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SYMMETRY OF SOLUTIONS TO HIGHER AND FRACTIONAL

ORDER SEMILINEAR EQUATIONS ON HYPERBOLIC SPACES

JUNGANG LI, GUOZHEN LU, JIANXIONG WANG

Abstract. We show that nontrivial solutions to higher and fractional order equations
with certain nonlinearity are radially symmetric and nonincreasing on geodesic balls in
the hyperbolic space Hn as well as on the entire space Hn. Applying the Helgason-
Fourier analysis techniques on Hn, we develop a moving plane approach for integral
equations on Hn. We also establish the symmetry to solutions of certain equations with
singular terms on Euclidean spaces. Moreover, we obtain symmetry to solutions of some
semilinear equations involving fractional order derivatives.

1. Introduction

In the celebrated work of Gidas, Ni and Nirenberg [21], they considered the following
boundary value problem on the ball BR(0) ⊂ Rn.

{

−∆u = f(u) in BR(0)

u = 0 on ∂BR(0),

where f is of class C1. They proved that any positive solution u in C2(BR(0)) is radially
symmetric and decreasing. Their approach is the so-called moving plane method, which
was initiated by the Soviet mathematician Alexandrov in the 1950s, and further developed
by Serrin [45]. Subsequently, Caffarelli, Gidas and Spruck [12] proved the symmetry
of solutions when f is with critical growth. To be more precise, they considered the
nonlinearity term f which is a locally nondecreasing Lipschitz function such that f(0) = 0,

and satisfies the following growth condition: for sufficiently large t, the function t−
n+2
n−1 f(t)

is nonincreasing and f(t) ≥ ctp for some p ≥ n
n−2

. In the past decades, the moving plane
method together with its applications to nonlinear PDEs have been extensively studied.
We refer the interested reader to, e.g., [8, 50, 13] and the vast list of references therein.
In particular, the moving plane method in integral form in Euclidean spaces has been
developed in [14] which motivated our approach in the hyperbolic space Hn in the current
paper.

The moving plane method has also been developed on non-Euclidean spaces. In [30],
Kumaresan and Prajapat established a Serrin type symmetry result on bounded domains
in Hn. In a subsequent article [29], the same authors obtained the analogous result of
Gidas-Ni-Nirenberg type on hyperbolic spaces and spheres. For instance, they proved:
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Theorem A. Let Ω be a geodesic ball in Hn and u ∈ C2(Ω̄) be a positive solution of the
equation

{

−∆Hnu = f(u) on Ω,

u = 0 on ∂Ω,

where ∆Hn is the Laplace-Beltrami operator on Hn, f is a C1 function. Then, u is radially
symmetric.

As for the entire space Hn, Almeida, Damascelli and Ge [2] studied the following problem:
{

−∆Hnu = f(u) on Hn,

u > 0 on Hn,
(1.1)

where f : (0,∞) → R is locally Lipschitz continuous. Among other results, they proved
the following:

Theorem B. Let u ∈ C1(Hn) be a weak solution to the problem (1.1), then u is radially
symmetric and decreasing with respect to some point P ∈ Hn, provided one of the following
conditions:

(1) u→ 0 as |x| → ∞ and there exists s0 > 0 such that f is nonincreasing on (0, s0).

(2) u→ 0 as |x| → ∞ and there exists s0, α > 0 such that if 0 < a, b < s0,
f(a)−f(b)

a−b
≤

G + (a + b)α and u ∈ L2(Hn) ∩ Hαn/2(Hn), where G,C are some dimensional
positive constants.

(3) u ∈ W 1,2(Hn), there exists α > 0 such that for 0 < a < b,
∣

∣

∣

f(a)−f(b)
a−b

∣

∣

∣
≤ G+C(a+

b)α and u ∈ L2(Hn) ∩Hαn/2(Hn).

The main purpose of the present paper is to investigate the symmetry of solutions of
higher order and fractional order semilinear equations with critical growth on hyperbolic
spaces. To illustrate our main results, we would like to first recall some previous results
on semilinear equations with critical growth. In the celebrated work [11], the following
so-called Brézis-Nirenberg problem was systematically studied:











−∆u− λu = u2
∗−1 on Ω

u > 0 on Ω

u = 0 on ∂Ω,

(1.2)

where Ω is a bounded domain in Rn for n ≥ 3 and 2∗ = 2n
n−2

, which is the critical Sobolev
exponent. Brézis and Nirenberg proved the following result:

Theorem C. When n ≥ 4, probelm (1.2) has a nontrivial solution for every λ ∈
(0,Λ1(Ω)), where Λ1(Ω) is the first Dirichlet eigenvalue of −∆. Morever, when Ω is
a star-shaped domanin, the problem (1.2) has no solution if λ ≤ 0. In particular, when
Ω = B3 ⊂ R3, (1.2) has nontrivial solution if and only if λ ∈ (1

4
Λ1(Ω),Λ1(Ω)).

Due to the lack of compactness caused by the appearance of the critical Sobolev exponent,
the Brézis-Nirenberg problem cannot be studied directly by the variational method. Such
a phenomenon occurs in many differential geometry and PDE problems. One typical
example is the famous Yamabe problem (we refer the interested readers to, e.g., [4, 31,
44, 49, 51] and the references therein). After [11], different versions of higher order Brézis-
Nirenberg problems have been extensively studied in the past decades. One of them can
be formulated as follows:

{

(−∆)ku = λu+ |u|q−1u on Ω

u = ∇u = · · · = ∇k−1u = 0 on ∂Ω,
(1.3)
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where Ω ⊂ Rn is a bounded domain, n > 2k and q = n+2k
n−2k

is the corresponding crit-
ical Sobolev exponent. Several existence results analogous to the second order Brézis-
Nirenberg problem have been obtained. For example, Gazzola [20] established the fol-
lowing:

Theorem D. Let Λ1((−∆)k,Ω) denote the first Dirichlet eigenvalue of (−∆)k on Ω, then

(1) When n ≥ 4k, there exists a solution u ∈ W k,2
0 (Ω) to the Dirichlet problem (1.3)

for every λ ∈ (0,Λ1((−∆)k,Ω));
(2) When 2k+1 ≤ n ≤ 4k−1, there exists 0 < Λ̄ < Λ1((−∆)k,Ω) such that for every

λ ∈ (Λ̄,Λ1((−∆)k,Ω)), (1.3) has a solution u ∈ W k,2
0 (Ω).

In particular, when Ω = Bn, a Euclidean ball, Grunau [25] obtained stronger results. It
has been shown that the solution of (1.3) actually belongs to C∞(Bn) ∩ C2k+1(Bn) and
the solution is positive, radially symmetric and decreasing. When Ω is a ball, Pucci and
Serrin [42] conjectured that for dimensions n = 2k + 1, 2k + 2, · · · , 4k − 1, the necessary
condition for the existence of solution is that λ should be larger than some positive con-
stant number. Such dimensions are called critical dimensions. When n = 3 and k = 1,
Brezis and Nirenberg [11] already found such a lower bound explicitly. Pucci and Serrin
proved that n = 2k + 1 is critical. When k = 2, the biharmonic version of Pucci-Serrin’s
conjecture has been proved by Edmunds, Fortunato and Jannelli [16]. The cases k = 3, 4
were due to Bernis and Grunau [9, 25].

Due to the importance in the study of differential geometry, Brézis-Nirenberg problem
also receives much attention in non-Euclidean settings. One typical example is the hyp-
berbolic space Hn, which is a complete noncompact simply connected Riemannian man-
ifold with constant sectional curvature equals −1. Mancini and Sandeep [40] studied the
following second order semilinear equation:

−∆Hnu = λu+ uq,

where λ is a real parameter, q > 1 if n = 2 and 1 < q ≤ n+2
n−2

if n ≥ 3. They ob-
tained several existence/nonexistence results, depending on the range of λ in different
dimensions. Moreover, they proved that the positve solution has hypberbolic symmetry,

if λ ≤
(

n−1
2

)2
, n ≥ 2, i.e., there exists x0 ∈ Hn such that u is constant on hypberbolic

spheres centered at x0.

