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Abstract

Using a nonlocal macroscopic LWR-type traffic flow model, we present an approach to

control the nonlocal velocity towards a given equilibrium velocity. Therefore, we present

a Lyapunov function measuring the L2 distance between these velocities. We compute

the explicit rate at which the system tends towards the stationary speed. The traffic is

controlled by a leading vehicle. Numerical examples demonstrate the theoretical results

and possible extensions of them.
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1 Introduction

In order to deal with the challenges arising from the progress in autonomous driving, classical
approaches such as the Lighthill-Whitham-Richards (LWR) model [1, 2] have been extended
to include more information on the surrounding traffic, see for example [3, 4, 5]. These models
are nonlocal traffic flow models. Here, the flux function depends on an integral evaluation
of the density or velocity. In case of autonomous vehicles the integration area allows for an
interpretation as a connection radius.

Nonlocal traffic flow models have been studied in various research directions over the years,
e.g. well-posedness [6, 4, 5], numerical schemes [7, 8, 4], its singular limit behavior [9, 10, 11]
or modeling extensions [12, 13, 14, 15, 16]. Nevertheless, there are only a few works concerning
control problems [17, 18, 19, 20]. The works [19, 20] consider Lyapunov functions on a ring
road. In [17] the authors prove the exact controllability towards a target state together with
explicit rates of convergence. Instead of a ring road they consider a bounded domain and apply
the control at the entrance and exit point of the road. Recently, [18] established Lyapunov
stabilization of a second order traffic model on the micro- and macroscopic scale by controlling
the leading vehicle.

Here, we consider as in [17, 19] the nonlocal LWR model of [3] for general velocity functions
and want to obtain a Lyapunov function and an exponential decay rate. In particular, in
contrast to [17, 19], the Lyapunov function considers the L2 distance in the nonlocal velocity
and we apply, as in [18], the control on the leading vehicle.

The upcoming work is structured as follows: Section 2 introduces the traffic flow model
of [3]. Section 3 contains our main result with the explicit rate on the decay rate. In the last
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section we present numerical examples which demonstrate the theoretical results. Further,
the numerical results probably hold under less restrictive conditions than we assume in the
theory and can also be obtained for the microscopic scale.

2 A nonlocal LWR traffic flow model

We base our analysis of the Lyapunov stabilization on the following first order nonlocal traffic
flow model:

∂tρ(t, x) + ∂x (ρV (t, x)) = 0, (t, x) ∈ R+ × R (2.1)

V (t, x) := v (Wη ∗ ρ) = v

(∫ x+η

x
Wη(y − x)ρ(t, y)dy

)

. (2.2)

Here, ρ is the traffic density, v a suitable velocity function, η > 0 the nonlocal reach and Wη

a suitable kernel function.
This model was introduced in [3] and the well-posedness results were further extended in

[6, 5]. In particular, [5] shows that no entropy condition is necessary as weak solutions are
already unique.

The model (2.2) is accompanied by initial conditions ρ0 ∈ BV(R; [0, ρmax]) and we impose
the following assumptions on the kernel function and the velocity function:

Assumption 2.1. Let v ∈ C2([0, ρmax];R+) with v′ < 0 and in addition we denote the upper
bound on the derivative of v by v′max, i.e.

v′(ρ) ≤ v′max < 0 ∀ ρ ∈ [0, ρmax].

Assumption 2.2. We set the kernel function to

Wη(x) =
1

η
. (2.3)

A constant convolution kernel can model, e.g., connected autonomous vehicles which have
the same degree of accuracy on information about the downstream traffic, independent of the
distance.

Remark 2.3. For the theoretical result we need to restrict ourselves to constant kernel func-
tions. In general, the kernel needs to fulfill

Wη ∈ C1([0, η];R+) with W ′
η ≤ 0 and

∫ η

0
Wη(x)dx = 1 ∀η > 0 (2.4)

to guarantee existence and uniqueness, see [3, 6].

In order to control the velocity to a stationary solution, i.e. V (t, x) = v̄, for t sufficiently
large, we apply specific initial data:

Assumption 2.4. We consider strictly positive initial data ρ0 ∈ BV(R; (0, ρmax]) with

ρ0(x) = ρ̄ for x ≥ b, (2.5)

b ∈ R and ρ̄ = v−1(v̄) for a given equilibrium velocity v̄.
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Note that ρ̄ needs to be strictly positive such that v̄ ∈ [0, v(0)) holds.
As discussed in [5, Remark 4.5] the well-posedness of (2.1) with initial data L∞(R) ∋ ρ0 6∈

L1(R) is guaranteed. In particular, the solution satisfies

0 < ρmin := inf
x∈R

ρ0(x) ≤ ρ(t, x) ≤ sup
x∈R

ρ0(x) ≤ ρmax, (2.6)

see [3, 6], and hence we can set v′max = v′(ρmin).

3 Lyapunov stabilization

The aim of this work is to control the nonlocal velocity V (t, x) on the road towards a steady
state v̄.

