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Infinitely many zeros of additively twisted L-functions
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Abstract

For f a cuspidal modular form for the group Γ0(N) of integral or half-integral
weight, N a multiple of 4 in case the weight is half-integral, we study the zeros of the

L-function attached to f twisted by an additive character e2πin
p
q with p

q ∈ Q. We prove

that for certain f and p
q ∈ Q, the additively twisted L-function has infinitely many

zeros on the critical line. We develop a variant of the Hardy-Littlewood method which
uses distributions to prove the result.

1 Introduction

1.1 The Hardy-Littlewood method

Hardy and Littlewood [9] proved that the Riemann ζ-function vanishes infinitely many times
on the critical line by constructing a continuous real-valued function Z(t) defined on the real
line whose zeros correspond to the critical zeros of the ζ-function, and showing that Z(t)
changes sign infinitely often. They used

Z(t) =
H(1/2 + it)∣∣H(1/2 + it)

∣∣ζ(1/2 + it), (1.1)

where

H(s) =
1

2
s(1− s)π−s/2Γ(s/2). (1.2)

The real-valuedness of Z(t) follows from the functional equation

H(s)ζ(s) = H(1− s)ζ(1− s). (1.3)

A sign change of Z(t) in an interval (a, b) can be detected by comparing the size of the two
integrals ∫ b

a

Z(t) dt and

∫ b

a

∣∣Z(t)
∣∣ dt.

1

http://arxiv.org/abs/2210.02294v1


The two integrals have different magnitudes if and only if Z(t) changes sign somewhere in
the interval. If Z(t) has only finitely many zeros on the critical line, then Z(t) does not
change sign in the interval [T, 2T ] for sufficiently large T , hence

∣∣∣∣∣

∫ 2T

T

Z(t) dt

∣∣∣∣∣ =
∫ 2T

T

∣∣Z(t)
∣∣ dt. (1.4)

Hardy and Littlewood showed that the integral on the right hand side grows at least as fast
as a constant multiple of T as T → ∞ and the integral on the left hand side is bounded by
a fractional power of T , therefore Z(t) has infinitely many zeros on the real line.

This method is called the Hardy-Littlewood method, and this method has been used for
different classes of L-functions as well. Epstein, Hafner and Sarnak [1], [10] proved that
the L-functions of Maass cusp forms have infinitely many zeros on the critical line, and
Chandrasekharan and Narasimhan [2] showed that the zeta functions of ideal classes in
quadratic fields by have infinitely many zeros on the critical line. In both cases the real-
valued functions Z(t) of are of the form

Z(t) = χL(1/2 + it)−1/2L(1/2 + it), (1.5)

where χL(s) is the holomorphic function satisfying the functional equation

L(s) = χL(s)L(1− s). (1.6)

The most technical part of the Hardy-Littlewood method is obtaining the upper bound of
the integral ∫ 2T

T

Z(t) dt,

which requires the cancellation of exponential sums

∑

m≤T

ame
2πmx = o(T ), as T → ∞, (1.7)

for any value of x.

Wilton [8] used a variant of the Hardy-Littlewood method to prove that if p/q ∈ Q is
a rational number such that p2 ≡ 1 (mod q), then the additively twisted L-function of
modular discriminant ∆(z)

ρ(s; p/q) =
∑

n≥1

τ(n)

ns
e2πinp/q, (1.8)

where τ(n) denotes the n-th Fourier coefficient of ∆(z), has infinitely many zeros on the line
Re s = 6. In his proof, Wilton used the function

Zα,n(t) = tnR(t)eαt, (1.9)
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where
R(t) = (2π/q)−6−itΓ(6 + it)Lp/q(6 + it). (1.10)

It follows from a functional equation of Lp/q(s,∆) that Zα,n(t) is real-valued for t ∈ R.
Wilton showed that

lim
α→π/2−

∫ ∞

−∞

tnR(t)eαt dt = 0, (1.11)

for any positive integer n, using the limiting behavior of higher order derivatives of the
modular discriminant near the cusp p/q. From this he deduced the fact that Lp/q(s,∆) has
infinitely many zeros on the critical line.

Recently, Meher, Pujahari and Kotyada [4] proved that L-functions of half-integral weight
cusp forms of level 4 have infinitely many zeros on the critical line, and Meher, Pujahari and
Shankhadhar [5] generalized the result to cusp forms of levels 4N2. In [4], the proof involves
establishing a lower bound on an exponential sum of the form (1.7) and in [5] the proof uses
Wilton’s variant.

1.2 Main results

In this paper, we use a distributional variant of the Hardy-Littlewood method to generalize
the result of Wilton [8] to cusp forms of integral or half-integral weight and higher level.
The main advantage of using distributions is that it does not require any bound of the
exponential sums, making it easily applicable to different classes of cusp forms, including
those of half-integral weights. Instead of the regularity of exponential sums, we use the
notion of a distribution vanishing to infinite order.

For a complex number z, we put e(z) = e2πiz. For ν ∈ 1
2
Z and N a positive integer with a

condition that 4|N if ν /∈ Z, we denote Sν

(
Γ0(N)

)
the space of weight ν cusp forms with

respect to the congruence subgroup Γ0(N). Since the matrix

(
1 1
0 1

)
is an element of Γ0(N),

a cusp form f(z) in Γ0(N) has a Fourier expansion of the form

f(z) =
∑

n≥1

ann
ν−1

2 e(nz). (1.12)

Let L(s) = L(s, f) denote the L-function of f(z),

L(s) = L(s, f) =
∑

n≥1

ann
−s. (1.13)

Here, we normalize the Fourier coefficients so the critical line is the vertical line Re s = 1
2
for

any weight ν. For a rational number p
q
∈ Q, we let Lp/q(s) = Lp/q(s, f) denote the additively

twisted L-function
Lp/q(s) =

∑

n≥1

ane(np/q)n
−s. (1.14)
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Theorem 1.15. Let k be an even positive integer, N be a positive integer, and p
q
a rational

number which is Γ0(N)-equivalent to i∞ such that p2 ≡ 1 (mod q). If f(z) ∈ Sk

(
Γ0(N)

)

has a Fourier expansion

f(z) =
∑

n≥1

ann
k−1

2 e(nz), (1.16)

with a1 6= 0 and aj ∈ R for all j, then Lp/q(s, f) has infinitely many zeros on the critical

line.

Theorem 1.17. Let k be a positive integer, N a positive integer divisible by 4, and p
q
a

rational number which is Γ0(N)-equivalent to i∞ such that p2 ≡ 1 (mod q). If g(z) ∈
Sk+ 1

2

(
Γ0(N)

)
has a Fourier expansion

g(z) =
∑

n≥1

bnn
k
2
− 1

4 e(nz), (1.18)

with b1 6= 0 and bj ∈ R for all j, then Lp/q(s, g) has infinitely many zeros on the critical line.