Recently, Li, Lu and Yang [34] studied the higher order Brézis-Nirenberg problem as-
sociated with GJMS operators on hypberbolic spaces. The GJMS operator Pk is of a
class of 2k-th order conformal operators and has been wildly studied in the conformal
geometry, see e.g. [18, 19, 23, 28]. More specifically, the GJMS operator on Hn can be
inductively defined as follows:

Pk = P1(P1 + 2) · · · (P1 + k(k − 1)), k ∈ N,

where P1 = −∆Hn − n(n−2)
4

is the conformal Laplacian on Hn and

P2 =

(

−∆Hn − n(n− 2)

4

)(

−∆Hn − (n+ 2)(n− 4)

4

)

is the Paneitz operator. We use W k,2
0 (Ω) to denote the Sobolev space on the hyperbolic

space Hn as defined in Subsection 2.2. In [34], among other results, the authors proved
the following:
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Theorem E. Consider
{

Pku− λu = |u|q−2u in Ω,

∇α
Hnu = 0, α = 0, · · · , k − 1 on ∂Ω,

(1.4)

where q = 2n
n−2k

, 2 ≤ k < n
2
,Ω is a bounded domain in Hn with C1 boundary and ∇Hn is

the hypberbolic gradient (which will be defiend in Section 2). Let Λ1(Pk,Ω) be the first
Dirichlet eigenvalue of Pk on Ω defined by

Λ1(Pk,Ω) = inf
u∈C∞

0 \{0}

∫

Ω
Pku · udV
∫

Ω
|u|2dV ,

where dV is the volume element in Hn. Then the following holds:

(1) when n ≥ 4k and 0 < Λ < Λ1(Pk,Ω), (1.4) has at least one nontrivial solution in

W k,2
0 (Ω);

(2) when 2k + 1 ≤ n ≤ 4k − 1, there exists a positive constant Λ∗ such that for

Λ∗ < λ < Λ1(Pk,Ω), (1.4) has at least one nontrivial solution in W k,2
0 (Ω).

It is worth pointing out that in [34], the authors also investigated the case when Ω = Hn

and no boundary condition is assigned. Their result can be viewed as a higher order
generalization of [40]. When k = 1, (1.4) was initiated in [46] and further studied in [6].
Unlike the second order case, due to the complexity of the operator, one cannot expect
to reduce higher order Brézis-Nirenberg problems on Hn to the corresponding ones on
Euclidean spaces and apply known results from there. The authors in [34] developed a
new approach, which combines the knowledge of higher order Hardy-Sobolev-Maz’ya’s in-
equalities, Helgason-Fourier analysis and Green’s function estimate on hyperbolic spaces.
These ingredients will still play a central role in the present paper.

On the other hand, the symmetry of solutions plays an important role in the study of
Brézis-Nirenberg problems, especially in lower dimension cases. This is not surprising
since the symmetry (or the invariance under group actions) is the key ingredient to
the characterization of extremal functions of sharp Sobolev type inequalities (see e.g.
[11, 21, 48]) and it has been shown in [11] that the solvability of Brézis-Nirenberg problem
is deeply related to the sharp Sobolev inequality. Nevertheless, the classical moving plane
method heavily depends on the maximum principle, which is not applicable to higher
order equations. In the work of Chen, Li and Ou [14], a new moving plane method in
terms of integral equations was developed and applied to study higher order differential
equations and integral equations (see also [13, Chapter 8]). Subsequently, Lu and Zhu [39]
studied the moving plane method on upper half spaces. Inspired by these works, with the
help of Hardy-Littlewood-Sobolev inequalities and the Helgason-Fourier analysis on Hn,
the authors in [34] developed a moving plane method to integral forms on Hn and applied
it to study the symmetry of solutions to the higher order Brézis-Nirenberg problems on
Hn. To be precise, they established the following:

Theorem F. Let k ≥ 2. If u ∈ W k,2
0 (Hn) is a positive weak solution of the equation

Pku− λu = |u|q−2u,

then there exists a point P ∈ Hn such that u is constant on the geodesic spheres centered
at P . Morever, u is non-increasing.

One of our primary goals of the present paper is to investigate the symmetry of solutions
when the equation is equipped with the generic forcing term:

Pku = f(u) on H
n. (1.5)
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Our first result is the following:

Theorem 1.1. Let k ≥ 2, f be Lipschitz continuous, non-decreasing. Assume f ′(u) ∈
L

n
2k (Hn). If u ∈ W k,2

0 (Hn) is a positive solution of the equation (1.5), then there exists a
point P ∈ Hn such that u is constant on the geodesic spheres centered at P . Moreover, u
is non-increasing.

The moving plane method to integral forms requires certain monotonicity of the corre-
sponding Green’s function. In [34], the monotonicity was obtained by a fraction of the
operator Pk − λ and a complicated analysis to the Green’s function. On the other hand,

an explicit expression of Green’s function (−∆Hn + λ)−1 for λ > − (n−1)2

4
is given by (see

for [41] λ ≥ 0 and [32] for λ > − (n−1)2

4
)

(−∆Hn + λ)−1 = (2π)−
n
2 (sinh ρ)−

n−2
2 e−

(n−2)π
2

iQ
n−2
2

θn(λ)
(cosh ρ), (1.6)

where θn(λ) =
√

λ+ (n−1)2

4
− 1

2
and Qµ

ν (z) is the Legendre function of second type which

will be defined in the next lemma. Lu and Yang [38] recently proved that (1.6) is also

vaild for λ = − (n−1)2

4
. More precisely,

Lemma 1.2. Let n ≥ 3, we have
(

−∆Hn − (n− 1)2

4

)−1

= (2π)−
n
2 (sinh ρ)−

n−2
2 e−

(n−2)π
2

iQ
n−2
2

− 1
2

(cosh ρ),

where Qµ
ν (z) is the Legendre function of second type defiend by

Qµ
ν (z) =e

i(πµ)2−ν−1Γ(ν + µ+ 1)

Γ(ν + 1)
(z2 − 1)−µ/2

∫ π

0

(z + cos t)µ−ν−1(sin t)2ν+1dt,

Reν > 1,Re(ν + µ+ 1) > 0.

We realize that the hypergeometric function expression to the Green’s function will di-
rectly give us the monotonicity and hence significantly simplify our argument to the
equation (1.5).

Our second main result gives the symmetry of solutions to the following Dirichlet problem:
{

Pku = f(u) on B,

∇α
Hnu = 0, α ≤ k − 1 on ∂B,

(1.7)

where B = BP (ρ) is a geodesic ball centered at P ∈ Hn with radius ρ. Our result reads
as follows:

Theorem 1.3. Assume that f : [0,∞) → R is a continuous, non-decreasing function

with f(0) ≥ 0 and that u ∈ W k,2
0 (B) ∩ L∞(B) is a positive weak solution to the Dirichlet

problem (1.7). Then u is radially symmetric and strictly decreasing in the radial variable.

We would like to add some comments on Theorem 1.3. As we mentioned previously,
the classical moving plane method fails on higher order equations, due to the lack of
maximum principle. To overcome this difficulty, Berchio, Gazzola and Weth [7] proved
an alternative Hopf lemma towards the polyharmonic Dirichlet problem on Rn and hence
re-developed the moving plane method. For instance, they proved the following:

Theorem G. Assume that f : [0,∞) → R is a continuous nondecreasing function with

f(0) ≥ 0 and u ∈ W k,2
0 ∩ L∞ defined on the Euclidean ball with radius R, i.e. B = BR,

is a nonnegative nontrivial weak solution to the following Dirichlet problem

5



{

(−∆)ku = f(u) on B,

∇αu = 0, α = 1, · · · , k − 1 on ∂B.

Then u is radially symmetric and strictly decreasing with respect to the radial variable.

Theorem 1.3 can be viewed as a hyperbolic version of the above Theorem G. Our main
contribution in Theorem 1.3 is that we obtain a Boggio type formula for the corresponding
Green’s function and further use it to establish a Hopf type lemma on hyperbolic spaces
and this enables us to perform the moving plane argument on Hn. As far as we know,
Theorem 1.3 is the first moving plane result for higher order equations with general
nonlinearity f(u) on bounded domains inHn. Moreover, Berchio-Gazzola-Weth’s theorem
is valid if f(u) is replaced by the nonautonomous radial nonlinearity f(|x|, u) provided
that f is continuous and nonincreasing with respect to the first variable. We realize
that Theorem 1.3 will imply Berchio-Gazzola-Weth’s theorem when the monotonicity
of f breaks. To be precise, we first recall the Poincaré ball model of Hn, which is the

unit ball in Rn equipped with the Poincaré metric ds2 =
4(dx2

1+···|dx2
n)

(1−|x|2)2
(see Section 2 for

more details). Due to the invariance of the operator Pk under the conformal transform,
without loss of generality, one only needs to prove Theorem 1.3 when P is the origin. It
is well known in the hyperbolic geometry that the geodesic ball centered at the origin
coincides with the Euclidean ball (with different radius though). On the other hand, Liu
[36] proved the following identity for any u ∈ C∞

0 (Hn) (in the Poicaré ball model):

Pku =

(

1− |x|2
2

)k+n
2

(−∆)k
(

(
1− |x|2

2
)k−

n
2 u

)

.

