we relabel rβi = rε+i for i = 1, . . . , B = d− 1.

Similarly, for each i = d, . . . , g − 1, let rε˘
i be the cycle rε 1˘

i , but viewed as a chain on Γ . The
boundaries B(rε+i ) and B(rε−i ) are equal and supported on the set of dilated vertices, so we can find
a chain ζi supported on rΓdil such that rα˘

i = rε˘
i+d−1 + ζi+d−1 for i = 1, . . . , A = g − d is a closed

cycle on rΓ . Denoting αi = π˚(rα˘
i ), we see that the rα˘

i and the αi satisfy the required relations.
Finally, we let γ1, . . . , γC be a basis for H1(Γdil,Z), and let rγ1, . . . , rγC be the preimages of

these cycles on rΓdil. This completes the required basis. �

The properties of the continuous and divisorial Prym varieties now follow directly.

Proof of Proposition 4.18. We now again distinguish cycles and differential forms and denote the
principal polarizations on Jac(rΓ) and Jac(Γ) by d : H1(rΓ ,Z) → Ω1

rΓ(
rΓ ) and d : H1(Γ,Z) → Ω1

Γ (Γ),
respectively, so that a 1-form corresponding to a cycle γ is denoted dγ. To describe the continuous
and divisorial Pryms Prymc(

rΓ{Γ) and Prymd(
rΓ{Γ), we use Propositions 4.19 and 4.20 to give

explicit bases for their defining lattices (see (24) and (25)).
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First, assume that π is free, where we are reproving the results of [JL18]. Proposition 4.19
shows that the first lattices are equal and have basis

(Cokerπ˚)tf = Ω1
rΓ (

rΓ){ Ker(Id−ι˚) =
@
[drα+

1 ], . . . , [drα+
g−1]

D
,

where [drα] denotes the class of drα P Ω1
rΓ (

rΓ). The second lattices are also equal:

Kerπ˚ = Im(Id−ι˚) =
@

rα+
1 − rα−

1 , . . . , rα+
g−1 − rα−

g−1

D
.

Hence Prymc(
rΓ{Γ) = Prymd(

rΓ{Γ) and the dimension is g0 = g(Γ) − 1. Furthermore, Im(Id−ι˚)

is equal to Kerπ˚ and is already saturated in H1(rΓ ,Z), hence Prymd(
rΓ{Γ) is the group-theoretic

image of Id−ι. By Proposition 4.7, the number of connected components of the group-theoretic
kernel of π˚ is the index of π˚(H1(rΓ ,Z)) in its saturation

(

π˚(H1(rΓ ,Z))
)sat in H1(Γ,Z), and Propo-

sition 4.19 shows that
(

π˚(H1(rΓ ,Z))
)sat

= H1(Γ,Z),
[

H1(Γ,Z) : π˚(H1(rΓ ,Z))
]

= 2.

Finally, the principal polarization d : H1(rΓ ,Z) → Ω1
rΓ (

rΓ) induces the polarization

ζ :
@

rα+
1 − rα−

1 , . . . , rα+
g−1 − rα−

g−1

D
−→

@
[drα+

1 ], . . . , [drα+
g−1]

D
,

rα+
i − rα−

i Þ−→ 2[drα+
i ]

on Prymc(
rΓ{Γ) = Prymd(

rΓ{Γ), which is twice the principal polarization ζc : rα+
i − rα−

i Þ→ [drα+
i ].

We now consider a dilated double cover π : rΓ → Γ with dilation index d(rΓ{Γ), so that
A = g0 − d(rΓ{Γ) + 1 and B = d(rΓ{Γ) − 1. In terms of the bases given by Proposition 4.20 we have

Ker(Id−ι˚) =
@
drα+

1 + drα−
1 , . . . , drα+

A + drα−
A, drγ1, . . . , drγC

D
,

Imπ˚ =
@
drα+

1 + drα−
1 , . . . , drα+

A + drα−
A, 2drγ1, . . . , 2drγC

D
,

hence the first lattices are the same and have basis

(Cokerπ˚)tf = Ω1
rΓ(

rΓ ){ Ker(Id−ι˚) =
@
[drα+

1 ], . . . , [drα+
A], [d

rβ1], . . . , [drβB]
D
. (28)

The second lattices, however, are distinct. Indeed, the second lattice of Prymc(
rΓ{Γ)

Im(Id−ι˚) =
@

rα+
1 − rα−

1 , . . . , rα+
A − rα−

A, 2
rβ1, . . . , 2rβB

D
, (29)

while the second lattice of Prymd(
rΓ{Γ) is

Kerπ˚ = (Im(Id−ι˚))
sat =

@
rα+
1 − rα−

1 , . . . , rα+
A − rα−

A,
rβ1, . . . , rβB

D
.

Hence Prymd(
rΓ{Γ) is the image of Id−ι, and the natural map Prymc(

rΓ{Γ) → Prymd(
rΓ{Γ) is a

free isogeny with geometric degree equal to the index of Im(Id−ι˚) in Kerπ˚, which is equal to

2B = 2d(
rΓ{Γ)−1.

In the dilated case the map π˚ is surjective, hence π˚(H1(rΓ ,Z)) is saturated in its image
and the group-theoretic kernel of π has a single connected component. It remains to compute
the induced polarizations. On Prymd(

rΓ{Γ), the induced polarization Kerπ˚ → (Cokerπ˚)tf sends
rα+
i − rα−

i to 2[drα+
i ] and βj to [dβj], hence has type (1B, 2A). On the other hand, the induced
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polarization ζ : Im(Id−ι˚) → Ω1
rΓ(

rΓ ){ Ker(Id−ι˚) on Prymc(
rΓ{Γ) is equal to ζ = 2ζc, where ζc is

the principal polarization

ζc : Im(Id−ι˚) −→ Ω1
rΓ (

rΓ){ Ker(Id−ι˚),

rα+
i − rα−

i Þ−→ [drα+
i ], i = 1, . . . , A,

βj Þ−→ [dβj], j = 1, . . . , B.

(30)

This completes the proof. �

We now define the tropical Abel–Prym map associated to a double cover π : rΓ → Γ . Choose
a point q P rΓ , and for any p P rΓ let γp be a path from q to p. It is clear that the integral of a
1-form ω P Ω1

rΓ (
rΓ) along the chain γp − ι˚γp depends only on the class of ω modulo Ker(Id−ι˚).

Furthermore, this integral is well-defined modulo integration over elements of Im(Id−ι˚). Hence
we make the following definition.

Definition 4.21. Let π : rΓ → Γ be a double cover and let p P rΓ . The tropical Abel–Prym map with
base point q is

ψq : rΓ −→ Prymc(
rΓ{Γ)

p Þ−→

(

ω Þ→

∫

γp

ω−

∫

ι˚γp

ω

)

.

In terms of the factorization (26), the Abel–Prym map is simply the composition ψq = ǫ˝φq,
where φq : rΓ → Jac(rΓ ) is the Abel–Jacobi map, hence in particular it is a morphism of rational
polyhedral spaces. The composition of ψq with the isogeny γ : Prymc(

rΓ{Γ) → Prymd(
rΓ{Γ) is the

divisorial Abel–Prym map p Þ→ p−q−ι(p−q). We note that if π is a free double cover, then every
divisor of the form p− ι(p) lies in the odd connected component of Kerπ˚, but the difference lies
in the even connected component Prymd(

rΓ{Γ).
The Abel–Prym map possesses a universal property analogous to Proposition 4.14. For the

algebraic version (including the case of a ramified double cover) see [Mas76].

Proposition 4.22. Let π : rΓ → Γ be a double cover with associated involution ι : rΓ → rΓ . Let χ : rΓ → X be a

morphism of rational polyhedral spaces to an integral torus X = (Λ,Λ 1, [¨, ¨]). Assume that χ˝ ι = −χ and

that the induced morphism on cotangent sheaves χ−1Ω1
X → Ω1

rΓ takes values in Im
(

Id−ι˚ : Ω1
rΓ → Ω1

rΓ
)

.