2 Automorphic distributions attached to cusp forms

2.1 Automorphic distributions on SL(2,Z)

Let f(z) be a cusp form of weight k for SL(2,Z) on the upper half plane H with Fourier
expansion

f(z) =
∑

n≥1

ann
k−1

2 e(nz). (2.1)

Then f(z) satisfies the automorphy condition

f

(
az + b

cz + d

)
= (cz + d)kf(z), for all

(
a b
c d

)
∈ SL(2,Z). (2.2)

The cusp form f(z) has distribution boundary values. That is, the limit

τ(x) = τf (x) = lim
y→0+

f(x+ iy). (2.3)

converges in the strong distribution topology. As a consequence of the limit formula, τ
inherits the automorphicity from f(z), so

τ

(
ax+ b

cx+ d

)
= (cx+ d)kτ(x), for all

(
a b
c d

)
∈ SL(2,Z). (2.4)

We call such distribution τ the automorphic distribution attached to f(z). The automorphy
condition (2.4) with a = b = d = 1 and c = 0 implies

τ(x+ 1) = τ(x),
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so τ can be written as a Fourier series. The limit (2.3) can be taken from the Fourier series
expansion (2.1) term by term, and we have

τ(x) =
∑

n≥1

ann
k−1

2 e(nx). (2.5)

Since τ has no constant term, τ can be written as the j-th derivative of a continuous, periodic
function for every sufficiently large integer j,

τ (−j)(x) =
∑

n≥1

(2πin)−jann
k−1

2 e(nx). (2.6)

The distribution τ acts on any Schwartz function ψ(x) ∈ S(R) by integration by parts,

∫ ∞

−∞

τ(x)ψ(x) dx = (−1)j
∫ ∞

−∞

τ (−j)(x)
dj

dxj
ψ(x) dx. (2.7)

Furthermore, τ can be integrated against the Mellin kernel |x|s−1, even though it is not a
Schwartz function. This enables us to define Mellin transform of τ . The Mellin transform of
periodic distributions will be discussed in Section 2.3.

2.2 Order of vanishing of distributions

In this section, we define the notion of vanishing of a distribution σ(x) to order k ≥ 0 and
present how the notion can be used to derive bounds of certain integrals. The following
definition is from Definition 2.4 and Lemma 3.1 of [3]

Definition 2.8. A distribution σ(x) ∈ C−∞(R) vanishes to order m ≥ 0 at a point p ∈ R

if there exists an open interval Ip containing p and locally bounded functions hj ∈ L∞
loc(Ip)

indexed by 0 ≤ j ≤ N such that

σ(x) =
N∑

j=0

dj

dxj

(
(x− p)m+jhj(x)

)
(2.9)

as an identity between distributions on Ip. The distribution σ vanishes to infinite order at p
if it vanishes to order m for every m ≥ 0.

In case σ(x) vanishes to order m+ 1 at p, we have a stronger result.

Lemma 2.10 (Lemma 3.1 of [3]). If σ(x) ∈ C−∞(R) vanishes to order m + 1 at a point

p ∈ R, then we can write

σ(x) =
N∑

j=0

dj

dxj

(
(x− p)m+jhj

)
(2.11)

with hj ∈ C(Ip).
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We define the order of vanishing of σ(x) at ∞ as the order of vanishing of σ(1/x) at 0. Using
the definition above, we prove the following lemma.

Lemma 2.12. The automorphic distribution τ attached to a cusp form f(z) for SL(2,Z)
vanishes to infinite order at every cusp.

Proof. The automorphicity of τ(x) combined with the chain rule for the change of variables
x to (ax+ b)/(cx+ d) implies

τ(x) = (cx+ d)−k

(
(cx+ d)2

d

dx

)l

τ (−l)

(
ax+ b

cx+ d

)
(2.13)

for every sufficiently large l ∈ N. Expanding the differential operator, we obtain the expres-
sion

τ(x) =

l∑

j=1

qj(cx+ d)l−k+j d
j

dxj

(
τ (−l)

(
ax+ b

cx+ d

))
. (2.14)

Since τ (−l)(x) is a continuous periodic function, τ (−l)
(
(ax+ b)/(cx+ d)

)
is bounded near

−d/c. Therefore τ (−l)
(
(ax+ b)/(cx+ d)

)
has a locally continuous antiderivative. This gives

the expression

τ(x) =
l∑

j=1

qj(cx+ d)l−k+j d
j+1

dxj+1
H(x) (2.15)

where H(x) is continuous near −d/c. Moving the factor (cx+ d)l−k+j across the differential
operator, we can write τ as

τ(x) =
l+1∑

j=0

dj

dxj

(
x+

d

c

)l−k+j−1

hj(x), (2.16)

where hj(x) are continuous functions on the neighborhood of −d/c.
Let m be a positive integer. The presentation (2.16) with l = m+ k + 1 gives

τ(x) =
m+k+2∑

j=0

dj

dxj

(
x+

d

c

)m+j

hj(x), (2.17)

where hj(x) are continuous on the neighborhood of −d/c. Therefore, the distribution τ(x)
vanishes to orderm at −d/c. Since the choice ofm and the coprime pair c and d are arbitrary,
we deduce that τ(x) vanishes to infinite order at every rational. Similarly, it follows from
the equation

τ

(
−1

x

)
=

(
x2

d

dx

)l

τ (−l)

(
−1

x

)
(2.18)

that τ(x) vanishes to infinite order at ∞.
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The equation (2.18) holds for any periodic distribution without the constant term. Hence
any periodic distribution without the constant term vanishes to infinite order at ∞.

Lemma 2.19. Suppose that σ is a distribution which vanishes to order m ≥ 0 at p. Let

{ϕT}T>0 be a family of smooth functions such that ϕT (x) is supported on (p−c1/T, p+c1/T )
for some c1 > 0 and

∣∣∣ dj

dxjϕT (x)
∣∣∣ ≤ c2T

j+1 for some c2 > 0. Then

∫ ∞

−∞

σ(x)ϕT (x) dx≪m T−m. (2.20)

as T → ∞. In particular, if the distribution σ vanishes to infinite order at p, then the

integral above decays rapidly as T → ∞, that is, the integral is O(T−m) for any m > 0.

Proof. By Definition 2.8, there exists an ǫ > 0 such that we can write σ as

σ(x) =

N∑

j=0

dj

dxj
(x− p)m+jhj(x) (2.21)

where hj ∈ L∞
loc

(
(p− ǫ, p+ ǫ)

)
. Take large T > 0 so that c1/T < ǫ. We have

∫ ∞

−∞

σ(x)ϕT (x) dx =

∫ p+c1/T

p−c1/T




N∑

j=0

dj

dxj
(x− p)m+jhj(x)


ϕT (x) dx

=
N∑

j=0

∫ p+c1/T

p−c1/T

(
dj

dxj
(x− p)m+jhj(x)

)
ϕT (x) dx

=

N∑

j=0

(−1)j
∫ p+c1/T

p−c1/T

(x− p)m+jhj(x)
dj

dxj
ϕT (x) dx.

(2.22)

Observe that each integral in the summand is O(T−1 ·T−m−j ·T j+1) = O(T−m). The Lemma
follows.

2.3 Mellin transform of periodic distributions

For δ ∈ Z/2Z, we define the signed Mellin transform of a distribution σ as

Mδσ(s) =

∫ ∞

−∞

sgn (x)δσ(x)|x|s−1 dx. (2.23)

Computing formally, without worrying about the convergence, the signed Mellin transform
of a periodic distribution τ(x) =

∑
n≥1 ane(nx) gives

Mδτ(s) =

∫ ∞

−∞

sgn (x)δ
(∑

n≥1

ane(nx)

)
|x|s−1 dx =

∑

n≥1

an

∫ ∞

−∞

sgn (x)δe(nx)|x|s−1 dx

=
∑

n≥1

ann
−s

∫ ∞

−∞

sgn (x)δe(x)|x|s−1 dx = Gδ(s)
∑

n≥1

ann
−s,

(2.24)
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where

Gδ(s) = 2iδ(2π)−sΓ(s) cos

(
π(s− δ)

2

)
. (2.25)

The following Lemma, which is from [3], legitimizes the formal computation on a right half
plane.