Therefore, (1.5) can be written as an equivalent equation on the Euclidean ball B1(0):

(−∆)kv =

(

2

1− |x|2
)k+n

2

f((
1− |x|2

2
)
n
2
−kv). (1.8)

Thus, Theorem 1.3 implies the following:

Theorem 1.4. Let B = B(0, R′) be the Euclidean ball centered at the origin with radius

R′. Assume f satisfies the same conditions as in Theorem 1.3. If v ∈ W k,2
0 (B) is a

positive weak solution of the equation:






(−∆)kv =
(

2
1−|x|2

)k+n
2
f((1−|x|2

2
)
n
2
−kv) in B(0, R′),

∇αv = 0, α = 1, · · · , k − 1 on ∂B(0, R′),
(1.9)

then v is radially symmetric with respect to the origin and strctly decreasing.

Remark 1.5. Notice that the nonlinearity term

g(|x|, v) =
(

2

1− |x|2
)k+n

2

f((
1− |x|2

2
)
n
2
−kv) (1.10)

does not satisfy the monotonicity conditions in Berchio-Gazzola-Weth’s thoerem [7], and
Theorem 1.3 actually broadens the class of nonlinearity in [7].

We now recall the upper half space model of the hypberbolic space, which is the upper

half space Rn
+ = {(x1, · · · , xn) ∈ Rn : xn > 0} equipped with the metric ds2 =

dx2
1+···+dx2

n

x2
n

.

In [39], Lu and Zhu studied the following integral equation on upper half spaces.

u(x) =

∫

Rn
+

G(x, y)f(u)dy, (1.11)

6



where G(x, y) is the Green’s function of (−∆)k, n > 2k corresponding to the Dirichlet
problem. This integral equation is closely related to the higher order differential equation

{

(−∆)ku = f(u) on Rn
+,

u = ∂u
∂xn

= · · · = ∂k−1u

∂xk−1
n

= 0 on ∂Rn
+.

Under suitable conditions for f , Lu and Zhu showed that the solution u is axially sym-
metric with respect to some line parallel to the xn-axis and u(x) is non-decreasing in the
xn direction. Lu and Yang later [38] proved the following identity:

Pku = x
k+n

2
n (−∆)k

(

x
k−n

2
n u

)

, x ∈ R
n
+.

With the help of the above identity, equation (1.5) can also be reduced to an equivalent
version on the upper half space. Hence Theorem 1.1 implies the following axial symmetry
result:

Theorem 1.6. Consider the equation

(−∆)kw =
1

|xn|k+
n
2

f(|xn|
n
2
−kw) on R

n
+. (1.12)

If w ∈ C∞
0 (Rn

+) is a positive solution to (1.12), then there exists some parallel line to
xn-axis such that w is symmetric with respect to such line.

A natural question unsolved in [34] is: does our moving plane method work for fractional
order semilinear equations on hyperbolic spaces? In the present paper we will give an
affirmitive answer. We first recall the definition of fractional order operators on Hn, using
the Helgason-Fourier transform. Let

eλ,ζ(x) =

(

√

1− |x|2
|x− ζ |

)n−1+iλ

, x ∈ B
n, λ ∈ R, ζ ∈ S

n−1.

The Helgason-Fourier transform of a function f on Hn (ball model) is defined as

f̂(λ, ζ) =

∫

Bn

f(x)e−λ,ζ(x)dV,

as long as the integral exists (see Section 2 for more details). Then the fractional Laplacian
on Hn can be defined as

̂(−∆Hn)αu(λ, ζ) =

(

(n− 1)2 + λ2

4

)α

û(λ, ζ).

With the help of Helgason-Fourier transform, one can easily reduce a differential equation
on Hn into an integral equation and we are particularly interested in the following integral
equation:

u(x) =

∫

Hn

Gα(x, y)f(u)dVy, (1.13)

where Gα is the Green’s function of the operator (−∆Hn − (n−1)2

4
)α/2. When f satisfies

certain integrability assumptions, we have the following:

Theorem 1.7. Let f be Lipschitz continuous, non-decreasing and f ′(u) ∈ L
n
α (Hn), n ≥ 3

and 0 < α < 3. If for q > n
n−α

, u ∈ W q,2(Hn) is a positive solution to (1.13), then u is
radially symmetric and strictly decreasing in the radial variable.
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Our moving plane method towards integral equations on hyperbolic spaces relies on the
precise knowledge of the asymptotic behavior of the corresponding Green’s functions
as well as their monotonicity. Green’s function estimates and heat kernel estimates on
Riemannian manifolds have been one of the central problems in geometric analysis (see
e.g. [15, 35, 47]). Unfortunately, those results on general noncompact manifolds do not
seem to be sufficient to study our problems. On the other hand, hyperbolic spaces pos-
sess symmetry structure and can be understood as real symmetric spaces of rank one.
The Helgason-Fourier analysis theory on Hn provides much more precise information
of Green’s functions and heat kernels and can hence be applied to solve many analysis
problems on Hn (see [3]). In fact, the Helgason-Fourier analysis plays a key role in the
establishment of higher order Hardy-Sobolev-Maz’ya’s inequalities (see [37, 38]). Simul-
taneously in [33], with the help of Helgason-Fourier analysis theory, the authors obtained
a series of Green’s function estimates and further use them to establish some Hardy-
Adams inequalities involving fractional order operators. We realize that those Green’s
function estimates in [33] instantly imply a Hardy-Littlewood-Sobolev type inequality on
Hn, which is the key ingredient to perform our moving plane argument. As far as we
know, Theorem 1.7 is the first moving plane result of fractional order equations on Hn.

More generally, let G(x, y) be the Green’s function of the operator

l−1
∏

j=0

(

−∆Hn − (n− 1)2

4
+ ζ2j

)sj/2

,

where ζj ≥ 0. We consider the following integral equation:

u(x) =

∫

Bn

G(x, y)f(u)dVy. (1.14)

Theorem 1.8. Denote Sl =
∑l−1

j=0 sj and let f be Lipschitz continuous, non-decreasing

and f ′(u) ∈ L
n
Sl (Hn). Assume 0 ≤ sj < 3 if ζj > 0 and Sl < n. If u(x) is a posi-

tive solution to (1.14), then u is radially symmetric and strictly decreasing in the radial
variable.

Remark 1.9. It is necessary to require 0 ≤ sj < 3 and Sl < n in order to invoke Lemma
3.9 and Lemma 3.11.

The paper is organized as follows. In Section 2, we present some preliminaries including
the basics of hyperbolic spaces and some tools which will be used throughout the article;
Section 3 provides crucial estimates of Green’s functions for the differential operators
under consideration. Our main theorems will be proved in Section 4.

2. Notations and Preliminaries

We first present some preliminaries concerning hyperbolic space which are needed in the
sequel. More information is referred to [1, 43].

2.1. Models of hyperbolic spaces. The hyperbolic n−space Hn (n ≥ 2) is a complete
simply connected Riemannian manifold with constant sectional curvature −1. There are
several analytic models of hyperbolic spaces, all of which are equivalent. Among them,
we describe two models here.

• The Half-space model : It is given by Rn−1 × R+ = {(x1, · · · , xn−1, xn) : xn > 0},
equipped with the Riemannian metric

ds2 =
dx21 + · · ·+ dx2n

x2n
.

8



• The Poincaré ball model : It is given by the open unit ball Bn = {x = (x1, · · · , xn) :
x21 + · · ·+ x2n < 1} ∈ Rn equipped with the Poincaré metric

ds2 =
4 (dx21 + · · ·+ dx2n)

(1− |x|2)2
.

The distance from x ∈ Bn to the origin is ρ(x) = log 1+|x|
1−|x|

. The hyperbolic volume

element is dV =
(

2
1−|x|2

)2

dx. The hyperbolic gradient is ∇Hn = 1−|x|2

2
∇ and the

associated Laplace-Beltrami operator is given by

∆Hn =
1− |x|2

4

(

(1− |x|2)∆ + 2(n− 2)
n
∑

i=1

xi
∂

∂xi

)

.

2.2. Sobolev spaces on hyperbolic spaces. We define the Sovolev space W k,2 on the
Poincaré ball model. For any open set Ω ∈ Hn and u ∈ C∞(Ω), the W k,2 norm of u is
defined to be

‖u‖W k,2(Ω) =
∑

0≤j≤k

∫

Ω

| (−∆Hn)
j
2 u|2dV,

where

| (−∆Hn)
j
2 u|2 =

{

| (−∆Hn)
j
2 u|2 if j is even,

|∇Hn(−∆Hn)
j−1
2 u|2 if j is odd.

The Sobolov space W k,2(Ω) is then the closure of C∞(Ω) with respect to ‖ · ‖W k,2(Ω).

As usual, W k,2
0 (Ω) denotes the closure of C∞

0 (Ω) in W k,2(Ω). Liu [36] established the
following sharp Sobolev inequalities:

∫

Bn

(Pku)udV ≥ Sn,k

(
∫

Bn

|u| 2n
n−2k dV

)
n−2k

n

, u ∈ C∞
0 (Bn), 1 ≤ k ≤ n

2
,

where Sn,k is the sharp constant of the classical k-th order Sobolev inequality on Rn.