Then there exists a unique homomorphism ν : Prymc(
rΓ{Γ) → X of integral tori such that the diagram

rΓ X

Prymc(
rΓ{Γ) X

χ

ψq t−χ(q)

ν

commutes for all q P rΓ .

The condition that χ−1Ω1
X → Ω1

rΓ takes values in Im(Id−ι˚) is already implied by χ ˝ ι = −χ

in case the dilation index of the cover is equal to 1. Note further that the condition χ ˝ ι = −χ

implies that χ is constant on dilated edges of rΓ .

Proof. We first replace χ with χ0 = t−χ(q) ˝ χ to avoid the translation. As we noted above, the
Abel–Prym map ψq factors through the Abel–Jacobi map φq as ψq = ǫ ˝ φq. By the universal
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property of the Jacobian, χ0 factors as

rΓ

Jac(rΓ) X

χ0φq

µ

where the map µ satisfies µ˝ ι = −µ. Hence µ˝(Id−ι) = 2µ and we may extend the commutative
diagram as follows:

rΓ

Jac(rΓ) X

Prymc(
rΓ{Γ)

Jac(rΓ) X.

χ0φq

Id−ι

ǫ

µ

ˆ2

ν

ν 1

µ

Here the left column is the factorization (26) and the right vertical map on X is multiplication by
two.

We claim that the composed map ν 1 is divisible by two, which implies the existence of the
dashed map ν and proves the proposition. In terms of the basis (29) (which subsumes the free
and dilated case), the map ν 1

# : Im(Id−ι˚) → Λ 1 has the form

ν 1
#(rα+

i − rα−
i ) = µ#(rα+) − µ#(rα−) = 2χ˚(rα+), ν 1

#(2
rβj) = 2µ#(rβj) = 2χ˚(rβj),

because µ ˝ ι = −µ. Hence there exists ν# : Im(Id−ι˚) → Λ 1 such that ν 1
# = 2ν#. Similarly,

the condition that χ−1Ω1
X → Ω1

rΓ takes values in Im(Id−ι˚) implies that the image of µ# : Λ →

Ω1
rΓ (

rΓ) lies in the submodule generated by the elements drα+
i − drα−

i and 2drβj. The classes of

these elements are divisible by two in Ω1
rΓ (

rΓ){ Ker(Id−ι˚), hence there exists a map ν# : Λ →

Ω1
rΓ (

rΓ){ Ker(Id−ι˚) such that (ν 1)# = 2ν#. This completes the proof. �

Remark 4.23. The d-fold product of the tropical Abel-Prym map ψdq : rΓd → Prymc(
rΓ{Γ), the free

isogeny γ : Prymc(
rΓ{Γ) → Prymd(

rΓ{Γ), and the inclusion i : Prymd(
rΓ{Γ) → Jac(rΓ ) are all proper

morphisms of rational polyhedral spaces.

4.5. The tropical Poincaré–Prym formula. Let Γ be a tropical curve of genus g, let 1 ď d ď g,
let φdq : Γ

d → Jac(Γ) be the d-fold product of the Abel–Jacobi map with an arbitrary base point q,

and let ĂWd denote the image of φdq. The tropical Poincaré formula [GS23b] states that

cyc[ĂWd] =
1

(g − d)!
ξg−d P Hd,d

(

Jac(Γ)
)

. (31)

Here ξ = cyc[Θ] P H1,1(Jac(Γ)) is the principal polarization on Jac(Γ) and we have identified
Hd,d(Jac(Γ)) with Hg−d,g−d(Jac(Γ)) by Poincaré duality. The algebraic Poincaré formula has an
analogue for Prym varieties, which is part of Welters’ criterion and which we call the Poincaré–
Prym formula. We conjecture that this formula holds in the tropical setting as well:
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Conjecture 4.24. (The tropical Poincaré–Prym formula) Let π : rΓ → Γ be a double cover of tropical

curves, let q P rΓ be a base point, and let g0 = dim Prymc(
rΓ{Γ) = g(rΓ) − g(Γ). Then

(ψdq)˚ cyc[rΓd] = 2d

(g0 − d)!
ζg0−d P Hd,d

(

Prymc(
rΓ{Γ)

)

,

for 1 ď d ď g0, where ζ P H1,1
(

Prymc(
rΓ{Γ)

)

is the class of the principal polarization of Prymc(
rΓ{Γ).

We only prove this result for d = 1, which is all that we require to prove our main Theo-
rems 1.1 and 1.2:

Theorem 4.25. Conjecture 4.24 holds for d = 1:

(ψq)˚ cyc[rΓ ] = 2

(g0 − 1)!
ζg0−1 P H1,1

(

Prymc(
rΓ{Γ)

)

.

Proof. Since

(ψq)˚ cyc[rΓ ] = ǫ˚

(

(φq)˚ cyc[rΓ ]
)

= ǫ˚

(

cyc[ĂW1]
)

,

the tropical Poincaré formula for d = 1 implies our result if we can show that

ǫ˚

(

ξrg−1

(rg− 1)!

)

= 2
ζg0−1

(g0 − 1)!
P H1,1

(

Prymc(
rΓ{Γ)

)

,

where g0 = rg − g. We use the same arguments as in the proof of Proposition 4.11. First, assume
that π is free. In terms of the basis H1(rΓ ,Z) = xrα˘

i , rγ1y given in Proposition 4.19 we see that the
Poincaré dual of ξrg−1 is given by

ξrg−1

(rg− 1)! =
g−1ÿ

i=1

[

(drα+
i )

˚ b rα+
i + (drα−

i )
˚ b rα−

i

]

+ (drγ1)˚ b rγ1.

Similarly, the second lattice Im(Id−ι˚) of Prymc(
rΓ{Γ) has basis xrα+

i − rα−
i y, and in terms of the

principal polarization (30) we have

ζg0−1

(g0 − 1)!
=

g−1ÿ

i=1

[drα+
i ]

˚ b (rα+
i − rα−

i ).

The components ǫ˚ = (ǫ#)˚ b ǫ# of the pushforward map

ǫ˚ : H1,1
(

Jac(rΓ)
)

=
[

Ω1
rΓ (

rΓ)
]˚

bH1(rΓ ,Z) −→ H1,1
(

Prymc(
rΓ{Γ)

)

=
[

Ω1
rΓ (

rΓ){ Ker(Id−ι˚)
]˚

bIm(Id−ι˚)

act on the basis elements as follows:

(ǫ#)˚
(

[drα˘
i ]

˚
)

= ˘[drα+
i ]

˚, (ǫ#)˚ (drγ˚
1 ) = 0, ǫ#(rα˘

i ) = ˘(rα+
i − rα−

i ), ǫ#(rγ1) = 0.

Applying this to the above formula for ξrg−1{(rg − 1)!, we obtain our result. The proof for the
dilated case is similar, using instead the bases given in Proposition 4.20. �
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5. Compatibility of the n-gonal construction and tropical abelian varieties

We are now ready to prove the main theorems stated in the introduction. We restate the
theorems for convenience, and begin with the trigonal construction. Throughout we assume that
all tropical curves are smooth.

Theorem 5.1 (Theorem 1.2). Let K be a metric tree. The tropical trigonal and Recillas constructions

establish a one-to-one correspondence






Tropical curves Π with a

harmonic map of degree 4 to K

with dilation profiles nowhere

(4) or (2, 2).











Free double covers rΓ → Γ with

a harmonic map of degree 3

from Γ to K.






Recillas construction

trigonal construction

and under this correspondence, the Prym variety of a double cover Prym(rΓ{Γ) and the Jacobian Jac(Π) of

the tetragonal curve are isomorphic as principally polarized tropical abelian varieties.

