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Abstract

Let R and S be rings, C = sCg a (faithfully) semidualizing bimodule, and n a positive integer
or n = oo. In this paper, we introduce the concepts of C-fp,-injective R-modules and C- fp,-flat
S-modules as a common generalization of some known modules such as C-F P,-injective (resp.
C-weak injective) R-modules and C-F P,-flat (resp. C-weak flat) S-modules. Then we investigate
C- fpp-injective and C- fp,-flat dimensions of modules, where the classes of these modules, namely
CfpnI(R)<y and C fp,F(S)<k, respectively. We study Foxby equivalence relative to these classes,
and also the existence of C fp,I(R)<y and C fp, F(S)<y preenvelopes and covers. Finally, we study
the exchange properties of these classes, as well as preenvelopes (resp. precovers) and Foxby equiv-

alence, under almost excellent extensions of rings.
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1 Introduction

Throughout this paper, n is a positive integer, R and S are fixed associative rings with unites, and
all R- or S-modules are understood to be unital left R- or S-modules (unless specified otherwise).
sM (resp. Mpg) is used to denote that M is a left S-module (resp. right R-module). Also, sMp
is used to denote that M is an (S, R)-bimodule which means that M is both a left S-module and a
right R-module, and these structures are compatible. Right R- or S-modules are identified with left

modules over the opposite rings R°P and S°P.
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Wei and Zhang in [21] introduced the notion of fp,-injective (resp. fp,-flat) modules as a general-
ization of fp-injective and F P,-injective (resp. fp-flat and F'P,-flat) modules, where fp-injective and
fp-flat modules introduced by Garkusha and Generalov in [10], and also F'P,,-injective and F'P,-flat

modules introduced by Bravo and Pérez in [4].

Over a commutative Noetherian ring R, a semidualizing module for R is a finitely generated
R-module C' with Hompg(C, C) canonically isomorphic to R and Ext’}é(C’, C) =0 for all i > 1. Semid-
ualizing modules (under different names) were independently studied by Foxby in [8], Vasconcelos in
[20], and Golod in [15]. Araya et al., in [1], extended the notion of semidualizing modules to a pair of
non-commutative, but Noetherian rings. Holm and White, in [17], generalized the notion of a semidu-
alizing module to general associative rings, and defined and studied Auslander and Bass classes under
a semidualizing bimodule C', and then introduced the notions of C-flat, C-projective, and C-injective

modules, where C' = gCg stands for a semidualizing bimodule.

In [22], Wu and Gao introduced the notion of C-FP,-injective (resp. C-FP,-flat) modules as
a common generalization of some known modules such as C-injective, C-F P-injective and C-weak
injective (resp. C-flat and C-weak flat) modules (see [14, 17, 25]). Furthermore, they investigated
Foxby equivalence relative to C-F P,-injective R-modules and C-F P,-flat S-modules, proved that the
classes FZ(R) and FFE(S) are preenveloping and covering, and found that when these classes are
closed under extensions, cokernels of monomorphisms, and kernels of epimorphisms, where FZ#(R)
and FF(S) are the classes of C-F P,-injective R-modules and C-F' P,-flat S-modules, respectively.

Recently, the homological theory for injective modules and flat modules with respect to semidu-
alizing bimodules has became an important area of research (see for example [2, 3, 11, 14, 17, 22]).
In this paper, we introduce and study the notion of C-fp,-injective (resp. C-fp,-flat) modules as a
common generalization of C-weak injective and C-F P,-injective (resp. C-weak flat and C-F P,-flat)

modules.

In Section 2, we state some fundamental notions and some preliminary results. Then we present
some features of the Auslander and Bass classes, and modules of fp,-injective and fp,-flat dimension
at most k. In Section 3, first we introduce C- fp,-injective R-modules and C-fp,-flat S-modules, and
then we give some homological relationships between the classes fp,I(S)<k, fpnF (R)<k, Cfpnl(R)<k,
CfpnF(S)<k, Ac(R), and Bc(S), where these classes are the class of S-modules with fp,-injective
dimention at most k, the class of R-modules with fp,-flat dimention at most k, the class of R-modules
with C-fp,-injective dimention at most k, the class of S-modules with C-fp,-injective dimention at
most k, the Auslander class, and the Bass class under faithfully semidualizing bimodules C, respec-
tively. Among other results, we prove that (i) Foxby equivalence relative to these classes, (ii) for
an R-module M (resp. S-module N), M € Cfp,I(R)<) (resp. N € Cfp,F(S)<i) if and only if
M € Ac(R) (resp. N € Bc(S)) and C @pr M € fppI(S)<k (resp. Homg(C,N) € fp,F(R)<k),
and (iii) the classes C' fp,I(R) and C fp,F(S) are preenveloping and covering. Section 4 considering
faithfully semidualizing modules C' is devoted to the exchange properties of these classes under chang
of rings. For example, let S > R be an almost excellent extension. Then we show that (i) the classe
(C®r S)fpnI(R) and (C ®g S) fp,F(R) are preenveloping and precovering, (ii) if M € Ac(R), then
(S®r M) € Acgys(S); if M € Be(R), then Homp(S, M) € Beggps(S), and (ii) existence Foxby
equivalence relative to the classes (C ®@g S)fpnl(R), (C ®r S)fpnF (R), Acsrs(S) and Beg,s(S).



Foxby equivalence relative to C-fp,-injective and C- fp,-flat modules 3

2 Preliminaries

In this section, some fundamental concepts and notations are stated.

Definition 2.1. (see [4, Section 1 and Definitions 2.2, 3.1, and 3.2], [27, Definitions 2.8 and 2.18],
[13, Definition 2.1], [12, Definition 2.1], [14, 1.2, 1.3, and 1.4], [22, Definition 3.1], [14, Definition 2.1]
and [21, Definition 2.1])

(i) An R-module M is called finitely n-presented if there exists an exact sequence
F,—F,——F——F— Fy— M —0,

where each Fj is a finitely generated free (equivalently, finitely generated projective) R-module.

A ring R is called n-coherent if every finitely n-presented R-module is finitely (n + 1)-presented;

(iil) An R-module M is called FP,-injective or (n,0)-injective (resp. FP,-flat or (n,0)-flat) if
Exth(L, M) = 0 (resp. Torf(L,M) = 0) for any finitely n-presented R-module (resp. R-
module) L. FP,-Inj(R) and FP,-Flat(R) denote the class of F'P,-injective R-modules and the
class of F'P,-Flat R-modules, respectively;

(iii) The FP,-injective dimension (or (n,0)-injective dimension) and the FP,-flat dimension (or
(n,0)-flat dimension) of an R-module M are defined by

FPy.idgp(M) = inf{k : Ext];;l(L, M) = 0 for every finitely n-presented R-module L}
and
FPp.fdp(M) = inf{k : Torf, (L, M) = 0 for every finitely n-presented R°’-module L},
respectively;

(iv) A degreewise finite projective resolution (or, super finitely presented) of an R-module M is a

projective resolution of M:
o — Py — P —PF 44— — P —F—U-—0,

where each P; is a finitely generated projective (equivalently, finitely generated free) R-module;

(v) An R-module M is called weak injective (resp. weak flat) if Exth(U, M) = 0 (vesp. Torl (U, M) =
0) for any super finitely presented R-module (resp. R°P-module) U.

(vi) An (S, R)-bimodule C' = gCg is semidualizing if the following conditions hold:

(a1) sC admits a degreewise finite S-projective resolution;

)
az) Cpr admits a degreewise finite R°P-projective resolution;
(az)

(b1) The homothety map g7 : 555 — Homper (C, C) is an isomorphism;
(b2) The homothety map g : RRr — Homg(C, C) is an isomorphism;
(c1) Extiy(C,C) =0 for all i > 1;
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(ca) Extlhon(C,C) =0 for all i > 1.