2.3. Fractional Laplacian. Recall that the fractional Laplacian in Rn is a nonlocal
operator which can be defiend as a singular integral operator:

(−∆)
α
2 u(x) = Cn,αp.v.

∫

Rn

u(x)− u(z)

|x− z|n+α
dz,

where α is a real number between 0 and 2, p.v. stands for the Cauchy principle value
and

Cn,α =
2αΓ(n+α

2
)

π
n
2Γ(−α

2
)
.

Equivalently, (−∆)
α
2 can be defined in terms of Fourier transform:

(−∆)
α
2 u(x) = F−1[|2πξ|αFu(ξ)](x),

where F is the Fourier transform.
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2.4. The Helgason-Fourier transform on hyperbolic spaces. In this subsection, we
will introduce the Helgason-Fourier transform on hyperbolic spaces and define the frac-
tional Laplacian on hyperbolic spaces using the Helgason-Fourier analysis. For complete
details, we refer to [26, 27]. Let

eλ,ζ(x) =

(

√

1− |x|2
|x− ζ |

)n−1+iλ

, x ∈ B
n, λ ∈ R, ζ ∈ S

n−1.

Then the Fourier transform of a function f on Hn (ball model) is defined as

f̂(λ, ζ) =

∫

Bn

f(x)e−λ,ζ(x)dV,

provided the integral exists. Moreover, the following inversion formula holds for f ∈
C∞

0 (Bn):

f(x) = Dn

∫ ∞

−∞

∫

Sn−1

f̂(λ, ζ)eλ,ζ(x)|c(λ)|−2dλdσ,

where Dn = (23−nπ|Sn−1|)−1 and c(λ) is the Harish-Chandra’s c-function given by

c(λ) =
2n−1−iλΓ(n/2)Γ(iλ)

Γ(n−1+iλ
2

)Γ(1+iλ
2

)
.

There also holds the Plancherel formula:
∫

Bn

|f(x)|2dV = Dn

∫ ∞

−∞

∫

Sn−1

f̂(λ, ζ)|c(λ)|−2dλdσ.

Since eλ,ζ(x) is an eigenfunction of −∆Hn with eigenvalue (n−1)2+λ2

4
, we have for f ∈

C∞
0 (Hn),

∆̂Hnf(λ, ζ) = −(n− 1)2 + λ2

4
f̂(λ, ζ).

Therefore, we define the fractional Laplacian on hyperbolic spaces as follows:

̂(−∆Hn)αu(λ, ζ) =

(

(n− 1)2 + λ2

4

)α

û(λ, ζ).

2.5. Hardy-Littlewood-Sobolev Inequality. The HLS inequality on hyperbolic Bn

is equivalent to the HLS inequality on the hyperbolic upper half spaces, which was first
proved for half spaces by Beckner [5], and then for Poincaré ball by Lu and Yang [37].

Theorem H. Let 0 < λ < n and p = 2n
2n−λ

. Then for f, g ∈ Lp(Bn),
∣

∣

∣

∣

∣

∫

Bn

∫

Bn

f(x)g(y)

(2 sinh(ρ(Ty(x)
2

))λ
dVxdVy

∣

∣

∣

∣

∣

≤ Cn,λ‖f‖p‖g‖p, (2.1)

where

Cn,λ = πλ/2Γ(
n
2
− λ

2
)

Γ(n− λ
2
)

(

Γ(n
2
)

Γ(n)

)−1+ λ
n

is the best constant for the classical Hardy-Littlewood-Sobolev constant on Rn. Further-
more, the constant Cn,λ is sharp and there is no nonzero extremal function for the in-
equality (2.1).
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2.6. Foliations of hyperbolic spaces. A foliation is an equivalence relation on a
manifold, the equivalence classes being connected, injectively submanifolds, all of the
same dimension. Let Rn,1 = (Rn+1, ·), where · is Lorentzian inner product defined by
x · y = −x0y0 + x1y1 + · · · + xnyn. The hypberboloid model of Hn is the submanifold
{x ∈ Rn,1 : x · x = −1, x0 > 0}. A particular directional foliation can be obtained by
choosing any xi direction, i = 1, · · · , n. Without loss of generality, we may choose x1
direction. Denote Rn,1 = R1,1×Rn−1, where (x1, x0) ∈ R1,1. We define At = Ãt⊗ IdRn−1 ,

where Ãt is the hypberbolic rotation in R1,1,

Ãt =

(

cosh t sinh t
sinh t cosh t

)

.

Let U = Hn ∩ {x1 = 0} and Ut = At(U), H
n is then foliated by Ut and Hn =

⋃

t∈R Ut.
The reflection I is an isometry such that I2 = Id and I fixes a hypersurface, by
I(x0, x1, x2, · · · , xn) = (x0,−x1, x2, · · · , xn). Moreover, define It = At ◦ I ◦ A−t, then
Ut is fixed by It.

2.7. Hypergeometric functions. We denote

F (a, b, c, d) =

∞
∑

k=0

(a)k(b)k
(c)k

zk

k!
,

where ck is not equal to non-positive integers, and (a)k is the (rising) Pochhammer symbol,
which is defined by

(a)k =

{

0, k = 0

a(a+ 1) · · · (a + k − 1), k > 0.

3. Green’s functions estimates

In what follows, a . b will stand for a ≤ Cb for some positive constant C and a ∼ b will
stand for C−1b ≤ a ≤ Cb.

3.1. Green’s function estimates of Pk. For convenience, we introduce some notations.
Let

θ(x, y) =

{

(R− |x|2)(R− |y|2) if x, y ∈ BR,

0 if x 6∈ BR or y 6∈ BR.

and

H : (0,∞)× [0,∞) −→ R :

H(s, t) = sk−
n
2

∫ t
s

0

zk−1

(z + 1)
n
2

dz.

In [10], Boggio gave a representation formula for the Green’s function of the operator
(−∆)k corresponding to the Dirichlet problem on the unit ball B1 ⊂ Rn:

G(x, y) = C(n, k)|x− y|2k−n

∫
(1−|x|2)(1−|y|2)

|x−y|2

0

zk−1

(z + 1)n/2
dz,

where C(n, k) is a constant depending only on the dimension n and order k. We will first
establish a Boggio type formula on the concentric ball BR ⊂ B1 where B1 is equipped
with the Poincaré metric.
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Lemma 3.1. Consider the Dirichlet problem

{

Pku = f(u) on BR,

∇α
Hnu = 0, |α| ≤ k − 1 on ∂BR.

(3.1)

Denote GHn(x, y) to be the Green’s function of the operator Pk, then we have the following
formula:

GHn(x, y) = C(n, k)
(1− |x|2)

n
2
−k

(1− |y|2)
n
2
−k

|x− y|n−2k

∫
(R2−|x|2)(R2−|y|2)

R2|x−y|2

0

zk−1

(z + 1)
n
2

dz

= C(n, k, R)
(

1− |x|2
)

n
2
−k (

1− |y|2
)

n
2
−k
H
(

R2|x− y|2, θ(x, y)
)

.

Proof. Recall the following formula proved in [36]:

Pku =

(

1− |x|2
2

)k+n
2

(−∆)k
(

(
1− |x|2

2
)k−

n
2 u

)

.

Since from the definition of Green’s function,

u(x) =

∫

BR

Pku(y)GHn(x, y)dVy,

=

∫

BR

(

1− |y|2
2

)k+n
2

(−∆)k

(

(

1− |y|2
2

)k−n
2

u

)

GHn(x, y)dVy.

By letting ũ(x) =
(

1−|x|2

2

)k−n
2
u(x), we have

(

1− |x|2
2

)−k+n
2

ũ(x) =

∫

BR

(−∆)kũ(y)

(

1− |y|2
2

)k+n
2

GHn(x, y)

(

1− |y|2
2

)−n

dy.

Thus if we denote GR as the Green’s function of (−∆)k on BR, we have

GR(x, y) =

(

1− |x|2
2

)k−n
2
(

1− |y|2
2

)k−n
2

GHn(x, y).

Then we obtain our conclusion after proper rescaling. �

Without causing any confusion, we will write the Green’s function GHn for Pk on hyper-
bolic space as G for short. We will first derive some pointwise inequalities for the Green’s
function of the GJMS operator Pk on the ball BR, with respect to the Dirichlet boundary
conditions.

Lemma 3.2. For all s, t > 0, we have

Hs(s, t) < 0, Ht(s, t) > 0, Hst(s, t) < 0.

Proof. We first perform the change of variable z = y
s
, so that

H(s, t) = sk−
n
2

∫ t

0

(

y
s

)k−1

(

y
s
− 1
)n/2

dy

s

=

∫ t

0

zk−1

(z + s)n/2
dz.

12



Therefore,

Ht(s, t) =
tk−1

(t+ s)n/2
> 0, Hst(s, t) = − ntk−1

2(t + s)n/2 + 1
< 0

and

Hs(s, t) = −n
2

∫ t

0

zm−1

(z + s)n/2+1
dz < 0.

