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Abstract

Let R and S be rings, C = SCR a (faithfully) semidualizing bimodule, and n a positive integer

or n = ∞. In this paper, we introduce the concepts of C-fpn-injective R-modules and C-fpn-flat

S-modules as a common generalization of some known modules such as C-FPn-injective (resp.

C-weak injective) R-modules and C-FPn-flat (resp. C-weak flat) S-modules. Then we investigate

C-fpn-injective and C-fpn-flat dimensions of modules, where the classes of these modules, namely

CfpnI(R)≤k and CfpnF (S)≤k, respectively. We study Foxby equivalence relative to these classes,

and also the existence of CfpnI(R)≤k and CfpnF (S)≤k preenvelopes and covers. Finally, we study

the exchange properties of these classes, as well as preenvelopes (resp. precovers) and Foxby equiv-

alence, under almost excellent extensions of rings.

Keywords: C-fpn-flat modules; C-fpn-injective modules; Foxby equivalence; semidualizing bi-

modules.

2020 Mathematics Subject Classification: 16E10; 16E30; 16E65; 16P70.

1 Introduction

Throughout this paper, n is a positive integer, R and S are fixed associative rings with unites, and

all R- or S-modules are understood to be unital left R- or S-modules (unless specified otherwise).

SM (resp. MR) is used to denote that M is a left S-module (resp. right R-module). Also, SMR

is used to denote that M is an (S,R)-bimodule which means that M is both a left S-module and a

right R-module, and these structures are compatible. Right R- or S-modules are identified with left

modules over the opposite rings Rop and Sop.
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Wei and Zhang in [21] introduced the notion of fpn-injective (resp. fpn-flat) modules as a general-

ization of fp-injective and FPn-injective (resp. fp-flat and FPn-flat) modules, where fp-injective and

fp-flat modules introduced by Garkusha and Generalov in [10], and also FPn-injective and FPn-flat

modules introduced by Bravo and Pérez in [4].

Over a commutative Noetherian ring R, a semidualizing module for R is a finitely generated

R-module C with HomR(C,C) canonically isomorphic to R and ExtiR(C,C) = 0 for all i ≥ 1. Semid-

ualizing modules (under different names) were independently studied by Foxby in [8], Vasconcelos in

[20], and Golod in [15]. Araya et al., in [1], extended the notion of semidualizing modules to a pair of

non-commutative, but Noetherian rings. Holm and White, in [17], generalized the notion of a semidu-

alizing module to general associative rings, and defined and studied Auslander and Bass classes under

a semidualizing bimodule C, and then introduced the notions of C-flat, C-projective, and C-injective

modules, where C = SCR stands for a semidualizing bimodule.

In [22], Wu and Gao introduced the notion of C-FPn-injective (resp. C-FPn-flat) modules as

a common generalization of some known modules such as C-injective, C-FP -injective and C-weak

injective (resp. C-flat and C-weak flat) modules (see [14, 17, 25]). Furthermore, they investigated

Foxby equivalence relative to C-FPn-injective R-modules and C-FPn-flat S-modules, proved that the

classes FIn
C(R) and FFn

C(S) are preenveloping and covering, and found that when these classes are

closed under extensions, cokernels of monomorphisms, and kernels of epimorphisms, where FIn
C(R)

and FFn
C(S) are the classes of C-FPn-injective R-modules and C-FPn-flat S-modules, respectively.

Recently, the homological theory for injective modules and flat modules with respect to semidu-

alizing bimodules has became an important area of research (see for example [2, 3, 11, 14, 17, 22]).

In this paper, we introduce and study the notion of C-fpn-injective (resp. C-fpn-flat) modules as a

common generalization of C-weak injective and C-FPn-injective (resp. C-weak flat and C-FPn-flat)

modules.

In Section 2, we state some fundamental notions and some preliminary results. Then we present

some features of the Auslander and Bass classes, and modules of fpn-injective and fpn-flat dimension

at most k. In Section 3, first we introduce C-fpn-injective R-modules and C-fpn-flat S-modules, and

then we give some homological relationships between the classes fpnI(S)≤k, fpnF (R)≤k, CfpnI(R)≤k,

CfpnF (S)≤k, AC(R), and BC(S), where these classes are the class of S-modules with fpn-injective

dimention at most k, the class of R-modules with fpn-flat dimention at most k, the class of R-modules

with C-fpn-injective dimention at most k, the class of S-modules with C-fpn-injective dimention at

most k, the Auslander class, and the Bass class under faithfully semidualizing bimodules C, respec-

tively. Among other results, we prove that (i) Foxby equivalence relative to these classes, (ii) for

an R-module M (resp. S-module N), M ∈ CfpnI(R)≤k (resp. N ∈ CfpnF (S)≤k) if and only if

M ∈ AC(R) (resp. N ∈ BC(S)) and C ⊗R M ∈ fpnI(S)≤k (resp. HomS(C,N) ∈ fpnF (R)≤k),

and (iii) the classes CfpnI(R) and CfpnF (S) are preenveloping and covering. Section 4 considering

faithfully semidualizing modules C is devoted to the exchange properties of these classes under chang

of rings. For example, let S ≥ R be an almost excellent extension. Then we show that (i) the classe

(C ⊗R S)fpnI(R) and (C ⊗R S)fpnF (R) are preenveloping and precovering, (ii) if M ∈ AC(R), then

(S ⊗R M) ∈ AC⊗RS(S); if M ∈ BC(R), then HomR(S,M) ∈ BC⊗RS(S), and (ii) existence Foxby

equivalence relative to the classes (C ⊗R S)fpnI(R), (C ⊗R S)fpnF (R), AC⊗RS(S) and BC⊗RS(S).
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2 Preliminaries

In this section, some fundamental concepts and notations are stated.

Definition 2.1. (see [4, Section 1 and Definitions 2.2, 3.1, and 3.2], [27, Definitions 2.8 and 2.18],

[13, Definition 2.1], [12, Definition 2.1], [14, 1.2, 1.3, and 1.4], [22, Definition 3.1], [14, Definition 2.1]

and [21, Definition 2.1])

(i) An R-module M is called finitely n-presented if there exists an exact sequence

Fn −→ Fn−1 −→ · · · −→ Fi −→ · · · −→ F1 −→ F0 −→ M −→ 0,

where each Fi is a finitely generated free (equivalently, finitely generated projective) R-module.

A ring R is called n-coherent if every finitely n-presented R-module is finitely (n+1)-presented;

(ii) An R-module M is called FPn-injective or (n, 0)-injective (resp. FPn-flat or (n, 0)-flat) if

Ext1R(L,M) = 0 (resp. TorR1 (L,M) = 0) for any finitely n-presented R-module (resp. Rop-

module) L. FPn-Inj(R) and FPn-Flat(R) denote the class of FPn-injective R-modules and the

class of FPn-Flat R-modules, respectively;

(iii) The FPn-injective dimension (or (n, 0)-injective dimension) and the FPn-flat dimension (or

(n, 0)-flat dimension) of an R-module M are defined by

FPn. idR(M) = inf{k : Extk+1
R (L,M) = 0 for every finitely n-presented R-module L}

and

FPn. fdR(M) = inf{k : TorRk+1(L,M) = 0 for every finitely n-presented Rop-module L},

respectively;

(iv) A degreewise finite projective resolution (or, super finitely presented) of an R-module M is a

projective resolution of M :

· · · −→ Pi+1 −→ Pi −→ Pi−1 −→ · · · −→ P1 −→ P0 −→ U −→ 0,

where each Pi is a finitely generated projective (equivalently, finitely generated free) R-module;

(v) An R-moduleM is called weak injective (resp. weak flat) if Ext1R(U,M) = 0 (resp. TorR1 (U,M) =

0) for any super finitely presented R-module (resp. Rop-module) U .

(vi) An (S,R)-bimodule C = SCR is semidualizing if the following conditions hold:

(a1) SC admits a degreewise finite S-projective resolution;

(a2) CR admits a degreewise finite Rop-projective resolution;

(b1) The homothety map Sγ : SSS −→ HomRop(C,C) is an isomorphism;

(b2) The homothety map γR : RRR −→ HomS(C,C) is an isomorphism;

(c1) ExtiS(C,C) = 0 for all i ≥ 1;
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(c2) ExtiRop(C,C) = 0 for all i ≥ 1.

A semidualizing bimodule SCR is faithfully semidualizing if it satisfies the following conditions

for all modules SN and MR:

(1) If HomS(C,N) = 0, then N = 0;

(2) If HomRop(C,M) = 0, then M = 0.