Lemma 2.26 (Lemma 3.38 of [3]). Let τ be a periodic distribution without the constant term

written as a Fourier series τ(x) =
∑

n≥1 ane(nx), such that its Fourier coefficients satisfy

the bound an = O(nα) for some α > 0. Then the signed Mellin transform of τ(x) is given

by the formula

Mδτ(s) = Gδ(s)
∑

n≥1

ann
−s for Re s≫ 1. (2.27)

The following lemma extends the Mellin transform to the entire complex plane. The Lemma
is from Section 3 of [3].

Lemma 2.28. Let τ be as in Lemma 2.26, and further assume that τ vanishes to infinite

order at 0. Then the signed Mellin transform extends to an entire function.

Proof. It is shown in Section 3 of [3] that if a distribution σ vanishes to order k0 ≥ 0 and has
a canonical extension to ∞ which vanishes there to order k∞ ≥ 0, then the signed Mellin
transform given by (2.23) is holomorphic on −k0 < Re s < k∞. Since a periodic distribution
without constant term vanishes to infinite order at ∞, we have k0 = k∞ = ∞.

We state Parseval’s identity for Mellin transforms of distributions. For a Schwartz function
ψ(x), we let Mψ(s) without subscript δ ∈ Z/2Z denote the usual Mellin transform

Mψ(s) =

∫ ∞

0

ψ(x)xs−1 dx. (2.29)

Lemma 2.30 (Lemma 4.25 of [3]). Let k ≥ 0 and let σ be a distribution that vanishes to

order k at 0 and has an extension across ∞ vanishing to order k∞ ≥ 1 at ∞. Then the

identity ∫ ∞

−∞

ψ(x)σ(x) dx =
1

4πi

∫

Re s=s0

Mδψ(s)Mδσ(1− s) ds,

holds for all Schwartz functions ψ satisfying f(−x) = (−1)δf(x) and 0 < s0 < k + 1.

Corollary 2.31. Let σ be a distribution that vanishes to infinite order at 0 and has an

extension across ∞ vanishing to infinite order at ∞. Let ψ be a smooth function of compact

support which vanishes near 0. The identity

∫ ∞

−∞

σ(x)ψ(|x|)|x|k−1 dx =
1

2πi

∫ i∞

−i∞

M0σ(k − s)Mψ(s) ds (2.32)

holds for all k > 0.
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Proof. Let ψ̃(x) = ψ(|x|). Then ψ̃ is an even Schwartz function and satisfies

M0ψ̃(s) =

∫ ∞

−∞

ψ(|x|)|x|s−1 dx = 2

∫ ∞

0

ψ(x)xs−1 dx = 2Mψ(s).

It follows from Definition 2.8 that as a distribution, σ(x)|x|k−1 vanishes to infinite order at
0 and has an extension across ∞ vanishing to infinite order at ∞. Applying Lemma 2.30
with ψ̃ and σ(x)|x|k−1 in the place of ψ and σ yields (2.32).

2.4 Outline of the proof

We end Section 2 with an outline of our proof of the main theorems. Let {uT}T>0 be a
family of real-valued, positive and uniformly bounded functions which satisfies the bound

uT (x) ≪N TN
∣∣∣x− 2T 3/2

∣∣∣
−N

(2.33)

for any N > 0. In particular, uT (x) ≪N T−N outside of the interval (T 3/2, 3T 3/2). If f(x)
is a real-valued function which grows at most polynomially as |x| → ∞, then the following
bound holds: ∫

|x−2T 3/2|>T 3/2

∣∣f(x)
∣∣ uT (x) dx≪N T−N . (2.34)

Furthermore, if f(x) does not vanish in the interval (T 3/2, 3T 3/2), then we have

∫ ∞

−∞

∣∣f(x)
∣∣ uT (x) dx−

∫ ∞

−∞

f(x)uT (x) dx≪N T−N . (2.35)

In Section 3 and 4, we construct a real-valued function Z(x) whose zeros correspond to
the critical zeros of an additively twisted L-function, using the Mellin transform of the
associated automorphic distribution. In Section 5, we construct a family of test functions
uT (x) parameterized by T using bump functions, and establish the bounds (2.34) and (2.35).
Theorem 1.15 and Theorem 1.17 follow once we establish the bounds

∫ ∞

−∞

Z(x)uT (x) dx = o(T ) (2.36)

and ∫ ∞

−∞

∣∣Z(x)
∣∣ uT (x) dx ∼ T, (2.37)

which together imply that Z(x) has a zero in the interval (T 3/2, 3T 3/2). Since this is true
for any sufficiently large T , it follows that Z(x) has infinitely many zeros on the real line.
We obtain the bound (2.36) using Parseval’s identity (2.32) and the argument presented in
Lemma 2.19. The bound (2.37) is established using the Mellin inversion formula.
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3 Modular forms of integral weight

In this section, we consider automorphic distributions attached to cusp forms of weight
k ∈ Z for the modular subgroup Γ0(N). Since −I ∈ Γ0(N), Sk

(
Γ0(N)

)
= {0} if k is odd.

So throughout the section we assume that k is even. Expand f(z) in a Fourier series at the
cusp i∞ as

f(z) =
∑

n≥1

ann
k−1

2 e(nz). (3.1)

As before, we define the automorphic distribution τ = τf attached to f to be

τ(x) = lim
y→0+

f(x+ iy) =
∑

n≥1

ann
k−1

2 e(nx). (3.2)

The distribution τ satisfies the automorphy relation

τ

(
ax+ b

cx+ d

)
= (cx+ d)kτ(x),

(
a b
c d

)
∈ Γ0(N). (3.3)

For α =

(
a b
c d

)
∈ SL(2,Z), let j(α, z) = cz + d. Define slash operator f |α by

(f |α)(z) = j(α, z)−kf(αz). (3.4)

Then f |α is modular for the group α−1Γ0(N)α. Since f(z) is a cusp form, f |α has a Fourier
expansion

(f |α)(z) =
∑

n≥1

bne(nz/h) (3.5)

for some h ∈ Z and has a corresponding automorphic distribution

(τ |α)(x) = lim
y→0+

(f |α)(x+ iy) =
∑

n≥1

bne(nx/h). (3.6)

The distributions τ and τ |α inherit the relation (3.4), hence

(τ |α)(x) = j(α, x)−kτ(αx). (3.7)

Lemma 3.8. The automorphic distribution τ attached to f ∈ Γ0(N) vanishes to infinite

order at every rational number p
q
. In particular, τ can be expressed, locally near p

q
, as the

sum

τ(x) =

m+k+2∑

j=0

dj

dxj

(
x− p

q

)m+j

hj(x), (3.9)

where hj are continuous functions on a neighborhood of p
q
.
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Proof. Fix p
q
∈ Q. Let γ ∈ SL(2,Z) be a matrix such that γ(i∞) = p

q
. Then γ =

(
p r
q p̃

)
,

where p̃ is a multiplicative inverse of p modulo q and r = (pp̃− 1)/q. By (3.7), we have

(τ |γ)(γ−1x) = j(γ, γ−1x)−kτ(x) = j(γ−1, x)kτ(x). (3.10)

It follows that
τ(x) = j(γ−1, x)−k(τ |γ)(γ−1x), (3.11)

hence we can write

τ(x) = (−qx+ p)−k(τ |γ)
(
p̃x− r

−qx+ p

)
= (−qx+ p)−k

(
(−qx+ p)

d

dx

)l

(τ |γ)(−l)

(
p̃x− r

−qx+ p

)

(3.12)
for any l > 0. Following the argument in Lemma 2.12, it follows from (3.12) that for any
m > 0 we can write τ as the sum

τ(x) =

m+k+2∑

j=0

dj

dxj

(
x− p

q

)m+j

hj(x), (3.13)

where hj are continuous functions on a neighborhood of p/q.