We note that there is no difference between Prymc(
rΓ{Γ) and Prymd(

rΓ{Γ) because the double
cover rΓ → Γ is free, hence we simply refer to both objects as Prym(rΓ{Γ). The techniques of
tropical homology allow us to closely model the proof of the algebraic version of the theorem
(see Theorem 12.7.2 in [BL04]).

Proof. Here we present the outline of the proof, and postpone the necessary calculations and
checks to a series of lemmas that are given later in this chapter. Recall that we have already
established the bijection in Proposition 2.11, and it only remains to show that Prym(rΓ{Γ) – Jac(Π).

We recall the setup and notation. Let k : Π→ K be a generic tetragonal curve, so that K does
not have any points over which the degree profile of k is (2, 2) or (4). By the tropical Recillas

construction (Definition 2.9) we obtain a tower rΓ π
−→ Γ

f
−→ K, where f : Γ → K is a trigonal curve

and π : rΓ → Γ is a free double cover. We denote ι : rΓ → rΓ the associated involution. We choose
graph models for our tropical curves, and by abuse of notation refer to edges and vertices of rΓ ,
Γ , Π, and K.

First, we define a map of rational polyhedral spaces χ : rΓ → Jac(Π) such that χι = −χ. To
this end, we choose an Abel–Jacobi map Π2 → Jac(Π) suited to our purposes. Fix a point x P K

and let
D =

ÿ

yPk−1(x)

dk(y) ¨ y P Div+
4 (Π) (32)

be the fiber of k above x. The group Pic0(Π) – Jac(Π) is divisible because it is a real torus, hence
we can find M P Div1(Π) such that 4M ∼ D in Pic4(Π). Let φM : Π → Jac(Π) be the Abel–
Jacobi map associated to M (note that M may fail to be effective, in which case φM is actually
a translation of an Abel–Jacobi map by a fixed divisor class). Moreover, define L P Div2(Π) as
L = 2M and denote

φL = φM + φM : Π2 −→ Jac(Π).

The map φL is symmetric with respect to swapping the coordinates of Π2, hence it descends to
a map Div+

2 (Π) → Jac(Π). Define χ to be the composition of the inclusion rΓ Ď Div+
2 (Π) from

Equation (9) with this descent of φL. Since we are not using the polyhedral structure on Div+
2 (Π),

we need to verify by hand that χ is a map of rational polyhedral spaces, and we do this in
Lemma 5.3 (where we also check that χ has the desired property χι = −χ).
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We may now apply the universal property of the Prym variety from Proposition 4.22 for any
base point q P rΓ to obtain a commutative square

rΓ Jac(Π)

Prym(rΓ{Γ) Jac(Π).

χ

ψq t−χ(q)

µ

We note that it is not necessary to check the pullback condition on the cotangent sheaves, since
the double cover π : rΓ → Γ is free. Our goal is to show that µ is an isomorphism of principally
polarized tropical abelian varieties. We saw already in Proposition 2.11 that dim Jac(Π) = g(Π) =
g(rΓ) − 1 = dim Prym(rΓ{Γ). By Theorem 4.25 we know that the pushforward of the fundamental
class of rΓ along ψq is equal to

(ψq)˚ cyc[rΓ ] = 2

(g0 − 1)!
ζg0−1 P H1,1

(

Prym(rΓ{Γ)
)

,

where g0 = dim Prym(rΓ{Γ) and ζ P H1,1
(

Prym(rΓ{Γ)
)

is the principal polarization. If we can show
that

χ˚ cyc[rΓ ] = 2

(g0 − 1)!
ξg0−1 P H1,1

(

Jac(Π)
)

, (33)

where ξ P H1,1
(

Jac(Π)
)

is the principal polarization on Jac(Π), then µ˚(ζ
g0−1) = ξg0−1 and there-

fore Prym(rΓ{Γ) is isomorphic to Jac(Π) by the homological criterion of Proposition 4.11.

We now define a tropical 1-cycle A P Z1(Π
2) as follows. Recall that we can view rΓ as a

subset of Div+
2 (Π) (see Equation (9)), however, this does not induce the correct edge lengths on

rΓ . Instead, we manually construct a cycle A that represents the lift of rΓ to Π2 via the natural
projection map Π2 → Div+

2 (Π). A tropical 1-cycle on Π2 is a map Π2 → Z, and for x, y P Π we set

A 1(x, y) =






0 if k(x) ‰ k(y),

1 if k(x) = k(y) and x ‰ y,

d− 1 if x = y,

(34)

where d = dk(x) = dk(y) is the dilation factor of k at x = y. The support |A 1| is a purely 1-
dimensional rational polyhedral space, contained in the preimage of the diagonal ∆K. One can
show that A 1 itself is a tropical 1-cycle. We will not carry this out and instead show in Lemma 5.4
below the slightly weaker statement that there exists a tropical 1-cycle A which agrees with the
map A 1 away from a zero-dimensional locus.

The key calculation is the following formula

[∆Π] +A = 4[Π ˆ p 1] + 4[p 1 ˆ Π] P H1,1(Π
2), (35)

where ∆Π is the diagonal, p 1 P Π is an arbitrary point, [¨] denotes the fundamental class, and we
identify cycles in Z1(Π2) with their classes in H1,1(Π2) via the cycle class map.

We prove this formula in several steps. First, we note that the spaces K2 and Π2 are smooth,
so by Poincaré duality we can identify H1,1(K2) – H1,1(K

2) and H1,1(Π2) – H1,1(Π
2). Under

this identification, pullback on cohomology induces a map (k ˆ k)˚ : H1,1(K
2) → H1,1(Π

2), and
applying the cycle class map to the main statement of Lemma 5.4 gives

[∆Π] +A = (kˆ k)˚[∆K] P H1,1(Π
2). (36)
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We then use Lemma 5.5 to rewrite the right hand side of Equation (36) as

(kˆ k)˚[∆K] = (kˆ k)˚
(

[Kˆ p] + [pˆ K]
)

P H1,1(Π
2), (37)

where p P K is an arbitrary point. Finally, it is easy to show that k˚[K] = [Π], which implies that
the right hand sides of Equations (35) and (37) are equal.

To complete the proof, we compute the pushforward of Equation (35) to H1,1(Jac(Π)) along
the map φL : Π2 → Jac(Π).

(1) Claim: (φL)˚[∆Π] = 4(φM)˚[Π]. Indeed, by definition φL(x, y) = φM(x) + φM(y), so the
restriction of φL to the diagonal ∆Π is φM applied to the first coordinate followed by
multiplication by 2. But multiplication by 2 on an integral torus induces multiplication by
4 on H1,1, so the claim follows.

(2) Claim: (φL)˚A = 2χ˚[rΓ ]. We define a continuous map τ : |A| → rΓ which factors the
restriction of φL to |A| as χ ˝ τ as follows. A point (x, y) in |A| is really a point on the
diagonal of

[

0, ℓΠ(e1)
]

ˆ
[

0, ℓΠ(e2)
]

. Such a point is mapped under τ to the point with
coordinates dτ(e1 ˆ e2)min{x, y} in the geometric realization

[

0, ℓrΓ (e1 + e2)
]

of the edge

e1 + e2 Ď rΓ . Here we use the dilation factor

dτ(e1 ˆ e2) =

{
2 if e1 = e2 and dk(e1) = dk(e2) = 2

1 else.
(38)

We stress that τ is not a harmonic map of tropical curves and therefore not a morphism of
(1-dimensional) rational polyhedral spaces! However, the problem only lies at vertices and
restricting τ to the interior of any of the 1-dimensional faces of |A| does give a morphism
of rational polyhedral spaces onto an open edge of rΓ . In particular, computing the lattice
index in the definition of pushforward in Equation (11) can be done in two steps: Denote
the image of |A| in Jac(Π) under φL by B and let

‚ x P |A|reg lie in the interior of the diagonal of e1 ˆ e2,
‚ z = τ(x) P rΓ reg in the interior of the edge e1 + e2 Ď rΓ and
‚ y = χ(z) P Breg.