By [17, Proposition 3.2], there exist many examples of faithfully semidualizing bimodules were

provided over a wide class of non-commutative rings;

(vii) The Auslander class AC(R) with respect to C consists of all R-modules M satisfying the fol-

lowing conditions:

(A1) TorRi (C,M) = 0 for all i ≥ 1;

(A2) ExtiS(C,C ⊗R M) = 0 for all i ≥ 1;

(A3) The natural evaluation homomorphism µM : M −→ HomS(C,C ⊗R M) is an isomorphism

(of R-modules).

The Bass class BC(S) with respect to C consists of all S-modules N satisfying the following

conditions:

(B1) ExtiS(C,N) = 0 for all i ≥ 1;

(B2) TorRi (C,HomS(C,N)) = 0 for all i ≥ 1;

(B3) The natural evaluation homomorphism νN : C ⊗R HomS(C,N) −→ N is an isomorphism

(of S-modules).

It is an important property of Auslander and Bass classes that they are equivalent under the

pair of functors:

AC(R)
C⊗R−

∼
//
BC(S)

HomS(C,−)
oo

(see [17, Proposition 4.1]);

(viii) An R-module is called C-weak injective if it has the form HomS(C,X) for some weak injective

S-module X. An S-module is called C-weak flat if it has the form C ⊗R Y for some weak flat

R-module Y ;

(ix) An R-module is called C-FPn-injective if it has the form HomS(C,X) for some FPn-injective

S-module X. An S-module is called C-FPn-flat if it has the form C ⊗R Y for some FPn-flat

R-module Y ;

(x) An R-moduleM is called fpn-injective (resp. fpn-flat) if for every exact sequence 0 −→ K −→ L

with K and L are finitely n-presented R-modules (resp. Rop-modules), the induced sequence

HomR(L,M) −→ HomR(K,M) −→ 0 (resp. 0 −→ K ⊗R M −→ L ⊗R M) is exact. fpnI(R)

and fpnF (R) denote the class of fpn-injective R-modules and the class of fpn-Flat R-modules,

respectively.
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By [4, Proposition 1.7(1)], every FPn-injective (resp. FPn-flat) module is fpm-injective (resp.

fpm-flat) for any m ≥ n. But not conversely, see Example 3.3. The Proposition 2.4 shows that the

converse is also true over n-coherent rings.

Definition 2.2. Let Y = · · ·
f2
−→ F1

f1
−→ F0

f0
−→ U −→ 0, be an exact sequence of projective R-

modules Fi. Then Y is called Y-finitely presented (equivalently, super finitely presented in [13]) if U

and Kerfi are finitely presented for any i ≥ 0.

Proposition 2.3. Let C be a semidualizing module. Then the following assertions hold true:

(i) M ∈ AC(R) if and only if M∗ ∈ BC(R
op);

(ii) M ∈ BC(R) if and only if M∗ ∈ AC(R
op).

Proof. (i). (⇒) Assume that M ∈ AC(R). Then by [19, Lemma 3.53], there is a (− ⊗R M)∗-exact

exact sequence Y = · · · −→ F1 −→ F0 −→ C −→ 0, with each Fi is finitely generated and free. So by

[19, Theorem 2.76 ], it is easy to check that 0 = TorRi (C,M)∗ ∼= ExtiRop(C,M∗) for any i ≥ 1.

On the other hand, we have ExtiR(C,C ⊗R M) = 0, and so HomR(Y, C ⊗R M) is exact. Since

Y is Y-finitely presented, then by [19, Lemmas 3.53 and 3.55 and Theorem 2.76], we deduce that

HomR(Y, C ⊗R M)-exact if and only if HomRop(Y, C ⊗R M)∗-exact if and only if Y ⊗Rop (C ⊗R M)∗-

exact if and only if Y ⊗Rop HomRop(C,M∗)-exact. Hence TorR
op

i (C,HomRop(C,M∗)) = 0 for all i ≥ 1.

Also, we have M ∼= HomR(C,C ⊗R M). So by [19, Lemma 3.55], M∗ ∼= HomRop(C,C ⊗R M)∗ ∼=

C ⊗Rop (C ⊗R M)∗ ∼= C ⊗Rop HomRop(C,M∗). Then, it follows that M∗ ∈ BC(R
op).

(⇐) Let M∗ ∈ BC(R
op). Then there is a HomRop(−,M∗)-exact exact sequence Y = · · · −→

F1 −→ F0 −→ C −→ 0, with each Fi is finitely generated and free. So by [19, Theorem 2.76 and

Lemma 3.53 ], HomRop(Y,M∗)-exact if and only if (Y⊗RopM)∗-exact if and only if (Y⊗RM)-exact. So

TorRi (C,M) = 0 for any i ≥ 1. Also, we have TorR
op

i (Y,HomRop(C,M∗)) = 0 for any i ≥ 1. Then since

Y is Y-finitely presented, Y ⊗Rop HomRop(C,M∗)-exact if and only if Y ⊗Rop (C ⊗R M)∗-exact if and

only HomRop(Y, C⊗RM)∗-exact if and only if HomR(Y, C⊗RM)-exact, and so ExtiR(C,C⊗RM) = 0

for any i ≥ 1. We have M∗ ∼= C ⊗Rop HomRop(C,M∗) ∼= C ⊗Rop (C ⊗R M)∗ ∼= HomR(C,C ⊗R M)∗,

and so M ∼= HomR(C,C ⊗R M). Consequently, M ∈ AC(R).

(ii). This is similar to that of (i).

Proposition 2.4. Let R (resp. Rop) be an n-coherent ring and M an R-module. Then M is fpm-

injective (resp. fpm-flat) if and only if M is FPn-injective (resp. FPn-flat) for any m ≥ n.

Proof. Assume that M is an fpm-injective (resp. fpm-flat) R-module and L is a finitely n-presented

R-module (resp. Rop-module). Since R (resp. Rop) is an n-coherent ring, there is an exact sequence

0 −→ K0 −→ F0 −→ L −→ 0

of R-modules (resp. Rop-modules), where K0 and F0 are finitely m-presented. Thus we get

Ext1R(L,M) = 0 (resp. TorR1 (L,M) = 0) by applying the derived functors of HomR(−,M) (resp.

− ⊗R M) to the above short exact sequence. Hence M is an FPn-injective (resp. FPn-flat) R-

module.

The following lemmas will be useful in the proof of the first main result of this section.
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Lemma 2.5. Suppose that M is an fpn-injective (resp. fpn-flat) R-module and that

0 −→ K −→ F −→ L −→ 0

is a short exact sequence of R-modules (resp. Rop-modules) such that K is finitely n-presented and F

is finitely generated and free. Then Ext1R(L,M) = 0 (resp. TorR1 (L,M) = 0).

Proof. By applying the derived functors of HomR(−,M) (resp. − ⊗R M) to the above short exact

sequence, the assertion follows.

Lemma 2.6. Suppose that M is an fpn-injective (resp. fpn-flat) R-module and that

0 −→ X0 −→ X1 −→ X2 −→ · · · −→ Xj−1 −→ Xj −→ Xj+1 −→ · · ·

is an exact sequence of R-modules (resp. Rop-modules) such that Xj is finitely n-presented for all

j ≥ 0. Then the sequence

· · · −→ HomR(Xj ,M) −→ · · · −→ HomR(X2,M) −→ HomR(X1,M) −→ HomR(X0,M) −→ 0

(resp.

0 −→ X0 ⊗R M −→ X1 ⊗R M −→ X2 ⊗R M −→ · · · −→ Xj ⊗R M −→ · · · )

is exact.

Proof. Assume that Cj = Coker(Xj−1 −→ Xj) for all j ≥ 1. Then there exist short exact sequences

0 −→ X0 −→ X1 −→ C1 −→ 0

and

0 −→ Cj−1 −→ Xj −→ Cj −→ 0,

for all j ≥ 2. Thus Cj is finitely n-presented for all j ≥ 1 from [4, Proposition 1.7(1)] and using an

induction argument on j. Now, by applying the functor HomR(−,M) (resp. − ⊗R M) to the above

exact sequences, the assertion follows.

Definition 2.7. The fpn-injective dimension of an S-module M is defined that fpn.idS(M) ≤ k if

and only if there exists an exact sequence

0 −→ M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

of S-modules with each Ii ∈ fpnI(S) for all 0 ≤ i ≤ k. Also, the fpn-flat dimension of an R-module

N is defined that fpn.fdR(N) ≤ k if and only if there exists an exact sequence

0 −→ Fk −→ Fk−1 −→ · · · −→ F1 −→ F0 −→ N −→ 0

of R-modules with each Fi ∈ fpnF (R) for all 0 ≤ i ≤ k.

It is clear that fpn.idS(M) ≤ 0 if and only if M is an fpn-injective S-module, and fpn.fdR(N) ≤ 0

if and only if N is an fpn-flat R-module.

For convenience, we set
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• fpnI(S)≤k = the class of S-modules of fpn-injective dimension at most k.