For a rational number p
q
∈ Q, we fix the denominator q to be positive and define

τp/q(x) = τ

(
x

q
+
p

q

)
. (3.14)

We derive the functional equation of Lp/q(s) using the Mellin transform of τp/q.

Lemma 3.15. Let p
q
with q > 0 be a rational number which is Γ0(N)-equivalent to i∞. Then

the even Mellin transform of τp/q is an entire function, and satisfies the functional equations

M0τp/q(s) = qsLp/q

(
s− k − 1

2

)
G0(s), (3.16)

and

M0τp/q(s) =M0τ−p̃/q(k − s). (3.17)

Proof. Taking the even Mellin transform of τp/q gives

M0τp/q(s) =

∫ ∞

−∞

τ

(
x

q
+
p

q

)
|x|s−1 dx = qs

∫ ∞

−∞

τ

(
x+

p

q

)
|x|s−1 dx. (3.18)

The distribution τ(x+ p/q) is periodic, and can be written as a Fourier series

τ

(
x+

p

q

)
=
∑

n≥1

ann
k−1

2 e2πin
p
q e(nx). (3.19)
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The functional equation (3.16) follows from Lemma 2.26. It follows from Lemma 3.8 that

τ
(
x+ p

q

)
vanishes to infinite order at 0, and therefore by Lemma 2.28 the Mellin transform

is entire.

Let p̃ be a multiplicative inverse of p mod q and let γ−1 =

(
p̃ −r
−q p

)
∈ Γ0(N). We have

τ

(
x

q
+
p

q

)
= (−x)−kτ




(
p̃ −r
−q p

)(
x

q
+
p

q

)

 = |x|−k τ

(
− 1

qx
− p̃

q

)
. (3.20)

The automorphic relation (3.20) and the change of variable from x to −x−1 yield the identity

M0τp/q(s) =

∫ ∞

−∞

τ

(
x

q
+
p

q

)
|x|s−1 dx =

∫ ∞

−∞

τ

(
− 1

qx
− p̃

q

)
|x|−k−s−1 dx

=

∫ ∞

−∞

τ

(
x

q
− p̃

q

)
|x|k−s−1 dx =M0τ−p̃/q(k − s).

(3.21)

The change of variable x to −1/x is legitimate, since τ vanishes to infinite order both at − p̃
q

and at ∞.

Corollary 3.22. Let f ∈ Sk

(
Γ0(N)

)
be a cusp form such that the Fourier coefficients of f

are all real-valued. If p
q
is a rational number which is Γ0(N)-equivalent to i∞ and satisfies

p2 ≡ 1 (mod q), then M0τp/q(k/2 + it) is real-valued for all t ∈ R, and the function

Zf(t) = i−k/2

(
2π

q

)k/2 M0τp/q

(
k
2
+ it

)

2 cos
(
π
2
(k/2 + it)

)∣∣Γ(k/2 + it)
∣∣

is a real-valued function on the real line such that Zf(t) =
∣∣∣Lp/q

(
1
2
+ it

)∣∣∣.

Proof. Since p is its own multiplicative inverse modulo q, we have p̃ = p. The functional
equation (3.17) with s = k

2
+ it, t ∈ R gives

M0τp/q(k/2 + it) =M0τ−p̃/q(k/2− it) =M0τ−p/q(k/2− it). (3.23)

From (3.16) and the definition (2.25), we have

M0τ−p/q(k/2− it) = 2

(
2π

q

)− k
2
+it

L−p/q(k/2− it)Γ(k/2− it) cos

(
π

2
(k/2− it)

)
(3.24)

and

M0τp/q(k/2 + it) = 2

(
2π

q

)− k
2
−it

Lp/q(k/2 + it)Γ(k/2 + it) cos

(
π

2
(k/2 + it)

)
. (3.25)
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Since all of the Fourier coefficients of f are real numbers, they are complex conjugate of each
other for t ∈ R. Hence M0τp/q(k/2 + it) is real-valued for t ∈ R. The identity

(−1)n cos(z) = cos(nπ − z), n ∈ Z

with n = k/2 and z = π
2
(k/2 + it) implies that

ik/2 cos

(
π

2
(k/2 + it)

)
= i−k/2 cos

(
π

2
(k/2− it)

)
,

hence ik/2 cos
(
π
2
(k/2 + it)

)
is real-valued for t ∈ R. Therefore the function

Zf(t) = i−k/2

(
2π

q

)k/2 M0τp/q

(
k
2
+ it

)

2 cos
(
π
2
(k/2 + it)

)∣∣Γ(k/2 + it)
∣∣

is real-valued for all t ∈ R, and it is the direct consequence of the functional equation (3.25)

that
∣∣Zf(t)

∣∣ =
∣∣∣Lp/q

(
1
2
+ it

)∣∣∣.

4 Modular forms of half-integral weight

In this section we define the automorphic distributions attached to cusp forms of half-integral
weight. We define

√
z = z1/2 so that −π/2 < arg(z1/2) ≤ π/2. For a positive integer k and

N a positive multiple of 4, we let Sk+ 1

2

(
Γ0(N)

)
denote the space of cusp forms of weight

k + 1
2
for the congruence subgroup Γ0(N). We refer to Shimura [6] for classical facts on

modular forms of half-integral weight. A cusp form g(z) ∈ Sk+ 1

2

(
Γ0(N)

)
satisfies

g

(
az + b

cz + d

)
=

(
c

d

)2k+1

ǫ−1−2k
d (cz + d)k+

1

2g(z) (4.1)

for any

(
a b
c d

)
∈ Γ0(N), where ǫd is 1 or i for odd d according to whether d ≡ 1 (mod 4)

or d ≡ 3 (mod 4), respectively, and
(
c
d

)
is Shimura’s extension of the Jacobi symbol. We

define the automorphic distribution τ = τg attached to g to be τ(x) = limy→0+ g(x + iy).
The automorphy relation (4.1) with c = 0 gives g(z + 1) = g(z), hence g(z) has a Fourier
expansion of the form

g(z) =
∑

n≥1

bnn
k
2
− 1

4 e(nz). (4.2)

It follows that τ(x+ 1) = τ(x), and τ can also be written as a Fourier series

τ(x) =
∑

n≥1

bnn
k
2
− 1

4 e(nx). (4.3)
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For x, y ∈ R 6=0, let (a, b)H denote the Hilbert symbol for R given by the formula

(x, y)H =

{
−1 if x < 0 and y < 0

1 otherwise.
(4.4)

Observe that for c 6= 0 and cx+ d 6= 0 we have

lim
y→0+

√
c(x+ iy) + d = (c, cx+ d)Hsgn (cx+ d)

√
|cx+ d|. (4.5)

Thus the distribution τ satisfies the automorphy relation

τ

(
ax+ b

cx+ d

)
=

(
c

d

)2k+1

ǫ−1−2k
d (c, cx+ d)Hsgn (cx+ d)k+

1

2 |cx+ d|k+
1

2 τ(x), (4.6)

for

(
a b
c d

)
∈ Γ0(N) with c 6= 0.

