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A MODULAR APPROACH TO FERMAT EQUATIONS OF SIGNATURE
(p,p,5) USING FREY HYPERELLIPTIC CURVES

IMIN CHEN AND ANGELOS KOUTSIANAS

ABSTRACT. In this paper we carry out the steps of Darmon’s program for the generalized
Fermat equation

2P +yP = 2°.
In particular, we develop the machinery necessary to prove an optimal bound on the expo-
nent p for solutions satisfying certain 2-adic and 5-adic conditions which are natural from
the point of view of the method. The above equation is an example of a generalized Fermat
equation for which higher dimensional Frey varieties are needed for the modular method to

work and thus represents an interesting test case for Darmon’s program.
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1. INTRODUCTION

This paper is motivated by the study of the generalized Fermat equation
(1.1) x4yt =2

We say that a solution (a,b,c) € Z3 to (1.1) is primitive if ged(a,b,c) = 1, and trivial if
abc = 0. It is an open conjecture that (1.1) has no non-trivial primitive solutions if r, ¢, p > 3
(see for instance, [3]).

The special case of r = g = p is Fermat’s Last Theorem which was proven in [43] [42] using
Galois representations and modularity. In [12], Darmon described a program to show the
generalized Fermat equations (1.1) have no non-trivial solutions for fixed primes r, ¢ > 3 and
varying prime exponent p > 3 using the approach of Galois representations and modularity.

Central to Darmon’s program is the construction of Frey representations of signature (r, ¢, p),
which is done explicitly in [12] for the case (p,p,r) using Frey hyperelliptic curves. In
order to carry out Darmon’s program for a specific r, g, one needs to prove irreducibility
and modularity of the 2-dimensional residual Galois representations attached to a putative
solution, as well as distinguish them from those of the trivial solutions. Due to recent
breakthroughs in modularity results, establishing modularity is no longer the main difficulty.

Although irreducibility cannot be established in all cases, using local methods, it is possible
to treat certain congruence classes. In addition, the trivial solution £(1,—1,0) presents
an essential obstruction to the method because its associated Frey hyperelliptic curve is
non-singular and modular at the Serre level.

Unlike signature (r, r, p) where one still has Frey elliptic curves due to [20], signature (p, p, )
for r > 5 necessitates consideration of Frey abelian varieties of dimension greater than 1
if the exponents are prime. For r = 2,3, signature (p, p,r) equations were resolved in [14]
using Frey elliptic curves which exist in these cases. The equation studied in this paper thus
represents an interesting test case for Darmon’s program.

In this paper, we consider the specific signature (p,p,5) and develop the necessary machin-
ery to carry out Darmon’s program in all congruence classes mod 10 which avoid the two
obstructions above. The method is sufficiently refined to establish optimal bounds on the
exponents p. In particular, we prove the following theorem.

Theorem 1.1. For n > 3, there are no non-trivial primitive solutions (a,b,c) € Z3 to the
equation

(1.2) "y =20
i the cases

(I) 2tab and 5 | ab, or
(II) 2 | ab and 5 1 ab.

We remark that the proof of the above theorem requires the use of both Frey hyperellip-
tic curves introduced in [12] for signature (p,p,5) and necessitates the development of the

following innovations:
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(1) We provide more general local results which can be used for establishing irreducibility
of residual Galois representations attached to Frey hyperelliptic curves.

(2) Typically, the conductor at 2 of a Frey hyperelliptic is more difficult to determine.
We show that it can be read off up to twist by using the relation between odd Frey
hyperelliptic curves and the Legendre family of elliptic curves. This allows us to apply
repeated elimination steps using several twists of the Frey hyperelliptic curve to avoid
an exact determination of conductors and delicate inertia arguments at primes above
2 such as in [4].

(3) We give a precise conductor calculation at the prime above 5 of the Frey hyperelliptic
curves by identifying extensions which achieve semistable reduction.

The programs and output transcripts for the computations needed in this paper are described
and posted at [10].
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3. HYPERELLIPTIC EQUATIONS

In this section, we summarize the basic theory of hyperelliptic equations, which is taken in
part from [31, 32, 33, 34].

Let K be a finite extension of Q. Denote by O the ring of integers of K, by k the residue
field of O and by v the valuation of K. A hyperelliptic equation E over K is an equation of
the form

(3.1) y* + Q(x)y = P(x),
where @, P € Klz], deg@Q < g+ 1, and deg P < n = 2g + 2 with
(3.2) 2g + 1 < max(2deg@,deg P) < 2g + 2.
Let

R=4P + Q?,

and suppose c is the leading coefficient of R. The discriminant of E [32] is given by

A 2749V A(R) if deg R =29+ 2,
P ) 2740t 2A(R) if deg R = 2g + 1,
where A(H) denotes the discriminant of H € KJz|. In particular, if P is monic, deg P =
29+ 1, and deg @) < g, then
Ap = 29A(P +Q*/4),

using the fact that A(H) is homogeneous of degree 2n — 2 in the coefficients of H.
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Definition 3.1. An algebraic curve C' given by a hyperelliptic equation £ over K such that
Ag # 0 is called a hyperelliptic curve over K. A hyperelliptic equation F' with coefficients
in O such that K(F) = K(C) = K(E) is a called a hyperelliptic model for C'.

Two hyperelliptic models E, F' for a hyperelliptic curve C' over K are related by the trans-
formations

E:y*+Q(z)y = P(x),

F:224+T(u)z = S(u),

(CCL Z) € GLy(K), ee K", H(u)€ Klu], deg(H)<g+1,
autb ezt Hu

cutrd U7 (cu + d)9+1’

Ap = Ag e Y (ad — b))

(3.3) T =

In particular, we note that the valuation of the discriminant modulo

(3.4) ged(4(n —1),n(n — 1)),

is an invariant of the isomorphism class of C'.

We say a hyperelliptic model has odd degree if P(z) is monic and
degP=2g+1, deg@® <g.