A semidualizing bimodule sCr is faithfully semidualizing if it satisfies the following conditions

for all modules ¢ N and Mg:
(1) If Homg(C, N) = 0, then N = 0;
(2) If Hompor (C, M) = 0, then M = 0.

By [17, Proposition 3.2], there exist many examples of faithfully semidualizing bimodules were

provided over a wide class of non-commutative rings;

The Auslander class Ac(R) with respect to C' consists of all R-modules M satisfying the fol-

lowing conditions:

(Ay) Tor®(C,M) =0 for all i > 1;
(A3) Exty(C,C ®@p M) =0 for all i > 1;

(A3) The natural evaluation homomorphism gy : M — Homg(C,C ®g M) is an isomorphism
(of R-modules).

The Bass class Bco(S) with respect to C' consists of all S-modules N satisfying the following

conditions:

(B1) Extiy(C,N) =0 for all i > 1;
(Bs) Torf(C,Homg(C,N)) =0 for all i > 1;

(B3) The natural evaluation homomorphism vy : C ® g Homg(C, N) — N is an isomorphism
(of S-modules).

It is an important property of Auslander and Bass classes that they are equivalent under the

pair of functors:
CROp—
Ac(R) ~ Bc(S)
Homg(C,—)

(see [17, Proposition 4.1]);

An R-module is called C-weak injective if it has the form Homg(C, X) for some weak injective
S-module X. An S-module is called C'-weak flat if it has the form C' ®g Y for some weak flat
R-module Y;

An R-module is called C-F P, -injective if it has the form Homg(C, X) for some F P,-injective
S-module X. An S-module is called C'-F P,,-flat if it has the form C' ®gr Y for some F P,-flat
R-module Y;

An R-module M is called fp,-injective (resp. fp,-flat) if for every exact sequence 0 — K — L
with K and L are finitely n-presented R-modules (resp. R°-modules), the induced sequence
Hompg(L, M) — Hompg(K,M) — 0 (resp. 0 — K ®p M — L ®p M) is exact. fp,I(R)
and fp,F(R) denote the class of fp,-injective R-modules and the class of fp,-Flat R-modules,

respectively.
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By [4, Proposition 1.7(1)], every FP,-injective (resp. FP,-flat) module is fpp,-injective (resp.
fpm-flat) for any m > n. But not conversely, see Example 3.3. The Proposition 2.4 shows that the

converse is also true over n-coherent rings.

Definition 2.2. Let YV = ... ﬁ) Fy i) Fy i) U — 0, be an exact sequence of projective R-
modules F;. Then ) is called Y-finitely presented (equivalently, super finitely presented in [13]) if U
and Kerf; are finitely presented for any 7 > 0.

Proposition 2.3. Let C be a semidualizing module. Then the following assertions hold true:
(i) M € Ac(R) if and only if M* € Bo(RP);
(ii) M € Be(R) if and only if M* € Ac(RP).

Proof. (i). (=) Assume that M € Ac(R). Then by [19, Lemma 3.53|, there is a (— ®r M)*-exact
exact sequence ) = --- — F} — Fy — C — 0, with each F; is finitely generated and free. So by
[19, Theorem 2.76 ], it is easy to check that 0 = Tor®(C, M)* & Ext',, (C, M*) for any i > 1.

On the other hand, we have Ext%(C,C ®r M) = 0, and so Homg(Y,C @5 M) is exact. Since
Y is Y-finitely presented, then by [19, Lemmas 3.53 and 3.55 and Theorem 2.76], we deduce that
Homp(Y,C ®pr M)-exact if and only if Hompger (Y, C ® g M )*-exact if and only if Y @ gor (C @ M )*-
exact if and only if Y ® ger Hom ger (C, M*)-exact. Hence Tor!*”" (C, Homgop (C, M*)) = 0 for all 5 > 1.
Also, we have M = Hompg(C,C ®g M). So by [19, Lemma 3.55], M* = Hompger (C,C @p M)* =
C Qpor (C @ M)* =2 C @por Hompor (C, M*). Then, it follows that M* € Ba(RP).

(<) Let M* € Be(RP). Then there is a Hompgoer (—, M*)-exact exact sequence Y = -+ —>
F, — Fy — C — 0, with each F; is finitely generated and free. So by [19, Theorem 2.76 and
Lemma 3.53 |, Hom gor (), M*)-exact if and only if (Y ® gor M )*-exact if and only if (Y ®r M )-exact. So
Torf(C, M) = 0 for any i > 1. Also, we have Tor!*” (), Hom gor (C, M*)) = 0 for any i > 1. Then since
Y is Y-finitely presented, ) @ ror Hompgop (C, M*)-exact if and only if Y @ gor (C @ M)*-exact if and
only Homgop (Y, C ® g M)*-exact if and only if Hompg(), C @ M)-exact, and so Exti(C,C®r M) =0
for any i > 1. We have M* = C ® gor Hom pgor (C, M*) = C Q@por (C @ M)* = Hompg(C,C ®@r M)*,
and so M = Homp(C,C ®r M). Consequently, M € Ac(R).

(ii). This is similar to that of (i). O

Proposition 2.4. Let R (resp. R°P) be an n-coherent ring and M an R-module. Then M is fpp,-
injective (resp. fpm-flat) if and only if M is F P, -injective (resp. F P,-flat) for any m > n.

Proof. Assume that M is an fp,,-injective (resp. fp,,-flat) R-module and L is a finitely n-presented
R-module (resp. R°P-module). Since R (resp. R°P) is an n-coherent ring, there is an exact sequence

0— Kg—Fy—L—0

of R-modules (resp. R°P-modules), where Ky and Fj are finitely m-presented. Thus we get
Exth(L, M) = 0 (resp. Torf(L, M) = 0) by applying the derived functors of Hompg(—, M) (resp.
— ®gr M) to the above short exact sequence. Hence M is an FP,-injective (resp. FP,-flat) R-

module. O

The following lemmas will be useful in the proof of the first main result of this section.
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Lemma 2.5. Suppose that M is an fp,-injective (resp. fpp-flat) R-module and that
00— K —F—L—0

is a short exact sequence of R-modules (resp. R°P-modules) such that K is finitely n-presented and F
is finitely generated and free. Then Ext}%(L,M) =0 (resp. Torl'(L, M) = 0).

Proof. By applying the derived functors of Hompg(—, M) (resp. — ®pr M) to the above short exact

sequence, the assertion follows. O

Lemma 2.6. Suppose that M is an fpp-injective (resp. fpn-flat) R-module and that
0—Xo—X1 —Xo—— X, 1 — X, — X141 — -

is an exact sequence of R-modules (resp. R°P-modules) such that X; is finitely n-presented for all

7 > 0. Then the sequence
-+ — Hompg(X;, M) — --- — Hompg (X2, M) — Hompg(X1, M) — Hompg(Xo, M) — 0

(resp.
0 —=Xo®pM — X1 ®p M — Xo®p M — -+ — X; Qg M — --+)

15 exact.