Then we may compute
[

TZy B : dxφL
(

TZx |A|
)

]

=
[

TZz
rΓ : dxτ

(

TZx |A|
)

] [

TZy B : dzχ
(

TZz
rΓ
)

]

= dτ(e1 ˆ e2) χ˚[rΓ ](y).

Consequently, the value of (φL)˚A at y is given as

(φL)˚A(y) =
ÿ

xP(φL)
−1(y)X|A|reg

[

TZy B : dxφL
(

TZx |A|
)

]

A(x)

= χ˚[rΓ ](y)
ÿ

xP(φL)
−1(y)X|A|reg

dτ(e1 ˆ e2)A
1(x)

︸ ︷︷ ︸
(˚)

and comparing the definitions of dτ in Equation (38) and A 1 in Equation (34) shows
that (˚) = 2. Hence the tropical 1-cycles (φL)˚A and 2χ˚[rΓ ] agree away from some 0-
dimensional locus and thus define the same element of Z1(Jac(Π)).
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(3) Claim: (φL)˚[Π ˆ p] = (φL)˚[pˆ Π] = (φM)˚[Π]. As above, φL(x, p) = φM(x) + φM(p) for
all x P Π. But this means that the restriction of φL to Πˆ p is the composition of φM with
a translation. Since translations induce the identity on homology, the claim follows.

Summing up we have just shown 4(φM)˚[Π] + 2χ˚[rΓ ] = 8(φM)˚[Π]. Solving for χ˚[rΓ ] and
plugging in the Poincaré formula (31)

(φM)˚ cyc[Π] =
1

(g0 − 1)!
ξg0−1

we obtain Equation (33), and the proof of Theorem 1.2 is complete. �

Example 5.2. We consider the (3, 2)-graph tower and the tetragonal graph shown on Figure 5.
We promote these to a tower rΓ → Γ → K of tropical curves and a generic tetragonal curve Π→ K

by assigning edge lengths to K, which we denote, going left to right, by a, b, c, d, and e.
Let us compute the Prym and Jacobian varieties in this example explicitly to see that they

are the same. We begin by computing Prym(rΓ{Γ). It is possible to construct a basis for Kerπ˚

using Proposition 4.19, but in this case it is easier to choose a basis by hand. It is clear that Kerπ˚

is spanned by the elements rη+1 − rη−1 and rη+2 − rη−2 , where rη˘
i are the elements of H1(rΓ ,Z) shown

on Figure 6. Furthermore, the module (Cokerπ˚)tf (viewed as a quotient of H1(rΓ ,Z), which has
been canonically identified with Ω1

rΓ (
rΓ)) is spanned by the classes [rη+1 ] and [rη+2 ]. Keeping in mind

that the dilation factors of Γ → K also affect the lengths of edges in rΓ , we obtain that the pairing
of Prym(rΓ{Γ) is

[¨, ¨] [rη+1 ] [rη+2 ]
rη+1 − rη−1 2(b + c+ d) b+ c + d

rη+2 − rη−2 b+ c+ d 3
2a + 2b+ 3

2c + 2d+ 3
2e .

To compute the intersection matrix for Jac(Π), we choose the basis ǫ, δ for H1(Π,Z) depicted
in Figure 7. The edge length pairing [¨, ¨] : H1(Π,Z) ˆ H1(Π,Z) → R (where we have identified
Ω1
Π(Π) = H1(Π,Z) via the principal polarization) evaluated on the basis yields

[¨, ¨] ǫ δ

ǫ 2(b + c+ d) b+ c + d

δ b+ c+ d 3
2a + 2b+ 3

2c+ 2d + 3
2e ,

which is evidently the same table as before. Hence

µ# : ǫ Þ−→ [rη+1 ] µ# : rη+1 − rη−1 Þ−→ ǫ

δ Þ−→ [rη+2 ] rη+2 − rη−2 Þ−→ δ

defines an isomorphism Prym(rΓ{Γ) → Jac(Π) of integral tori. To see that this is in fact an isomor-
phism of principally polarized tropical abelian varieties we quickly verify the compatibility with
the principal polarizations which are given by ǫ Þ→ ǫ and δ Þ→ δ on Jac(Π) and rη+i − rη−i Þ→ [rη+i ] on
Prym(rΓ{Γ).

We now present a series of lemmas which fill in the missing details in the proof of Theo-
rem 1.2 above.

Lemma 5.3. The map χ : rΓ → Jac(Π) defined in the proof of Theorem 5.1 is a map of rational polyhedral

spaces. Furthermore, it satisfies χι = −χ.
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rη+1 rη+2

rη−1 rη−2

Figure 6. The four cycles in H1(rΓ ,Z) that we use for our computation in Exam-
ple 5.2.

ǫ δ

Figure 7. Basis for H1(Π,Z).

Proof. We start by verifying that χ is a map of rational polyhedral spaces. We have to check that
the pullback of a 1-form ω P Ω1

Jac(Π) – Ω1
Π along χ is a 1-form on rΓ . For this we need check that

χ˚ω has integer slopes on every edge of rΓ , and that the sum of slopes around every vertex of rΓ
is 0.

Recall that an edge re P E(rΓ) corresponds to a pair of edges of f1, f2 P E(Π) (which may be the
same), with all three mapping to the same edge e P E(K) (see table in Definition 2.9). The slope
of χ˚ω on re is equal to

slopere(χ
˚ω) =

1

ℓ(re)

(

s1ℓ(f1) + s2ℓ(f2)

)

,

where s1 = slopef1(ω) and s2 = slopef2(ω). If we denote the composed map rf = f ˝ π, then by
harmonicity, we have

ℓ(fi)

ℓ(re) =
ℓ(e){dk(fi)

ℓ(e){drf(re)
=
drf(re)
dk(fi)

for i = 1, 2. We can now verify case-by-case that slopere(χ
˚ω) is an integer
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drf(re) dk(f1) dk(f2) slopere(χ
˚ω)

1 1 1 s1 + s2
1 2 2 s1 = s2
2 1 2 2s1 + s2
3 1 3 3s1 + s2
3 3 3 2s1 = 2s2

where in the second and fifth row the edges f1 = f2 are the same and hence s1 = s2.
Now let v P V(rΓ) be a vertex of rΓ , corresponding to two (not necessarily distinct) vertices

w1,w2 P V(Π). We want to show that the sum of outgoing slopes of χ˚ω over the half-edges
rooted at v is 0, i.e. that

ÿ

rhPTvrΓ
sloperh(χ

˚ω) =
ÿ

hPTrf(v)K

( ÿ

rhPrf−1(h)XTvrΓ
sloperh(χ

˚ω)

)

= 0,

where we have split the sum according to the image half-edge h = rf(rh). We do this by showing
that for every vertex v there are integers a, b P Z such that for every h P Trf(v)K we have

ÿ

rhPrf−1(h)XTvrΓ
sloperh(χ

˚ω) = a

( ÿ

rh1Pk−1(h)XTw1
Π

sloperh1(ω)

)

+ b

( ÿ

rh2Pk−1(h)XTw2
Π

sloperh2(ω)

)

. (39)

Summing Equation (39) over all h P Trf(v)K, the right hand side is 0 by harmonicity of ω. The
numbers a and b are determined by case distinction and direct computation in Figure 8.