Two odd degree hyperelliptic models E : y* + Q(z)y = P(z) and F : 22 + T(u)z = S(u) for
the same hyperelliptic curve C' over K are related by a transformation of the shape

r=cu+r, y=e¥z+t(u), where
ee K*, reK, teKlu|, deg(t)<gy.

The discriminants of the odd degree hyperelliptic models are related by
(3.5) Ap = Ape Gt

hence the valuation of the discriminant modulo 4¢g(2g+ 1) is an invariant of the isomorphism
class of C' among odd degree models.

Definition 3.2. A model C over O for a hyperelliptic curve C' over K is a O-scheme which
is proper and flat over O such that Cx = C where Cy is the generic fiber of C.

Definition 3.3. A model C over O for a hyperelliptic curve C over K has good reduction if
and only if its reduction mod v is non-singular over k. In addition, we say that C has bad
semistable reduction if and only if its reduction mod v is reduced, singular, and has only
ordinary double points as singularities.

Definition 3.4. A hyperelliptic curve C' over K has good reduction (resp. bad semistable
reduction) if and only if there is some model C over O for C' which has good reduction (resp.
bad semistable reduction). We say that C' has semistable reduction if and only if it has good

or bad semistable reduction.
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Definition 3.5. Suppose y°>+Q(z)y = P(z) is a hyperelliptic model over O of a hyperelliptic
curve over K. If Q(z) = byy129™ + -+ + by and P(x) = a,z™ + - - - + ag, then we define the
valuation vectors over K of this hyperelliptic model as the pair of vectors

(v(ao),---,v(an))  (v(bo), -+ 0(bg11))-

Proposition 3.6. Let C be a hyperelliptic curve over K with a K-rational point P. Then
C' has good reduction if and only if C' has an odd degree hyperelliptic model C over O such
that v(A(C)) = 0.

Proof. 1If C' has an odd degree hyperelliptic model C over O such that v(A(C)) = 0, then C
is a model with good reduction so C' has good reduction.

Suppose C' has good reduction, so there exists a model C of C' with good reduction. By [33,
Exercise 8.3.6], the hyperelliptic map

m:C — Pk,
extends to

m:C— Py

As a result, Cy is a non-singular pointed hyperelliptic curve with a k-rational point P where
P is the reduction of P mod v, so using [34, Proposition 1.2] it follows that Cj can be given
by a non-singular odd degree hyperelliptic equation. We deduce that C' has an odd degree
hyperelliptic model C such that v(A(C)) = 0. O

Definition 3.7. An abelian variety over K has semistable reduction if and only if the linear
part of the special fiber of the connected component of its Néron model is an algebraic torus.
Furthermore, if its toric rank is positive, we say it has multiplicative reduction.

Theorem 3.8. Let C be a curve over K and let J be the Jacobian of C. Then C/K has
semistable reduction if and only if J/K has semistable reduction. Furthermore, if C'/K
has bad semistable reduction with a model C that has integral special fiber, then J/K has
multiplicative reduction.

Proof. See [15, Theorem 2.4] for the first assertion. As the special fiber of the given model
over O is integral, X' = X, = X = C and ¢ = 1 in [38, Lemma 3.3.5] so the toric rank of
J is positive. Thus, J has multiplicative reduction. O

4. DARMON’S FREY HYPERELLIPTIC CURVE FOR SIGNATURE (p, p, )

In this section, we briefly review from [12, 41] the construction of a suitable Frey hyperelliptic
curve for the equation

(4.1) P +yf =2
where r > 3 and p are odd primes.

Let ¢ be a primitive rth root of unity, w; = ¢/ + (™7, and put
r—1

g(X) = [(X +3).
s



From here on, we let K = Q(¢ + (') and denote by t the unique prime above r in K. We
also use the notation g, to denote a prime of K above g.

Proposition 4.1. The quotient of the hyperelliptic curve
V2= XX +tX"+1)

by the involution 7 : (X,Y) — (1/X,Y/X"Y) is given by the hyperelliptic curve

y? = xg(2* —2) +t.
Proof. See [41, Proposition 3]. O
Proposition 4.2. The quotient of the hyperelliptic curve

V?2=X"+tX"+1
by the involution T : (X,Y) — (1/X,Y/X") is given by the hyperelliptic curve

y* = (x4 2)(zg(a® — 2) + 1).

Proof. See [41, Remark, p. 1058]. O

Consider the following hyperelliptic curves

Cr(t): y*=f(2) = flz) +2—4t,

CHO): yP = fi(2) = (o + 2)(f(x) + 2 — 40),
where f(z) = zg(2? — 2).

Theorem 4.3. The discriminants of the polynomials f(x) and fF(x) are given by

r—1

A(f7) = (1) T 2202 (- 1)

r4+1 r+3

A(fF) = ()20 (¢ - 1)

Proof. This is stated in slightly different form in the proof of [12, Proposition 1.15]. For
further details on how such formulae can be justified, we refer the reader to [6]. O

Theorem 4.4. Let JE(t) be the Jacobian of the hyperelliptic curve CE(t). Then, the endo-
morphism algebra Endg (J=(t)) ® Q contains the field K.

Proof. For J(t), see [41, Theorem 1]. For J*(t), the result follows from [41, Remark, p.
1058] and modifying the argument in [41, §3.1]. O

Let (a,b,c) € Z? be a non-trivial primitive solution to (4.1). The following lemma is readily
verified and appears in [12, p. 425].

Lemma 4.5. Let
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Then

(1) C;(a,b,c) is isomorphic to a twist of C;(t) over Q where t = %,
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(2) CH(a,b,c) is isomorphic to Cf (t) over Q where t = %.

Some explicit examples are listed below.

C(a,b,c) for:
r=3: y*=(

r=5: y*=(2°—5c%2" + 5c'z — 2(a? — bP))

r="7: y*= (2" — 722" + 14t — 7P — 2(a? — )

r=11: y*=(

Ct(a,b,c) for:
F=3: gt = (0 +20)(
r=>5: y*=( )(z° — 5a® + 5ctx — 2(aP — b))

r=T7: y*=(zv+2)(z" — 72" + 14?2 — 7Pz — 2(a? — V"))

r=11: y* = (' — 11c%2” + ddcta” — T782° + 558 2% — 1102 — 2(a” — bP)).