�

In the following, we put Tλ := {x ∈ Hn : x1 = λ} and Σλ := {x ∈ BR : x1 < λ}, for all
λ ∈ [0, R]. For any x ∈ Hn, let x̄ denote the reflection of x about Tλ.

Lemma 3.3. Let λ ∈ [0, 1), then for every x ∈ B ∩ Tλ and y ∈ Σλ, we have

Gx1(x, y) < 0

Gx1(x, y) +Gx1(x, ȳ) ≤ 0.

Moreover, the second inequality is strict if λ > 0.

Proof. For abbreviation, we put d := R2|x − y|2 = R2|x − ȳ|2 > 0, θ = θ(x, y) > 0 and
θ̄ = θ(x, ȳ) > 0. Then

G(x, y) = C
[

−
(n

2
− k
)

2x1
(

1− |x|2
)n/2−k−1

(1− |y|n/2−k)H(d, θ)

+
(

1− |x|2
)n/2−k (

1− |y|2
)n/2−k

Hx1(d, θ)
]

< 0,

since

Hx1(d, θ) = −2Ht(d, θ)
(

1− |y|2
)

x1 + 2Hs(d, θ)(x1 − y1) < 0, for x1 ≥ 0, x1 > y1.

Moreover,

Gx1(x, y) +Gx1(x, ȳ)

≤ C
(

1− |x|2
)n/2−k (

Hs(d, θ)(x1 − y1) +Hs(d, θ̄)(x1 − ȳ1)

−
[

Ht(d, θ)
(

1− |y|2
)

+Ht(d, θ̄)
(

1− |ȳ|2
)]

x1
)

≤ C
[

Hs(d, θ)−Hs(d, θ̄)
]

(x1 − y1) < 0,

where we used Lemma 3.2 and the fact that θ̄ < θ. �

Lemma 3.4.

G(x, y) > max{G(x, ȳ), G(x̄, y)}
G(x, y) +G(x, ȳ) > |G(x, ȳ)−G(x̄, y)|.

Proof. Concerning the first inequality, it suffices to prove G(x, y) > G(x, ȳ) due to sym-
metry, since It is isometry and hence d(x, ȳ) = d(x̄, y). Moreover,

d(x, y) = d(x̄, ȳ) < d(x, ȳ) = d(x̄, y).

Besides, since |x̄| > |x|, |ȳ| > |y|, we have that

θ(x, y) > θ(x̄, ȳ).

Thus, we may conclude that

G(x, y) = C
(

1− |x|2
)

n
2
−k (

1− |y|2
)

n
2
−k
H
(

R2|x− y|2, θ(x, y)
)

> C
(

1− |x|2
)

n
2
−k (

1− |ȳ|2
)

n
2
−k
H
(

R2|x− ȳ|2, θ(x, ȳ)
)

= G(x, ȳ).

�
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We now extend u by zero if it is outside of BR and we define

f̃(s) =

{

f(s) if s > 0,

0 if s = 0.

We then provide some crucial estimates for directional derivatives which are related to
the Hopf boundary lemma for second order problems.

Lemma 3.5. Let 0 < λ < R, and suppose that u(x) ≥ u(x̄) for all x ∈ Σλ. Then
∂u
∂x1

< 0
on Tλ ∩ BR.

Proof. For all x ∈ Tl ∩BR we have

∂u

∂x1
(x) =

∫

BR

Gx1(x, y)f(u(y))dy =

∫

Σλ

[Gx1(x, y)f(u(y)) +Gx1(x, ȳ)f̃(u(ȳ))]dy

Since f̃ is non-decreasing, we have f(u(y)) ≥ f̃(u(ȳ)) ≥ 0 for all y ∈ Σλ. Moreover,
f(u(y)) 6≡ 0 in Σλ, since otherwise f(u) ≡ 0 in BR. However, this would imply Pku ≡ 0,
which contradicts the positivity of u. As a result, there exists a nonempty open set
Oλ ⊂ Σλ such that f(u(y)) > f̃(u(ȳ)) or f̃(u(ȳ)) > 0 for all y ∈ Oλ. Thus, by Lemma

(3.3), if f(u(y)) > f̃(u(ȳ)),

∂u

∂x1
(x) <

∫

Σλ

(Gx1(x, y) +Gx1(x, ȳ))f̃(u(ȳ))dy ≤ 0, for all x ∈ Tλ ∩ BR,

and if f̃(u(ȳ)) > 0,

∂u

∂x1
(x) ≤

∫

Σλ

(Gx1(x, y) +Gx1(x, ȳ))f̃(u(ȳ))dy < 0 for all x ∈ Tλ ∩BR.

In any case, we have
∂u

∂x1
(x) < 0 for all x ∈ Tλ ∩BR.

�

Now we show this estimate is still true if we move Tλ to the origin a little bit farther.

Lemma 3.6. Let 0 < λ < R, and suppose that u(x) ≥ u(x̄) for all x ∈ Σλ. Then there
exists γ ∈ (0, λ) such that ∂u

∂x1
< 0 on Tl ∩ BR for all l ∈ (λ− γ, λ).

Before proving the above lemma, we need the following result which may be viewed as
the higher order analogue to the Hopf lemma in hyperbolic spaces.

Lemma 3.7. If x0 ∈ ∂BR and ν is a unit vector with ν · x0 < 0, then ∂ku
∂νk

(x0) > 0.

Proof. Let

v(x) =

(

1− |x|2
2

)k−n
2

u(x).

It is known that ∂kv
∂νk

(x0) > 0 and

∂kv

∂νk
=

k
∑

i=0

(

k

i

)

∂i

∂νi

(

1− |x|2
2

)k−n
2 ∂k−i

∂νk−i
u(x).

We also have ( ∂
∂ν
)mu(x0) = 0 for all m = 0, · · · , k − 1, from the boundary conditions.

Thus,
(

∂

∂ν

)k

v(x0) =

(

1− |x|2
2

)k−n
2
(

− ∂

∂ν

)k

u(x) > 0,

then
(

∂
∂ν

)k
u(x) > 0. �
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Proof of Lemma 3.6. In view of Lemma 3.7, we know that for any x0 ∈ Tλ ∩ ∂BR,

(−1)k
(

∂

∂x1

)k−1
∂u

∂x1
(x0) =

(

− ∂

∂x1

)k

u(x0) > 0.

We also know that ( ∂
∂x1

)mu(x0) = 0 for allm = 0, · · · , k−1, from the boundary conditions.

Thus, there exists a = a(x0) > 0 such that

∂u

∂x1
(x) < 0, for all x ∈ Ua(x0) ∩ BR, (3.2)

where Ua(y) := {x ∈ Hn : max
1≤i≤n

ρ(xi, yi) < a}. Then by the compactness of Tλ ∩ ∂BR,

there exsits an uniform ā > 0 such that

∂u

∂x1
(x) < 0, for all x ∈ A :=

⋃

x0∈Tλ∩ ∂BR

Uā(x0) ∩BR.

Now let K := (Tλ ∩B) \A and consider Kd := K − de1 for d > 0, there exists δ > 0 such
that ∂u

∂x1
< 0 on Kd for all d ∈ [0, δ], due to Lemma 3.7. Finally, let γ := min{ā, δ}, the

statement of Lemma 3.6 follows. �

3.2. Estimates of kα. We denote kα =
(

−∆Hn − (n−1)2

4

)−α/2

. It is known in [33] that

kα has the following estimate.

Lemma 3.8. Let n ≥ 3, 0 < α < 3. There holds

kα(ρ) =
1

γ(α)
· 1

ρn−α
+O

(

1

ρn−α−1

)

, 0 < ρ < 1, (3.3)

where

γ(α) =
π

n
2 2αΓ

(

α
2

)

Γ
(

n
2
− α

2

) .

3.3. Estimates of G(x, y). We start by recalling that G(x, y) is the Green’s function

of operator
∏l−1

j=0

(

−∆Hn − (n−1)2

4
+ ζ2j

)sj/2

. For simplicity, we denote each term in the

product by

kζj ,sj =

(

−∆Hn − (n− 1)2

4
+ ζ2j

)−sj/2

.

Then the following estimate has been proved by Li, Lu and Yang [33]:

Lemma 3.9. Let n ≥ 3 and 0 < sj < n. There exists 0 < ǫ1 < min{1, n− sj} such that

kζj ,sj ≤
1

γ(sj)
· 1

ρn−sj
+O

(

1

ρn−sj−ǫ1

)

, 0 < ρ < 1, ζj > 0.

We will also need the following asymptotic estimate (see [37] Lemma 2.4).