Now let us check that χι = −χ. Let p 1 P rΓ correspond to p1 + p2 with k(p1) = k(p2) = p.
Then ι(p 1) corresponds to p3 + p4, where p1 + p2 + p3 + p4 is the fiber of k over p P K. Therefore,

χ(ι(p 1)) + χ(p 1) = p1 + p2 + p3 + p4 − 2L ∼ k−1(p) −D

by construction of L. The right hand side is now linearly equivalent to 0 because by definition in
Equation (32), D is a fiber of k and all fibers of k are linearly equivalent (here we use that K is a
tree). �

Lemma 5.4. Keep the notation as in the proof of Theorem 1.2 above. There is a tropical 1-cycle A : Π2 → R,

which agrees with A 1 away from a 0-dimensional locus. Moreover, we have

[∆Π] +A = (kˆ k)˚[∆K] P Z1(Π
2).

Proof. In the proof of Theorem 1.2 we will think of (kˆk)˚[∆k] as a pullback of cohomology cycles.
However, in order to compute (kˆk)˚[∆k] as a tropical 1-cycle, we give a different interpretation.
Because [∆K] is a cycle in codimension 1 and KˆK is smooth, we can identify [∆K] with a Cartier
divisor D P Div(K2), which admits a pullback to Div(Π2). This is a tropical 1-cycle in Z1(Π2) after
intersection with [Π2]. Let us quickly verify, that the induced notion of pullback of cycles is the
same as pullback on cohomology after applying the cycle class map.

Starting with D P Div(K2), we have

cyc[∆K] = cyc
(

D ¨ [Kˆ K]
)

= cyc[Kˆ K] ⌢ c1(L(D)),

in other words, the Poincaré dual of cyc[∆K] is c1(L(D)). Similarly, we treat the pullback (kˆk)˚D

cyc
(

(

(kˆ k)˚D
)

¨ [Πˆ Π]
)

= cyc[Πˆ Π] ⌢ c1

(

L
(

(kˆ k)˚D
)

)

.
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drf(v) w1 and w2

Local picture of rΓ
at v over h to-
gether with outgo-
ing slopes of χ˚ω.

Local picture of Π
atw1 andw2 over
h, and outgoing
slopes of ω

(a, b)

1

dk(w1) = dk(w2) = 1

and w1 ‰ w2

s1 + s2 s2

s1

a = b = 1

dk(w1) = 2 and
w1 = w2

s1 + s2
s1
s2

a = 1

s s

2 dk(w1) = 1, dk(w2) = 2

s1 + s2
s1 + s3

s2
s3

s1

a = 2, b = 1

2s1 + s2 s2

s1

3

dk(w1) = 1, dk(w2) = 3

3s1 + s2 s2

s1

a = 3, b = 12s1 + s2
s1 + s3

s2
s3

s1

s1 + s2
s1 + s3
s1 + s4

s2
s3
s4

s1

dk(w1) = 3 and
w1 = w2

2s s

a = 2s1 + 2s2
s1

s1
s2

s1 + s2
s1 + s3
s2 + s3

s1
s2
s3

Figure 8. Case-by-case proof that at every vertex v the sum of outgoing slopes
of χ˚ω on edges in rΓ over h P E(K) is an integer linear combination of the corre-
sponding sums at the vertices w1 and w2.

But now pullback of Cartier divisors commutes with taking the line bundle [GS23a, Proposi-
tion 3.15] and that in turn commutes with the Chern class map [GS23a, Proposition 5.11]. Hence
the two interpretations of the pullback coincide.

Let us now prove the formula that we claimed. Let e be an edge of K, which we identify
with the interval [0, ℓ(e)], and consider the cell eˆ e Ď Kˆ K. The diagonal of this cell is defined
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as a Cartier divisor by the piecewise affine (i.e. rational) function

f : eˆ e −→ R,

(x, y) Þ−→ max{y− x, 0}.

Let k−1(e) = {e1, . . . , em} be the fiber over e with m P {2, 3, 4}. Without loss of generality we
assume that the dilation factors along e2, . . . , em are 1. Consider the cell ei ˆ ej Ď Π ˆ Π and the
pullback of f restricted to this cell is

g =
(

f ˝ (kˆ k)
)
∣

∣

eiˆej
: ei ˆ ej −→ R

(x, y) Þ−→ max
{
dk(ej)y − dk(ei)x, 0

}
.

In order to determine the multiplicity of div(g) along the support of g, we have to evaluate g
on a lattice normal vector of the support. The support of div(g) has primitive integer tangent

vector 1

gcd
(

dk(ei),dk(ej)
)

(

dk(ej)

dk(ei)

)

and a lattice normal vector is determined by completing this

vector into a Z-basis for Z2. This is symmetric in i and j, so we may assume without loss of

generality i ď j and find the lattice normal vector
(

0

1

)

and the slope of g in this direction is

dk(ej). This means that the value of (k ˆ k)˚[∆K] on
{
(x, y) P ei ˆ ej

∣

∣ k(x) = k(y)
}

is dk(e1)
for i = j = 1 and 1 otherwise. This is precisely the same as the value of [∆Π] + A 1 on this
locus. By the definition of the group structure of Z1(Π2) this shows that there is a tropical 1-cycle
A = (kˆ k)˚[∆K] − [∆Π] P Z1(Π

2) which differs from A 1 only in a 0-dimensional locus. �

Lemma 5.5. Let K be a smooth metric tree (so that each extremal edge is infinite), and let p P K be any

point. Then

[∆K] = [Kˆ p] + [pˆ K] P H1,1(K
2),

where ∆K is the diagonal and [¨] denotes the fundamental class.

Proof. We note that the terms in the above equation are tropical homology classes associated to
1-cycles (see Example 3.9 for the diagonal cycle), and that the equation certainly does not hold in
in Z1(K2).

We proceed in two steps. As a base case, we first prove the claim for the compactified real
line L = RY{−∞,∞}. We orient L from −∞ to ∞. Let η be the generator ofΩ1

L(R) – Z compatible
with this orientation, more precisely

Ω1
L,x =

{
xηy if x P R,

0 otherwise.

Then η1 =
(

η

0

)

and η2 =
(

0

η

)

provide generators for the stalks of Ω1
L2

, or again more precisely

Ω1
L2,(x,y) =






xη1, η2y if (x, y) P R2

xη1y if x P R and y = ˘∞

xη2y if y P R and x = ˘∞

0 otherwise.
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Let σ : ∆2 →
{
(x, y) P L2

∣

∣ x ě y
}

be a singular 2-simplex parametrizing the area below the
diagonal of L2 with orientation compatible with that on L. Write

τ1 : ∆
1
−→

{
(x,−∞) P L2

}

τ2 : ∆
1
−→

{
(∞, y) P L2

}

δ : ∆1 −→
{
(x, x) P L2

}

for the restriction of σ to the faces of ∆2, so that the boundary of σ as a singular chain is Bσ =

τ1 − δ+ τ2. Then B = σb (η˚
1 + η

˚
2 ) is a (1, 2)-chain and

BB = τ1 b (η˚
1 + η˚

2︸︷︷︸
=0 on Im τ1

) − δb (η˚
1 + η

˚
2 ) + τ2 b ( η˚

1︸︷︷︸
=0 on Im τ2

+η˚
2 )

= cyc[Lˆ −∞] − cyc[∆L] + cyc[∞ ˆ L].

Note that the second equality only holds because the images of τ1 and τ2 are contained in the
boundary of the rational polyhedral space L2. If we did the same computation with a finite
interval L = [a, b], we would not see cyc[Lˆ a] and cyc[bˆ L] in B

(

σb (η˚
1 + η

˚
2 )
)

because η˚
1 and

η˚
2 do not vanish on the topological boundary.

To finish the proof for L, we want to argue that cyc[Lˆ ∞] = cyc[Lˆ p] for any p P R. Let σ 1

be a singular 2-complex (consisting of two simplices) parametrizing
{
(x, y) P L2

∣

∣ −∞ ď y ď p
}

.
Then

B(σ 1 b η˚
1 ) = cyc[Lˆ −∞] − cyc[Lˆ p].