• fpnF (R)≤k = the class of R-modules of fpn-flat dimension at most k.

In the next lemma, we show that the Bass class BC(S) contains all S-modules with finite fpn-

injective dimension and the Auslander class AC(R) contains all R-modules with finite fpn-flat dimen-

sion.

Lemma 2.8. Let C = SCR be a faithfully semidualizing bimodule. Then the following assertions hold

true:

(i) fpnI(S)≤k ⊆ BC(S);

(ii) fpnF (R)≤k ⊆ AC(R).

Proof. (i). First, we show that for k = 0, fpnI(S) ⊆ WI(S). Cosider Y-finitely presented Y =

· · · −→ Fj −→ Fj−1 −→ · · · −→ F1 −→ F0 −→ U −→ 0 of S-modules. Then there is an exact

sequence 0 −→ K0 −→ F0 −→ U −→ 0, where K0, F0 and U are finitely n-finitely presented. So if

X ∈ fpnI(S), then by Lemma 2.6, HomS(F0,X) −→ HomS(K0,X) −→ 0 is exact. Hence by Lemma

2.5, Ext1S(U,X) = 0, and then X ∈ WI(S). Consequently, fpnI(S) ⊆ BC(S) from [14, Theorem 2.2].

So for M ∈ fpnI(S)≤k there exists an exact sequence

0 −→ M −→ X0 −→ X1 −→ · · · −→ Xk−1 −→ Xk −→ 0

of S-modules, where each Xi ∈ BC(S) for all 0 ≤ i ≤ k. Then by [17, Corollary 6.3], we deduec that

M ∈ BC(S).

(ii). Let N ∈ fpnF (R)≤k. Then there is an exact sequence

0 −→ Fk −→ Fk−1 −→ · · · −→ F1 −→ F0 −→ N −→ 0

of R-modules with each Fi ∈ fpnF (R) for all 0 ≤ i ≤ k. Then by [19, Lemma 3.53],

0 −→ N∗ −→ F ∗
0 −→ F ∗

1 −→ · · · −→ F ∗
k−1 −→ F ∗

k −→ 0

of Rop-modules, where each F ∗
i ∈ fpnI(R

op) by [21, Proposition 2.4(2)]. By (i), F ∗
i ∈ BC(R

op),

and then [17, Corollary 6.3] and Proposition 2.3, we deduec that N∗ ∈ BC(R
op) if and only if N ∈

AC(R).

3 C-fpn-injective and C-fpn-flat modules

Definition 3.1. An R-module is called C-fpn-injective if it has the form HomS(C,X) for some

X ∈ fpnI(S). An S-module is called C-fpn-flat if it has the form C⊗RY for some Y ∈ fpnF (R). We

denote the class of C-fpn-injective R-modules by CfpnI(R) and the class of C-fpn-flat S-modules by

CfpnF (S). Therefore

CfpnI(R) = {HomS(C,X) : X ∈ fpnI(S)}

and

CfpnF (S) = {C ⊗R Y : Y ∈ fpnF (R)}.
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Remark 3.2. (i) Every C-FPn-injective (resp. C-FPn-flat) module is C-fpm-injective (resp. C-

fpm-flat) module for any m ≥ n (see [4, Proposition 1.7(1)]). But not conversely, see Example

3.3.

(ii) Over n-coherent rings, every C-fpn-injective (resp. C-fpn-flat) module is also C-FPm-injective

(resp. C-FPm-flat) module for any m ≥ n (see Proposition 2.4);

(iii) Every C-fpn-injective (resp. C-fpn-flat) module is C-fpm-injective (resp. C-fpm-flat) for all

m ≥ n, and so we have

Cfp1I(R) ⊆ Cfp2I(R) ⊆ · · · ⊆ CfpnI(R) ⊆ Cfpn+1I(R) ⊆ · · ·

and

Cfp1F (S) ⊆ Cfp2F (S) ⊆ · · · ⊆ CfpnF (S) ⊆ Cfpn+1F (S) ⊆ · · · .

(iv) An R-module M (resp. S-module) is C-fp∞-injective (resp. C-fp∞-flat) if and only if weak

injective (resp. weak flat).

Recall that a ring R is said to be an (n, 0)-ring or n-regular ring if every finitely n-presented

R-module is projective (see [18, 27]).

Example 3.3. Let K be a field, E a K-vector space with infinite rank, and A a Noetherian ring of

global dimension 0. Set B = K⋉E the trivial extension of K by E and R = A×B the direct product

of A and B. By [18, Theorem 3.4(3)], R is a (2, 0)-ring which is not a (1, 0)-ring. Thus, for every

R-module M and every finitely 2-presented R-module L, Ext1R(L,M) = 0 (resp. TorR1 (L,M) = 0) .

Hence every R-module is FP2-injective (resp. FP2-flat), and so every R-module is fp2-injective (resp.

fp2-flat). On the other hand, there exists an R-module which is not FP1-injective (resp. FP1-flat),

since if every R-module is FP1-injective (resp. FP1-flat), [27, Theorem 3.9] implies that R is (1, 0)-

ring, contradiction. Therefore, if C = R = S, then every R-module is C-fp2-injective and C-fp2-flat,

and there exists an R-module which is not C-FP1-injective (resp. C-FP1-flat).

Definition 3.4. Let C = SCR be a faithfully semidualizing bimodule. The C-fpn-injective dimension

of an R-module M is defined that Cfpn.idR(M) ≤ k if and only if there exists an exact sequence

0 −→ M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

of R-modules with each Ii ∈ CfpnI(R) for all 0 ≤ i ≤ k. Also, the C-fpn-flat dimension of an

S-module N is defined that Cfpn.fdS(N) ≤ k if and only if there exists an exact sequence

0 −→ Fk −→ Fk−1 −→ · · · −→ F1 −→ F0 −→ N −→ 0

of S-modules with each Fi ∈ CfpnF (S) for all 0 ≤ i ≤ k.

It is clear that Cfpn.idR(M) ≤ 0 if and only ifM is a C-fpn-injective R-module, and Cfpn.fdS(N) ≤

0 if and only if N is a C-fpn-flat S-module.

For convenience, we set

• CfpnI(R)≤k = the class of R-modules of C-fpn-injective dimension at most k.
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• CfpnF (S)≤k = the class of S-modules of C-fpn-flat dimension at most k.

The following lemma is needed in the proof of the first main result of this section.

Lemma 3.5. Then the following assertions hold true:

(i) CfpnI(R)≤k ⊆ AC(R);

(ii) CfpnF (S)≤k ⊆ BC(S).

Proof. (i). Assume that N ∈ CfpnI(R). Then N = HomS(C,X) for some X ∈ fpnI(S). By Lemma

2.8(i), X ∈ BC(S) and so N ∈ AC(R) from [14, Lemma 2.9(1)]. Now, if M ∈ CfpnI(R)≤k, then there

exists an exact sequence

0 −→ M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

of R-modules with each Ii ∈ CfpnI(R) for all 0 ≤ i ≤ k, and also any Ii ∈ AC(R). Hence by [17,

Corollary 6.3], M ∈ AC(R).

(ii). This is similar to the first part.

In the following, we investigate Foxby equivalence relative to the classes CfpnI(R) and CfpnF (S)

as a generalization of Foxby equivalence relative to the classes FIn
C(R) and FFn

C(S) in [22].

Proposition 3.6. Then we have the following equivalences of categories:

(i) CfpnI(R)≤k

C⊗R−

∼
//
fpnI(S)≤k

HomS(C,−)
oo ;

(ii) fpnF (R)≤k

C⊗R−

∼
//
CfpnF (S)≤k

HomS(C,−)
oo .