Lemma 3.10. Let 0 < α < n, 0 < β < n, 0 < α+ β < n, and λ1 + λ2 > α+ β− 2. Then
for 0 < ρ < 1,

1

(2 sinh ρ
2
)n−α(cosh ρ

2
)λ1

∗ 1

(2 sinh ρ
2
)n−β(cosh ρ

2
)λ2

≤ γ(α)γ(β)

γ(α + β)

1

ρn−α−β
+O

(

1

ρn−α−β−ǫ

)

,

where ǫ satisfies 0 < ǫ ≤ 1 if 0 < α+β < n−1 and 0 < ǫ < n−α−β if n−1 ≤ α+β < n.
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Now we give the estimate for the product of kζj ,sj ’s, which may also be of independent

interest. Recall Sl =
∑l−1

j=0 sj, we get the following,

Lemma 3.11. Let n ≥ 3. Assume each ζj ≥ 0 and each sj ∈ (0, 3) if ζj > 0, Sl < n,
there exists ǫ2 ∈ (0,min{1, n− Sl}) such that

l−1
∏

j=0

(

−∆Hn − (n− 1)2

4
+ ζ2j

)−sj/2

≤ 1

γ(Sl)
· 1

ρn−Sl
+O

(

1

ρn−Sl−ǫ1

)

, 0 < ρ < 1. (3.4)

Proof. We prove it by induction. (3.4) is vaild for k = 1 due to Lemma 3.9. Assume it is
valid for l > 1, then for l + 1, we have

l
∏

j=0

(

−∆Hn − (n− 1)2

4
+ ζ2j

)−sj/2

=
l−1
∏

j=0

(

−∆Hn − (n− 1)2

4
+ ζ2j

)−sj/2

∗ lζk,sl

≤
{

1

γ(Sk+1)
· 1

ρn−Sl+1
+O

(

1

ρn−Sl+1−ǫ1

)}

∗ kζk,sk

.







1

γ(Sk)

(

cosh ρ
2

)−2ζ̂−Sl+1

(

2 sinh(ρ
2
)
)n−Sl

+O

(

(cosh ρ
2
)−2ζ̂−Sl+2

(sinh ρ
2
)n−Sl+1

)







∗

{

1

γ(sl)

(

cosh ρ
2

)−2ζ′l−sl+1

(

2 sinh(ρ
2
)
)n−sl

+O

(

(cosh ρ
2
)−2ζ′l−sl+2

(sinh ρ
2
)n−sl+1

)}

.
1

γ(Sl+1)
· 1

ρn−Sl+1
+O

(

1

ρn−Sl+1−ǫ1

)

.

where 0 < ζ̂ <
∑l−1

j=0 ζj. If we choose ǫ < ζ̂, then by Lemma 3.10, there exists 0 < ǫ1 <

min{1, n− Sk} such that (3.4) is true for l + 1. �

3.4. Monotonicity of Green’s functions. Our final goal in this section is to prove
that Green’s functions of the aforementioned operators are all decreasing with respect to
the geodesic distance.

We first recall that the heat kernel on Bn, denoted by et∆Hn , is given explicitly by the
following formulae (see, e.g. [15, 24]):

• If n = 2m+ 1, then

et∆Hn = 2−m−1π−m− 1
2 t−

1
2 e−

(n−1)2

4
t

(

− 1

sinh ρ

∂

∂ρ

)m

e−
ρ2

4t . (3.5)

• If n = 2m, then

et∆Hn = (2π)−m− 1
2 t−

1
2 e−

(n−1)2

4
t

∫ ∞

ρ

sinh r√
cosh r − cosh ρ

(

− 1

sinh r

∂

∂r

)m

e−
r2

4t dr. (3.6)

Lemma 3.12. Let Gα be the Green’s function of the operator
(

−∆Hn − (n−1)2

4

)α/2

on the

hypberbolic ball Bn. Then for any fixed y ∈ Bn, Gα(x, y) is a positive radially decreasing
function with respect to the geodesic distance ρ = d(x, y).

Proof. By the Mellin type expression, for 0 < α < min{3, n},

kα(ρ) =

(

−∆Hn − (n− 1)2

4

)−α/2

=
1

Γ(α/2)

∫ ∞

0

t
α
2
−1et∆Hn+(n−1)2/4dt. (3.7)
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If n = 2m+ 1, by (3.5), we have

kα,2m+1(ρ) := kα(ρ) = C1

∫ ∞

0

t
α−3
2

(

− 1

sinh ρ

∂

∂ρ

)m

e−
ρ2

4t dt,

where C1 =
2−m−1π−m−1/2

Γ(α/2)
is constant. Thus,

d

dρ
kα,2m+1(ρ) = C1(− sinh ρ)

∫ ∞

0

t
α−3
2

(

− 1

sinh ρ

∂

∂ρ

)m+1

e−
ρ2

4t dt

= C1(− sinh ρ) · k2m+3
α (ρ) < 0.

If n = 2m, by (3.6) and Fubini’s theorem, we have

kα,2m(ρ) := kα(ρ) =
√
2

∫ ∞

ρ

sinh r√
cosh r − cosh ρ

(
∫ ∞

0

t
α−3
2

(

− 1

sinh r

∂

∂r

)m

e−
r2

4t dt

)

dr

=
√
2

∫ ∞

ρ

sinh r√
cosh r − cosh ρ

· kα,2m+1(r)dr.

Now if we set s =
√
cosh r − cosh ρ =

√

2 sinh2( r
2
)− 2 sinh2(ρ

2
), we get

d

dρ
kα,2m(r) =

√
2

2

∫ ∞

0

d

dρ
kα,2m+1(r(s, ρ))ds < 0

becasue

d

dρ
kα,2m+1 =

dkα,2m+1(r)

dr

dr

dρ
=
dkα,2m+1(r)

dr

sinh ρ

sinh r
< 0.

�

Lemma 3.13. Let Gα,ζ be the Green’s function of the operator
(

−∆Hn − (n−1)2

4
+ ζ2

)α/2

on the hypberbolic ball Bn. Then for any fixed y ∈ Bn, Gα,ζ(x, y) is a positive radially
decreasing function with respect to the geodesic distance ρ = d(x, y).

Proof. In order to show that kα,ζ(ρ) is also decreasing, we only need to notice that kα,ζ(ρ)
is defined as follows,

kα,ζ,2m+1(ρ) := kα,ζ(ρ) = C

∫ ∞

0

t
α
2
−1

[(

− 1

sinh ρ

∂

∂ρ

)m

e−
ρ2

4t

]

e−tζ2dt, if n = 2m+ 1,

kα,ζ,2m(ρ) := kα,ζ(ρ)

= C

∫ ∞

ρ

sinh r√
cosh r − cosh ρ

[(
∫ ∞

0

t
α−3
2

(

− 1

sinh r

∂

∂r

)m

e−
r2

4t

]

e−tζ2dt

)

dr, if n = 2m.

It is obvious to see that the derivative of kα,ζ with respect to ρ is independent of ζ and
the rest follows directly the proof of Lemma 3.4 so we omit it. �

Lemma 3.14. Let G(x, y) be the Green’s function of the operator
∏l−1

j=0

(

−∆Hn − (n−1)2

4
+ ζ2j

)sj/2

on the hypberbolic ball Bn. Sl < n with 0 ≤ sj < 3. Then for any fixed y ∈ Bn, G(x, y) is
a positive radially decreasing function with respect to the geodesic distance ρ = d(x, y).

Proof. It suffices to show that the convolution of two positive radially decreasing functions
H1, H2, is still positve radially decreasing (see also [34]). Denote

L(x, y) =

∫

Bn

H(x, z)H2(z, y)dVz.
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We first show L(x, y) = L(ρ). Since for any isometry T : Bn → Bn,

L(Tx, Ty) =

∫

Bn

H1(Tx, z)H2(z, Ty)dVz

=

∫

Bn

H1(x, T
−1z)H2(T

−1z, y)dVz

=

∫

Bn

H1(x, z)H2(z, y)dVz

= L(x, y).

Now for fixed y, consider geodesic ray from y and two points x and x̄ on the ray. Without
loss of generality, we may assume ρ(x, y) ≤ ρ(x̄, y). Due to the foliation of Bn, there
exists an unique reflection It such that It(x) = It(x̄). Then it is easy to show that
L(x, y)− L(x̄, y) ≥ 0 and the lemma follows. �

4. Hyperbolic symmetry of the solutions

4.1. Proof of Theorem 1.1. We will first neeed to show that the differential equation
(1.5) is equivalent to an integral equation using the Helgason-Fourier trasnformation on
hypberbolic spaces.

Lemma 4.1. If u ∈ W k,2
0 (Hn) is a positive weak solution of the higher order differential

equation (1.5), then u must satisfy the following integral equation for the Green’s function
G(x, y) of the operator Pk on the hyperbolic ball Bn:

u(x) =

∫

Bn

G(x, y)f(u)dVy. (4.1)

Proof. u ∈ W k,2
0 (Hn) is a weak solution of (4.1) if and only if for any φ ∈ C∞

0 (Hn),
∫

Hn

k
∑

j=1

cj∇j
Hnu∇j

Hnφ =

∫

Hn

f(u)φdV.