From Theorem 4.3 and Lemma 4.5, the discriminants of the hyperelliptic curves C; (a, b, ¢)
and C;(a,b,c) are given by

(4.2) A(CT)

T

(43) A(Cj) — (_1)(r—1)/222(r+1),r,rap(r+3)/2bp(r—1)/2.

(_1)(r—1)/222(7"—l)rrap(r—l)/2bp(r—1)/2

We denote by J* = J*(a,b,c) the Jacobians of CE(a, b, c).

Remark 4.6. C*(1,—1,0) is non-singular and J(1,—1,0) has complex multiplication by
Q(¢) [12, Proposition 3.7].

5. MODULARITY OF pj+
Let Gy = Gal(M /M) denote the absolute Galois group of a number field M, where M is
an algebraic closure of M.

From this section onward, we specialize to the case » = 5. For convenience, we denote
C* = CF and J* = J7.

Let (a,b,c) € Z? be a non-trivial primitive solution to (4.1).

Theorem 5.1. Suppose 5 | ab. Then py+ , is modular.
Proof. This is [12, Theorem 2.9]. O

In the case 5 1 ab, there is no currently known modularity result we can apply to prove that

py+p is modular in all cases. Therefore, we will work instead with p;- .
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Lemma 5.2. Suppose 2 | a, b=c=—1 (mod 4), and p > 3. Then, the conductor at qs of
the elliptic curve E/K given by

(5.1) E:y? =az(x+a)(z — )

is q2. Furthermore, pgs has conductor at qo dividing q.

Proof. This can be proven using Tate’s algorithm, for instance [13, §2.2]. Under the condi-
tions on a,b, ¢ and p, the minimal discriminant of E is given by Ap = 278(ab)*c!". Note
pes has conductor at qo equal to qq if and only if 51 v3(Ag) = 2pve(a) — 8. O

Proposition 5.3. The representation py- . extends to Gg and is absolutely irreducible when
restricted to Gk (c,)-

Proof. The abelian variety J~ /K is of GLo-type with K < Endg(J~)®Q. Thus, the 5-adic
Tate module T5(J7) ® Q5 is a 2-dimensional K ® Qs-vector space. As 5 totally ramifies in
K, we have that K ® Q5 ~ K, .

Since J~ is defined over Q, as Darmon explains in [12, p. 443], the action of G on T5(J~)®Qs
as a K -vector space extends to a Gg-action that is G g-semilinear; it satisfies

o(av) = o(a)o(v),

where 0 € Gk, a € K,, and v € T5(J7). As v is the unique prime above 5, the action of
Gg on T5(J7) ®p, F5, where the tensor product is taken with respect to the reduction map
O, — IF5, is linear and restricts to the action of Gk given by p;- ..

By [12, Theorem 2.6}, we have that p;- . arises up to quadratic twist from the Legendre
family given by

(5.2) L:y*=x(x—1)(z—t),
where t = a?/c". More precisely, there is a quadratic character x of Gk such that

(5.3) Pi—x = PrLs @ X

Suppose that p;- . |GK((5)
cuspidal K ((s)-rational point in X(20). A short Magma program allows one to verify the
K ({5)-points on X(20) are all cuspidal, a contradiction.

is reducible; thus ﬁL75|GK( o) is reducible. We then obtain a non-

We have thus shown that p;- , ‘GK( o 18 irreducible. To show absolute irreducibility, we need
to check that pr 5 |GK( () cannot have image lying in a non-split Cartan subgroup C’, the
only possible image for which the representation is irreducible, but becomes reducible after
an extension of the coefficient field. The only possible image for g 5 |, is the normalizer
of C’. Thus, for L to have this property we must have that

(5.4) Jr(t) — 1728 = jsni(s) — 1728.
where

1255(2s + 1)3(2s? + 7s + 8)3
(2 +s5—1)°
8

(55) j5N/(S) =



is the j-invariant of elliptic curves with normalizer of non-split Cartan structure on 5-torsion
points [9, Corollary 5.3]. Since the left hand side is a square, L would give rise to a K-rational
point on the hyperelliptic curve

7 27
(5.6) y2:2(x2+§x+§) (% 4+ —1).
Using Magma, it can be checked that all K-rational points arise from cusps. U

Theorem 5.4. Suppose 2 | a, b=c= —1 (mod 4). Then p;-, is modular.

Proof. By Proposition 5.3, the representation p;- . is absolutely irreducible and extends to
a representation p of Gg. By Serre’s Conjecture over QQ, now proven in [25, 26, 27], p
is modular, hence p,- . is also modular by cyclic base change. Modularity of J~/K now
follows from [24, Theorem 1.1] by checking its three hypotheses:

(1) The representation p;- . is unramified outside the finite set of primes of K dividing
10A(C™).

(2) The abelian variety J~ /K is potentially semi-stable so p;- . is deRham and hence
Hodge-Tate. The Hodge-Tate weights of p,- . are {0, 1}.

(3) The representation p;- . [gy,, is absolutely irreducible from Proposition 5.3.

Since J~ is modular, p;- , is modular for every prime p of K. 0

6. CONDUCTORS OF pj+

The discriminants of the hyperelliptic curves C* are given by
(6.1) A(C™) = 285°(ab)*®,

(6.2) A(CT) = 2"25°(a®b)*P,
from (4.2)-(4.3) in the case r = 5.

Let T,,(J*) be the Tate module of J* and write V,,(J*) = T,(J*) ® Q,. As Gg-modules we
have that

(6.3) Vo(J*) 2 @ Vo (J5)

where V,(J¥) = V,(J¥) ® K, is the p-adic Tate module of J*, K, = @y, K}, and K, is the
completion of K at p.

Let py+, be the Galois representation of Gk on the p-adic Tate module of J*, where p is
a prime of K above p. We also denote by p;+, the Galois representation of G on the
p-torsion of J*.