Proof. (i). Let M ∈ CfpnI(R)≤k. There exists an exact sequence

0 −→ M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

of R-modules with each Ii ∈ CfpnI(R) for all 0 ≤ i ≤ k. Thus, Ii = HomS(C,X) for some X ∈

fpnI(S). By Lemma 2.8(i), X ∈ BC(S), and then C⊗RHomS(C,X) ∼= X. So C⊗R Ii ∈ fpnI(S) and

also by Lemma 3.5(i), Ii ∈ AC(R), and so TorRj (C, Ii) = 0 for all j ≥ 1. By Lemma 3.5(i), M ∈ AC(R)

and hence TorRj (C,M) = 0 for all j ≥ 1. Therefore, by applying the functor C ⊗R − to the above

exact sequence, we obtain the exact sequence

0 −→ C ⊗R M −→ C ⊗R I0 −→ C ⊗R I1 −→ · · · −→ C ⊗R Ik−1 −→ C ⊗R Ik −→ 0

of S-modules which shows that C ⊗R M ∈ fpnI(S)≤k. Now, let N ∈ fpnI(S)≤k. There exists an

exact sequence

0 −→ N −→ I ′0 −→ I ′1 −→ · · · −→ I ′k−1 −→ I ′k −→ 0

of S-modules with each I ′i ∈ fpnI(S) for all 0 ≤ i ≤ k. For all 0 ≤ i ≤ k, from Lemma 2.8(i),

I ′i ∈ BC(S), and so ExtjS(C, I
′
i) = 0 for all j ≥ 1. Also, by Lemma 2.8(i), N ∈ BC(S) and hence
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ExtjS(C,N) = 0 for all j ≥ 1. Therefore, by applying the functor HomS(C,−) to the above exact

sequence, we obtain the exact sequence

0 → HomS(C,N) → HomS(C, I
′
0) → HomS(C, I

′
1) → · · · → HomS(C, I

′
k−1) → HomS(C, I

′
k) → 0

of R-modules which shows that HomS(C,N) ∈ CfpnI(R)≤k. Note that, if M ∈ CfpnI(R)≤k, then

by Lemma 3.5(iii), M ∈ AC(R), and if N ∈ fpnI(S)≤k, then from Lemma 2.8(i), N ∈ BC(S). Hence

we have the natural isomorphisms M ∼= HomS(C,C ⊗R M) and C ⊗R HomS(C,N) ∼= N .

(ii). This is similar to that of (i).

Corollary 3.7. Let C = SCR be a semidualizing bimodule. Then we have the following equivalences

of categories:

(i) CfpnI(R)
C⊗R−

∼
//
fpnI(S);

HomS(C,−)
oo

(ii) fpnF (R)
C⊗R−

∼
//
CfpnF (S).

HomS(C,−)
oo

Proof. Put k = 0 in Proposition 3.6.

By using Lemma 3.5, Proposition 3.6, and Corollary 3.7, we get the first main result of this section.

Theorem 3.8. (Foxby Equivalence) Then we have the following equivalences of categories:

fpnF (R)
C⊗R−

∼
//

� _

��

CfpnF (S)
HomS(C,−)

oo � _

��
fpnF (R)≤k

C⊗R−

∼
//

� _

��

CfpnF (S)≤k
HomS(C,−)

oo � _

��
AC(R)

C⊗R−

∼
//
BC(S)

HomS(C,−)
oo

CfpnI(R)≤k

C⊗R−

∼
//?�

OO

fpnI(S)≤k
HomS(C,−)

oo
?�

OO

CfpnI(R)
C⊗R−

∼
//?�

OO

fpnI(S)
HomS(C,−)

oo
?�

OO

We are now ready to state and prove the first main result of Theorem 3.8 (Foxby Equivalence).

Corollary 3.9. Let M be an R-module, and N an S-module. Then the following assertions hold true:

(i) M ∈ CfpnI(R)≤k if and only if M ∈ AC(R) and C ⊗R M ∈ fpnI(S)≤k;

(ii) N ∈ CfpnF (S)≤k if and only if N ∈ BC(S) and HomS(C,N) ∈ fpnF (R)≤k.
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Proof. (i). (⇒) This follows from Lemma 3.5(i) and Theorem 3.8.

(⇐) If M ∈ AC(R) and C ⊗R M ∈ fpnI(S)≤k, then M ∼= HomS(C,C ⊗R M) and, by Theorem

3.8, HomS(C,C ⊗R M) ∈ CfpnI(R)≤k. Thus M ∈ CfpnI(R)≤k.

(ii). This is similar to the first part.

Corollary 3.10. Let X be an S-module and Y an R-module. Then the following statements hold

true:

(i) HomS(C,X) ∈ CfpnI(R)≤k if and only if X ∈ fpnI(S)≤k.

(ii) C ⊗R Y ∈ CfpnF (S)≤k if and only if Y ∈ fpnF (R)≤k;

Proof. (i). Let HomS(C,X) ∈ CfpnI(R)≤k. Then, by Corollary 3.9(i), HomS(C,X) ∈ AC(R).

Therefore, from [14, Lemma 2.9(1)], X ∈ BC(S) and hence C ⊗R HomS(C,X) ∼= X. Thus X ∈

fpnI(S)≤k by Theorem 3.8.

(ii). This is similar to that of (i).

In the course of the remaining parts of the paper, we denote the character module of M by

M∗ := HomZ(M,Q/Z) [19, Page 135].

Proposition 3.11. Let M be an R-module and N an S-module. Then the following statements hold:

(i) M ∈ CfpnI(R)≤k if and only if M∗ ∈ CfpnF (Rop)≤k;

(ii) N ∈ CfpnF (S)≤k if and only if N∗ ∈ CfpnI(S
op)≤k.

Proof. (i). Assume that M ∈ CfpnI(R)≤k. We proceed by induction on k. (⇒) If k = 0, then

M = HomS(C,X) for some X ∈ fpnI(S). From [21, Proposition 2.4(1)], X∗ ∈ fpnF (Sop). Thus

M∗ ∈ CfpnF (Rop) because M∗ = HomS(C,X)∗ ∼= C ⊗Sop X∗ by [19, Lemma 3.55 and Proposition

2.56]. (⇐) Assume that M∗ ∈ CfpnF (Rop). Then, from Corollary 3.9(ii), M∗ ∈ BC(R
op) and

HomRop(C,M∗) ∈ fpnF (Sop). Also, by [19, Proposition 2.56 and Theorem 2.76], (C ⊗R M)∗ ∼=

HomRop(C,M∗) and so C ⊗R M ∈ fpnI(S) from [21, Proposition 2.4(1)]. Since M∗ ∈ BC(R
op),

M∗ ∼= C ⊗Sop HomRop(C,M∗) ∼= C ⊗Sop (C ⊗R M)∗ ∼= HomS(C,C ⊗R M)∗ from [19, Proposition

2.56, Theorem 2.76, and Lemma 3.55]. Hence M ∼= HomS(C,C ⊗R M) by [19, Lemma 3.53]. Thus

M ∈ CfpnI(R).

Assume that M ∈ CfpnI(R)≤k. Then there exists an exact sequence

0 −→ M −→ Y −→ L −→ 0,

where Y ∈ CfpnI(R) and L ∈ CfpnI(R)≤k−1. Since Y ∗ ∈ CfpnF (Rop), and by [19, Lemma 3.53],

0 −→ L∗ −→ Y ∗ −→ M∗ −→ 0

is an exact sequence, we deduce that M ∈ CfpnI(R)≤k if and only if L ∈ CfpnI(R)≤k−1 if and only

if L∗ ∈ CfpnF (Rop)≤k−1 if and only if M∗ ∈ CfpnF (Rop)≤k.

(ii). This is similar to the first part.

Corollary 3.12. Let M be an R-module and N an S-module. Then the following assertions hold:
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(i) M ∈ CfpnI(R)≤k if and only if M∗∗ ∈ CfpnI(R)≤k;

(ii) N ∈ CfpnF (S)≤k if and only if N∗∗ ∈ CfpnF (S)≤k.

Proof. This follows by Proposition 3.11.

In the next proposition, we prove that the classes CfpnI(R)≤k and CfpnF (S)≤k are closed under

direct summands, direct products, and direct sums.

Proposition 3.13. The following assertions hold:

(i) The class CfpnI(R)≤k is closed under direct summands, direct products, and direct sums;

(ii) The class CfpnF (S)≤k is closed under direct summands, direct products, and direct sums.

Proof. (i). Let M ∈ CfpnI(R)≤k and let M ′ be a summand of M . Then, by Corollary 3.9(i),

M ∈ AC(R) and C⊗RM ∈ fpnI(S)≤k, and also there exists an R-moduleM ′′ such thatM ∼= M ′⊕M ′′.

From [17, Proposition 4.2(a)], it follows that M ′ ∈ AC(R). Also, by [19, Theorem 2.65], we have

C⊗RM ∼= (C⊗RM
′)⊕(C⊗RM

′′) which shows from [21, Proposition 2.3(1)] that C⊗RM
′ ∈ fpnI(S)≤k.

Thus M ′ ∈ CfpnI(R)≤k by Corollary 3.9(i).