In the following, we view the problem (2.1) with initial conditions fulfilling assumption 2.4
as an initial boundary value problem on the semi-infinite interval (−∞, β(t)] with β(t) := b+v̄t
and we set the density for x ≥ β(t) to ρ̄. This induces the same waves as the initial value
problem fulfilling assumption 2.4, since for x ≥ β(t) the solution stays constant and β(t) is
the characteristic curve originating in (0, b) in the x-t-plane, see [5] for further details on the
characteristics. This allows to view the left boundary as a leading vehicle which controls the
traffic and moves with speed v̄, see [18] for further details. This leading vehicle has a direct
influence on the interval of length η behind it, i.e. [β(t) − η, β(t)]. Hence, our main result
concerns this interval:

Proposition 3.1. Let 0 ≤ v̄ < v(0) and the assumptions 2.1, 2.2 and 2.4 hold. We define

L(t) :=

∫ β(t)

β(t)−η
(V (t, x)− v̄)2dx. (3.1)

Then, we obtain the following bound

L(t) ≤ L(0) exp

(

2

η
v′maxρmint

)

.

Proof. First note that the boundary condition for β(t) simplifies the nonlocal term in (2.2)
and its partial derivatives for x ∈ [β(t) − η, β(t)] and a constant kernel as in the assumption
2.2. For simplicity, we define:

R(t, x) :=
1

η

(

∫ β(t)

x
ρ(t, y)dy + (x+ η − β(t))ρ̄

)

.

Next, we have

V (t, x) = v (R(t, x))

∂xV (t, x) =
1

η
(ρ̄− ρ(t, x)) v′ (R(t, x)) (3.2)

and hence, a direct relationship between the local density and the equilibrium density is
obtained. This derivative will play a key role for proving our stabilization result. Next, we
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exploit the temporal derivative of the nonlocal term:

∂tV (t, x) =
1

η

(

v̄ρ̄+

∫ β(t)

x
∂tρ(t, y)dy − v̄ρ̄

)

v′ (R(t, x))

= −
1

η

∫ β(t)

x
∂x (ρ(t, y)V (t, y)) dyv′ (R(t, x))

=
1

η
(ρ(t, x)V (t, x)− v̄ρ̄) v′ (R(t, x)) . (3.3)

Here, we used ∂tρ(t, x) = −∂x(ρ(t, x)V (t, x)). Since ρ is bounded and the integral evaluations
are on a finite interval, we obtain that R, V, ∂xV, ∂tV are all bounded. In particular, this
ensures that the integrals we consider in the following and the Lyapunov function L(t) are
bounded, too.

Turning now to the Lyapunov function (3.1), we directly obtain

d

dt
L(t) =v̄(V (t, β(t)) − v̄)2 − v̄(V (t, β(t)− η)− v̄)2

+ 2

∫ β(t)

β(t)−η
(V (t, x)− v̄)∂tV (t, x)dx.

Due to the boundary conditions, we have V (t, β(t)) = v̄ and the first term equals zero. Next,
by using (3.3) and adding a zero we obtain

d

dt
L(t) =− v̄(V (t, β(t)− η)− v̄)2 + 2

∫ β(t)

β(t)−η

v′ (R(t, x))

η
ρ(t, x)(V (t, x)− v̄)2dx

+ 2

∫ β(t)

β(t)−η

v′ (R(t, x))

η
v̄ (ρ(t, x)− ρ̄) (V (t, x)− v̄)dx.

Using (3.2) we can rewrite the last term as

2

∫ β(t)

β(t)−η

v′ (R(t, x))

η
v̄ (ρ(t, x)− ρ̄) (V (t, x)− v̄)dx

= −v̄

∫ β(t)

β(t)−η
∂x(V (t, x)− v̄)2dx = v̄ (V (t, β(t)− η)− v̄)2 .

Hence, we obtain

d

dt
L(t) = 2

∫ β(t)

β(t)−η

v′ (R(t, x))

η
ρ(t, x)(V (t, x)− v̄)2dx ≤

2

η
ρminv

′
maxL(t).

The latter inequality holds due to assumption 2.1 and the maximum principle for ρ given by
(2.6).

Applying Grönwall’s lemma yields the result.

Remark 3.2. In the case of a linear velocity function a stabilization result concerning the
L2 distance of the density and the stationary density is given by [18, Proposition 3.8]. In this
case, the Lyapunov function decreases only on a specific subinterval of [β(t) − η, β(t)].
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Remark 3.3. In order to estimate ρ(t, x) from below and obtain a decreasing Lyapunov
function, we need to ensure ρmin > 0. Hence, we cannot prove the exponential stability for
v̄ = v(0).

As already mentioned in the introduction, [19] considers the stability of (2.2) on a ring
road. In addition, they restrict themselves to a linear velocity function. One of the main
results in [19] is that for a constant kernel as in assumption 2.2, specific initial data and
a specific nonlocal reach η traveling waves can be created, such that no control is possible.
Nevertheless, this is no contradiction to our results as we do not consider a ring road and such
phenomena do not occur.