Proof. Assume that C; = Coker(X;_; — Xj) for all j > 1. Then there exist short exact sequences
00— Xg— X1 —C; —0

and
0—>Cj_1—>Xj—>Cj—>0,

for all j > 2. Thus Cj is finitely n-presented for all j > 1 from [4, Proposition 1.7(1)] and using an
induction argument on j. Now, by applying the functor Hompg(—, M) (resp. — ®r M) to the above

exact sequences, the assertion follows. O

Definition 2.7. The fp,-injective dimension of an S-module M is defined that fp,.ids(M) < k if

and only if there exists an exact sequence
0O—M —Iy—1 — - — I 1 —1; —0

of S-modules with each I; € fp,I(S) for all 0 < i < k. Also, the fpy,-flat dimension of an R-module
N is defined that fp,.fdg(N) < k if and only if there exists an exact sequence

0 — F, —Fpy —-—F — Fy—N—70
of R-modules with each F; € fp,F(R) for all 0 < < k.

It is clear that fp,.ids(M) < 0 if and only if M is an fp,-injective S-module, and fp, fdr(N) <0
if and only if N is an fp,-flat R-module.

For convenience, we set
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o fp,I(S)<i = the class of S-modules of fpy-injective dimension at most k.
o fp,F(R)<) = the class of R-modules of fp,-flat dimension at most k.

In the next lemma, we show that the Bass class Bc(S) contains all S-modules with finite fp,-
injective dimension and the Auslander class Ac(R) contains all R-modules with finite fp,-flat dimen-

sion.

Lemma 2.8. Let C = gCR be a faithfully semidualizing bimodule. Then the following assertions hold

true:
(1) frul(S)<k € Be(S);
(ii) fpuf'(R)<k € Ac(R).

Proof. (i). First, we show that for £k = 0, fp,I(S) C WZ(S). Cosider Y-finitely presented ) =

- — F; — Fj_1 — -+ — Fi — Fy — U — 0 of S-modules. Then there is an exact
sequence 0 — Ky — Fy — U — 0, where Ky, Fy and U are finitely n-finitely presented. So if
X € fppI(9), then by Lemma 2.6, Homg(Fp, X) — Homg(Kp, X) — 0 is exact. Hence by Lemma
2.5, Ext} (U, X) = 0, and then X € WZ(S). Consequently, fp,I(S) C Bo(S) from [14, Theorem 2.2].
So for M € fppI(S)<y there exists an exact sequence

0—M —Xog— X1 — — X1 — Xy —0

of S-modules, where each X; € B¢o(S) for all 0 < i < k. Then by [17, Corollary 6.3], we deduec that
M € Be(9).
(ii). Let N € fppF(R)<g. Then there is an exact sequence

0 —F,—Fy 14— —F —F—N—70
of R-modules with each F; € fp,F(R) for all 0 < ¢ < k. Then by [19, Lemma 3.53],
0O —N'"—Fy — F — - —F | —F, —0

of R°P-modules, where each F; € fp,I(R°) by [21, Proposition 2.4(2)]. By (i), F € Bc(RP),
and then [17, Corollary 6.3] and Proposition 2.3, we deduec that N* € Bo(RP) if and only if N €
Ac(R). O

3 (C-fpy-injective and C-fp,-flat modules

Definition 3.1. An R-module is called C-fp,-injective if it has the form Homg(C, X) for some
X € fp,I(S). An S-module is called C-fp,,-flat if it has the form C®@gY for some Y € fp,F(R). We
denote the class of C-fp,-injective R-modules by C'fp,, I(R) and the class of C-fp,-flat S-modules by
Cfp,F(S). Therefore

Cfp,I(R) = {Homs(C.X) : X € fp,I(S)}

and

Cfp, F(S) ={C®RrY :Y € fp.F(R)}.
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Remark 3.2. (i) Every C-FP,-injective (resp. C-F P,-flat) module is C-fppm-injective (resp. C-
fpm-flat) module for any m > n (see [4, Proposition 1.7(1)]). But not conversely, see Example
3.3.

(ii) Ower n-coherent rings, every C-fpp-injective (resp. C-fp,-flat) module is also C-F P,,-injective
(resp. C-F Py,-flat) module for any m > n (see Proposition 2.4);

(iii) Every C-fpp-injective (resp. C-fpn-flat) module is C-fppy,-injective (resp. C-fpm-flat) for all

m > n, and so we have
CfpiI(R) C CfpI(R) C - C Cfp,I(R) € Cfppirl(R) C---

and
CfpF(S) C CfpyF(S)C--- CCfp,F(S)CCfp, F(S)C---

(iv) An R-module M (resp. S-module) is C-fpoo-injective (resp. C-fpoo-flat) if and only if weak

injective (resp. weak flat).

Recall that a ring R is said to be an (n,0)-ring or n-regular ring if every finitely n-presented

R-module is projective (see [18, 27]).

Example 3.3. Let K be a field, F a K-vector space with infinite rank, and A a Noetherian ring of
global dimension 0. Set B = K x F the trivial extension of K by E and R = A x B the direct product
of A and B. By [18, Theorem 3.4(3)], R is a (2,0)-ring which is not a (1,0)-ring. Thus, for every
R-module M and every finitely 2-presented R-module L, Exth(L, M) = 0 (resp. Torf(L, M) = 0) .
Hence every R-module is F' P;-injective (resp. F'P,-flat), and so every R-module is fps-injective (resp.
fpo-flat). On the other hand, there exists an R-module which is not F'Pj-injective (resp. F'Pj-flat),
since if every R-module is F Pj-injective (resp. F'Pj-flat), [27, Theorem 3.9] implies that R is (1,0)-
ring, contradiction. Therefore, if C' = R = 5, then every R-module is C-fps-injective and C- fpo-flat,
and there exists an R-module which is not C-F Pj-injective (resp. C-F P;j-flat).

Definition 3.4. Let C' = gCg be a faithfully semidualizing bimodule. The C-fp,-injective dimension
of an R-module M is defined that C fp,.idr(M) < k if and only if there exists an exact sequence

O— M —1y— 1) — -+ — Iy — I;; — 0

of R-modules with each I; € Cfp,I(R) for all 0 < i < k. Also, the C-fp,-flat dimension of an
S-module N is defined that C fp,.fdg(IN) < k if and only if there exists an exact sequence

0 —F,—Fy 14— —F —F—N—70
of S-modules with each F; € C'fp,F(S) for all 0 <i < k.

It is clear that C' fp,.idr(M) < 0if and only if M is a C- fp,-injective R-module, and C fp,,.fdg(N) <
0 if and only if N is a C-fp,-flat S-module.

For convenience, we set

o CfpnI(R)<) = the class of R-modules of C-fp,-injective dimension at most k.
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o Cfp,F(S)<k = the class of S-modules of C-fp,-flat dimension at most k.
The following lemma is needed in the proof of the first main result of this section.
Lemma 3.5. Then the following assertions hold true:
(i) Cfpnl(R)<k € Ac(R);
(i) CfpnF(S)<k € Be(S).

Proof. (i). Assume that N € Cfp,I(R). Then N = Homg(C, X) for some X € fp,I(S). By Lemma
2.8(i), X € Bo(S) and so N € Ac(R) from [14, Lemma 2.9(1)]. Now, if M € C fp,I(R)<k, then there

exists an exact sequence
O—M —Iy—15 — - —I 1 — I —0

of R-modules with each I; € Cfp,I(R) for all 0 < i < k, and also any I; € Ac(R). Hence by [17,
Corollary 6.3], M € Ac(R).
(ii). This is similar to the first part. O

In the following, we investigate Foxby equivalence relative to the classes C fp,I(R) and C fp, F(S)
as a generalization of Foxby equivalence relative to the classes FZ(R) and FFE(S) in [22].