The key here is that η˚
1 vanishes on [−∞, p] ˆ {˘∞} so that there is no contribution to B(σ 1 b η˚

1 )

from the remaining two edges of Bσ 1. Similarly we see [∞ ˆ L] = [p ˆ L] which completes the
proof for the base case.

Now let K be any smooth tree. Fix two distinct points −∞,∞ P K on the boundary and
let L Ď K be the path from −∞ to ∞. As a rational polyhedral space, L is isomorphic to the
compactified real line from the base case. Furthermore, L is a deformation retract of K. Denote
the retraction map ρ : K → L. This is a proper map of rational polyhedral spaces, so there is a
pushforward map ρ˚ in homology.

We claim that the induced map ρ2˚ : H1,1(K
2) → H1,1(L

2) is an isomorphism. We first show
that ρ˚ is an isomorphism. Indeed, H1,0 and H0,1 of K and L are trivial because K and L are
trees. On the other hand, the pushforward map on H0,0 is an isomorphism sending the class of
a point to the class of a point, and similarly on H1,1 we have an isomorphism given by sending
the fundamental class of K to the fundamental class of L. By the Künneth formula, H1,1(K2)
decomposes as

H0,0(K) bH1,1(K) ‘ H0,1(K) bH1,0(K)︸ ︷︷ ︸
=0

‘ H1,0(K) bH0,1(K)︸ ︷︷ ︸
=0

‘ H1,1(K) bH0,0(K),

and similarly for L. Hence ρ˚ being an isomorphism implies that ρ2˚ : H1,1(K
2) → H1,1(L

2) is an
isomorphism as well.
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We have already proved our claim in H1,1(L2), so it suffices to show that

ρ2˚ cyc[∆K] = cyc[∆L],

ρ2˚ cyc[Kˆ p] = cyc[Lˆ ρ(p)], and

ρ2˚ cyc[pˆ K] = cyc[ρ(p) ˆ L].

But the cycle class map and pushforward commute, so we may verify this on the level of tropical
cycles, where it is easy to see. On every edge e of K, the map ρ is either the identity (if e is part
of L) or constant. Hence the index of tangent spaces in Equation (11) is either 1 or 0, i.e. the part
of the cycles [∆K], [Kˆp], and [pˆK] that is already in L survives the pushforward while the rest
is weighted with 0. This finishes the proof. �

We now consider the bigonal construction. Unlike the trigonal construction, the two double
covers involved in the bigonal construction are always dilated, hence it is necessary to distinguish
the divisorial and continuous Pryms. The latter carry natural principal polarizations, while the
former do not. It turns out that the non-principally polarized divisorial Pryms are related by
taking the dual.

Theorem 5.6 (Theorem 1.1). Let rΓ π
−→ Γ

f
−→ K be a tower of harmonic morphisms of metric graphs of

degrees degπ = deg f = 2, where K is a metric tree. Assume that there is no point x P K with the property

that |f−1(x)| = 2 and |(f ˝ π)−1(x)| = 2. Then the output rΠ π 1

−→ Π
f 1

−→ K of the bigonal construction has

the same property, and applying the bigonal construction to it reproduces the original tower. If moreover rΓ
and rΠ are both connected, then there is an isomorphism of polarized tropical abelian varieties

Prymd(
rΠ{Π)∨ – Prymd(

rΓ{Γ),

where the polarization on Prymd(
rΠ{Π)∨ is the pullback of the principal polarization on Prymc(

rΠ{Π)∨.

The algebraic version of Theorem 5.6 [Pan86] was proved by reduction to the tetragonal
construction. Since this is not an option for us, we give the following proof which is an adaptation
of the proof of Theorem 5.1 that we just discussed.

Proof. Recall that we have already established the properties of the bigonal construction in Propo-
sitions 2.4 and 2.5, and it only remains to compare the Pryms. As for Theorem 5.1, we give an
outline of the proof and spin off the necessary technical calculations into a series of lemmas.

By construction, the curve rΠ comes with an embedding in Div+
2 (

rΓ), compare Equation (8).
As before, let D P Div+

4 (
rΓ) be a fiber of f ˝ π and choose M P Div1(rΓ ) such that 4M = D.

Using M as the base point we define χ : rΠ → Prymc(
rΓ{Γ) to be the restriction of the second

power of the Abel–Prym map ψM : rΓ → Prymc(
rΓ{Γ) to rΠ. Similarly to Lemma 5.3, one can check

that χ is a morphism of rational polyhedral spaces and the choice of M ensures χ ˝ ι = −χ.
Moreover, in Lemma 5.8 we verify that the pullback of 1-forms along χ takes values in the image
of Id−ι˚ : Ω1

rΠ → Ω1
rΠ. Fixing a base point q 1 P rΠ, we obtain a commutative diagram

rΠ Prymc(
rΓ{Γ)

Prymc(
rΠ{Π) Prymc(

rΓ{Γ)

χ

ψq 1 t−χ(q 1)

ν
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by the universal property of the continuous Prym variety (Proposition 4.22).
We recall (see Proposition 4.18) that the continuous and divisorial Prym varieties associated

to the double covers π : rΓ → Γ and π 1 : rΠ→ Π are related by natural free isogenies

γ : Prymc(
rΓ{Γ) −→ Prymd(

rΓ{Γ), γ 1 : Prymc(
rΠ{Π) −→ Prymd(

rΠ{Π).

The divisorial Pryms carry polarizations ζ P H1,1
(

Prymd(
rΓ{Γ)

)

and ζ 1 P H1,1
(

Prymd(
rΠ{Π)

)

induced from their respective Jacobians. The continuous Pryms carry principal polarizations
ζc P H1,1

(

Prymc(
rΓ{Γ)

)

and ζ 1
c P H1,1

(

Prymc(
rΠ{Π)

)

such that γ˚ζ = 2ζc and (γ 1)˚(ζ 1) = 2ζ 1
c.

Let Prymc(
rΓ{Γ)∨ be the dual pptav with principal polarization ζ−1c . To avoid overloading

notation, we denote by ξ : Prymc(
rΓ{Γ) → Prymc(

rΓ{Γ)∨ the isomorphism induced by the principal
polarization ζc. The maps ν, ξ, γ 1, and the dual γ∨ of γ fit into the diagram

Prymc(
rΠ{Π) Prymc(

rΓ{Γ) Prymc(
rΓ{Γ)∨

Prymd(
rΠ{Π) Prymd(

rΓ{Γ)∨.

ν

γ 1

ξ

δ

γ∨ (40)

We claim that there exists an isomorphism δ : Prymd(
rΠ{Π) → Prymd(

rΓ{Γ)∨ that makes this
diagram commute. Furthermore, we claim that the pullback along δ of the induced polarization
(γ∨)˚(ζ−1c ) on Prymd(

rΓ{Γ)∨ is equal to ζ 1.
First, we show in Lemma 5.9 that there exists a morphism δ that makes (40) commute. To

prove that it is an isomorphism, we compute its total degree (the product of the dilation and
geometric degrees, see Definition 4.8). In Lemma 5.10, we use similar ideas as in the proof of
Theorem 5.1 to show that

ν˚((ζ
1
c)
h−1) = 2ζh−1c P H1,1

(

Prymc(
rΓ{Γ)),

where h is the common dimension of the Pryms. Proposition 4.11 then implies that the total
degree of ν is equal to degν = 2h.

On the other hand, Proposition 4.18 states that the morphisms γ and γ 1 are free isogenies
of degrees 2d−1 and 2d

1−1, respectively, where d and d 1 are the dilation indices of π : rΓ → Γ and
π 1 : rΠ→ Π. Taking the dual exchanges dilation and geometric degrees, therefore

degγ 1 = degg γ
1 ¨ degd γ

1 = 2d
1−1 ¨ 1 = 2d

1−1,

degγ∨ = degg γ
∨ ¨ degd γ

∨ = 1 ¨ 2d−1 = 2d−1.