The slash operators on the space of half-integral cusp forms are defined as follows. Let G

denote the set of all couples (α, φ) formed by an element α =

(
a b
c d

)
∈ GL+(2,R) and a

holomorphic function φ(z) on the upper half plane such that φ(z)2 = t · det(α)−1/2(cz + d)
with |t| = 1. Then G forms a group with the multiplication law

(
α, φ(z)

) (
β, ψ(z)

)
=
(
αβ, φ(βz)ψ(z)

)
. (4.7)

For ξ =
(
α, φ(z)

)
∈ G, we define the slash operator as

(g|ξ)(z) = g(αz)φ(z)−2k−1. (4.8)

As in the integral weight case, we shall show that τ vanishes to infinite order at every cusp

using the slash operator. Fix a rational number p
q
∈ Q with q > 0. Let γ =

(
p r
q p̃

)
∈

SL(2,Z) and φ(z) =
√
qz + p̃. Then ρ =

(
γ, φ(z)

)
is an element of G. Since g is a cusp form,

the function g|ρ can be written as a Fourier series

(g|ρ)(z) =
∑

n≥0

cne
(
(n + r)z/h

)
(4.9)

for some 0 ≤ r < 1, and c0 = 0 in case r = 0. The value of r depends only on the Γ0(N)-
equivalence class of p

q
(see [6] for details). Let τ |ρ be the distribution which corresponds to

g|ρ:
(τ |ρ)(x) = lim

y→0+
(g|ρ)(x+ iy) =

∑

n≥0

cne
(
(n+ r)x/h

)
. (4.10)

14



As in (2.6), the distribution τ |ρ can be written as the j-th derivative of a continuous periodic
function for every sufficiently large integer j,

(τ |ρ)(−j)(x) =
∑

n≥0

(
2πi(n + r)/h

)−j
cne
(
(n + r)x/h

)
. (4.11)

From (4.5) and (4.8), we see that τ and τ |ρ satisfy

(τ |ρ)(x) = τ(γx)(q, qx+ p̃)−2k−1
H sgn (qx+ p̃)−2k−1

√
|qx+ p̃|−2k−1

. (4.12)

Observe that

q(γ−1x) + p̃ = q

(
px− r

−qx+ p

)
+ p̃ =

1

−qx+ p
.

Hence

(τ |ρ)(γ−1x) = τ(x)(q, (−qx+ p)−1)−2k−1
H sgn ((−qx+ p)−1)−2k−1

√
|−qx+ p|2k+1

= τ(x)(q,−qx+ p)Hsgn (−qx+ p)
√
|−qx+ p|2k+1

.
(4.13)

Lemma 4.14. The automorphic distribution τ attached to g ∈ Γ0(N) vanishes to infinite

order at every rational number p
q
. In particular, τ can be expressed, locally near p

q
, as the

sum

τ(x) =

m+k+3∑

j=0

dj

dxj

(
x− p

q

)m+j

hj(x), (4.15)

where hj are continuous functions on a neighborhood of p
q
.

Proof. Fix a rational number p
q
∈ Q with q > 0. Let ρ =

(
γ, φ(z)

)
∈ G with γ =

(
p r
q p̃

)

and φ(z) =
√
qz + p̃. Applying the chain rule to the equation (4.13), we obtain

τ(x) = (q,−qx+ p)Hsgn (−qx+ p)|−qx+ p|−k− 1

2 (τ |ρ)(γ−1x)

= (q,−qx+ p)Hsgn (−qx+ p)

(
(−qx+ p)

d

dx

)l (
τ |ρ
)(−l)

(
p̃x− r

−qx+ p

)
.

(4.16)

Following the argument in Lemma 2.12 with l = m + k + 2, we can remove the pole of

|−qx+ p|−k− 1

2 at p
q
and obtain additional vanishing of order m. We conclude that τ can be

written as

τ(x) =
m+k+3∑

j=0

dj

dxj

(
x− p

q

)m+j

hj(x), (4.17)

locally near p
q
, where hj are continuous functions on a neighborhood of p

q
.
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For a rational number p
q
with q > 0, we define

τp/q(x) = τ

(
x

q
+
p

q

)
. (4.18)

We derive the functional equation of Lp/q(s) using the Mellin transform of τp/q.

Lemma 4.19. Let p
q
with q > 0 be a rational number which is Γ0(N)-equivalent to i∞. Then

the even Mellin transform of τp/q is an entire function, and satisfies the functional equations

M0τp/q(s) = qsLp/q

(
s− k

2
+

1

4

)
G0(s), (4.20)

and

M0τp/q(s)

2 cos(πs/2)
= ik+

1

2

(−q
p

)−1−2k

ǫ2k+1
p

(
2π

q

)−k− 1

2
+s

Γ

(
k +

1

2
− s

)
L−p̃/q

(
k

2
+

3

4
− s

)
.

(4.21)

Proof. As in Lemma 3.16, the functional equation (4.20) follows from Lemma 2.26, and it
follows from Lemma 2.28 and Lemma 4.14 that the Mellin transform is entire. Let p̃ be a

multiplicative inverse of p mod q and let γ−1 =

(
p̃ −r
−q p

)
∈ Γ0(N). From the automorphy

relation (4.6) with γ−1, we have

τ

(
x

q
+
p

q

)
=

(−q
p

)−1−2k

ǫ2k+1
p (−q,−x)Hsgn (−x)−k− 1

2 |x|−k− 1

2 τ

(
− 1

qx
− p̃

q

)
. (4.22)

By (4.22), we have

M0τp/q(s) =

∫ ∞

−∞

τ

(
x

q
+
p

q

)
|x|s−1 dx

=

(−q
p

)−1−2k

ǫ2k+1
p

∫ ∞

−∞

(−q,−x)Hsgn (−x)−k− 1

2 τ

(
− 1

qx
− p̃

q

)
|x|−k+s− 3

2 dx

=

(−q
p

)−1−2k

ǫ2k+1
p

∫ ∞

−∞

(−q, x−1)Hsgn (x
−1)−k− 1

2 τ

(
x

q
− p̃

q

)
|x|k−s− 1

2 dx

=

(−q
p

)−1−2k

ǫ2k+1
p

∫ ∞

−∞

sgn (x)−k+ 1

2 τ

(
x

q
− p̃

q

)
|x|k−s− 1

2 dx.

(4.23)
The last equality uses the fact that −q < 0, hence (−q, x−1)H = sgn (x−1) = sgn (x). The
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integral on the right evaluates as

∫ ∞

−∞

sgn (x)−k+ 1

2 τ

(
x

q
− p̃

q

)
|x|k−s− 1

2 dx

= qk+
1

2
−s

∫ ∞

−∞

sgn (x)−k+ 1

2 τ

(
x− p̃

q

)
|x|k−s− 1

2 dx

= qk+
1

2
−s
∑

n≥1

ane(−np̃/q)n
k
2
− 1

4

∫ ∞

−∞

sgn (x)−k+ 1

2 e(nx)|x|k−s− 1

2 dx

= qk+
1

2
−sL−p̃/q

(
k

2
+

3

4
− s

)∫ ∞

−∞

sgn (x)−k+ 1

2 e(x)|x|k−s− 1

2 dx.

(4.24)

As in Lemma 2.26 and Lemma 2.28, the fact that τ vanishes to infinite order at − p̃
q
and at

∞ legitimizes the interchange of the order of integration and summation.

The functional equation (4.21) follows once we show that

∫ ∞

−∞

sgn (x)−k+ 1

2 e(x)|x|k−s− 1

2 dx = 2ik+
1

2 (2π)−k− 1

2
+s cos

(
πs

2

)
Γ

(
k +

1

2
− s

)
. (4.25)

For 0 < Re ν < 1 the integral

∫ m2

−m1

e(x)|x|ν−1 sgn (x)−k+ 1

2 dx =

∫ m2

0

e(x)|x|ν−1 dx+ (−1)−k+ 1

2

∫ m1

0

e(−x)|x|ν−1 dx

converges to (2π)−νΓ(ν)
(
iν + i2k+1−ν

)
as m1, m2 → ∞. Invoking the uniqueness of mero-

morphic continuation with ν = k + 1
2
− s deduces (4.25).