Proposition 3.6. Then we have the following equivalences of categories:
CROp—

Homg(C,—)

CRpr—

(i) fpnF(R)<k ~ CfpnF(S)<k .
Homg (C,—)

Proof. (i). Let M € Cfp,I(R)<k. There exists an exact sequence
O— M —1y— 1) — - — Iy — I;; — 0

of R-modules with each I; € Cfp,I(R) for all 0 < ¢ < k. Thus, I; = Homg(C, X) for some X €
fpnI(S). By Lemma 2.8(i), X € Be(S), and then C ® g Homg(C, X) = X. So C®rI; € fp,I(S) and
also by Lemma 3.5(i), I; € Ac(R), and so Torf(C’, I;) =0forall j > 1. By Lemma 3.5(1), M € Ac(R)
and hence Torf(C’, M) = 0 for all j > 1. Therefore, by applying the functor C' ®p — to the above

exact sequence, we obtain the exact sequence
0 —CRrM —CRrly —C®plh — -+ —CQrlp 1 —CRrl; —0

of S-modules which shows that C @r M € fp,I(S)<i. Now, let N € fp,I(S)<k. There exists an
exact sequence

0—N-—I,—I— - —1I,_1—1I,—0

of S-modules with each I/ € fp,I(S) for all 0 < i < k. For all 0 < ¢ < k, from Lemma 2.8(i),
Il € Be(S), and so Extg(C, I') = 0 for all j > 1. Also, by Lemma 2.8(i), N € B¢(S) and hence
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EX‘G%(C, N) = 0 for all j > 1. Therefore, by applying the functor Homg(C, —) to the above exact

sequence, we obtain the exact sequence
0 — Homg(C, N) — Homg(C, I}}) — Homg(C, 1) — --- — Homg(C, I},_;) — Homg(C, I};) = 0

of R-modules which shows that Homg(C,N) € Cfp,I(R)<j. Note that, if M € Cfp,I(R)<j, then
by Lemma 3.5(iii), M € Ac(R), and if N € fp,I(S)<j, then from Lemma 2.8(i), N € B¢(S). Hence
we have the natural isomorphisms M = Homg(C,C @ M) and C @ p Homg(C, N) = N.

(ii). This is similar to that of (i). O

Corollary 3.7. Let C = gCg be a semidualizing bimodule. Then we have the following equivalences
of categories:

CRpr—

(i) Cfpal(R) ~ Sl (S);
Homg(C,—)

CRpr—

(ii) fpnF(R) ~ CfpnF(S).
Homg(C,—)

Proof. Put k =0 in Proposition 3.6. O
By using Lemma 3.5, Proposition 3.6, and Corollary 3.7, we get the first main result of this section.

Theorem 3.8. (Foxby Equivalence) Then we have the following equivalences of categories:

C®Rr—
fpnE'(R) ~ C fpnf(S)
Homs(cv_)

CQr—
IponF(R)<k ~ CfpnF(S)<k
" Homg(C,—) M

CRpr—
Ac(R) ~ Bo(S)
Homg(C,—)

J C®R_ J
Cfpn[(R)Sk ~ fpn[(S)Sk
Homg(C,—)

U C®r— J
Cfrnl(R) ~ frnl(S)
HOms(C,—)

We are now ready to state and prove the first main result of Theorem 3.8 (Foxby Equivalence).
Corollary 3.9. Let M be an R-module, and N an S-module. Then the following assertions hold true:
(i) M € Cfppl(R)<y if and only if M € Ac(R) and C ®@p M € fp,I(S)<k;

(ii) N € CfpnF(S)<i if and only if N € Bo(S) and Homg(C,N) € fp,F(R)<.
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Proof. (i). (=) This follows from Lemma 3.5(i) and Theorem 3.8.

(<) If M € Ac(R) and C ®r M € fp,I(S)<k, then M = Homg(C,C ®r M) and, by Theorem
3.8, Homg(C,C ®@r M) € Cfppl(R)<k. Thus M € Cfp,I(R)<y.

(ii). This is similar to the first part. O

Corollary 3.10. Let X be an S-module and Y an R-module. Then the following statements hold

true:
(i) Homg(C, X) € CfppI(R)<y, if and only if X € fpnI(S)<k-
(i) C@rY € Cfp F(S)<k if and only if Y € fp,F'(R)<k;

Proof. (i). Let Homg(C,X) € CfppnI(R)<i. Then, by Corollary 3.9(i), Homg(C, X) € Ac(R).
Therefore, from [14, Lemma 2.9(1)], X € B¢ (S) and hence C ®r Homg(C, X) = X. Thus X €
fonI(S)<k by Theorem 3.8.

(ii). This is similar to that of (i). O

In the course of the remaining parts of the paper, we denote the character module of M by
M* := Homgz(M,Q/Z) [19, Page 135].

Proposition 3.11. Let M be an R-module and N an S-module. Then the following statements hold:
(i) M € CfppIl(R)<k if and only if M* € Cfp,F(RP)<k;
(ii) N € CfpnF(S)<k if and only if N* € C fp,I(SP)<y.

Proof. (i). Assume that M € Cfpy,I(R)<i. We proceed by induction on k. (=) If k¥ = 0, then
M = Homg(C, X) for some X € fp,I(S). From [21, Proposition 2.4(1)], X* € fp,F(S°?). Thus
M* € Cfp,F(R) because M* = Homg(C, X)* = C ®gor X* by [19, Lemma 3.55 and Proposition
2.56]. (<=) Assume that M* € Cfp,F(R°). Then, from Corollary 3.9(ii), M* € Bc(RP) and
Hompor (C, M*) € fp,F(S°P). Also, by [19, Proposition 2.56 and Theorem 2.76], (C' @ M)* =
Hompor (C, M*) and so C ®r M € fp,I(S) from [21, Proposition 2.4(1)]. Since M* € B¢ (R),
M* = C ®gor Hompor (C, M*) = C ®gor (C @ M)* = Homg(C,C ®@r M)* from [19, Proposition
2.56, Theorem 2.76, and Lemma 3.55]. Hence M = Homg(C,C ®p M) by [19, Lemma 3.53]. Thus
M € Cfp,I(R).
Assume that M € C fp,I(R)<k. Then there exists an exact sequence

00— M —Y —L—0,
where Y € Cfp,I(R) and L € CfppI(R)<k—1. Since Y* € C fp,F(R), and by [19, Lemma 3.53],
0 —L" —Y"— M —0

is an exact sequence, we deduce that M € C fp,I(R)<y if and only if L € C fp,I(R)<k—1 if and only
if L* € CfppnF'(R?)<k—1 if and only if M* € C fp,F(RP)<.
(ii). This is similar to the first part. O

Corollary 3.12. Let M be an R-module and N an S-module. Then the following assertions hold:
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(i) M € Cfppl(R)<y if and only if M** € Cfp,I(R)<k;
(ii) N € CfpnF(S)<i if and only if N** € C fp,F'(S)<.
Proof. This follows by Proposition 3.11. O

In the next proposition, we prove that the classes C fp,I(R)<; and C fp,F(S)<j are closed under

direct summands, direct products, and direct sums.
Proposition 3.13. The following assertions hold:
(i) The class C fppI(R)<i is closed under direct summands, direct products, and direct sums;

(ii) The class C fp,F'(S)<k ts closed under direct summands, direct products, and direct sums.

Proof. (i). Let M € CfppnI(R)<) and let M’ be a summand of M. Then, by Corollary 3.9(i),
M € Ac(R) and C®rM € fpnI(S)<k, and also there exists an R-module M” such that M = M'@&M".
From [17, Proposition 4.2(a)], it follows that M’ € Ac(R). Also, by [19, Theorem 2.65], we have
CRrM = (CorM')®(C®rM") which shows from [21, Proposition 2.3(1)] that CQ g M’ € fp,I(S)<p.
Thus M’ € C fp,I(R)<j by Corollary 3.9(i).