By Theorems 5.1 and 5.4, J*/K is modular, which implies the p;=, over all primes p of
K form a strictly compatible system of p-adic representations. Hence, the p;+, all have
isomorphic local Weil-Deligne representations at primes ¢ not dividing p, and therefore have

the same conductor exponent at q independent of p | p.
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Remark 6.1. The work of Dokchitser-Dokchitser-Maistret-Morgan [19, 18] gives a method
to compute the conductor of a fixed hyperelliptic curve over local fields of odd residual
characteristic. Anni-Dokchitser [2] have made this explicit in the case when the defining
polynomial involves factors with shifted ¢-Eisenstein polynomials.

Let K, and K, denote the completions of K at the unique primes g, and g, of K above r
and 2, respectively.

Lemma 6.2. Let ¢ # 2,5 be a prime and q a prime of K above q. Then C*/K and J*/K
are semistable at q. In particular, if C*/K has bad semistable reduction, then J*/K has
multiplicative reduction.

Proof. Suppose ¢ is a prime of K that does not divide 2 and 5. From Lemma 4.5 the curve
C~ is given by

C™: y? =2° — 5% + 5cta — 2(a” — ).
By (4.2) we recall that

A(c—) — (_1)(r—1)/222(7"—l)rrap(r—l)/2bp(r—1)/2.

T

By Proposition 3.6 if q 1 ab then C~/K has good reduction at g.

Suppose q | ab. We treat the case q | a, as the case q | b is similar. The special fiber of C'~
in the case q | a is given by

y* = (v +26)(2? — éx — )2,

where ¢ reduces to the element ¢ in the residue field F, of q. As A(2? — éx — &) =52 #0
in Fy, it follows that C'~ satisfies the double root criterion 7, Lemma 3.7]. Hence C'~ has
bad semistable reduction at ¢, and therefore C'~ is semistable at q. A similar argument can
be given for C*.

Finally, the statement for J* follows from the statement about C*, [7, Proposition 3.1], and
Theorem 3.8. O

Let m be a rational prime and S a finite set of primes of K. We denote by K(S,m) the
m-Selmer group of K with respect to S. When (,, € K, let K(S,m)* denote the set of
characters x : Gx — Z/mZ corresponding to the extensions K ( ¥/d)/K where d € K (S, m).

In this section, we prove the following theorem on the conductors of p;+ , and p;- .
Theorem 6.3. Let p # 2,5 be a prime.

(1) Suppose 21 ab and 5 | ab. Then the Serre level of py+, divides q,.

(2) Suppose 2 | a, b = ¢ = —1 (mod 4), and 5 1 ab. Then, for some character x, €
K (Ss,2)*, where Sy = {qs2}, the Serre level of pj-, ® xo is equal to q5 - q. where
s=0,1andt=2,3.

For every p | p in K, the representations p+, and pj-, ® xo are finite at p.
Proof. For primes q of K not dividing 10, p;+ , is unramified at q{ p, and finite at q if q | p

by [12, Proposition 1.15].
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By Theorem 6.5 for p;+ , we have that
N(thp):qr' H q
qa7qr,q|ab
Therefore the Serre level of py+, divides ¢, (see also [12, Theorem 3.5]).

By Theorem 6.7 for p;- , ® xo we have that
N(ps—»®x0) =2 - 4, - H q
a7#dz,q-,9|ab

where t = 2,3. Therefore, the Serre level of p;-, ® xo divides g3 - q.. As the image of
inertia of p;- , ® xo at g, has order coprime to p # 2,5 by the proof of Proposition 6.14,
the conductor of p;-, ® xo at q, does not degenerate upon reduction mod p by applying
22, Theorem 1.5]. We conclude the conductor of p;-, ® xo at g, is still g%. Finally, by
Proposition 6.12 the conductor of p;-, ® xo at gy divides qs. U

Remark 6.4. The 2-Selmer group K (Ss,2) can be computed in Magma to be

(6.4) K(S,,2) = {1,—1,—2,2, _€+1, \/3_1,\/3—1,—\/5+1}.

2

6.1. The conductor exponent of p;+ ,. In this section we compute the conductor of p+ .

Theorem 6.5. Suppose 21 ab andb | ab. Then N(ps+ ) = qr-qap where qqp is the square-free
ideal of K divisible by the primes q # qs and q | ab.

Proof. By the proof of [12, Proposition 1.15], C*/K has good reduction at the prime qp.
Applying Lemma 6.2, Lemma 6.6 and Theorem 3.8 show that J*/K has multiplicative
reduction at the primes q | g, - qu and good reduction for the other primes q. The argument
in [6, Theorem 9.15(d)] using Grothendieck’s inertial criterion then allows us to conclude the
conductor exponents of py+, at the primes q | q, - qq are 1.

U
Lemma 6.6. Suppose 5| ab. Then the curve C* /K, has bad semistable reduction.

Proof. The initial model of C* is given by
y? = (x4 2c)(2° — 522 + 5cta — 2(a? — bP)).
Assume 5 | a. Making the substitution x — /52 — a? —2c and y — \/ggy we obtain a model
with valuation vectors over K,
(>1,>1,0,1,0,1,0) (00, 00, 00, 00),
which satisfies the double root criterion.

Otherwise 5 | b. Making the substitution  — /52 + a? — 2c and y — \/ggy we obtain a
model with valuation vectors over K,

(>1,>1,0,1,0,1,0) (00, 00, 00, 00).

11



6.2. The conductor exponent of p;-,. In this section we compute the conductor of
PI—p ® Xo where Xo € K(SQ, 2>* with SQ = {qQ}

Theorem 6.7. Suppose 2 | a, b = ¢ = —1 (mod 4), 5t ab, and p > 5. Then, for some
choice of xo, the conductor of p;-, ® xo is of the form qs - q. - g where t = 2,3 and qq, is
the square-free ideal of K divisible by the primes q | ab and q 1 10.

Proof. This will follow from Lemma 6.2, and Propositions 6.12 and 6.15. U

6.2.1. The conductor exponent of p;-, at qa.

Proposition 6.8. Suppose 2 | a, b = ¢ = —1 (mod 4), and p > 5. Then C~ /Ky has
potentially bad semistable reduction and py-, |1,, has special inertial type.