Now, let {Mj}j∈J be a family of R-modules of C-fpn-injective dimension at most k. Then, by Corollary

3.9(i), Mj ∈ AC(R) and C ⊗R Mj ∈ fpnI(S)≤k for all j ∈ J . Hence, from [17, Proposition 4.2(a)],
∏

j∈J Mj ∈ AC(R) (resp.
⊕

j∈J Mj ∈ AC(R)). On the other hand, there exists an exact sequence

0 −→ C ⊗R Mj −→ I0j −→ I1j −→ · · · −→ Ik−1j −→ Ikj −→ 0

of S-modules with each Iij ∈ fpnI(S) for all 0 ≤ i ≤ k. So we have the exact sequence

0 −→
∏

j∈J

(C ⊗R Mj) −→
∏

j∈J

I0j −→
∏

j∈J

I1j −→ · · · −→
∏

j∈J

Ik−1j −→
∏

j∈J

Ikj −→ 0

of S-modules, where by [21, Proposition 2.3(1)],
∏

j∈J Iij ∈ fpnI(S) for all 0 ≤ i ≤ k, and so
∏

j∈J(C⊗RMj) ∈ fpnI(S)≤k. Similarly,
⊕

j∈J(C⊗RMj) ∈ fpnI(S)≤k. Since C is finitely presented,

from [6, Lemma 2.10(2)] we have C ⊗R (
∏

j∈J Mj) ∼=
∏

j∈J(C ⊗R Mj), and then C ⊗R (
∏

j∈J Mj) ∈

fpnI(S)≤k. Also, C ⊗R (
⊕

j∈J Mj) ∈ fpnI(S) by [19, Theorem 2.65]. Thus
∏

j∈J Mj ∈ CfpnI(R)≤k

(resp.
⊕

j∈J Mj ∈ CfpnI(R)≤k) by Corollary 3.9(i).

(ii). By using [19, Theorem 2.30 and Corollary 2.32] and [6, Lemma 2.9], the proof is similar to

that of (i).

Let F be a class of R-modules and let M be an R-module. A morphism f : F −→ M (resp.

f : M −→ F ) with F ∈ F is called an F-precover (resp. F-preenvelope) of M when HomR(F
′, F ) −→

HomR(F
′,M) −→ 0 (resp. HomR(F,F

′) −→ HomR(M,F ′) −→ 0) is exact for all F ′ ∈ F . Assume

that f : F −→ M (resp. f : M −→ F ) is an F-precover (resp. F-preenvelope) of M . Then f is called

an F-cover (resp. F-envelope) of M if every morphism g : F −→ F such that fg = f (resp. gf = f)

is an isomorphism. The class F is called (pre)covering (resp. (pre)enveloping) if each R-module has

an F-(pre)cover (resp. F-(pre)envelope) (see [7, Definitions 5.1.1 and 6.1.1]).

A duality pair over R is a pair (M,N ), where M is a class of R-modules and N is a class of

Rop-modules, subject to the following conditions:



Foxby equivalence relative to C-fpn-injective and C-fpn-flat modules 13

(i) For an R-module M , one has M ∈ M if and only if M∗ ∈ N ;

(ii) N is closed under direct summands and finite direct sums.

A duality pair (M,N ) is called (co)product-closed if the class M is closed under (co)products in the

category of all R-modules (see [16, Definition 2.1]).

Corollary 3.14. (CfpnI(R)≤k, CfpnF (Rop)≤k) and (CfpnF (S)≤k, CfpnI(S
op)≤k) are duality pairs.

Proof. By Proposition 3.11, anR-moduleM (resp. S-moduleN) is in CfpnI(R)≤k (resp. CfpnF (S)≤k)

if and only if M∗ (resp. N∗) is in CfpnF (Rop)≤k) (resp. CfpnI(S
op)≤k). Also, from Proposition

3.13, CfpnF (Rop)≤k (resp. CfpnI(S
op)≤k) is closed under direct summands and direct sums. Thus

the assertions follow.

Assume that M ′ is an R-submodule of M . We say that M ′ is a pure submodule of M , M/M ′ is a

pure quotient of M , and M is a pure extension of M ′ and M/M ′ if

0 −→ A⊗R M ′ −→ A⊗R M −→ A⊗R M/M ′ −→ 0

is an exact sequence for all Rop-modules A, equivalently, if

0 −→ HomR(B,M ′) −→ HomR(B,M) −→ HomR(B,M/M ′) −→ 0

is an exact sequence for all finitely 1-presented R-modules B [7, Definition 5.3.6].

Wei and Zhang proved in [21, Proposition 2.4(2)] that the classes fpnI(R) and fpnF (R) are closed

under pure submodules and pure quotients. The next corollary shows that the classes CfpnI(R) and

CfpnF (S) are also closed under pure submodules, pure quotients, and pure extensions.

Corollary 3.15. Let M ′ be a pure submodule of R-module M and let N ′ be a pure submodule of

S-module N . Then the following statements hold true:

(i) M ∈ CfpnI(R) if and only if M ′ ∈ CfpnI(R) and M/M ′ ∈ CfpnI(R);

(ii) N ∈ CfpnF (S) if and only if N ′ ∈ CfpnF (S) and N/N ′ ∈ CfpnF (S).

Proof. The assertion follows by Corollary 3.14 and [16, Theorem 3.1].

In the second main result of this section, by the use of duality pairs, we show that CfpnI(R)≤k

and CfpnF (S)≤k are preenveloping and covering.

Theorem 3.16. The classes CfpnI(R)≤k and CfpnF (S)≤k are preenveloping and covering.

Proof. By Corollary 3.14, (CfpnI(R)≤k, CfpnF (Rop)≤k) and (CfpnF (S)≤k, CfpnI(S
op)≤k) are du-

ality pairs. Also, from Proposition 3.13, the classes CfpnI(R)≤k and CfpnF (S)≤k are closed under

direct products and direct sums. Therefore, from [16, Theorem 3.1], the classes CfpnI(R)≤k and

CfpnF (S)≤k are preenveloping and covering.
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4 C-fpn-injective and C-fpn-flat dimension of modules with respect

to change of rings

We assume S ≤ R is a unitary ring extension. The ring S is called right R-projective, [24, 26] in case,

for any right S-module MS with an S module NS , NR | MR implies NS | MS , where N | M means

N is a direct summand of M . S is called a finite normalizing extension of R if there exist elements

a1, · · · , an ∈ S such that a1 = 1, S = Ra1 + · · ·+Ran. A finite normalizing extension S ≤ R is called

an almost excellent extension in case RS is flat, SR is projective, and the ring S is right R-projective.

An almost excellent extension S ≤ R is an excellent extension in case both RS and SR are free modules

with a common basis {a1, · · · , an}.

In this section, we investigat modules of C-fpn-injective dimension at most k and also, modules

of C-flat dimension at most k under an almost excellent extension of rings, where C is a faithfully

semidualizing R-module.

Lemma 4.1. Let S ≥ R be an almost excellent extension. Then the following assertions hold:

(i) If X ∈ fpnI(R)≤k, then HomR(S,X) ∈ fpnI(S)≤k.

(ii) If X ∈ fpnF (R)≤k, then (S ⊗R X) ∈ fpnF (S)≤k.

Proof. (i). Consider, the exact sequence 0 −→ K −→ L, where K and L are finitely n-presented

S-modules. By [23, Theorem 5], K and L are finitely n-presented R-modules. If k = 0, then X ∈

fpnI(R). We show that HomR(S,X) ∈ fpnI(S). We have the commutative diagram

HomS(L,HomR(S,X)) //

∼=
��

HomS(K,HomR(S,X))

∼=
��

HomR(L,X) // HomR(K,X) // 0,

and so, the sequence HomS(L,HomR(S,X)) −→ HomS(K,HomR(S,X)) −→ 0 is exact and hence

HomR(S,X) ∈ fpnI(S).

Now, let X ∈ fpnI(R)≤k. Then there exists an exact sequence

0 −→ X −→ X0 −→ X1 −→ · · · −→ Xk −→ 0

of R-modules with each Xi ∈ fpnI(R) for all 0 ≤ i ≤ k. Since SR is projective, there exists an exact

sequence

0 −→ HomR(S,X) −→ HomR(S,X0) −→ HomR(S,X1) −→ · · · −→ HomR(S,Xk) −→ 0

of S-modules with each HomR(S,Xi) ∈ fpnI(S) for all 0 ≤ i ≤ k. Thus, HomR(S,X) ∈ fpnI(S)≤k.

(ii). By Definition 2.7 and [21, Proposition 2.4(1)], it follows that for an R-module Y , Y ∈

fpnI(R)≤k if and only if Y ∗ ∈ fpnF (Rop)≤k and Y ∈ fpnF (R)≤k if and only if Y ∗ ∈ fpnI(R
op)≤k.

So if X ∈ fpnF (R)≤k, then X∗ ∈ fpnI(R
op)≤k. Hence by (1) and [19, Proposition 2.56 and Theorem

2.76], (S ⊗R X)∗ ∼= HomR(S,X
∗) ∈ fpnI(S

op)≤k, and then (S ⊗R X) ∈ fpnF (S)≤k.

Lemma 4.2. Let S ≥ R be an almost excellent extension and C a (faithfully) semidualizing R-module.

Then C ⊗R S is a faithfully semidualizing S-module.
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Proof. Let C a faithfully semidualizing R-module. Then by [21, Lemma 3.4], C ⊗R S is a semidu-

alizing S-module. Let HomS(C ⊗R S,N) = 0 for a S-module N . Then 0 = HomS(C ⊗R S,N) ∼=

HomR(C,HomS(C,N)) ∼= HomR(C,N), and so N = 0.