Now, let { M} jcs be a family of R-modules of C- fp,-injective dimension at most k. Then, by Corollary
3.9(1), M; € Ac(R) and C ®r M; € fp,I(S)<y for all j € J. Hence, from [17, Proposition 4.2(a)],
[ljc; Mj € Ac(R) (vesp. @D,c; M; € Ac(R)). On the other hand, there exists an exact sequence

0—CRrM; — Inj — Iyj — -+ —> Ij_1; — Ijj — 0
of S-modules with each I;; € fp,I (S) for all 0 <i < k. So we have the exact sequence

0— H(C@RM]-) — Hloj — Hllj — o — HIk—lj — Hlkj —0
jeJ jeJ jeJ jeJ jeJ

of S-modules, where by [21, Proposition 2.3(1)], HjeJ Iij € fppd(S) for all 0 < i < k, and so
[[;c/(C®rM;) € fppl(S)<k. Similarly, @, ;(C ®r M;) € fpal(S)<k. Since C is finitely presented,
from [6, Lemma 2.10(2)] we have C ®@g ([[;c; M;) = [[;c,(C ®r M;), and then C @g ([[;c; M;) €
fpnl(S)<k. Also, C®r (B;c; M;) € fpal(S) by [19, Theorem 2.65]. Thus [[,;c; M; € Cfp,I(R)<k
(resp. D;c; M; € Cfpnl(R)<k) by Corollary 3.9(i).

(ii). By using [19, Theorem 2.30 and Corollary 2.32] and [6, Lemma 2.9], the proof is similar to
that of (i). O

Let F be a class of R-modules and let M be an R-module. A morphism f : F — M (resp.
f:M — F) with F € F is called an F-precover (resp. F-preenvelope) of M when Hompg(F', F') —
Homp(F', M) — 0 (resp. Hompg(F,F’') — Hompg(M,F') — 0) is exact for all F/ € F. Assume
that f: FF — M (resp. f: M — F) is an F-precover (resp. F-preenvelope) of M. Then f is called
an F-cover (resp. F-envelope) of M if every morphism ¢ : F' — F such that fg = f (resp. gf = f)
is an isomorphism. The class F is called (pre)covering (resp. (pre)enveloping) if each R-module has
an F-(pre)cover (resp. F-(pre)envelope) (see [7, Definitions 5.1.1 and 6.1.1]).

A duality pair over R is a pair (M, N), where M is a class of R-modules and N is a class of

R°P-modules, subject to the following conditions:
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(i) For an R-module M, one has M € M if and only if M* € N;
(ii) N is closed under direct summands and finite direct sums.

A duality pair (M, N) is called (co)product-closed if the class M is closed under (co)products in the
category of all R-modules (see [16, Definition 2.1}).

Corollary 3.14. (CfppI(R)<k, CfpnF(R?)<i) and (C fpnF(S)<k, C fpnl(SP)<k) are duality pairs.

Proof. By Proposition 3.11, an R-module M (resp. S-module N) isin C fp,I(R)< (resp. Cfp,F(S)<k)
if and only if M* (resp. N*) is in Cfp,F(R?)<y) (resp. CfpnI(S?)<k). Also, from Proposition
3.13, CfpnF(RP)<y (resp. Cfpnl(S°)<y) is closed under direct summands and direct sums. Thus

the assertions follow. O

Assume that M’ is an R-submodule of M. We say that M’ is a pure submodule of M, M /M’ is a
pure quotient of M, and M is a pure extension of M’ and M /M’ if

0—AQrM — ARr M — A®r M/M' — 0
is an exact sequence for all R°P-modules A, equivalently, if
0 — Hompg(B, M') — Hompg(B, M) — Hompg(B, M/M') — 0

is an exact sequence for all finitely 1-presented R-modules B [7, Definition 5.3.6].
Wei and Zhang proved in [21, Proposition 2.4(2)] that the classes fp,I(R) and fp,F(R) are closed
under pure submodules and pure quotients. The next corollary shows that the classes C fp,I(R) and

Cfp,F(S) are also closed under pure submodules, pure quotients, and pure extensions.

Corollary 3.15. Let M’ be a pure submodule of R-module M and let N' be a pure submodule of
S-module N. Then the following statements hold true:

(i) M € Cfp,I(R) if and only if M' € Cfp,I(R) and M/M' € Cfp,I(R);
(ii) N € Cfp,F(S) if and only if N' € Cfp,F(S) and N/N' € Cfp,F(S).
Proof. The assertion follows by Corollary 3.14 and [16, Theorem 3.1]. O

In the second main result of this section, by the use of duality pairs, we show that Cfp,I(R)<k
and C fp,F'(S)<y are preenveloping and covering.

Theorem 3.16. The classes C fp,I(R)<k and C fp,F(S)<j are preenveloping and covering.

Proof. By Corollary 3.14, (C fpnI(R)<k,C fpnF(RP)<k) and (CfpnF'(S)<k, C fpnl(SP)<)) are du-
ality pairs. Also, from Proposition 3.13, the classes C fp,I(R)<) and C fp,F(S)< are closed under
direct products and direct sums. Therefore, from [16, Theorem 3.1], the classes C fp,I(R)<; and
C fpnF'(S)<i, are preenveloping and covering. O
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4 C-fp,-injective and C-fp,-flat dimension of modules with respect

to change of rings

We assume S < R is a unitary ring extension. The ring S is called right R-projective, [24, 26] in case,
for any right S-module Mg with an S module Ng, Nr | Mg implies Ng | Mg, where N | M means
N is a direct summand of M. S is called a finite normalizing extension of R if there exist elements
ai, -+ ,an € Ssuch that a1 =1, S = Ra; + - -+ + Ra,. A finite normalizing extension S < R is called
an almost excellent extension in case rS is flat, Sgr is projective, and the ring S is right R-projective.
An almost excellent extension S < R is an excellent extension in case both rS and Sg are free modules
with a common basis {a1,- - ,a,}.

In this section, we investigat modules of C-fp,-injective dimension at most k and also, modules
of C-flat dimension at most k£ under an almost excellent extension of rings, where C' is a faithfully

semidualizing R-module.

Lemma 4.1. Let S > R be an almost excellent extension. Then the following assertions hold:
(i) If X € fpnl(R)<k, then Hompg (S, X) € fp,I(S)<k.
(ii) If X € fpnF(R)<k, then (S®r X) € fpnF(S)<k.

Proof. (i). Consider, the exact sequence 0 — K — L, where K and L are finitely n-presented
S-modules. By [23, Theorem 5|, K and L are finitely n-presented R-modules. If &k = 0, then X €
fonI(R). We show that Hompg(S, X) € fp,I(S). We have the commutative diagram

Homg (L, Hompg(S, X)) —— Homg(K, Hompg(S, X))

; -

Hompg(L, X) Homp(K, X)

0,

and so, the sequence Homg(L,Hompg(S, X)) — Homg(K,Hompg(S, X)) — 0 is exact and hence
Homp(S,X) € fpaI(S).
Now, let X € fp,I(R)<k. Then there exists an exact sequence

0 —X —>Xo—Xy —— X —0

of R-modules with each X; € fp,I(R) for all 0 <14 < k. Since Sg is projective, there exists an exact

sequence
0 — Homp(S, X) — Hompg(S, X9) — Hompg(S, X1) — --- — Homp(S, X;) — 0

of S-modules with each Hompg(S, X;) € fp,I(S) for all 0 <i < k. Thus, Hompg(S, X) € fpoI(S)<k.
(ii). By Definition 2.7 and [21, Proposition 2.4(1)], it follows that for an R-module Y, Y €
fonl(R)<y if and only if Y* € fp,F(R?)<; and Y € fp,F(R)<y if and only if Y* € fp,I(RP)<y.
Soif X € fp,F(R)<g, then X* € fp,I(R°)<j. Hence by (1) and [19, Proposition 2.56 and Theorem
2.76], (S ®p X)* = Homp(S, X*) € fpoI(SP)<k, and then (S ®p X) € fpoF(S)<k. O