Proof. This can be verified using [31, Théoréeme 1 (I)] and Magma. O

We need the following lemma.

Lemma 6.9. Let K be an unramified extension of Qo with uniformizer m and ring of integers
Ok. Suppose d € O% satisfies d =1 (mod 72). Then L = K(\/d) is unramified over I .

Proof. Let a = v/d and 8 = HTO‘ Then Ny /k(B) = 1_40‘2 € Ok and Ty /x(B) = 1 € Ok.
Hence, 5 € Op. Now,

1+2 2
4
1—a? «
6.6 — -
(6.6) T T3

The relative discriminant of Ok 3] = Ok + Ok over O is the determinant of

(2 1)
1+d
L5e

which is d. It now follows that O = Ok|[f] and the relative discriminant of L/K is dOk
which is not divisible by 7. Hence, L/K is unramified. O

Lemma 6.10. Let x : Gx — {1} be a quadratic or the trivial character. Then there exists
a character xo € K(S3,2)* where Sy = {qa} such that xxo is unramified at qs.

Proof. If x is the trivial character then we choose xo to be the trivial character as well.
We now assume that y is a non-trivial character and let L = K(v/d) be the corresponding
quadratic extension, where d € O} is square-free.

Since the class number of K is 1, using the idelic definition of class group [36, Chapter VI,
Proposition 1.3], there exists a u € K such that

(6.7) du=t e O}

where 0% =[] Ok, Let O = (—1, \/52+1>. It can be checked that reduction map
Ox to (O /q2)™ is surjective. Hence, without loss of generality, we may assume that u = 1

(mod q3).

v finite
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Let dy = du™!, then dy € K(Ss,2) since K(y/dp) is unramified outside of qo by (6.7). Let
Yo € K(Sy,2)* and x, be the characters corresponding to K(y/dy) and K (y/u), respectively.
From dy = du™!, we have the relation x, = xX5 = XXo- Asu € Og and u =1 (mod q3),
by Lemma 6.9 we have that y, is unramified at ¢, therefore xx, is unramified at qs. U

Proposition 6.11. Suppose2 | a, b=c = —1 (mod 4) and p > 3. Then there is a character
Xo € K(S2,2)*, where Sy = {qa}, such that the conductor at qs of pj- . ® xo s equal to qa.

Proof. To the solution (a, b, c) we attach the elliptic curve
E:y? =z(x+ daP)(z — bP).

The elliptic curve
E:y* =x(z + d’)(x — V7).
is a quadratic twist of L in (5.2) and hence by (5.3) we have that

(6.8) Pi—x = PES @ X

for some quadratic character x of Gk. By (6.8) we have that p;- . =~ pgs ® x where y is a
character of G of order dividing 2. By Lemma 6.10 there exists a character xo € K(Ss,2)*
such that xxo is unramified at q,. By Lemma 5.2, the conductor at qs of p;- . ® xo ~
PEs © xXo divides qa.

The representation p;-  is absolutely irreducible by Proposition 5.3 and modular by Theorem
5.4. Therefore, we conclude that p;- . ® xo has conductor g2 by applying [22, Theorem 1.5
(2)]. In particular, if the conductor of p;-. ® xo is g for t > 2, degeneration of the
conductor occurs under reduction. Since pj- . ® xo |1,, has inertial special type associated to
a character y, it follows that the reduction of y is trivial and Ng/g(q2) =1 (mod p), which
cannot happen as N /g(q2) — 1 =3 < p. We conclude ¢t < 1 and hence t = 1. O

Proposition 6.12. Suppose 2 | a, b=c= —1 (mod 4) and p > 3. Let xo be a character as
in Proposition 6.11. Then the conductor at qa of pj-, ® Xo s equal to qs.

Proof. The conductor at g of the compatible system p;- , ® xo is independent of p for p { 2,
so by Proposition 6.11 we have the conclusion. O

Remark 6.13. As xo is unramified outside of qq, the conductors of p;-, and p;- , ® xo are
equal away from qs.

6.2.2. The conductor exponent of py-, at qs.

Proposition 6.14. Suppose 5 1 ab. Let M/K,, be a totally ramified extension of degree 4
and

f(z) = 2° — 52 + 5tz — 2(a” — ).
Let d(a,c) be the constant term of g(x) = f(x — af — 2¢).

(1) If vs(d(a,c)) > 2, then C~ /K, attains good reduction over the extension M/K,, .

(i1) If vs(d(a,c)) =1, let ag, by, co € Z be the least non-negative residues of a, b, ¢ modulo 25,
respectively. Then, there is an extension L = Lqq py.co) 0f Ky, depending on (ag, by, o)
such that L/K,. is a degree 20 totally ramified extension and C~ /K, attains good

reduction over L/K,, .
13



Moreover, these extensions are minimal with respect to ramification index.

Proof. The initial model for C'~ is given by the equation y? = f(z). The hyperelliptic model
y?* = g(z) of C~ has valuation vectors over M

(8’872 8’872 8’07 OO) (007 OO? OO? OO)? if Us(d(a7 C)) = 1’
(>10,8,>8,8,>8,0,00) (00, 00, 00, 00), if vs(d(a,c)) > 2.
These valuations are determined by expanding the coefficients of g(z) as power series in a, c.

Case vs(d(a,c)) > 2: The substitution x — 75,x, y — 75,y gives us a model with good
reduction over M, where 7, is a uniformizer of M.

The extension M /K, has minimal ramification index with the property that C~/M has
good reduction: Suppose C~ attains good reduction over an extension F/K,, with ring of
integers Op. As C'~ attains good reduction over F, it has an odd degree hyperelliptic model
over Op by Proposition 3.6. Since vg, (A(C™)) = 10, it follows that the ramification index
of F'/K,, must be divisible by 4 from (3.5).

Case vs(d(a,c)) = 1: Let go(x) = fo(x — af — 2¢). From the fact that the coefficients of
g(z) lie in Q5 and M/Qj5 is a degree 8 totally ramified extension, we have that Eisenstein’s
criterion holds for g(z) over Q5. As g(z) = go(x) (mod 25), go(x) also satisfies Eisenstein’s
criterion over Qs.