Corollary 4.26. Let g ∈ Sk+ 1

2

(
Γ0(N)

)
be a cusp form such that the Fourier coefficients of

g are all real-valued. If p
q
is a rational number which is Γ0(N)-equivalent to i∞ and satisfies

p2 ≡ 1 (mod q), then the function

Hg(t) = β
1

2

p/qi
− k

2
− 1

4

M0τp/q

(
k
2
+ 1

4
+ it

)

2 cos
(
π
2
(k/2 + 1/4 + it)

) ,

where βp/q =
(

−q
p

)2k+1

ǫ−1−2k
p , is real-valued for all t ∈ R. The function

Zg(t) = β
1

2

p/qi
− k

2
− 1

4

(
2π

q

)k
2
+ 1

4 M0τp/q

(
k
2
+ 1

4
+ it

)

2 cos
(
π
2
(k/2 + 1/4 + it)

)∣∣Γ(k/2 + 1/4 + it)
∣∣

is a real-valued function on the real line such that
∣∣Zg(t)

∣∣ =
∣∣∣Lp/q

(
1
2
+ it

)∣∣∣.
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Proof. By the functional equations (4.20) and (4.21), we have

M0τp/q

(
k
2
+ 1

4
+ it

)

2 cos
(
π
2
(k/2 + 1/4 + it)

) =

(
2π

q

)− k
2
− 1

4
−it

Γ

(
k

2
+

1

4
+ it

)
Lp/q

(
1

2
+ it

)

= β−1
p/qi

k+ 1

2

(
2π

q

)− k
2
− 1

4
+it

Γ

(
k

2
+

1

4
− it

)
L−p̃/q

(
1

2
− it

)
.

(4.27)
If p = p̃ then the function Hg(t) equal to its own complex conjugate. It follows that Zg(t) is

a real-valued function such that
∣∣Zg(t)

∣∣ =
∣∣∣Lp/q

(
1
2
+ it

)∣∣∣.

5 Preliminary lemmas

In this section we construct a parameterized family of test functions uT with the desired
properties described in Section 2.4, and state some lemmas that will be used in the proof of
Theorem 1.15 and Theorem 1.17.

Let ϕ(x) be an even bump function supported on [−1, 1] satisfying 0 ≤ ϕ(x) ≤ 1 and
ϕ(0) = 1. Let

ψ(x) = ϕ(log x). (5.1)

Then ψ(x) = ψ(1/x) and ψ(x) is supported on [1/e, e]. Next, let λ(x) be the convolution of
ψ(x) with itself.

λ(x) = (ψ ∗ ψ)(x) =
∫ ∞

0

ψ(y)ψ

(
x

y

)
dy

y
. (5.2)

Then λ(x) is a smooth function supported on [1/e2, e2], and satisfies λ(x) = λ(1/x). For
T > 0, define the parameterized family of functions λT (x) as

λT (x) = Tx−2iT
3
2 λ(xT ). (5.3)

The functions λT (x) are supported on [e−2/T , e2/T ]. For t ∈ R and T > 0, we let u(t) and
uT (t) be the Mellin transforms

u(t) =Mλ(it) (5.4)

and
uT (t) =MλT (it). (5.5)

Observe that

uT (t) =

∫ ∞

0

λT (x)x
it dx

x
=

∫ ∞

0

Tλ(xT )xit−2iT
3
2 dx

x
=

∫ ∞

0

λ(x)x
it−2iT

3
2

T
dx

x

= u

(
t− 2T

3

2

T

)
.

(5.6)
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Lemma 5.7. The function uT (t) is real-valued, and satisfies the inequality 0 ≤ uT (t) ≤ 4
for all t ∈ R and T > 0.

Proof. By 5.6, it suffices to show that u(t) is real-valued and satisfies the inequality 0 ≤
u(t) ≤ 4 for all t ∈ R. Since λ(x) is the convolution of ψ(x), we have

u(t) =Mλ(it) =
(
Mψ(it)

)2
. (5.8)

Since ψ(x) = ψ(x−1), we have

Mψ(it) =

∫ ∞

0

ψ(x)xit
dx

x
=

∫ 1

0

ψ(x)(xit + x−it)
dx

x
= 2

∫ 1

0

ψ(x) cos(t log x)
dx

x
. (5.9)

Hence Mψ(it) is real-valued for all t ∈ R, consequently u(t) is real-valued and nonnegative
for all t ∈ R. The boundedness also follows immediately from (5.9), since ψ(x) is supported
away from 0.

Lemma 5.10. For any N > 0, the function uT (t) satisfies the bound

uT (t+ 2T 3/2) ≪N TN |t|−N . (5.11)

Proof. Since uT (t+2T 3/2) = u(t/T ), it suffices to show that u(t) ≪N |t|−N as |t| → ∞. Since
u(t) = Mλ(it) and λ is a Schwartz function, the asymptotic follows from the well-known
fact that the Mellin transform of a Schwartz function decays rapidly on vertical lines.

The next two lemmas establish bounds of integrals of the product of uT (x) and polynomially
bounded functions.

Lemma 5.12. Let f(x) be a continuous real-valued function on the real line that satisfies

the bound f(x) = O(|x|α) as |x| → ∞ for some α > 0. Then the integral

∫

|x−2T 3/2|>T 3/2

∣∣f(x)
∣∣ uT (x) dx. (5.13)

decays rapidly as T → ∞.

Proof. For large T > 0 and large N > 0, we have the bound
∫

|x−2T 3/2|>T 3/2

∣∣f(x)
∣∣ uT (x) dx =

∫

|x|>T 3/2

∣∣∣f(x+ 2T 3/2)
∣∣∣uT (x+ 2T 3/2) dx

≪N

∫

|x|>T 3/2

(|x|+ 2T 3/2)αTN |x|−N dx

≪N 3αTN

∫

|x|>T 3/2

|x|a−N dx

≪α,N T−N
2
+ 3a

2
+ 3

2 .

(5.14)
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The first inequality follows from Lemma 5.10. Therefore the integral decays rapidly as
T → ∞.

Lemma 5.15. Let f(x) be as defined in Lemma 5.12. If f(x) has only finitely many zeros

on the real line, then the difference

∫ ∞

−∞

∣∣f(x)
∣∣ uT (x) dx−

∣∣∣∣∣

∫ ∞

−∞

f(x)uT (x) dx

∣∣∣∣∣ . (5.16)

decays rapidly in T .

Proof. If f(x) has only finitely many zeros, then we can choose a large T > 0 such that f(x)
does vanish in the interval [T 3/2, 3T 3/2]. For such T > 0, we have

∫ 3T 3/2

T 3/2

∣∣f(x)
∣∣ uT (x) dx =

∣∣∣∣∣

∫ 3T 3/2

T 3/2

f(x)uT (x) dx

∣∣∣∣∣ . (5.17)

Thus for any large N > 0 we have

∫ ∞

−∞

∣∣F (x)
∣∣ uT (x) dx−

∣∣∣∣∣

∫ ∞

−∞

F (x)uT (x) dx

∣∣∣∣∣

=

∫

|x−2T 3/2|>T 3/2

∣∣F (x)
∣∣ uT (x) dx+

∣∣∣∣∣

∫ 3T 3/2

T 3/2

F (x)uT (x) dx

∣∣∣∣∣−
∣∣∣∣∣

∫ ∞

−∞

F (x)uT (x) dx

∣∣∣∣∣

≤
∫

|x−2T 3/2|>T 3/2

∣∣F (x)
∣∣uT (x) dx+

∣∣∣∣∣

∫

|x−2T 3/2|>T 3/2

F (x)uT (x) dx

∣∣∣∣∣

≤ 2

∫

|x−2T 3/2|>T 3/2

∣∣F (x)
∣∣ uT (x) dx.