Lemma 4.2. Let S > R be an almost excellent extension and C' a (faithfully) semidualizing R-module.
Then C @r S is a faithfully semidualizing S-module.
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Proof. Let C a faithfully semidualizing R-module. Then by [21, Lemma 3.4], C ®g S is a semidu-
alizing S-module. Let Homg(C ®r S,N) = 0 for a S-module N. Then 0 = Homg(C ®r S,N) =
Homp(C,Homg(C, N)) = Homg(C, N), and so N = 0. O

Proposition 4.3. Let S > R be an almost excellent extension . Then the following assertions hold

true:
(i) If M € Cfpnl(R)<k, then Homp(S, M) € (C ®g S)fpnl(S)<p;
(ii) If M € CfpuF(R)<y, then (S ®p M) € (C ®r S) fpuF(S)<t.
Proof. (i). Let M € Cfp,I(R)<. If k =0, then M = Homp(C, X) for some X € fp,I(R). We have

Homp(S, M) = Hompg(S,Hompg(C,X))
= Homp(C ®g S, X)
>~ Homp(C ®r S ®g S, X)
= Homg(C ®g S, Hom(S, X)).

Since by Lemma 4.1, Hompg(S, X) € fp,I(S) and by Lemma 4.2, C ®r S is semidualizing S-module,
we deduce that Homg(C' ®p S, Hom(S, X)) € (C ®gr S)fp,I(S). So, it follows that Homp(S, M) €
(C @r S)fpal(S).

(ii). This is similar to that of (i). O

In the following, we give equivalent conditions with modules of C- fp,,-injective dimension at most

k and also, modules of C-fp,-flat dimension at most k£ under almost excellent extension of rings.

Proposition 4.4. Let S > R be an almost excellent extension and M an S-module. Then the following

assertions are equivalent:

(i) M € Cfpul(R)<k;

(ii) Homp(S, M) € (C ®r S)fpal(S)<k;
(i) M € (C®rS)frnl(S)<k.

Proof. (i)=(ii). Let M € Cfpy,I(R)<i. Then by Proposition 4.3(1), Hompg(S,M) € (C ®g
8)pal(S) <.

(ii)==(iii). By [24, Lemma 1.1], ¢M is isomorphic to a direct summand of S-module Hompz(S, M).
Then by (2) and Proposition 3.13(1), M € (C ®r S) fpnl(S)<k-

(ili)= (i). Let k = 0. Then M € (C ®r S)fpnl(S), and so M = Homg(C ®pr S, X) for some
X € fpaI(S). We have M = Homg(C ®pg S, X) = Hompg(C,Homg(S, X)) = Homp(C, X). We show
that X € fp,I(R). Let 0 — K — L be an exact sequence of R-modules, where K and L are finitely
n-presented R-modules. Since S is flat R-module, we have that

0 — K®rS — L®grS is an exact sequence of S-modules, where K ®r S and K ®pr S are

finitely n-presented S-modules by [23, Lemma 4]. We have the commutative diagram

Homg(L ®p S, X) — Homg(K ®r S, X) —=0

: -

Hompg(L, X) Hompg(K, X).
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So, the sequence Homp(L, X) — Hompg (K, X) — 0 is exact, and then X € fp,I(R). Therefore, we
get that M € Cfp,I(R). Also, if M € (C ®r S) fpnl(S)<k, it simply follows that M € Cfp,I(R)<y.
O

Proposition 4.5. Let S > R be an almost excellent extension and M an S-module. Then the following

assertions are equivalent:

(i) M € CfpnF (R)<k;

(ii) (S®@r M) € (C QR S)fpuF(S)<k;
(i) M € (C®rS)frnF(S)<k-

Proof. By Propositions 4.4 and 3.11 and [19, Proposition 2.56 and Theorem 2.76], M € C fp,F(R)<k
if and only if M* € Cfp,I(R%)< if and only if Homg(S,M*) € (C ®r S)fpnl(S?)< if and
only if (S ®gr M)* € (C ®r S)fpnl(S°)<i if and only if (S ®@r M) € (C ®g S)fpnF(S)<k. ALso,
M € CfppF(R)<y if and only if M* € Cfp,I(R)<y if and only if M* € (C ®gr S)fpnl(SP)<y if
and only if M € (C®gr S)fpnF(S)<k - O

Corollary 4.6. Let S > R be an almost excellent extension and R an n-coherent ring. Then the

ollowing assertions hold true:

followi jons hold
(i) The class (C @r S)fpnl(S)<k is closed under extentions and cokernels of monomorphisms.
(ii) The class (C @r S) fpnF (S)<k is closed under extentions and kernels of epimorphisms.

Proof. (i). Consider the exact sequence 0 — A — B — C' — 0, of S-modules, where A and C' are
in (C®gr S)fpnl(S)<k. Then by Proposition 4.4, A and C are in C fp,I(R)<j. So by Remark 3.2(ii)
and [22, Theorem 4.9], B is in Cfp,I(R)<j, and then B is in (C ®pr S) fpnl(S)<k from Proposition
4.4. Similarly, if B and C are in (C ®g S) fpnl(S)<k, then Aisin (C ®r S) fpnl(S)<k.

(ii). This is similar to that of (i) by using Proposition 4.5 and [22, Theorem 4.8]. O

Theorem 4.7. Let S > R be an almost excellent extension. Then the class (C @r S) fpnd(S)<k is

preenveloping and precovering.

Proof. Let M is an S-module. We show that M has a (C ®pr S)fpnl(S)<k-preenvelope. Since M
is an R-module, then by Theorem 3.16, M has a C fp,I(R)<y-preenvelope. Let R-homomorphism
a: M — N be a Cfpy,I(R)<p-preenvelope of M. Then by Proposition 4.3(1), Hompg(S,N) €
(C®RrS)fpnl(S)<k. We prove that axApyr : M — Hompg(S, N) is a (C ®g S) fpnl (S)<k-preenvelope
of S-module M, where \ys : M — Hompg(S, M) and o, : Homp(S, M) — Hompg(S,N).If L € (C®g
S)fpnl(S)<k, and B : M — L is an S-homomorphism, then by Proposition 4.4, L € C fp,I(R)<,
and so there exists R-homomorphism v : N — L such that 8 = ya. Thus, we have the following

commutative diagram:

Am
O

sM Hompg(S, M) Homp(S, N)
M
lﬁ lﬁ* ll
AL
sL Hompg(S, L) Homp(S,N)

T T
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So, we have (mr7s)(axAnr) = 7L (Veow) A = TL(Ya)s Ay = 7L(B)« A = AL = B. Therefore, we
get that every S-module M has a (C ®g S) fpnI(S)<k-preenvelope. Similarly, it is proved that the
class (C ®@g S)fpnl(S)<k is precovering. O

Theorem 4.8. Let S > R be an almost excellent extension. Then the class (C @r S) fpnF' (S)<k is

preenveloping and precovering.