Using Helgason-Fourier transform on Hn, such definition of weak solution is equivalent
to

Dn

∫ +∞

−∞

∫

Sn−1

[

k
∏

j=1

(

τ 2 + (2k − 1)2

4

)

]

û(τ, σ)φ̂(τ, σ)|c(τ)|−2dσdτ =

∫

Hn

f(u)φdV.

Let ψ satisfy Pkψ = φ, that is, ψ(x) =
∫

Hn G(x, y)φ(y)dVy. Under Helgason-Fourier
transform, we have

φ̂(τ, σ) =

k
∏

j=1

τ 2 + (2k − 1)2

4
ψ̂(τ, σ).

Now if we replace φ by ψ, we get

Dn

∫ +∞

−∞

∫

Sn−1

û(τ, σ)ψ̂(τ, σ)|c(τ)|−2dσdτ =

∫

Hn

f(u)

(
∫

Hn

G(x, y)φ(y)dVy

)

dVx.

Applying Plancherel formula to the left hand side, we get
∫

Hn

u(x)φ(x)dV =

∫

Hn

(
∫

Hn

G(x, y)f(x)dVx

)

φ(y)dVy,

which is true for any φ ∈ C∞
c (Hn). This immediately implies that a solution of the

differential equation (1.5) is a solution of the integral equation (4.1). The other direction
of the statement can be shown in the same spirit and we omit it. �
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In particular, it has been shown in [38], that the Green’s functions of Pk satisfies

P−1
k (ρ) =

Γ(n
2
)

2nπ
n
2 Γ(k)Γ(k + 1)

(

cosh ρ
2

)−n

(

sinh ρ
2

)n−2k
F

(

k − n− 2

2
, k; k + 1; cosh−2 ρ

2

)

,

where F is the hypergeomtric function. Furthermore, we have, for 1 ≤ k < n
2
,

P−1
k (ρ) ≤ 1

γn(2k)

[

(

1

2 sinh ρ
2

)n−2k

−
(

1

2 cosh ρ
2

)n−2k
]

, ρ > 0, (4.2)

where ρ = log 1+|x|
1−|x|

is the hyperbolic distance from x ∈ Bn to the origin. As a result, we

have the following proposition immediately.

Proposition 4.2. Let G(x, y) be the Green’s function of the operator Pk on the hyperbolic
ball Bn. Then for any fixed y ∈ Bn, G(x, y) is a positive radially decreasing function with
respect to the geodesic distance ρ = d(x, y).

Due to Lemma 4.1, it suffices to prove the symmetry of the solution to the integral
equation (4.1). Recall U = Hn ∩ {x1 = 0} and Uλ = Aλ(U),Σλ = ∪s<λUs. For any
x ∈ Σλ, denote x̄ = Iλ(x) and uλ(x) = u(x̄). Consider λ > 0,

u(x)− uλ(x)

=

∫

Σλ

G(x, y)f(u)dVy +

∫

Σc
λ

G(x, y)f(u)dVy

−
∫

Σλ

G(x, y)f(uλ)dVy −
∫

Σc
λ

G(x, y)f(uλ)dVy

=

∫

Σλ

G(x, y)f(u)dVy +

∫

Σλ

G(x, ȳ)f(uλ)dVy

−
∫

Σλ

G(x, y)f(uλ)dVy −
∫

Σλ

G(x, ȳ)f(uλ)dVy

=

∫

Σλ

G(x, y)f(u)dVy +

∫

Σλ

G(x̄, y)f(uλ)dVy

−
∫

Σλ

G(x, y)f(uλ)dVy −
∫

Σλ

G(x̄, y)f(u)dVy

=

∫

Σλ

(G(x, y)−G(x̄, y)) (f(u)− f(uλ)) dVy

In Σλ, we denote Σ−
λ = {x ∈ Σλ : uλ(x) > u(x)}, and we would like to show that Σ−

λ is
of measure zero. In fact, we have from (4.2) that,

uλ(x)− u(x) ≤
∫

Σ−
λ

G(x, y) (f(uλ)− f(u)) dVy

≤ C

∫

Σ−
λ

(

1

2 sinh d(x,y)
2

)n−2k

(f(uλ)− f(u)) dVy.

Moreover, by the Hardy-Littlewood-Sobolev inequality on Hn, mean value theorem and
Hölder’s inequality, we have

‖u− uλ‖Lq(Σλ) ≤ C‖f(u)− f(uλ)‖ nq
n+2kq
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= C

(

∫

Σ−
λ

(f ′(ξ)(u(y)− uλ(y)))
nq

n+2kq

)
1
q
+ 2k

n

≤ C‖f ′(ξ)‖
L

n
2k (Σ−

λ )
‖u− uλ‖Lq(Σ−

λ ),

for some n
n−2k

< q <∞. Here ξ = θu+ (1− θ)uλ with 0 < θ < 1. By monotonicity of f ′,
we are able to pick λ large enough so that C‖f ′(ξ)‖ n

2k
< 1. This implies that for large

enough λ, ‖u− uλ‖Lq(Σ−
λ ) = 0, which shows that Σ−

λ is of measure zero.

Now we shift Uλ as long as u ≥ uλ in Σλ. Suppose that there exists such λ̄ that
u(x) > uλ̄(x) on Σλ̄. We deduce again by a standard compactness argument that there
exist λ̄− ε < λ ≤ λ̄ such that

‖u− uλ‖Lq(Σλ) ≤ C‖f ′(ξ)‖
L

n
x2k (Σ−

λ )
‖u− uλ‖Lq(Σ−

λ ).

When ε is small, Σ−
λ is close to zero so that ‖ut − u‖Lq(Σ−

λ ) = 0. This imples we can

keep moving the plane Uλ0 . Now we see u(x) ≤ u(x̄) with respect to Σλ0 . A similar
argument shows u(x̄) ≥ u(x) by rotation. Consequently, there exsits a point p such that
u is constant on the geodesic spheres center at p.

4.2. Proof of Theroem 1.3. Now we start the moving plane procedure by shifting the
plane Tλ from the initial tangent position TR towards the interior of BR.

Lemma 4.3. There exists ε > 0 such that for all λ ∈ [R− ε, R) we have

u(x) > u(x̄) for x ∈ Σλ,
∂u

∂x1
(x) < 0 for x ∈ Tλ ∩BR. (4.3)

Proof. Since TR ∩ ∂BR = {e1}, where e1 = (R, 0, · · · , 0). We conclue from (3.2) that
there exists ε > 0 such that ∂u

∂x1
(x) < 0, for x ∈ BR \ ΣR−2ε. As a result, (4.3) holds for

all λ ∈ [R− ε, R]. �

We then finish the proof of the theorem by moving the plane until it reaches the origin.
Let

Λ := {λ ∈ (0, R) : u(x) > u(x̄), ∀x ∈ Σλ,
∂u

∂x1
(x) < 0, ∀x ∈ Tλ ∩ B}.

By Lemma 4.3, we know that [R−ε, R) ⊂ Λ. Let λ̄ ∈ [0, R) be the smallest number such
that (λ̄, R) ⊂ Λ. Once agian, we would like to show λ̄ = 0 so that Λ = (0, R). Assume
by contradiction that λ̄ > 0. Then according to Lemma 3.6 we get that

there exists γ ∈ (0, λ̄) such that
∂u

∂x1
< 0, on Tl ∩ BR, ∀l ∈ (λ̄− γ, λ̄). (4.4)

Now for all x ∈ Σλ̄,

u(x)− u(x̄) =

∫

BR

(G(x, y)−G(x̄, y))f(u(y))dy

=

∫

Σλ̄

G(x, y)f(u(y))dy+

∫

Σc
λ̄

G(x, y)f(u(y))dy−
∫

Σλ̄

G(x, y)f(u(y)))dy−
∫

Σc
λ̄

G(x, y)f(u(y))dy

=

∫

Σλ̄

(G(x, y)−G(x̄, y))f(u(y))dy+

∫

Σλ̄

(G(x, ȳ)−G(x̄, ȳ))f̃(u(ȳ))dy
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By previous argument, we know that either f(u(y)) > f̃(u(ȳ)) or f̃(u(ȳ)) > 0 in Oλ̄ ⊂ Σλ.
In either case, we have

u(x)− u(x̄) >

∫

Σλ̄

(G(x, y)−G(x̄, y) +G(x, ȳ)−G(x̄, ȳ))f̃(u(ȳ))dy ≥ 0,

due to Lemma 3.4. Thus, u(x) > u(x̄) for all x ∈ Σλ̄. Then by compactness, there
exists 0 < γ1 < γ such that u(x) > u(x̄) for all l ∈ (λ̄ − γ1, λ̄]. which contradicts the
choices of λ̄, together with (4.4). Therefore, since Λ = (0, R), we have u(x̄1, x2, · · · , xn) ≥
u(x1, x2, · · · , xn) if x1 ≥ 0. We conclude that u is radially symmetric by similar argument
from the proof of the last theorem.