Proposition 4.3. Let S ≥ R be an almost excellent extension . Then the following assertions hold

true:

(i) If M ∈ CfpnI(R)≤k, then HomR(S,M) ∈ (C ⊗R S)fpnI(S)≤k;

(ii) If M ∈ CfpnF (R)≤k, then (S ⊗R M) ∈ (C ⊗R S)fpnF (S)≤k.

Proof. (i). Let M ∈ CfpnI(R)≤k. If k = 0, then M = HomR(C,X) for some X ∈ fpnI(R). We have

HomR(S,M) ∼= HomR(S,HomR(C,X))
∼= HomR(C ⊗R S,X)
∼= HomR(C ⊗R S ⊗S S,X)
∼= HomS(C ⊗R S,Hom(S,X)).

Since by Lemma 4.1, HomR(S,X) ∈ fpnI(S) and by Lemma 4.2, C ⊗R S is semidualizing S-module,

we deduce that HomS(C ⊗R S,Hom(S,X)) ∈ (C ⊗R S)fpnI(S). So, it follows that HomR(S,M) ∈

(C ⊗R S)fpnI(S).

(ii). This is similar to that of (i).

In the following, we give equivalent conditions with modules of C-fpn-injective dimension at most

k and also, modules of C-fpn-flat dimension at most k under almost excellent extension of rings.

Proposition 4.4. Let S ≥ R be an almost excellent extension and M an S-module. Then the following

assertions are equivalent:

(i) M ∈ CfpnI(R)≤k;

(ii) HomR(S,M) ∈ (C ⊗R S)fpnI(S)≤k;

(iii) M ∈ (C ⊗R S)fpnI(S)≤k.

Proof. (i)=⇒(ii). Let M ∈ CfpnI(R)≤k. Then by Proposition 4.3(1), HomR(S,M) ∈ (C ⊗R

S)fpnI(S)≤k.

(ii)=⇒(iii). By [24, Lemma 1.1], SM is isomorphic to a direct summand of S-module HomR(S,M).

Then by (2) and Proposition 3.13(1), M ∈ (C ⊗R S)fpnI(S)≤k.

(iii)=⇒ (i). Let k = 0. Then M ∈ (C ⊗R S)fpnI(S), and so M = HomS(C ⊗R S,X) for some

X ∈ fpnI(S). We have M = HomS(C ⊗R S,X) ∼= HomR(C,HomS(S,X)) ∼= HomR(C,X). We show

that X ∈ fpnI(R). Let 0 −→ K −→ L be an exact sequence of R-modules, where K and L are finitely

n-presented R-modules. Since S is flat R-module, we have that

0 −→ K ⊗R S −→ L ⊗R S is an exact sequence of S-modules, where K ⊗R S and K ⊗R S are

finitely n-presented S-modules by [23, Lemma 4]. We have the commutative diagram

HomS(L⊗R S,X) //

∼=
��

HomS(K ⊗R S,X) //

∼=
��

0

HomR(L,X) // HomR(K,X).
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So, the sequence HomR(L,X) −→ HomR(K,X) −→ 0 is exact, and then X ∈ fpnI(R). Therefore, we

get that M ∈ CfpnI(R). Also, if M ∈ (C ⊗R S)fpnI(S)≤k, it simply follows that M ∈ CfpnI(R)≤k.

Proposition 4.5. Let S ≥ R be an almost excellent extension and M an S-module. Then the following

assertions are equivalent:

(i) M ∈ CfpnF (R)≤k;

(ii) (S ⊗R M) ∈ (C ⊗R S)fpnF (S)≤k;

(iii) M ∈ (C ⊗R S)fpnF (S)≤k.

Proof. By Propositions 4.4 and 3.11 and [19, Proposition 2.56 and Theorem 2.76], M ∈ CfpnF (R)≤k

if and only if M∗ ∈ CfpnI(R
op)≤k if and only if HomR(S,M

∗) ∈ (C ⊗R S)fpnI(S
op)≤k if and

only if (S ⊗R M)∗ ∈ (C ⊗R S)fpnI(S
op)≤k if and only if (S ⊗R M) ∈ (C ⊗R S)fpnF (S)≤k. ALso,

M ∈ CfpnF (R)≤k if and only if M∗ ∈ CfpnI(R
op)≤k if and only if M∗ ∈ (C ⊗R S)fpnI(S

op)≤k if

and only if M ∈ (C ⊗R S)fpnF (S)≤k .

Corollary 4.6. Let S ≥ R be an almost excellent extension and R an n-coherent ring. Then the

following assertions hold true:

(i) The class (C ⊗R S)fpnI(S)≤k is closed under extentions and cokernels of monomorphisms.

(ii) The class (C ⊗R S)fpnF (S)≤k is closed under extentions and kernels of epimorphisms.

Proof. (i). Consider the exact sequence 0 −→ A −→ B −→ C −→ 0, of S-modules, where A and C are

in (C ⊗R S)fpnI(S)≤k. Then by Proposition 4.4, A and C are in CfpnI(R)≤k. So by Remark 3.2(ii)

and [22, Theorem 4.9], B is in CfpnI(R)≤k, and then B is in (C ⊗R S)fpnI(S)≤k from Proposition

4.4. Similarly, if B and C are in (C ⊗R S)fpnI(S)≤k, then A is in (C ⊗R S)fpnI(S)≤k.

(ii). This is similar to that of (i) by using Proposition 4.5 and [22, Theorem 4.8].

Theorem 4.7. Let S ≥ R be an almost excellent extension. Then the class (C ⊗R S)fpnI(S)≤k is

preenveloping and precovering.

Proof. Let M is an S-module. We show that M has a (C ⊗R S)fpnI(S)≤k-preenvelope. Since M

is an R-module, then by Theorem 3.16, M has a CfpnI(R)≤k-preenvelope. Let R-homomorphism

α : M −→ N be a CfpnI(R)≤k-preenvelope of M . Then by Proposition 4.3(1), HomR(S,N) ∈

(C ⊗R S)fpnI(S)≤k. We prove that α∗λM : M −→ HomR(S,N) is a (C ⊗R S)fpnI(S)≤k-preenvelope

of S-moduleM , where λM : M −→ HomR(S,M) and α∗ : HomR(S,M) −→ HomR(S,N). If L ∈ (C⊗R

S)fpnI(S)≤k, and β : M −→ L is an S-homomorphism, then by Proposition 4.4, L ∈ CfpnI(R)≤k,

and so there exists R-homomorphism γ : N −→ L such that β = γα. Thus, we have the following

commutative diagram:

SM

β

��

λM //
HomR(S,M)

πM

oo
α∗ //

β∗

��

HomR(S,N)

1
��

SL
λL //

HomR(S,L)
πL

oo HomR(S,N)
γ∗

oo .
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So, we have (πLγ∗)(α∗λM ) = πL(γ∗α∗)λM = πL(γα)∗λM = πL(β)∗λM = πLλLβ = β. Therefore, we

get that every S-module M has a (C ⊗R S)fpnI(S)≤k-preenvelope. Similarly, it is proved that the

class (C ⊗R S)fpnI(S)≤k is precovering.

Theorem 4.8. Let S ≥ R be an almost excellent extension. Then the class (C ⊗R S)fpnF (S)≤k is

preenveloping and precovering.

Proof. Let M is an S-module. We show that M has a (C ⊗R S)fpnF (S)≤k-preenvelope. Since M

is an R-module, then by Theorem 3.16, M has a CfpnF (R)≤k-preenvelope. Let R-homomorphism

α : M −→ N be a CfpnF (R)≤k-preenvelope of M . Then by Proposition 4.3(2), (S ⊗R N) ∈ (C ⊗R

S)fpnF (S)≤k. We prove that (S⊗Rα)lM : M −→ S⊗RN is a (C⊗R S)fpnF (S)≤k-preenvelope of S-

module M , where lM : M −→ (S⊗RM) and S⊗Rα : S⊗RM −→ S⊗RN. If L ∈ (C⊗RS)fpnF (S)≤k,

and β : M −→ L is an S-homomorphism, then by Proposition 4.5, L ∈ CfpnF (R)≤k, and so there

exists R-homomorphism γ : N −→ L such that β = γα. Thus, we have the following commutative

diagram:

SM

β

��

lM //
S ⊗R M

τM
oo

S⊗Rα //

S⊗Rβ

��

S ⊗R N

1
��

SL
lL //

S ⊗R L
τL

oo S ⊗R N
S⊗Rγ

oo .