Proof. Let M is an S-module. We show that M has a (C ®r S)fp,F(S)<k-preenvelope. Since M
is an R-module, then by Theorem 3.16, M has a C fp,F'(R)<i-preenvelope. Let R-homomorphism
a: M — N be a Cfp,F(R)<g-preenvelope of M. Then by Proposition 4.3(2), (S ®@r N) € (C ®gr
S) fpnF(S)<k. We prove that (S®ra)ly : M — S@r N isa (C®grS)fpnF(S)<i-preenvelope of S-
module M, where [y : M — (S®rM) and SQra : SOpM — SQrN.If L € (CQrS) fpnF (S)<k,
and f : M — L is an S-homomorphism, then by Proposition 4.5, L € Cfp,F(R)<j, and so there
exists R-homomorphism v : N — L such that § = ya. Thus, we have the following commutative

diagram:
I
sM S®r M S¥na S®r N
™
lﬁ lS®RB ll
g,
sL S®rL S®@r N

L S®R’Y

Thus, we have 7,(S ®g 7)(S ®r a)lyr = 70(S ®r ya)ly = 70lf = B, and so every S-module M
has a (C ®r S) fpnF'(S)<k-preenvelope. Similarly, it is proved that the class (C ®@g S)fpnF'(S)<k is

precovering. ]

Corollary 4.9. Let S > R be an almost excellent extension. Then the following assertions are

equivalent:
(i) Every S-module has a monic (C ®g S) fpnl(S)<k-cover;
(ii) Every S°P-module has an epic (C ®@pr S) fpnF (SP)<j-envelope;
(iii) Ewvery quotient in (C ®pr S)fpnl(S)<k is in (C @r S)fonl(S)<k;
(iv) Every submodule of (C @r S)fpnF (SP)<k is in (C @r S) fonF (S)<k.
Moreover, if R is an n-coherent ring, then the above conditions are also equivalent to:
(v) The kernel of any C fp,I(R)-precover of any R-module is in C fp,I(R);
(vi) The cokernel of any C fp, F(RP)-preenvelope of any R°P-module is in C fp,F(RP).

Proof. (i)<(iii). First, we show that the class (C ®@g S)fpnl(S)<k is closed under direct sums. Let
{M;};cs be afamily of S-modules such that every M; € (C®rS)fpnl(S)<k. Then by Proposition 4.4,
M; € CfppI(R)<k, and then by Proposition 3.13(i), @jeJ M; € CfppI(R)<k, and so by Proposition
4.4, @,c s Mj € (C®pr S)fpnl(S)<k- So [9, Proposition 4] shows that (i) and (iii) are equivalent.

(ii)<(iv). The proof is similar to that of (i)<(ili) by using Propositions 3.13(ii), 4.5 and [5,
Theorem 2.
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(iii)=(iv). Let N € (C ®@r S)fpnF(5?)<) and N’ be a submodule of N. From the short exact
sequence
0— N — N — N/N' — 0,

we get the short exact sequence
0 — (N/N')* — N* — N — 0.

By Propositions 4.5 and 3.11(ii), N € C fp,F'(R)<y, if and only if N* € Cfp,I(R)<y if and only if
N* € (C®prS)fpnl(S)<k. Then by (iii) and Propositions 4.4, N** € (C ®@gr S) fpnI(S)<k if and only
it N* € CfpnI(R)<k, and consequently by Propositions 3.11(i) and 4.5 , N" € C fp, F'(RP)<y, if and
only if N' € (C ®r S) fonF(S) <.

(iv)=-(iii). This is similar to that of (iii)=(iv).

(i)=(v). Assume that M is an S-module and that, by Theorem 4.7, f : ' — M is a (C ®pg
S) fpnl(S)<pk-precover of M. Assume also that g : E — M is a monic (C ®r S) fpnI(S)<p-cover of
M. Then [7, Lemma 8.6.3] implies that Ker(f)® E = F'. By Proposition 4.4, F' € C fp,I(R)<}, and so
by Proposition 3.13(i), Ker(f) € CfppI(R)<k. Then Ker(f) € (C ®gr S)fpnl(S)<k from Proposition
4.4.

(ii)=-(vi). The proof is similar to that of (i)=-(v) by using the dual of [7, Lemma 8.6.3].

(vi)=(iv). Assume that N € (C ®g S)fpnF(S?)<) and that N’ is a submodule of N. Assume
also that, by Theorem 4.8, f: N’ — F'is a (C ®g S) fpnF(S°)<k-preenvelope of N’. Then we have

the following commutative diagram

N’LF—>Coker(f)—>0

|

0——=N —=N
with exact rows. In particular, the sequence

0 — N — F — Coker(f) — 0

is exact, and then by Remark 3.2(ii) and Corollary 4.6(ii), N’ € (C ®g S) fpnF(SP)<k.
(v)=(iii). The proof is similar to that of (vi)=-(iv) by using Corollary 4.6(i). O

In next proposition, we investigate the homological behavior of Auslander and Bass classes under

almost excellent extension of rings.

Proposition 4.10. Let S > R be an almost excellent extension. Then the following assertions hold:
(i) If M € Ac(R), then (S ®r M) € Acgrs(S);
(ii) If M € Bo(R), then Homp(S, M) € Beg,s(S).

Proof. (i). There exists an exact sequence of R-modules

=g —F,—F_y— - —F — F— C—0,
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where each F} is finitely generated and free for all j > 0. Since M € Ac(R), we have the following

exact sequence
o —= Fj 1 ®QrM — FjQrM — F;_1QrM — -+ — F1QgpM — Fo®QpM — CRQrM — 0,

and since S is flat R-module, we have the following commutative diagram

S ®@r (Fj+1 ®r M) S ®r (Fj ®r M) S@r (C®rM)

lg lg lg

(Fiy19rS) @5 (SOr M) — (F; ®r S) ®s (SQr M) — -+ —— (C ®r S) ®s (S ®p M) —0,
and so TorJS(C ®rS,S®r M) =0 for any j > 0.

On the other hand, C ® g M € B¢ (R) by [17, Proposition 4.1]. So there exists the exact sequence

0 — Hompg(C,C ®r M) — --- — Homp(F},C @g M) — Homp(Fj11,C Qgp M) — -- -,

and hence by [19, Lemma 4.86], we have the following commutative diagram:

0 S ®r Homp(C,C ®@r M) S @r Homp(Fj4+1,C @r M)
0 Hompg(C, S @r (C ®@r M)) Hompg(Fj11,S ®@r (C ®@p M))

lg lg

0 —Homg(C ®r S, (C ®r S) ®s (S @r M)) — - —=Homg(Fj11 ®r S5, (C ®r S) ®s (S @r M)).
Therefore, we deduce that Exté(C ®r S, (C®RS)®s (S®@rM)) =0, and also
S®@rM =S ®rHomp(C,C ®@r M) = Homg(C ®r S, (C ®@r S) ®s (S ®@r M)).

Hence, it follows that (S ®@r M) € Acgys(S).

(ii). Let M € Bg(R). Then by Proposition 2.3(ii), M* € Ac(RP). So (S ®@prer M*) €
Ac@pops(S?) by (i). Since S is a finitely presented R-module, [19, Lemma 3.55] implies that
Hompop (S, M)* € Acwpops(S). Consider the exact sequence Y = --- — F| — [y — C' — 0 of
R-modules, where each F} is finitely generated and free for all j > 0. Then by Lemma 4.2, Y ®g S
is a ) ®p S-finitely presented, and then similar to the proof of Proposition 2.3(ii), Hompg (S, M) €
Bewrs(S)- 0

Corollary 4.11. Let S > R be an almost excellent extension. Then the following assertions hold:
(i) fraF(S)<k C Aceps(S);

(i) fpud(S)<k € Boggrs(S)-



20 M. Amini, A. Vahidi, and F. Rezaei

Proof. (i). Let M € fp,F(S)<k. Then there exists an exact sequence
0—Y, —Y ) — - —X1 —Xo—M-—70

of S-modules with each X; € fp,F(S) for all 0 < i < k. By [21, Proposition 3.2], X; € fp,F(R).
So we obtain that M € fp,F(R)<y. Thus by Lemma 2.8(ii), M € Ac(R), and so by Proposition
4.10(1), (S®r M) € Acgrs(S). By [24, Lemma 1.1], we see that S-module M is isomorphic to a
direct summand of S ®@g M. Then [17, Proposition 4.2] implies that M € Acg,s(95).