Let 6 be aroot of go(z) and L = M(#). Then L/K, is a 20 degree totally ramified extension.
Making the substitution # — z + 6 to the model y* = g(z) of C~, we obtain a model with
valuation vectors over L

(> 80,40, > 40,40, > 40,0, o0) (00, 00, 00, 00).

Making the substitution * — 71%, y — 72y, we get a model with good reduction over L,
where 7y is a uniformizer of L.

The extension L/K,, has minimal ramification index with the property that C~ /L has good
reduction: Suppose C~ attains good reduction over an extension F/K, . Similar to the
previous case, it follows that 4 | e(F/K,,).

We know from [40] that [K}"(J7[2]) + Kgt] | [F'- KgF @ K('], where K" is the maximal
unramified extension of K, . As go(z) is an Eisenstein polynomial over Qs, the extension
Q5(0)/Qs is a totally ramified extension of degree 5, which in turn implies the extension
K, (0)/K,, is a totally ramified extension of degree 5. Since K, (0) C K, (J~[2]) it follows
that 5 | [KX(J7[2]) « K}Y], and hence 5 | [F - K* @ K*] so 5 | e(F/K,,). We have thus
shown 20 | e(F/K,,). O

Proposition 6.15. Suppose 5t ab. Then the conductor of py-, at q, is q2 or q2 accordingly
as vs(d(a,c)) > 2 orvs(d(a,c)) =1, respectively.

Proof. Let F' = M or L as above. The field cut out by p;-, |7, corresponds to the extension
P KK
There are finitely many possibilities for F'. For each possible choice, we may compute the

conductor exponent of p;-, |7, using the Magma. In particular, using Magma’s function

GaloisRepresentations we compute all possible irreducible Galois representations that factor
14



through the Galois group of F/K,, faithfully. For each Galois representation we compute
the conductor which is always equal to q> when F' = M and gq> when F' = L. Therefore, we
conclude that the conductor of p;- ,, is equal to g2 and g2 when F' = M and L, respectively.

Alternatively, we may obtain a bound on the conductor exponent at g, using the valuation
of the relative different of F'/K, and [35, (18)]. The bound on the conductor exponent is
<3incase F'=L and < 2 in case F' = M. Since we know the reduction type is potentially
good reduction, the conductor exponent is 2 or 3, though we do not have an explicit criterion
to determine which is the case, unlike the proof above. O

Remark 6.16. We also point out [12, Proposition 1.16] which covers general  but does not
give the exact conductor at .

7. IRREDUCIBILITY OF

We start with K being a finite extension of @QQ,, having ring of integers O, uniformizer ,
and residue field k. Fix embeddings Q, C K C @p and F, C k C Ev- For any integer n > 1,
denote by F,n the subfield of F, with p" elements. Let Ic denote the inertia subgroup of G
and Pr C I the wild inertia subgroup. Let I, x = Ix/Pk denote the tame inertia group
of K. We denote by G,k the Galois group of a Galois extension L/K. Let Ik and I; )k
the inertia and tame inertia subgroups of G /k.

The action of I, x on 7/®"~1) gives a homomorphism ¢ : I, x — Fs. C F;, denoted O,n_ as
in [39], which we refer to as the fundamental character of level n. In contrast, a fundamental
character of level n is any conjugate over F,, of ¢ = 6,»_1, that is, a character of the form
o o, where o : Fyn < F, is an embedding. In particular, there are n distinct fundamental
characters of level n.

Theorem 7.1. We have

Iy = lim pq = Im 7,
(d,p)=1 m
where the projective limits are over the homomorphisms

Hddar — Hd
ar—s ot
and
X X
Fpmn —> Fpm
1_pmn
o — o 1™,
Proof. See [39, Section 1.2]. O

Lemma 7.2. Suppose k = Fyn. Let 1) = O,n_y be the fundamental character of level n.
o Suppose L is a finite tamely ramified abelian extension of K such that ¢ factors as
’Lp = wL/K o v where

,QDL/K : It,L/K = I - GL/GL = IK/(IK ﬁGL) — F;n
15



and
Q ]t,K — LZL/K

1$ the natural homomorphism.
o Letrpk : K* — Gpr/k be the local reciprocity map, whose restriction to O™ factors
through a map 7k : k* — Gp/Kk.

Then we have that

Yok 0Tk (T) = 7!

for all v € F).
Proof. From [39, Prop. 3], we have that
Pk ov(sh) = as)
for all s € I; . Hence, we have
Uk o Trk o U(s™h) =k 0 afs) = (s)

for all s € I, x. Putting v = (s7"') and noting that 1 is surjective to F,. yields the
result. O

Corollary 7.3. Suppose p : G — F: s a continuous homomorphism. Then, we have that
porg(x) =[]o@",

where T € k> is the reduction of v € O*, r: K* — G% is the local reciprocity map,
0 <n(o) <p—1, and o runs through the embeddings of k — F,,.

Proof. Let p™ = |k|. Firstly, we can write
(7.1) ¢ = [J(eow) ™

g

where ¢ = 6,n_; and 0 <n(o) <p—1 as

(72) 2 ‘IK: ¢k
for some 0 < —k < p™ — 2 as ¥ has order p” — 1. Write k in the form
(7.3) k=ay+ap+...4+a,_1p" "

where 0 < —a; < p—1forall 0 <i <n —1, then the conjugates o o ¢ are of the form @bf”i
where 0 < ¢ <n-—1.

Taking L = K((pn_y)(7¥/®" V) = K(z/®"~Y) which is a finite tamely ramified abelian
extension over K, we see from Lemma 7.2 that the fundamental character ¢ of level n has
the description

(7.4) Yorg(r)=13"

The desired result then follows from precomposing (7.1) with rg.
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Now let K be a number field. The following result is a generalization of [29, Appendice A]
[16, 30]. We provide additional details for the benefit of the reader.