(5.18)

By Lemma 5.12, the last integral decays rapidly as T → ∞.

Let ν ∈ 1
2
Z and let f(z) ∈ Sν

(
Γ0(N)

)
be a cusp form of integral or half-integral weight. Let

τ(x) be the automorphic distribution attached to f(z), and let τp/q(x) = τ(x/q + p/q) for
p
q
∈ Q.

Lemma 5.19. For σ ∈ R, the function G0(s) = 2(2π)−sΓ(s) cos(πs/2) satisfies the asymp-

totic formula
∣∣G0(σ + it)

∣∣ ∼
( |t|
2π

)σ−1/2

, |t| → ∞. (5.20)

In particular, for σ ≥ 1/2 we have

1

G0(σ + it)
= O(1), |t| ≥ 1. (5.21)
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Proof. The asymptotic formula is a direct consequence of the Stirling’s formula for the Γ-
function.

Lemma 5.22. The additively twisted L-function Lp/q(s) is polynomially bounded on the

critical line Re s = 1
2
. That is, there is an α > 0 such that Lp/q(1/2 + it) = O(|t|α)

Proof. This is well known. The additively twisted L-functions satisfy the functional equa-
tions (3.16), (3.17), (4.20) and (4.21), hence the bound follows from Stirling’s formula for
the Γ-function and the Phragmen-Lindelöf principle.

The next two lemmas establish the bound of integrals of L-functions and certain distributions
paired against uT (x).

Lemma 5.23. Let A(s) be a function given by a series A(s) =
∑

n≥1 ann
−s with a1 6= 0 and

an = O(nα) for some α > 0. For sufficiently large T > 0, we have

BT (s) =

∫ ∞

−∞

A(s+ it)uT (t) dt = 2πa1T (5.24)

for all s ∈ C.

Proof. Take s ∈ C with a large real part, so that A(s) converges absolutely. By the Mellin
inversion formula, we have

BT (s) =

∫ ∞

−∞

∑

n≥1

ann
−s−itMλT (it) dt =

∑

n≥1

ann
−s

∫ ∞

−∞

n−itMλT (it) dt

= 2π
∑

n≥1

ann
−sλT (n).

(5.25)

Recall that the function λT (x) is supported on [e−2/T , e2/T ]. It follows that if T > 2/ log 2
then λT (n) = 0 for all positive integers n greater than 1. It follows by the definition of λT
given in (5.3) that

BT (s) = 2πa1λT (1) = 2πa1λ(1)T = 2πa1T. (5.26)

The lemma follows from the uniqueness of analytic continuation.

Lemma 5.27. Let σ ∈ C−∞(R) be a periodic distribution without constant term that vanishes

to infinite order at 0 and at ±1. Suppose that there exists an N0 > 0 such that for every

m > 0 the distribution σ can be written as a sum

σ(x) + σ(−x) =
N∑

j=0

dj

dxj

(
(x− 1)m+jhj(x)

)
, (5.28)

for some N ≤ m +N0, where I1 is a neighborhood of 1 and hj are continuous functions on

I1. Then for any k > 0 we have
∫ ∞

−∞

M0σ(k + ix)uT (x) dx≪k,N T−N . (5.29)
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Proof. Fix a large positive integer m. Then σ has a presentation (5.28) on a neighborhood

I1 of 1, with N ≤ m + N0. Take a large T > 0 such that [e−
2

T , e
2

T ] ⊆ I1, so the support of
λT (x) is contained in I1. First, observe that since λ(x) = λ(1/x) we have

MλT (−s) =
∫ ∞

0

Tx−2iT
3
2 λ(xT )x−s−1 dx =

∫ ∞

0

Tx2iT
3
2 λ(xT )xs−1 dx. (5.30)

Recall that a periodic distribution without constant term vanishes to infinite order at ∞, so
σ vanishes to infinite order at 0 and at ∞. Applying (5.30) and Corollary 2.31, we obtain

∫ ∞

−∞

M0σ(k + ix)uT (x) dx =

∫ ∞

−∞

M0σ(k + ix)MλT (ix) dx

=
1

i

∫ i∞

−i∞

M0σ(k − s)MλT (−s) ds =
1

i

∫ i∞

−i∞

M0σ(k − s)M

(
Tx2iT

3
2 λ(xT )

)
(s) ds

= 2π

∫ ∞

−∞

σ(x)Tλ(|x|T )|x|2iT
3
2 +k−1 dx = 2π

∫ e
2
T

e−
2
T

(
σ(x) + σ(−x)

)
Tλ(xT )x2iT

3
2 +k−1 dx.

(5.31)

To simplify notation, we write gT (x) = Tλ(xT )x2iT
3
2+k−1. Using integration by parts, we

write

∫ e
2
T

e−
2
T

(
σ(x) + σ(−x)

)
gT (x) dx =

∫ e
2
T

e−
2
T




N∑

j=0

dj

dxj

(
(x− 1)m+jhj(x)

)


 gT (x) dx

=

N∑

j=0

∫ e
2
T

e−
2
T

(
dj

dxj

(
(x− 1)m+jhj(x)

))
gT (x) dx

=
N∑

j=0

(−1)j
∫ e

2
T

e−
2
T

(
(x− 1)m+jhj(x)

) dj

dxj
(
gT (x)

)
dx.

(5.32)

Next, we estimate the size of the derivatives of gT (x) = Tx2iT
3
2+k−1λ(xT ). Since λ(x) is a

smooth function of compact support, we have

dj

dxj
λ(x) ≪j 1, (5.33)

and it implies
dj

dxj
Tλ(xT ) ≪j T

j+1. (5.34)
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Applying the product rule, we obtain the bound

dj

dxj

(
Tλ(xT )x2iT

3/2+k−1
)
=

j∑

i=0

(
j

i

)
di

dxi
Tλ(xT )

d(j−i)

dx(j−i)
x2iT

3/2+k−1

≪k,j

j∑

i=0

O(T i+1T
3

2
(j−i))

≪k,j T
3

2
j+1

(5.35)

on the neighborhood of 1. From this bound and the fact that N ≤ m+N0, we deduce that
each integral in the sum on the right of (5.32) satisfies the bound

∫ e
2
T

e−
2
T

(
(x− 1)m+jhj(x)

) dj

dxj
(
gT (x)

)
dx≪k,j T

−1 · T−m−j · T 3

2
j+1

≪k,j T
−m+ 1

2
j

≪k,j T
−m

2
+

N0
2 .

(5.36)

We conclude that

∫ ∞

−∞

M0σ(k + ix)uT (x) = 2π

∫ e
2
T

e−
2
T

(
σ(x) + σ(−x)

)
gT (x) dx

=
N∑

j=0

(−1)j
∫ e

2
T

e−
2
T

(
(x− 1)m+jhj(x)

) dj

dxj
(
gT (x)

)
dx

≪k,m T−m
2
+

N0
2 .

(5.37)

The lemma follows, since m
2
− N0

2
can be arbitrarily large.

6 Proof of the theorems

In this section we use the lemmas we have developed to prove our main results.