By Proposition 2.5, we have d+ d 1 − 2 = h, therefore

deg(ξ ˝ ν) = degγ 1 deg δdegγ∨ = 2h deg δ.

Since ξ is an isomorphism, we see that deg δ = 1 and hence δ is an isomorphism.
Finally, we compute the pullbacks of the polarizations along all maps in (40) . The principal

polarization ζ−1c on Prymc(
rΓ{Γ)∨ pulls back to ξ˚(ζ−1c ) = ζc on Prymc(

rΓ{Γ) and hence to

(ξ ˝ ν)˚(ζ−1c ) = ν˚(ζc) = 2ζ
1
c

on Prymc(
rΠ{Π) by Proposition 4.11. Since (γ 1)˚(ζ 1) = 2ζ 1

c, it must be that ζ 1 = δ˚
(

(γ∨)˚(ζ−1c )
)

,
therefore δ is in fact an isomorphism of polarized tropical abelian varieties. �
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Example 5.7. Let us return to the towers of graphs depicted in Figure 3. We assign real edge
lengths a, b, and c to the three edges of K and thus obtain two (2, 2)-towers rΓ1 → Γ1 → K and
rΓ2 → Γ2 → K of tropical curves. To compute the (non-principally polarized) divisorial Prym
varieties Prymd(

rΓ1{Γ1) and Prymd(
rΓ2{Γ2), we work with the bases

Ker
(

π˚ : H1(rΓ1,Z) → H1(Γ1,Z)
)

= xrη+1 − rη−1 ,rη2y

Ker
(

π 1
˚ : H1(rΓ2,Z) → H1(Γ2,Z)

)

= xrǫ1,rǫ+2 − rǫ−2 y

depicted in Figure 9. For i = 1, 2 let ζi : H1(rΓi,Z) → Ω1
rΓi
(rΓi) be the principal polarization of

Jac(rΓi). With this, the pairings induced from the integration pairings on the rΓi are

[¨, ¨]1 ζ1(rη+1 − rη−1 ) ζ1(rη2)
rη+1 − rη−1 2b b

rη2 2b a+ 2b+ c

and
[¨, ¨]2 ζ2(rǫ1) ζ2(rǫ+2 − rǫ−2 )
rǫ1 2b 2b

rǫ+2 − rǫ−2 b a + 2b+ c

and we clearly see that transposing one of these matrices gives the other. This shows that
Prymd(

rΓ1{Γ1) – Prymd(
rΓ2{Γ2)∨ on the level of integral tori. But even more is true: the polar-

ization of Prymd(
rΓ2{Γ2)∨ induced by the principal polarization on Prymc(

rΓ2{Γ2)∨ is given by

ξ∨2 : Ω1
rΓ2
(rΓ2) −→ H1(rΓ2,Z)

ζ2(rǫ1) Þ−→ 2rǫ1
ζ2(rǫ+2 − rǫ−2 ) Þ−→ rǫ+2 − rǫ−2

and hence the pull-back of ξ∨2 along the isomorphism Prymd(
rΓ1{Γ1) → Prymd(

rΓ2{Γ2)∨ yields the
induced polarization ξ1 on Prymd(

rΓ1{Γ1).

rη+1 rǫ1

rη−1 rǫ+2

rη2 rǫ−2

Figure 9. Bases of the first homology H1(rΓ1,Z) and H1(rΓ2,Z) used in the compu-
tation of the Prym varieties. Recall that the involutions on rΓ1 and rΓ2 are given by
flipping the pictures along their horizontal symmetry.

We now verify the details in the proof of Theorem 5.6.
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Lemma 5.8. In the notation of Theorem 5.6, the map χ : rΠ→ Prymc(
rΓ{Γ) satisfies the pullback condition

on cotangent sheaves from Proposition 4.22, in other words χ−1Ω1

Prymc(
rΓ{Γ)

→ Ω1
rΠ takes values in the

image of Id−ι 1˚ : Ω1
rΠ → Ω1

rΠ.

Proof. We denote by ι 1 the involution on rΠ and we denote by ι the involution on Jac(rΓ) induced
by the involution of rΓ . Note that the map χ factors as χ0 : rΠ → Jac(rΓ) followed by Id−ι. Using
Figure 1 it is easy to verify that

ι ˝ χ0 = χ0 ˝ ι 1 (41)

and we claim that this implies the statement of the lemma. Indeed, let ω P Ω1

Prymc(
rΓ{Γ)

. Then

χ˚ω = χ˚
0 ((Id−ι)˚ω)

= χ˚
0ω − χ˚

0 (ι
˚ω)

= χ˚
0ω − ι 1˚(χ˚

0ω)

= (Id−ι 1)˚(χ˚
0ω). �

Lemma 5.9. There exists a homomorphism δ : Prymd(
rΠ{Π) → Prymd(

rΓ{Γ)∨ that makes Diagram (40)
commute.

Proof. We recall that the lattices Prymc(
rΠ{Π) = (Λ1, Λ

1
1, [¨, ¨]Π), Prymc(

rΓ{Γ) = (Λ2, Λ
1
2, [¨, ¨]Γ ) of the

continuous Pryms are

Λ1 = (Coker(π 1˚))tf, Λ 1
1 = Im(Id−ι 1

˚), Λ2 = (Coker(π˚))tf, Λ 1
2 = Im(Id−ι˚).

Here ι : rΓ → rΓ and ι 1 : rΠ → rΠ are the involutions associated to the double covers π and π 1,
respectively. The divisorial Pryms are

Prymd(
rΠ{Π) =

(

Λ1, (Λ
1
1)

sat, [¨, ¨]Π
)

, Prymd(
rΓ{Γ) =

(

Λ2, (Λ
1
2)

sat, [¨, ¨]Γ
)

,

where the saturations are

(Λ 1
1)

sat = Kerπ 1
˚, (Λ 1

2)
sat = Kerπ˚.

The homomorphism ν consists of the homomorphisms

ν# : Λ2 −→ Λ1 and ν# : Λ 1
1 −→ Λ 1

2.

Hence the homomorphisms δ# and δ# comprising δ, if they exist, are the extensions of respec-
tively ν# ˝ ζc and ν# to the saturations of their domains: this determines them uniquely, and the
consistency condition (13) follows automatically. In other words, we need to show the following:

(1) The homomorphism ν# : Λ 1
1 → Λ 1

2 extends to (Λ 1
1)

sat = Kerπ 1
˚.

(2) The homomorphism ν# ˝ ζc : Λ
1
2 → Λ1 extends to (Λ 1

2)
sat = Kerπ˚.

We start with the first claim. According to Proposition 4.20 (see also (29)), Λ 1
1 has a basis

consisting of elements of the form rα+
i − rα−

i and 2rβj, so that the rα+
i − rα−

i and rβj form a basis
for (Λ 1

1)
sat. Recall from the proof of Proposition 4.22 that ν#(2rβj) = µ#(rβj), where µ# : Jac(rΠ) →

Prymc(
rΓ{Γ) is the homomorphism corresponding the map χ : rΠ → Prymc(

rΓ{Γ). Therefore, to
show that ν# extends to (Λ 1

1)
sat, it is sufficient to show that each µ#(rβj) is divisible by 2.