(ii). This is similar to the proof of (i). O

Lemma 4.12. Let S > R be an almost excellent extension. Then the following assertions hold true:
(i) (C®rS)frnl(S)<k € Acars(S);
(ii) (C ®r S)fpnk(S)<k € Boggs(S).

Proof. (i). Assume that M € (C ®gr S)fpnl(S)<k. Then by Proposition 4.4, M € Cfp,I(R)<k,
and so M € Ac(R) by Lemma 3.5(i). Thus by Proposition 4.10(i), (S ®r M) € Acg,s(S). By [24,
Lemma 1.1], M is isomorphic to a direct summand of S ® g M, and consequently by [17, Proposition
4.2], M € Acgps(9).

(ii). This is similar to the first part. O

In the following, we investigate Foxby equivalence relative to the class (C ®@r S)fpnI(S)<i with
the class fpnI(S)<k and the class (C ®g S) fpnF'(S)<k with the class fp,F(S)<k, where S > R is an

almost excellent extension.

Proposition 4.13. Let S > R be an almost excellent extension. Then we have the following equiva-

lences of categories:

(C®RS)®s—
(i) (C®rS)fral(S)<k ~ Ind(S)<k;
Homg(C®RrS,—)
(C®RS)®S_
(i) fpuF(S)<k ~ (C R S)fPnF(S)<k-

Homg(C®RS,—)

Proof. (i). Let M € (C ®gr S)fpnl(S)<k. Then there exists an exact sequence
0—M —Iy—1 — - — I 1 —1;, —0

of S-modules with each I; € (C ®r S)fp,I(S) for all 0 < ¢ < k. By Proposition 4.4, each I; €
CfpnI(R), and so by Proposition 3.6(i) and [21, Proposition 3.2], C ®g I; € fp,I(R) if and only if
C ®rI; € fppI(S). On the other hand, by Proposition 4.4, M € C fp,I(R)<k, and then by Lemma
3.5(1), M and I; are in Ac(R). So, there exists exact sequence

0 —>CQrM —CRrly—CQrl1 — - —>CQRprl_1 —>CRrIli — 0

of S-modules with each C®pr I; € C fp,I(S) for all 0 < i < k, and hence (C®@rS)®@sM = C@rM €
fpnI(S)Sk'
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Also, M € Acgps(S) by Lemma 4.12(i). So we have M = Homg(C' ®g S, (C ®r S) ®s M).
Now, let N € fpnI(S)<k. Then there exists an exact sequence

0—N—=Xo— X1 — - —Xp1 — X —0

of S-modules with each X; € fp,I(S) for all 0 < i < k. By [21, Proposition 3.2], X; € fp,I(R).
So we get that N € fp,I(R)<y. Thus by Proposition 3.6(i), Homg(C,N) € Cfp,I(R)<;. We have
Homg(C®grS, N) = Homp(C,Homg(S, N)) = Homp(C, N). Hence Homg(C®prS, N) € C fpnI(R)<k,
and then by Proposition 4.4, Homg(C ®r S,N) € (C ®r S) fpnl(S)<k-

(ii). This is similar to that of (i). O

In the following, we give equivalent conditions with modules of the classes A¢c(R) and Bo(R) under

almost excellent extension of rings.

Proposition 4.14. Let S > R be an almost excellent extension and M an S-module. Then the

following assertions are equivalent:
(i) M € Ac(R);
(il) (S ®r M) € Acg,s(S):
(iii) M € Acg,s(S).

Proof. (i)==(ii). It is clear by Proposition 4.10(1).

(il)==(ili). By [24, Lemma 1.1], ¢M is isomorphic to a direct summand of S-module S ®p M.
Then by [17, Proposition 4.2(1)], M € Acgps(S).

(ili)==(i). Let M € Acgps(S). Then Tor;-q(C ®rS,M) = 0 for any j > 1. So, we have the

following commutative diagram:

i ——= (P ®rS)®s M ——= (Fhy @ S) s M —= (C ®r S) ®¢ M ——=0

lg lg lg

F1®RM F0®RM C@RM

0,

where the first line is exact by (iii), and so the second line is also exact, and then Torf(C’, M) =0 for
any j > 1.
On the other hand, Extg(C ®@rS,(C®rS)®sM) =0 for any j > 1. Then, we have the following

commutative diagram:

0 —— Homg(C ®r S, (C ®r S) ®s M) — Homg(C ®r S,(C ®r S) ®g M) ——---

lg lg

0 Homg(C ®r S,C @r M) Homg(C ®r S,C @r M)
0 Hompg(C,C ®r M) Hompg(C,C @z M) e

where the first and second lines are exact by (iii), and so the third line is also exact, and then
EX‘U%(C, M) =0 for any j > 1.
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Also by (iii) and [19, Theorem 2.75], we have
M = Homg(C ®r S, (C ®r S) ®s M) 2 Homg(C ®@r S,C @r M) 2 Hompg(C,C ®r M).

Consequently, M € Ac(R). O

Proposition 4.15. Let S > R be an almost excellent extension and M an S-module. Then the

following assertions are equivalent:
(i) M € Be(R);
(ii) Hompg(S, M) € Bewprs(S);
(i) M € Beggrs(S).

Proof. This is similar to the proof of Proposition 4.14. O

Under chang of rings, Auslander and Bass classes are equivalent under the pair of functors.

Proposition 4.16. Let S > R be an almost excellent extension. Then there are equivalences of

categories:

(CRrS)®s—

Acors(5) ~ Beggrs(S)
Homs(C®RS7—)

Proof. By Proposition 4.14, M € Acg,s(S) if and only if M € Ac(R). Then by [17, Proposition 4.1],
(C®rM) € Bo(R), and so (C®@rS) ®s M = (C®r M) € Begprs(S) by Proposition 4.15. Also, we
have M = Homp(C,C ®r M) 2 Homg(C ®@p S, (C ®r S) ®s M).

On the other hand, By Proposition 4.15, N € Beg,s(S) if and only if N € Bo(R). Thus by [17,
Proposition 4.1}, Homg(C, N) € Ac(R), and so Homg(C ®g S,N) = Hompg(C,N) € Acg,s(S) by
Proposition 4.14 and [19, Theorem 2.75]. Also, we have

N =2 C®grHomgp(C,N) = (C®r S) ®s Homg(C ®r S,N).

By using Corollary 4.11, Lemma 4.12 and Propositions 4.10, 4.13, 4.16, we get Foxby Equivalence

under an almost excellent extension:

Theorem 4.17. (Foxby Equivalence under almost excellent extension of rings) Then we have the
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following equivalences of categories:

(CRRS)®s—

fonE(S) ~ (C®r S)fpnF(S)
Homg(C®RrS,—)

(CRRS)®s—

IPnF (S)<k ~ (C®rS)fpnF(S)<k
M Homg(C®RrS,—) M

(CRRS)®s—

Acwrs(S) ~ Boggs(S)
Homg(C®RrS,—)

J (C®RS)®s— J

(C®rS)frnl(S)<k ~ ol (S) <k
HOms(C®RS,—)

N (CORS)®s—

(C @R S)fpal(S) ~ Fpal(S)
Homg(C®RrS,—)
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