Proposition 7.4. Let K be a number field with ring of integers Ok. Let p be a prime

number unramified in K and S, the set of places in K above p. Let ¢ : Gx — F: be a
continuous homomorphism satisfying the following conditions:

(1) The Artin conductor of v is m, an ideal of Ok prime to p;
(2) For allp € S, the restriction ¢ |1, is equal to [],q (0 0 1y) ™), where
(0) 0 < ny(0) <p—1,
(b) ky is the residue field of p,
(¢) €y denotes the set_of embeddings of k, into T,
(d) Yy : L1k, = kS C IF; is the fundamental character, where K, is the completion
of K atp.

o€y

Then, for all totally positive units u € O such that w =1 (mod m), we have that

H H o(u+p)™ =1,

peES) o€y

Proof. Let rg : A} — G322 be the global reciprocity map, and let K, = (K ® Q,)* =
Hpe s, K¢, which sits inside the idele group Aj. We also denote by

Up={r€AX: 2,€ O, x,>0forallreal v and 2, =1 (mod q"™) for all q | m}.

v

We have that

(1) porg is trivial on Uy, for places v { p,
(2) porx(x) =TIles, [Tren, o(z,)™(@) for x = [I,zy € K5 by Corollary 7.3.

It follows that ¢ org is trivial on E,, = U, N K>, that is, the group of totally positive units
u € Of such that u =1 (mod m). O

We now have all the ingredients to prove p+, and p;- , are irreducible.

Theorem 7.5. Suppose 21 ab and 5| ab. Then, p+, is irreducible for p > 5.

Proof. Since py+, is odd and K is totally real it is well known that p;+, is absolutely
irreducible if and only if it is irreducible.

Suppose p;+ , is reducible, that is,
— 9 h . / * . . /
Prev~ o o with  6,60": G — F, satisfying 00" = x,,

where F, is the residual field of K at p. As 60’ = x,, the characters 6 and ¢’ have the same
conductor exponents away from p.

Let q # p be a prime of O. The semi-simplification P+, of the reduction py+, does not
depend on the choice of lattice and its restriction to I is isomorphic to (6 ®6') |;,. Suppose

eq is the conductor exponent of § and 6" which is the same as mentioned above. Then, the
17



conductor exponent at q of p7, p 15 2€q. On the other hand, the conductor exponent at q of
P+, 1s bounded by the conductor exponent at q of p+, which is 0 for g # g, and 0 or 1 for

q = q, by Theorem 6.3. Thus, e; = 0 for all q and the conductor of § and ¢ away from p is
Ok.

By Theorem 6.3 again, the representation p;+, is finite at all primes p | p, and as p is
unramified in K, it follows from [1, Corollaire 3.4.4] that the restriction to I, of § & 6’ is
isomorphic to

(7.5) Xp® 1 or @ gy
where x,, is the pth cyclotomic character and v, is a fundamental character of level 2.

Suppose that one of § and 6’ is unramified at all primes p | p. We can assume it is 0 (after
relabeling if needed). Then, € corresponds to a character of the Ray class group of modulus
001009 Where oo; denote the two places at infinity, which is trivial. It follows that # = 1 and
¢ = x,. As C*/K has good reduction at q2, we have that

1+4+22= ag,(J7)  (mod p),

where aq,(J ") is the trace of py+ , evaluated at a Frobenius element at ¢,. Using the change
of variables in [12, Proposition 1.15] with a short Magma script, we check that aq, = 0, so
p | 5 which is a contradiction to the fact that p > 5.

Suppose that both # and 6’ ramify at some prime above p. Applying Lemma 7.4 over K
with ¢ equal to either § or 6 implies that p divides the norm of u — 1 by (7.5), where u = ¢
is the fundamental unit in K. However, this norm is —1, a contradiction. Il

Theorem 7.6. Suppose 2 | a, b=c = —1 (mod 4), and 5 { ab. Then, p;-, is irreducible
forp>5.

Proof. Since p;- , is odd and K is totally real it is well known that p;, is absolutely irre-
ducible if and only if it is irreducible. To show p;- , is irreducible, it suffices to show p;, is
irreducible where J = J~ ® xo and Yy is as in Theorem 6.7.

Suppose py, is reducible, that is,

Pip ~ (g g,) with 6,0 : Gx — F, satisfying 600" = x,,
where F, is the residual field of K at p. As 60’ = x,, the characters 6 and ¢’ have the same
conductor exponents away from p.

By Propositions 6.8 and 6.12 we know that p;, | 1,, is of special type attached to a character
x and the conductor at qs of p;, does not degenerate under reduction mod p with conductor
exponent of py, |1, and ps, |1, equal to 1. If x is ramified then the conductor exponent
of psp |1, 18 twice the conductor exponent of x [z, which contradicts the fact that the
conductor exponent at gz of py,, | I, is equal to 1. Hence, x is unramified at qz.

The semi-simplification of the reduction p;, does not depend on the choice of lattice and its
restriction to Iy, is isomorphic to x @ x (where x is the reduction of x mod p) which in turn

is isomorphic to (6 © ¢') |r,,. Thus, the conductor at gy of & and ¢ is Ok.
18



Alternatively, we show the conductor at gy of 6 and 6’ is Ok without knowing that p, [,
is of special type. The conductor at gy of the semi-simplification of p;,, which is isomorphic
to 0 ®0', divides the conductor at qq of the semi-simplification of p;,, which in turn divides
the conductor at q2 of ps,, namely, q2. From above 6 and 6" have the same conductor at g,
it follows that the conductor of # and 0" is Ok.

From Proposition 6.14 we know that p;- ,(I,,) has order equal to 4 or 20, therefore p;, (I, )
has order equal to 4 or 20, respectively. This holds because pj,([;,) does not intersect the
kernel of reduction (which is a pro-p group) since p > 5 and Yy, is unramified at g,

Since py,(ly,) has order coprime to p > 5 by Proposition 6.14 and Maschke’s Theorem, we
conclude that pj, |1, = 0® 6" |, . From Theorem 6.3, we know that the conductor exponent
at q, of pyp | I, 15 2,3. As above we conclude that the conductor at g, of 6 and 6’ is the
same and divides g,

In summary, the conductor of # and 6 away from p divides q,. By Theorem 6.3, the
representation p;- , is finite at all primes p | p, and as p is unramified in K, it follows from
[1, Corollaire 3.4.4] that the restriction to I, of # & €’ is isomorphic to

(7.6) Xp @1  or P, @Yy,
where x,, is the p-th cyclotomic character and ), is a fundamental character of level 2.