4.3. Proof of Theorem 1.4. If u is a positive solution to (1.5), u is radial symmetric
with respect to the origin. Let

v =

(

1− |x|2
2

)k−n
2

u,

then v is a positive solution to (1.8) and is again symmetric with respect to the origin on
B(0, R′). We are left to show that the boundary condition ∇αv|∂B′ = 0 holds. We prove
this by induction. For α = 1, it is clear that on the boundary,

∇Hnu =

(

1− |x|2
2

∇
)(

1− |x|2
2

)
n
2
−k

v

=

(

1− |x|2
2

)

(

1− |x|2
2

∇v +∇
(

1− |x|2
2

)
n
2
−k

v

)

=

(

1− |x|2
2

)2

∇v = 0 on ∂B′.

Thus, ∇v|∂B′ = 0. Suppose this is also for true for 1 ≤ α < k − 2, then we have that on
∂B′,

∇α+1
Hn u =

(

1− |x|2
2

∇
)(

1− |x|2
2

∇
)α
[

(

1− |x|2
2

)
n
2
−k

v

]

=

(

1− |x|2
2

∇
)(

1− |x|2
2

)α

∇αv +

α
∑

i=0

∇i
Hnu

=

(

1− |x|2
2

)α+1

∇α+1v +∇αv

(

1− |x|2
2

∇
)(

1− |x|2
2

)α

=

(

1− |x|2
2

)α+1

∇α+1v = 0.

Therefore, ∇αv = 0 for all |α| ≤ k − 1.

4.4. Proof of Corollary 1.6. It is known that Pk = |xn|k+
n
2 (−∆)k

(

|xn|k−
n
2 u
)

on Rn
+.

Thus, let w = |xn|k−
n
2 u, Pku = f(u) gives

(−∆)kw =
1

|xn|k+
n
2

f(|xn|
n
2
−kw) on R

n
+.

From Theorem 1.1, we know that u is radial symmetric. That is, u(x) = u(x̄), if
ρ(x, p) = ρ(x̄, p), the geodesic distance to p.
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Let p = (p′, pn) ∈ Rn
+, where p

′ = (p1, · · · , pn−1) with p1 = λ. Without loss of gen-
erality, we choose x1 = λ to be the direction which is parallel to xn-axis and let T be the
reflection map with respect to x1 = λ. For any x = (x′, xn), let x̄ = T (x) = (x̄′, x̄n). We
first claim ρ(x, p) = ρ(x̄, p), where ρ(·, p) is the distance to p. The claim is true by observ-
ing that T is an isometry so that d(x, p) = ρ(T (x), T (p)) = ρ(x̄, p). Thus, w(x) = w(x̄).
The solutions are axially symmetric about some line parallel to xn-axis.

4.5. Proof of Theorem 1.7 and 1.8. We follow the similar notations in the proof of
Theorem 1.1 and let U = Bn ∩ {x1 = 0} and Uλ = Aλ(U),Σλ = ∪s<λUs. For any x ∈ Σλ,
denote x̄ = Iλ(x) and uλ(x) = u(x̄). The proof will again be complete once we show that
λ = 0. Now assume by contradiction that λ > 0, we get

u(x)− uλ(x) =

∫

Σλ

(Gα(x, y)−Gα(x̄, y)) (f(u)− f(uλ)) dVy

In Σλ, we denote Σ−
λ = {x ∈ Σλ : uλ(x) > u(x)}, and we would like to show that Σ−

λ is
of measure zero. In fact, by (3.3) and the fact that ρ ∼ sinh ρ for small ρ, we have

uλ(x)− u(x) ≤
∫

Σ−
λ

Gα(x, y) (f(uλ)− f(u)) dVy

≤ C

∫

Σ−
λ

(

1

2 sinh ρ
2

)n−α

(f(uλ)− f(u)) dVy.

Thus, the Hardy-Littlewood-Sobolev inequality on Hn can again be appied to here, to-
gether with mean value theorem and Hölder’s inequality, we have

‖u− uλ‖Lq(Σλ) ≤ C‖f(u)− f(uλ)‖ nq
n+αq

= C

(

∫

Σ−
λ

(f ′(ξ)(u(y)− uλ(y)))
nq

n+αq

)
1
q
+α

n

≤ C‖f ′(ξ)‖
L

n
α (Σ−

λ )
‖u− uλ‖Lq(Σ−

λ ),

for some n
n−α

< q <∞. Here ξ = θu+ (1− θ)uλ where 0 < θ < 1. Since either (i) or (ii)
holds for f(u), we are able to pick λ large enough so that C‖f ′(ξ)‖n

α
< 1. This implies

that for large enough λ, ‖u− uλ‖Lq(Σ−
λ ) = 0, which shows that Σ−

λ is of measure zero.

Now we shift Uλ as long as u ≥ uλ in Σλ. Suppose that there exists such λ̄ that
u(x) > uλ̄(x) on Σλ̄. We deduce again by a standard compactness argument that there
exist λ̄− ε < λ ≤ λ̄ such that

‖u− uλ‖Lq(Σλ) ≤ C‖f ′(ξ)‖
L

n
α (Σ−

λ )
‖u− uλ‖Lq(Σ−

λ ).

When ε is small, Σ−
λ is close to zero so that ‖ut − u‖Lq(Σ−

λ ) = 0. This imples we can keep

moving the plane Uλ0 until we reach the origin. Now we see u(x) ≤ u(x̄) with respect to
Σ0. A similar argument shows u(x̄) ≥ u(x) by rotation. Consequently, u is symmetric
with respect to every hyperplane containing the origin, namely, is radial symmetric.

The proof of Theorem 1.8 is similar, the essential part is also to show that Σ−
λ has

measure zero so that the plane can be moved from the infinity. To achieve this, we notice
that

uλ(x)− u(x) ≤
∫

Σ−
λ

G(x, y) (f(uλ)− f(u)) dVy
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≤ C

∫

Σ−
λ

(

1

2 sinh ρ
2

)n−Sl

(f(uλ)− f(u))dVy.

Therefore, by the Hardy-Littlewood-Sobolev inequality on Hn, mean value theorem and
Hölder’s inequality, we have

‖u− uλ‖Lq(Σλ) ≤ C‖f(u)− f(uλ)‖ nq
n+Slq

= C

(

∫

Σ−
λ

(f ′(ξ)(u(y)− uλ(y)))
nq

n+Slq

)
1
q
+

Sl
n

≤ C‖f ′(ξ)‖
L

n
Sl (Σ−

λ )
‖u− uλ‖Lq(Σ−

λ ),

for some n
n−Sl

< q <∞. The same argument shows that Σ−
λ has measure zero.
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[46] Stapelkamp, S. The Brézis-Nirenberg problem on Hn. Existence and uniqueness of solutions, J.

Elliptic Parabol. Equ., (2002) 283-290.
[47] Strichartz, R. S. Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal.,

52, 1 (1983) 48-79.
[48] Talenti, G. Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976) 353–372.
[49] Trudinger, N.S. Remarks concerning the conformal deformation of Riemannian structures on com-

pact manifolds, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968) 265-274.
[50] Wei, J; Xu, X. Classification of solutions of higher order conformally invariant equations, Math.

Ann. 313 (1999) 207-228.
[51] Yamabe, H. On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12

(1960) 21-37.

24



Jungang Li: Department of Mathematics, Brown University, Providence, RI 02912, USA.

Email address : jungang li@brown.edu

Guozhen Lu: Department of Mathematics, University of Connecticut, Storrs, CT 06269,

USA.

Email address : guozhen.lu@uconn.edu

Jianxiong Wang: Department of Mathematics, University of Connecticut, Storrs, CT

06269, USA.

Email address : jianxiong.wang@uconn.edu

25


	1. Introduction
	2. Notations and Preliminaries
	2.1. Models of hyperbolic spaces
	2.2. Sobolev spaces on hyperbolic spaces
	2.3. Fractional Laplacian
	2.4. The Helgason-Fourier transform on hyperbolic spaces
	2.5. Hardy-Littlewood-Sobolev Inequality
	2.6. Foliations of hyperbolic spaces
	2.7. Hypergeometric functions

	3. Green's functions estimates
	3.1. Green's function estimates of Pk
	3.2. Estimates of k
	3.3. Estimates of G(x,y)
	3.4. Monotonicity of Green’s functions

	4. Hyperbolic symmetry of the solutions
	4.1. Proof of Theorem 1.1
	4.2. Proof of Theroem 1.3
	4.3. Proof of Theorem 1.4
	4.4. Proof of Corollary 1.6
	4.5. Proof of Theorem 1.7 and 1.8

	References