Thus, we have τL(S ⊗R γ)(S ⊗R α)lM = τL(S ⊗R γα)lM = τLlLβ = β, and so every S-module M

has a (C ⊗R S)fpnF (S)≤k-preenvelope. Similarly, it is proved that the class (C ⊗R S)fpnF (S)≤k is

precovering.

Corollary 4.9. Let S ≥ R be an almost excellent extension. Then the following assertions are

equivalent:

(i) Every S-module has a monic (C ⊗R S)fpnI(S)≤k-cover;

(ii) Every Sop-module has an epic (C ⊗R S)fpnF (Sop)≤k-envelope;

(iii) Every quotient in (C ⊗R S)fpnI(S)≤k is in (C ⊗R S)fpnI(S)≤k;

(iv) Every submodule of (C ⊗R S)fpnF (Sop)≤k is in (C ⊗R S)fpnF (Sop)≤k.

Moreover, if R is an n-coherent ring, then the above conditions are also equivalent to:

(v) The kernel of any CfpnI(R)-precover of any R-module is in CfpnI(R);

(vi) The cokernel of any CfpnF (Rop)-preenvelope of any Rop-module is in CfpnF (Rop).

Proof. (i)⇔(iii). First, we show that the class (C ⊗R S)fpnI(S)≤k is closed under direct sums. Let

{Mj}j∈J be a family of S-modules such that every Mj ∈ (C⊗RS)fpnI(S)≤k. Then by Proposition 4.4,

Mj ∈ CfpnI(R)≤k, and then by Proposition 3.13(i),
⊕

j∈J Mj ∈ CfpnI(R)≤k, and so by Proposition

4.4,
⊕

j∈J Mj ∈ (C ⊗R S)fpnI(S)≤k. So [9, Proposition 4] shows that (i) and (iii) are equivalent.

(ii)⇔(iv). The proof is similar to that of (i)⇔(iii) by using Propositions 3.13(ii), 4.5 and [5,

Theorem 2].
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(iii)⇒(iv). Let N ∈ (C ⊗R S)fpnF (Sop)≤k and N ′ be a submodule of N . From the short exact

sequence

0 −→ N ′ −→ N −→ N/N ′ −→ 0,

we get the short exact sequence

0 −→ (N/N ′)∗ −→ N∗ −→ N ′∗ −→ 0.

By Propositions 4.5 and 3.11(ii), N ∈ CfpnF (Rop)≤k if and only if N∗ ∈ CfpnI(R)≤k if and only if

N∗ ∈ (C ⊗R S)fpnI(S)≤k. Then by (iii) and Propositions 4.4, N ′∗ ∈ (C ⊗R S)fpnI(S)≤k if and only

if N ′∗ ∈ CfpnI(R)≤k, and consequently by Propositions 3.11(i) and 4.5 , N ′ ∈ CfpnF (Rop)≤k if and

only if N ′ ∈ (C ⊗R S)fpnF (Sop)≤k.

(iv)⇒(iii). This is similar to that of (iii)⇒(iv).

(i)⇒(v). Assume that M is an S-module and that, by Theorem 4.7, f : F −→ M is a (C ⊗R

S)fpnI(S)≤k-precover of M . Assume also that g : E −→ M is a monic (C ⊗R S)fpnI(S)≤k-cover of

M . Then [7, Lemma 8.6.3] implies that Ker(f)⊕E ∼= F . By Proposition 4.4, F ∈ CfpnI(R)≤k, and so

by Proposition 3.13(i), Ker(f) ∈ CfpnI(R)≤k. Then Ker(f) ∈ (C ⊗R S)fpnI(S)≤k from Proposition

4.4.

(ii)⇒(vi). The proof is similar to that of (i)⇒(v) by using the dual of [7, Lemma 8.6.3].

(vi)⇒(iv). Assume that N ∈ (C ⊗R S)fpnF (Sop)≤k and that N ′ is a submodule of N . Assume

also that, by Theorem 4.8, f : N ′ −→ F is a (C ⊗R S)fpnF (Sop)≤k-preenvelope of N ′. Then we have

the following commutative diagram

N ′
f // F

��

// Coker(f) // 0

0 // N ′ // N

with exact rows. In particular, the sequence

0 −→ N ′ −→ F −→ Coker(f) −→ 0

is exact, and then by Remark 3.2(ii) and Corollary 4.6(ii), N ′ ∈ (C ⊗R S)fpnF (Sop)≤k.

(v)⇒(iii). The proof is similar to that of (vi)⇒(iv) by using Corollary 4.6(i).

In next proposition, we investigate the homological behavior of Auslander and Bass classes under

almost excellent extension of rings.

Proposition 4.10. Let S ≥ R be an almost excellent extension. Then the following assertions hold:

(i) If M ∈ AC(R), then (S ⊗R M) ∈ AC⊗RS(S);

(ii) If M ∈ BC(R), then HomR(S,M) ∈ BC⊗RS(S).

Proof. (i). There exists an exact sequence of R-modules

· · · −→ Fj+1 −→ Fj −→ Fj−1 −→ · · · −→ F1 −→ F0 −→ C −→ 0,
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where each Fj is finitely generated and free for all j ≥ 0. Since M ∈ AC(R), we have the following

exact sequence

· · · −→ Fj+1⊗RM −→ Fj⊗RM −→ Fj−1⊗RM −→ · · · −→ F1⊗RM −→ F0⊗RM −→ C⊗RM −→ 0,

and since S is flat R-module, we have the following commutative diagram

S ⊗R (Fj+1 ⊗R M) //

∼=
��

S ⊗R (Fj ⊗R M) //

∼=
��

· · · // S ⊗R (C ⊗R M) //

∼=
��

0

(Fj+1 ⊗R S)⊗S (S ⊗R M) // (Fj ⊗R S)⊗S (S ⊗R M) // · · · // (C ⊗R S)⊗S (S ⊗R M) // 0,

and so TorSj (C ⊗R S, S ⊗R M) = 0 for any j ≥ 0.

On the other hand, C ⊗R M ∈ BC(R) by [17, Proposition 4.1]. So there exists the exact sequence

0 −→ HomR(C,C ⊗R M) −→ · · · −→ HomR(Fj , C ⊗R M) −→ HomR(Fj+1, C ⊗R M) −→ · · · ,

and hence by [19, Lemma 4.86], we have the following commutative diagram:

0 // S ⊗R HomR(C,C ⊗R M) //

∼=
��

· · · // S ⊗R HomR(Fj+1, C ⊗R M)

∼=
��

0 // HomR(C,S ⊗R (C ⊗R M)) //

∼=
��

· · · // HomR(Fj+1, S ⊗R (C ⊗R M))

∼=
��

0 // HomS(C ⊗R S, (C ⊗R S)⊗S (S ⊗R M)) // · · · // HomS(Fj+1 ⊗R S, (C ⊗R S)⊗S (S ⊗R M)).

Therefore, we deduce that ExtjS(C ⊗R S, (C ⊗R S)⊗S (S ⊗R M)) = 0, and also

S ⊗R M ∼= S ⊗R HomR(C,C ⊗R M) ∼= HomS(C ⊗R S, (C ⊗R S)⊗S (S ⊗R M)).

Hence, it follows that (S ⊗R M) ∈ AC⊗RS(S).

(ii). Let M ∈ BC(R). Then by Proposition 2.3(ii), M∗ ∈ AC(R
op). So (S ⊗Rop M∗) ∈

AC⊗RopS(S
op) by (i). Since S is a finitely presented R-module, [19, Lemma 3.55] implies that

HomRop(S,M)∗ ∈ AC⊗RopS(S
op). Consider the exact sequence Y = · · · −→ F1 −→ F0 −→ C −→ 0 of

R-modules, where each Fj is finitely generated and free for all j ≥ 0. Then by Lemma 4.2, Y ⊗R S

is a Y ⊗R S-finitely presented, and then similar to the proof of Proposition 2.3(ii), HomR(S,M) ∈

BC⊗RS(S).

Corollary 4.11. Let S ≥ R be an almost excellent extension. Then the following assertions hold:

(i) fpnF (S)≤k ⊆ AC⊗RS(S);

(ii) fpnI(S)≤k ⊆ BC⊗RS(S).
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Proof. (i). Let M ∈ fpnF (S)≤k. Then there exists an exact sequence

0 −→ Yk −→ Yk−1 −→ · · · −→ X1 −→ X0 −→ M −→ 0

of S-modules with each Xi ∈ fpnF (S) for all 0 ≤ i ≤ k. By [21, Proposition 3.2], Xi ∈ fpnF (R).

So we obtain that M ∈ fpnF (R)≤k. Thus by Lemma 2.8(ii), M ∈ AC(R), and so by Proposition

4.10(i), (S ⊗R M) ∈ AC⊗RS(S). By [24, Lemma 1.1], we see that S-module M is isomorphic to a

direct summand of S ⊗R M . Then [17, Proposition 4.2] implies that M ∈ AC⊗RS(S).