Suppose that one of 0, §' is unramified at every prime dividing p. We can assume it is 6
(after relabeling if needed). It follows that 6 corresponds to a character of the Ray class
group of modulus ¢,.00;009 where oo; denote the two places at infinity. The Ray class group
is isomorphic to Z/27Z. From the above we have that 4 | #p;,(1;,) and pyy, |1, =0 © 0" |1, ,
hence 6 |7, has order divisible by 4 which is a contradiction.

Suppose that both 6 and @’ ramify at some prime above p. Let €; be the the fundamental
unit in K. Applying Proposition 7.4 to either 6 or #" implies that p divides the norm of u—1
by (7.6), where u = €]* and ny = 4 is the smallest positive integer such that v = 1 (mod q,.).
This yields of bound of p = 5, contradicting p > 5. O

8. PROOF OF THEOREM 1.1

Let (a,b,c) € Z? be a non-trivial primitive solution to (1.2). It is enough to prove Theorem
1.1 for the case n = p an odd prime or 4. For the case n = 3 this is a result by Kraus [28],
the case n = 5 is a special case of Fermat’s Last Theorem (see for instance, [17, Théoréme
IX]) while the case n = 4 has been proved in [8, Theorem 1.1]. The case n = 7 is treated in
[11].

For the rest of the proof, we may now assume that n = p > 11 is a prime. Let Sy(n) denote
the space of Hilbert newforms over K with parallel weight 2, trivial character, and level n.
We may assume without loss of generality in the second case that 2 | a, b =c¢= —1 (mod 4)
by switching the roles of a and b and negating (a, b, ¢), if necessary.

8.1. Local comparison of traces. In the elimination step of the modular method using a
Frey abelian variety .J, we typically show that an isomorphism

(8.1) Dip = Pgps
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where p is prime of K and P is a prime of field of coefficient K, of a Hilbert newform g,
cannot occur by exhibiting a prime q such that

(8.2) tr pp(Frobg) # tr pgq(Froby).
However, a subtlety occurs because in the definition of the isomorphism (8.1) we mean
(8.3) pip @F, >~ pogp @ F,,.

Hence, the comparison (8.2) cannot be done until we have chosen an embedding of the
residue fields of K, and K, into F,. The correct condition to rule out an isomorphism as
in (8.1) by a local comparison of traces is

(8.4) piNe | I (aa(9) —ag()?) |,

oe€Gal(K/Q)

where L is the compositum of K and K, inside Q (see [5] for more details).

Finally, we remark that this does not affect the computational time for the elimination step,
since in practice Magma is only able to compute aq(J) up to Galois conjugation over Q in any
case.

8.2. Proof of Theorem 1.1 (I). We are under the assumption that 2 4 ab and 5 | ab.
By Theorems 7.5 and 5.1, we have that p;+, is irreducible and modular. Hence, by level
lowering for Hilbert modular forms [21, 23, 37], we have that

(8.5) D+ p =~ Pg.B

where ¢ is a Hilbert newform of parallel weight 2, trivial character over K and level O or
g, by Theorem 6.3, and B is a prime above p in the field of coefficients of g. However, both
spaces of Hilbert newforms S5(1) and S3(q,) are empty which gives a contradiction.

8.3. Proof of Theorem 1.1 (II). As before, we may assume that n = p > 11 is a prime.
We are under the assumption that 2 | a, b =c= —1 (mod 4), and 5t ab. By Theorems 7.6
and 5.4, we have that p;- , is irreducible and modular.

In what follows, we use the fact that

Picxp = PJp DX,

for any character x : Gxg — {£1} of order dividing 2, where J ® x means the twist of J by
X, and y twists by the automorphism —1 of J.

Let J = J~ ® xo where xo € K(Ss,2)* where S5 = {q2}. By level lowering for Hilbert
modular forms as above, we have that

(8.6) Dip 2 Pg.B

where ¢ is a Hilbert newform of parallel weight 2, trivial character over K and level g4 for
t = 2,3 (by Theorem 6.3) and 9B is a prime of K above p in the field of coefficients of g.
Note in level lowering, we can level lower prime by prime and choose not to strip g from

the level of p;, in case the Serre level of p;, is not divisible by q.
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Suppose q # p is a prime of K not above 2 and 5. Then we have that
(8.7) a0(9) = ag(J)  (mod p), if g f ab,
(8.8) aq(9)* = (N(q) +1)* (mod p), if ¢ [ ab,
where aq(J) = trp;(Frob,) and N(q) is the norm of q. Thus, defining

T(g,q) = N(@) - (aq(9)* = (N(@) + 1)*) - [ Nege [T (a(9) —aa()) |

a,beF 4,ab7#0 oeGal(K/Q)

we have that p | T(g, q), where L is the compositum of K and K, inside Q. Taking the gcd
of T(g,q) for a suitable choice of primes q above ¢, we typically obtain a small finite set of
possible primes p (assuming one of the T'(g, q) is non-zero).

For all choices of xg, using the auxiliary primes ¢ = 3,7,11, we eliminate all newforms g
except for the prime exponents p = 2, 3,5, 7, which proves the desired conclusion.

Remark 8.1. Working with all the J~ ® x, instead of the J~ does have two important
consequences. First of all, the level of the space of Hilbert newforms we have to compute is
smaller. For J~ we also have to compute the space of Hilbert newforms of level q3q%. with
t = 2,3 which have bigger dimension and thus make the computations slower. Secondly, the
spaces of Hilbert newforms of level q3q’. with ¢ = 2, 3 have forms with complex multiplication
over Q((5). The elimination step using standard comparison of traces of Frobenius does not
work on these forms and requires additional elimination techniques to prove Theorem 1.1.
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