6.1 Proof of Theorem 1.15

Let f ∈ Sk

(
Γ0(N)

)
be a cusp form such that all the Fourier coefficients aj of f are real-

valued and a1 6= 0. Let τ = τf be the automorphic distribution attached to f . Suppose that
p
q
is a rational number that is Γ0(N)-equivalent to i∞ and satisfies p2 ≡ 1 (mod q). Fix

q > 0, and let τp/q(x) = τ(x/q+ p/q). By Lemma 3.8, the distribution τp/q vanishes at 0 and
at ±1, and we can write τp/q(x) + τp/q(−x) as

τp/q(x) + τp/q(−x) =
m+k+2∑

j=0

dj

dxj
(x− 1)m+j hj(x), (6.1)
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where hj are continuous functions in a neighborhood of 1. Let

Zf(t) = i−
k
2 (2π)

k
2

qitM0τp/q

(
k
2
+ it

)

2 cos
(
π
2
(k/2 + it)

)∣∣Γ(k/2 + it)
∣∣ . (6.2)

By Corollary 3.22, the function Zf (t) is a real-valued function on the real line which satisfies∣∣Zf(t)
∣∣ =
∣∣∣Lp/q

(
1
2
+ it

)∣∣∣. By Lemma 5.23, we have

∫ ∞

−∞

Lp/q

(
1

2
+ it

)
uT (t) dt = 2πa1T, (6.3)

and this implies

∫ ∞

−∞

∣∣Zf (t)
∣∣ uT (t) dt =

∫ ∞

−∞

∣∣∣∣∣Lp/q

(
1

2
+ it

)∣∣∣∣∣ uT (t) dt≫ T. (6.4)

On the other hand, by Lemma 5.27, we have
∫ ∞

−∞

M0τp/q

(
k

2
+ it

)
uT (t) dt≪N T−N . (6.5)

Suppose, for a contradiction, that Lp/q(1/2 + it) has only finitely zeros. By Corollary 3.22,
the function in the integral in (6.5) is real-valued for all t ∈ R. By Lemma 5.15, we have

∫ ∞

−∞

∣∣∣∣∣M0τp/q

(
k

2
+ it

)∣∣∣∣∣ uT (t) dt≪N T−N . (6.6)

Observe that
∣∣Zf(t)

∣∣ =
∣∣M0τp/q(k/2 + it)

∣∣
∣∣G0(k/2 + it)

∣∣ . (6.7)

It follows from Lemma 5.19 that the bound (6.6) implies
∫

|t|≥1

∣∣Zf(t)
∣∣ uT (t) dt≪N T−N . (6.8)

For |t| ≤ 1, we have

∫

|t|≤1

∣∣Zf(t)
∣∣ uT (t) dt =

∫

|t|≤1

∣∣∣∣∣Lp/q

(
1

2
+ it

)∣∣∣∣∣ uT (t) dt = O(1). (6.9)

The bounds (6.8) and (6.9) together imply
∫ ∞

−∞

∣∣Zf(t)
∣∣ uT (t) dt = O(1) (6.10)

as T → ∞. This contradicts the bound (6.4).
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6.2 Proof of Theorem 1.17

Let g ∈ Sk+ 1

2

(
Γ0(N)

)
be a cusp form such that all the Fourier coefficients bj are real-valued

and b1 6= 0. Let τ = τg be the automorphic distribution attached to g. Let p
q
∈ Q be a

rational number that is Γ0(N)-equivalent to i∞ such that p2 ≡ 1 (mod q). Fix q > 0 and
let τp/q(x) = τ(x/q + p/q). By Lemma 4.14, the distribution τp/q vanishes at 0 and at ±1,
and we can write τp/q(x) + τp/q(−x) as

τp/q(x) + τp/q(−x) =
m+k+3∑

j=0

dj

dxj
(x− 1)m+j hj(x), (6.11)

where hj are continuous functions in a neighborhood of 1. Let

Hg(t) = β
1

2

p/qi
− k

2
− 1

4

M0τp/q

(
k
2
+ 1

4
+ it

)

2 cos
(
π
2
(k/2 + 1/4 + it)

) (6.12)

and

Zg(t) = β
1

2

p/qi
− k

2
− 1

4

(
2π

q

)k
2
+ 1

4 M0τp/q

(
k
2
+ 1

4
+ it

)

2 cos
(
π
2
(k/2 + 1/4 + it)

)∣∣Γ(k/2 + 1/4 + it)
∣∣ , (6.13)

where βp/q =
(

−q
p

)2k+1

ǫ−1−2k
p . By Lemma 5.23, we have

∫ ∞

−∞

Lp/q

(
1

2
+ it

)
uT (t) dt = 2πb1T, (6.14)

and this implies

∫ ∞

−∞

∣∣Zf (t)
∣∣ uT (t) dt =

∫ ∞

−∞

∣∣∣∣∣Lp/q

(
1

2
+ it

)∣∣∣∣∣ uT (t) dt≫ T. (6.15)

On the other hand, by Lemma 5.27, we have

∫ ∞

−∞

M0τp/q

(
k

2
+ it

)
uT (t) dt≪N T−N . (6.16)

From (6.12), we obtain the bound

∫ ∞

−∞

2 cos

(
π

2

(
k/2 + 1/4 + it

))
Hg(t)uT (t) dt

=

∫ ∞

−∞

(
e

(
k

8
+

1

16

)
e−

1

2
πt + e

(
−k
8
− 1

16

)
e

1

2
πt

)
Hg(t)uT (t) dt≪N T−N .

(6.17)
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Observe that for any α, β, θ1, θ2 ∈ R, the following inequality holds:

∣∣∣eiθ1α+ eiθ2β
∣∣∣ ≥
∣∣sin(θ2 − θ1)

∣∣max
(
|α| ,|β|

)
≥
∣∣sin(θ2 − θ1)

∣∣ |α|+|β|
2

. (6.18)

Applying the inequality to (6.17), we obtain

∫ ∞

−∞

(e−
1

2
πt + e

1

2
πt)Hg(t)uT (t) dt≪N T−N . (6.19)

Suppose, for a contradiction, that Lp/q(1/2 + it) has only finitely zeros. Observe that the

function (e−
1

2
πt + e

1

2
πt)Hg(t) is real-valued for all t ∈ R. By Lemma 5.15, we have

∫ ∞

−∞

(e−
1

2
πt + e

1

2
πt)
∣∣Hg(t)

∣∣ uT (t) dt≪N T−N . (6.20)

Observe that
∣∣Zg(t)

∣∣ =
(
2π

q

)k
2
+ 1

4 (e−
1

2
πt + e

1

2
πt)
∣∣Hg(t)

∣∣

(e−
1

2
πt + e

1

2
πt)
∣∣Γ(k/2 + 1/4 + it)

∣∣ . (6.21)

The elementary bound

|α|+|β| ≥
∣∣∣eiθ1α + eiθ2β

∣∣∣ (6.22)

implies

e−
1

2
πt + e

1

2
πt ≥ 2 cos

(
π

2
(k/2 + 1/4 + it)

)
, (6.23)

hence it follows from Lemma 5.19 that

1

(e−
1

2
πt + e

1

2
πt)
∣∣Γ(k/2 + 1/4 + it)

∣∣ = O(1), |t| ≥ 1. (6.24)

The equation (6.21) and the bounds (6.20) and (6.24) together imply
∫

|t|≥1

∣∣Zg(t)
∣∣ ut(t) dt≪N T−N , (6.25)

and for |t| ≤ 1 we have

∫

|t|≤1

∣∣Zg(t)
∣∣ ut(t) dt =

∫

|t|≤1

∣∣∣∣∣Lp/q

(
1

2
+ it

)∣∣∣∣∣ uT (t) dt = O(1). (6.26)

The bound (6.25) and (6.26) together gives

∫ ∞

−∞

∣∣Zg(t)
∣∣ ut(t) dt = O(1) (6.27)

as T → ∞. This contradicts the bound (6.15).
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