(ii).This is similar to the proof of (i).

Lemma 4.12. Let S ≥ R be an almost excellent extension. Then the following assertions hold true:

(i) (C ⊗R S)fpnI(S)≤k ⊆ AC⊗RS(S);

(ii) (C ⊗R S)fpnF (S)≤k ⊆ BC⊗RS(S).

Proof. (i). Assume that M ∈ (C ⊗R S)fpnI(S)≤k. Then by Proposition 4.4, M ∈ CfpnI(R)≤k,

and so M ∈ AC(R) by Lemma 3.5(i). Thus by Proposition 4.10(i), (S ⊗R M) ∈ AC⊗RS(S). By [24,

Lemma 1.1], M is isomorphic to a direct summand of S ⊗R M , and consequently by [17, Proposition

4.2], M ∈ AC⊗RS(S).

(ii). This is similar to the first part.

In the following, we investigate Foxby equivalence relative to the class (C ⊗R S)fpnI(S)≤k with

the class fpnI(S)≤k and the class (C ⊗R S)fpnF (S)≤k with the class fpnF (S)≤k, where S ≥ R is an

almost excellent extension.

Proposition 4.13. Let S ≥ R be an almost excellent extension. Then we have the following equiva-

lences of categories:

(i) (C ⊗R S)fpnI(S)≤k

(C⊗RS)⊗S−

∼
//
fpnI(S)≤k;

HomS(C⊗RS,−)
oo

(ii) fpnF (S)≤k

(C⊗RS)⊗S−

∼
//
(C ⊗R S)fpnF (S)≤k.

HomS(C⊗RS,−)
oo

Proof. (i). Let M ∈ (C ⊗R S)fpnI(S)≤k. Then there exists an exact sequence

0 −→ M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

of S-modules with each Ii ∈ (C ⊗R S)fpnI(S) for all 0 ≤ i ≤ k. By Proposition 4.4, each Ii ∈

CfpnI(R), and so by Proposition 3.6(i) and [21, Proposition 3.2], C ⊗R Ii ∈ fpnI(R) if and only if

C ⊗R Ii ∈ fpnI(S). On the other hand, by Proposition 4.4, M ∈ CfpnI(R)≤k, and then by Lemma

3.5(i), M and Ii are in AC(R). So, there exists exact sequence

0 −→ C ⊗R M −→ C ⊗R I0 −→ C ⊗R I1 −→ · · · −→ C ⊗R Ik−1 −→ C ⊗R Ik −→ 0

of S-modules with each C⊗R Ii ∈ CfpnI(S) for all 0 ≤ i ≤ k, and hence (C⊗R S)⊗S M ∼= C⊗RM ∈

fpnI(S)≤k.
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Also, M ∈ AC⊗RS(S) by Lemma 4.12(i). So we have M ∼= HomS(C ⊗R S, (C ⊗R S)⊗S M).

Now, let N ∈ fpnI(S)≤k. Then there exists an exact sequence

0 −→ N −→ X0 −→ X1 −→ · · · −→ Xk−1 −→ Xk −→ 0

of S-modules with each Xi ∈ fpnI(S) for all 0 ≤ i ≤ k. By [21, Proposition 3.2], Xi ∈ fpnI(R).

So we get that N ∈ fpnI(R)≤k. Thus by Proposition 3.6(i), HomR(C,N) ∈ CfpnI(R)≤k. We have

HomS(C⊗RS,N) ∼= HomR(C,HomS(S,N)) ∼= HomR(C,N). Hence HomS(C⊗RS,N) ∈ CfpnI(R)≤k,

and then by Proposition 4.4, HomS(C ⊗R S,N) ∈ (C ⊗R S)fpnI(S)≤k.

(ii). This is similar to that of (i).

In the following, we give equivalent conditions with modules of the classes AC(R) and BC(R) under

almost excellent extension of rings.

Proposition 4.14. Let S ≥ R be an almost excellent extension and M an S-module. Then the

following assertions are equivalent:

(i) M ∈ AC(R);

(ii) (S ⊗R M) ∈ AC⊗RS(S);

(iii) M ∈ AC⊗RS(S).

Proof. (i)=⇒(ii). It is clear by Proposition 4.10(1).

(ii)=⇒(iii). By [24, Lemma 1.1], SM is isomorphic to a direct summand of S-module S ⊗R M .

Then by [17, Proposition 4.2(1)], M ∈ AC⊗RS(S).

(iii)=⇒(i). Let M ∈ AC⊗RS(S). Then TorSj (C ⊗R S,M) = 0 for any j ≥ 1. So, we have the

following commutative diagram:

· · · // (F1 ⊗R S)⊗S M //

∼=
��

(F0 ⊗R S)⊗S M //

∼=
��

(C ⊗R S)⊗S M //

∼=
��

0

· · · // F1 ⊗R M // F0 ⊗R M // C ⊗R M // 0,

where the first line is exact by (iii), and so the second line is also exact, and then TorRj (C,M) = 0 for

any j ≥ 1.

On the other hand, ExtjS(C ⊗R S, (C ⊗R S)⊗S M) = 0 for any j ≥ 1. Then, we have the following

commutative diagram:

0 // HomS(C ⊗R S, (C ⊗R S)⊗S M) //

∼=
��

HomS(C ⊗R S, (C ⊗R S)⊗S M) //

∼=
��

· · ·

0 // HomS(C ⊗R S,C ⊗R M) //

∼=
��

HomS(C ⊗R S,C ⊗R M) //

∼=
��

· · ·

0 // HomR(C,C ⊗R M) // HomR(C,C ⊗R M) // · · · ,

where the first and second lines are exact by (iii), and so the third line is also exact, and then

ExtjR(C,M) = 0 for any j ≥ 1.
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Also by (iii) and [19, Theorem 2.75], we have

M ∼= HomS(C ⊗R S, (C ⊗R S)⊗S M) ∼= HomS(C ⊗R S,C ⊗R M) ∼= HomR(C,C ⊗R M).

Consequently, M ∈ AC(R).

Proposition 4.15. Let S ≥ R be an almost excellent extension and M an S-module. Then the

following assertions are equivalent:

(i) M ∈ BC(R);

(ii) HomR(S,M) ∈ BC⊗RS(S);

(iii) M ∈ BC⊗RS(S).

Proof. This is similar to the proof of Proposition 4.14.

Under chang of rings, Auslander and Bass classes are equivalent under the pair of functors.

Proposition 4.16. Let S ≥ R be an almost excellent extension. Then there are equivalences of

categories:

AC⊗RS(S)
(C⊗RS)⊗S−

∼
//
BC⊗RS(S)

HomS(C⊗RS,−)
oo

Proof. By Proposition 4.14, M ∈ AC⊗RS(S) if and only if M ∈ AC(R). Then by [17, Proposition 4.1],

(C ⊗R M) ∈ BC(R), and so (C ⊗R S)⊗S M ∼= (C ⊗R M) ∈ BC⊗RS(S) by Proposition 4.15. Also, we

have M ∼= HomR(C,C ⊗R M) ∼= HomS(C ⊗R S, (C ⊗R S)⊗S M).

On the other hand, By Proposition 4.15, N ∈ BC⊗RS(S) if and only if N ∈ BC(R). Thus by [17,

Proposition 4.1], HomR(C,N) ∈ AC(R), and so HomS(C ⊗R S,N) ∼= HomR(C,N) ∈ AC⊗RS(S) by

Proposition 4.14 and [19, Theorem 2.75]. Also, we have

N ∼= C ⊗R HomR(C,N) ∼= (C ⊗R S)⊗S HomS(C ⊗R S,N).

By using Corollary 4.11, Lemma 4.12 and Propositions 4.10, 4.13, 4.16, we get Foxby Equivalence

under an almost excellent extension:

Theorem 4.17. (Foxby Equivalence under almost excellent extension of rings) Then we have the
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following equivalences of categories:

fpnF (S)
(C⊗RS)⊗S−

∼
//

� _

��

(C ⊗R S)fpnF (S)
HomS(C⊗RS,−)

oo � _

��
fpnF (S)≤k

(C⊗RS)⊗S−

∼
//

� _

��

(C ⊗R S)fpnF (S)≤k
HomS(C⊗RS,−)

oo � _

��
AC⊗RS(S)

(C⊗RS)⊗S−

∼
//
BC⊗RS(S)

HomS(C⊗RS,−)
oo

(C ⊗R S)fpnI(S)≤k

(C⊗RS)⊗S−

∼
//?�

OO

fpnI(S)≤k
HomS(C⊗RS,−)

oo
?�

OO

(C ⊗R S)fpnI(S)
(C⊗RS)⊗S−

∼
//?�

OO

fpnI(S)
HomS(C⊗RS,−)

oo
?�

OO
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