We consider an arbitrary simple cycle rβ P H1(rΠ,Z) such that ι˚rβ = −rβ. Such a cycle does
not contain dilated edges, and we can assume without loss of generality that it contains exactly
two dilated vertices ru and rv of rΠ, so that ι folds it in half and that the image of its support in Π
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rβ Ď rΠ

Ď Π

ru
re1 + re 1

1

ι(re1) + ι(re 1
1)

re2 + re 1
2

ι(re2) + ι(re 1
2)

re3 + re 1
3

ι(re3) + ι(re 1
3)

¨ ¨ ¨

ren + re 1
n

ι(ren) + ι(re 1
n)

rv

¨ ¨ ¨

Figure 10. Labeling convention for the edges in a cycle of type rβ. The orientation
for the edges in rΠ is induced from the indicated orientation of the edges in Π.

is a simple path from π 1(ru) to π 1(rv) (see Figure 10). Recall that points of rΠ are pairs of points of
rΓ whose images in Γ form a fiber of f : Γ → K. Hence we can write

rβ =

nÿ

i=1

[rei + re 1
i − ι(rei) − ι(re 1

i)
]

,

where rei and re 1
i are edges of rΓ such that rei+re 1

i defines an edge of rΠ (in other words, π(rei)+π(re 1
i) =

f˚(ei) for some edge ei P E(K)), and ι is the involution on rΓ . We note that potentially rei = rej or
rei = re 1

j for i ‰ j. We further assume that the edges are labeled and oriented in such a way that

t(rei) = s(rei+1) and t(re 1
i) = s(re 1

i+1). (42)

The map χ : rΠ → Prymc(
rΓ{Γ) is the map rΠ → Jac(rΓ ) (the restriction of the second power of

the Abel–Jacobi map on rΓ to rΠ Ă Div+
2 (

rΓ)) followed by Id−ι˚. Hence ν#(rβ) simply reinterprets
rβ P H1(rΠ,Z) as a 1-chain in H1(rΓ ,Z) and applies Id−ι˚ to it. To finish the proof of claim (1) we
write rβ = rε − ι˚(rε) for rε = řn

i=1 [rei − ι(re 1
i)] and show that rε P H1(rΓ ,Z); this will imply that ν#(rβ)

is divisible by two:
ν#(rβ) = (Id−ι˚)(rβ) = (Id−ι˚)

2(rε) = 2(Id−ι˚)(rε).
Indeed, from Equation (42) and its ι-pushforward it is already clear that the boundary is

Brε = s(ι(re 1
1)) − s(re1) + t(ren) − t(ι(re 1

n)),

and we verify that the right hand side is zero. At the leftmost point of rβ (see Figure 10) we obtain
the condition

ru = s(re1) + s(re 1
1) = s(ι(re1)) + s(ι(re 1

1)),

which implies either

s(re1) = s(ι(re1)) and s(re 1
1) = s(ι(re 1

1))

or s(re1) = s(ι(re 1
1)) and s(re 1

1) = s(ι(re1)).
If we are in the first case, then in fact s(re1) = s(ι(re1)) = s(re 1

1) = s(ι(re 1
1)) or else the tower

rΓ → Γ → K would have a type V point. Hence we see that always s(ι(re 1
1)) − s(re1) = 0. An

analogous computation at the rightmost vertex rv shows that t(ren) − t(ι(re 1
n)) = 0, and therefore

Brε = 0 and part (1) is established.

To prove claim (2), we need to show that for any generator of Λ2 of the form drβwe have that
ν#(drβ) is divisible by 2. Since ν# is essentially nothing but the descent of µ# : Ω1

rΓ (
rΓ) → Ω1

rΠ(
rΠ)
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to cokernels, it suffices to show that µ#(drβ) = drε − ι˚drε for some drε P Ω1
rΠ(

rΠ). For a description

of µ# refer to the proof of Lemma 5.3. Now using the self-duality of the bigonal construction
and the natural principal polarization of Jacobians, this computation is reduced to the one we
already carried out in part (1) of this proof. Indeed, let r∆ → ∆ → K be the bigonal construction
of rΠ → Π → K, which we already know to be isomorphic to rΓ → Γ → K. Then it is easy to see
that

Ω1
r∆(

r∆) – Ω1
rΓ (

rΓ) Ω1
rΠ(

rΠ)

H1(r∆,Z) H1(rΠ,Z)

µ#

–

µ#

–

commutes, where the vertical maps are the principal polarizations of Jac(rΠ) and Jac(r∆) and the
map µ# is precisely the map studied in the proof of part (1) of this lemma with r∆ in the role of
rΓ . �

Lemma 5.10. In the notation of Theorem 5.6, we have

ν˚((ζ
1
c)
h−1) = 2ζh−1c P H1,1

(

Prymc(
rΓ{Γ)).

Proof. Theorem 4.25 states that

(ψq 1)˚ cyc[rΠ] = 2

(h− 1)!
(ζ 1
c)
h−1 P H1,1

(

Prymc(
rΠ{Π)

)

.

To prove the lemma, it suffices to show that

χ˚ cyc[rΠ] = 4

(h− 1)!
ζh−1c P H1,1

(

Prymc(
rΓ{Γ)

)

. (43)

Let k = f ˝ π : rΓ → K. Just as we did in the proof of Theorem 5.1, we define a tropical 1-cycle
B P Z1(rΓ 2) which represents the lift of rΠ Ď Div+

2 (
rΓ ) to rΓ 2. We claim that

B 1(x, y) =






2 if x = y and dk(x) = 4

1 if k(x) = k(y), x ‰ y, and x ‰ ι(y)

1 if k(x) = k(y), ι(x) ‰ x, and dk(x) = 2

0 else

satisfies balancing, i.e. B 1 defines a tropical 1-cycle. As before, we refrain from proving this and
instead we show that there is a tropical 1-cycle Bwhich agrees with B 1 away from a 0-dimensional
locus such that the following key formula

[∆rΓ ] + (Id ˆι)˚[∆rΓ ] + B = (kˆ k)˚[∆K] = 4[rΓ ˆ p 1] + 4[p 1 ˆ rΓ ] (44)

holds in H1,1(rΓ 2) for an arbitrary point p 1 P rΓ . The second equality is the (k ˆ k)-pullback of
Lemma 5.5. For the first equality we compute (k ˆ k)˚[∆K] as in the proof of Lemma 5.4 and we
see that the result for the value of (kˆ k)˚[∆K] at a point (x, y) with k(x) = k(y) is

type of k(x) (kˆ k)˚[∆K](x, y)

I 4
II 2
III 1, unless x = y with dk(x) = 2, in which case it is 2
IV 1
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and the first equality of Equation (44) follows. Next we apply (ψ2M)˚ to Equation (44) to obtain
an expression in H1,1

(

Prym(rΓ{Γ)
)

consisting of the following terms.

(1) (ψ2M)˚[∆rΓ ] = 4(ψM)˚[rΓ ] because again the pushforward along ψ2M acts as ψM followed
by multiplication by 2 on the Prym variety which then induces multiplication by 4 on
homology.

(2) (ψ2M)˚(Id ˆι)˚[∆rΓ ] = 0. This is because

ψ2M
(

p, ι(p)
)

=
(

p−M− ι(p) + ι(M)
)

+
(

ι(p) −M− p+ ι(M)
)

= −2M+ 2ι(M)

is constant.
(3) (ψ2M)˚B = 2χ˚[rΠ], because at interior points of top-dimensional faces of |B|, the pushfor-

ward may be computed by first pushing forward along the (topological) quotient map
identifying (x, y) and (y, x) and then pushing forward along χ. A case-by-case analysis
shows that the first step always introduces a factor of 2, either through the quotient map
being 2:1 or because it is the value of B.

(4) (ψ2M)˚[rΓ ˆ p 1] = (ψ2M)˚[p
1 ˆ rΓ ] = (ψM)˚[rΓ ].

Solving the (ψ2M)-pushforward of Equation (44) for χ˚[rΠ] gives

χ˚[rΠ] = 2(ψM)˚[rΓ ] =
4

(h− 1)!
ζh−1c .

The second equality is once more Theorem 4.25 and this concludes the proof of Equation (43). �
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