4 Numerical simulations

4.1 Numerical scheme

In order to illustrate the theoretical results we will use the numerical scheme presented in
[12, 4]. For the spatial step size ∆x > 0 the numerical flux is given by

Fn
j+ 1

2

= V n
j ρnj ,

where

V n
j = v





⌊η/∆x⌋−1
∑

k=0

γkρ
n
j+k+1



 and γk =

∫ (k+1)∆x

k∆x
Wη(y − x)dy.

The complete scheme is then given by

ρn+1
j = ρnj −

∆tn

∆x

(

Fn
j+ 1

2

− Fn
j− 1

2

)

. (4.1)

At the right boundary we apply ghost cells equal to ρ̄. As CFL condition we choose an adaptive
step size control determined by the maximum nonlocal velocity, i.e. ∆tn ≤ ∆x/maxj V

n
j .

4.2 Numerical example

As a numerical example we consider the situation of a bulk of cars standing bumper-to-bumper
and starting to move. For example such situations occur when a red light turns green or a
completely stopped traffic jam begins to resolve. This leads to the initial condition ρ0(x) = 1
for x ≤ 0 = b. The speed law is given by v(ρ) = 1− ρ. Without a control the leading vehicle
would move at maximum speed v(0) = 1. Instead we want to stabilize the traffic towards
the velocity v̄ = 0.5 (and ρ̄ = 0.5). In the numerical simulations the space step size is given
by ∆x = 5 · 10−3. The constant η is η = 1. We compare the numerical stabilization for the
following kernels

W const.

η (x) =
1

η
, W lin.

η (x) =
2(η − x)

η2
, W conc.

η (x) =
3(η2 − x2)

2η3
.

The theoretical results only ensure the convergence of the Lyapunov function (3.1) for the
kernel W const.

η . Nevertheless, the kernels W lin.
η and W conc.

η fulfill (2.4) such that the well-
posedness of the model (2.1) is satisfied. Figure 1 displays the logarithm of the Lyapunov
function (3.1) for all kernels together with the theoretical upper bound of Proposition 3.1.
As can be seen, even though not covered by our theoretical results, the bound is valid for all
considered kernels.
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Figure 1: Logarithm of the Lyapunov function (3.1) over time together
with the exponential upper bound for different kernel functions.
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−2.1

−2.08

−2.06

−2.04

−2.02

t

(4.2)

Figure 2: Logarithm of the Lyapunov function (4.2) over time with the
kernel W const.

η .

Remark 4.1. In order to prove the Lyapunov stabilization on the complete interval [β(t) −
η, β(t)] we cannot consider the density, i.e.

L̃(t) =

∫ β(t)

β(t)−η
(ρ(t, x) − ρ̄)2dx. (4.2)

A numerical example with initial data

ρ0(x) =











0.01, for x ≤ −0.5,

0.35, for x ∈ (−0.5, 0],

0.5, for x > 0,

and the rest of the parameters as before can be seen in Figure 2. In particular, the numerical
Lyapunov function (4.2) has an increasing part which demonstrates that a stabilization result
for (4.2) cannot be expected. In order to get a decreasing Lyapunov function one needs to
consider a specific subinterval of [β(t) − η, β(t)] as in [18].

Remark 4.2. In [18] the Lyapunov stabilization of a corresponding microscopic model is
derived with similar results as on the macroscopic scale. For the model (2.2) a microscopic
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Figure 3: Logarithm of a microscopic equivalent to the Lyapunov func-
tion (3.1) over time together with the corresponding exponential upper
bound.

formulation is considered in, e.g. [21]. A numerical example of the situation above with
ρ0(x) = 1 for x ≤ 0 which considers the corresponding formulation of the Lyapunov function
(3.1) on the microscopic scale with W const.

η can be seen in Figure 3. The latter figure demon-
strates that a stabilization to the equilibrium velocity can be obtained. Nevertheless, for an
analytic treatment one has to take care of discontinuities which can be seen in Figure 3. These
arise due to cars entering or leaving the domain [β(t), β(t) − η].

5 Conclusion

In this work we have presented a Lyapunov function and the explicit rate such that the nonlocal
velocity of a LWR-type traffic model on a single road tends to its equilibrium velocity. For the
theoretical analysis, we had to restrict ourselves to a constant kernel function. Nevertheless,
numerical examples suggest that the asymptotic stabilization effect can be obtained for general
kernels and the corresponding microscopic model. Future work may include extending the
results to those cases.

Furthermore, by using the stabilization in the nonlocal velocity we are able to obtain
our result on an interval of length η behind the leading vehicle. This is more intuitive than
the stabilization result of [18] which needs a specific subinterval. Hence, future work may
additionally include studying the Lyapunov stabilization of the nonlocal velocity for the second
order traffic flow model considered in [22, 18].
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