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RANDOM AMENABLE C*-ALGEBRAS

BHISHAN JACELON

Abstract. What is the probability that a random UHF algebra is of infinite type?
What is the probability that a random simple AI algebra has at most k extremal
traces? What is the expected value of the radius of comparison of a random Villadsen-
type AH algebra? What is the probability that such an algebra is Z-stable? What
is the probability that a random Cuntz–Krieger algebra is purely infinite and simple,
and what can be said about the distribution of its K-theory? By constructing C*-
algebras associated with suitable random (walks on) graphs, we provide context in
which these are meaningful questions with computable answers.

1. Introduction

Inductive limit constructions lie at the very heart of operator algebras. Beginning with
Murray and von Neumann’s analysis of hyperfinite factors [43], continuing with Glimm’s
description of their C*-analogues, the uniformly hyperfinite (UHF) algebras [23], and
later with Elliott’s pioneering work on approximately finite-dimensional (AF) algebras
[15], and beyond, not only have inductive limits of type I algebras featured consistently
and prominently in the natural C*-world, but their classification has been a perennial
pursuit of C*-taxonomists.

In fact (see [24, Theorem 13.50]), every (unital) simple, separable C*-algebra that has
finite decomposition rank and satisfies the UCT (that is, every stably finite classifiable C*-
algebra) is isomorphic to an ASH algebra, that is, to an inductive limit of subhomogeneous
C*-algebras. Even on the other branch of the classifiable tree, purely infinite C*-algebras
can be built from limits of circle algebras by taking crossed products by trace-scaling
endomorphisms (see [51, Proposition 4.3.3]). The known examples [59, 49, 56, 55] of
amenable C*-algebras exhibiting Elliott invariants with more exotic behaviour also arise
from inductive limits.

In this article, we address the question: what can be said about the distributions of
the random C*-algebras obtained by viewing these constructions as probabilistic rather
than deterministic? To make sense of this, and to answer the questions posed in the
abstract, we outline specific procedures for probabilistic model building and examine the
distributions of suitable invariants. In particular, we will:

(i) as a warmup example, use random walks on the prime numbers to build UHF
algebras of random type (see § 3);

(ii) similarly build simple inductive limits of prime dimension drop algebras with ran-
dom tracial state spaces, guided by random walks on the natural numbers (see
§ 4);

(iii) use random walks on binary trees to evolve Villadsen algebras whose radii of com-
parison are random variables with tractable distributions (see § 5);

(iv) investigate the distribution of the K-theory of graph C*-algebras associated to ran-
dom regular multigraphs (see § 6).
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2 B. JACELON

There are two sources of context for this line of investigation. First, our use of classi-
fying invariants to develop various classes of C*-algebras into probability spaces is tele-
graphed by the Borel parameterisations established in [18, 19]. Second, in work that
builds on the Erdös-Rényi construction of the random graph [17], it is shown in [11] how
to probabilistically construct (ω-categorical) universal homogeneous relational structures
(briefly, one decides by coin toss whether or not a given tuple of generators satisfies a rela-
tion). What unites the universal UHF algebra Q, the Jiang–Su algebra Z and the stably
projectionless algebraW , apart from (strong) self-absorption, is that they are the Fräıssé
limits of suitable categories of tracial C*-algebras (see [13, 41, 27]). In other words, they
are the generic objects that can be built as limits from their associated Fräıssé classes.
While for the most part we have found it more natural to work with the inductive limit
structure inherent to Q, Z, W and other C*-algebras of interest, and consequently to
appeal to the theory of Markov chains § 2, the model employed in § 6 may be thought of
as closer in spirit to the relational approach.

Computations of specific probabilities P and expectations E are included alongside our
random constructions, but the reader should not attach much significance to, say, the as-
sertion that the probability that a random simple inductive limit of prime dimension

drop algebras has at most k extremal traces is
k∑

i=0

k−i
(k+1)2i+1 (see Remark 4.2). Rather,

the point being illustrated is that, with the right framework, such calculations are indeed
possible. Our suggestion is that, whether via random walks or the creation of random
pairings, (multi)graphs provide a natural and manageable way of probabilistically gen-
erating large classes of interesting C*-algebras. And the take-home message should be
that graph properties like recurrence or transience of random walks translate to almost-
sure predictions about the structure of the associated random C*-algebras (for example,
a simple symmetric walk on the natural numbers almost surely generates the universal
UHF algebra).

Acknowledgements. This research was supported by the GAČR project 22-07833K
and RVO: 67985840. It germinated in conversations with Ali Asadi–Vasfi, Tristan Bice,
Karen Strung and other members of the Prague NCG&T group. I am grateful for the
kind hospitality of my colleagues Dr. Dane Mejias in Seattle and Dr. Holly Morgan in
Halifax during a visit to North America in the summer of 2022, when much of the article
was completed.

2. Markov chains

The random constructions in § 3 and § 4 are based on the following continuous-time
Markov chain (specifically, a birth-and-death process). For an introduction to Markov
chains, see [45].

2.1. The model. The random variable X0 is specified by a probability distribution π
on N = {0, 1, 2, . . .}. At time t ≥ 0, the value of Xt is governed by the rate matrix

Q =








−(λ0 + µ0) λ0
µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2
. . .

. . .
. . .







, (2.1)

where µi > 0 for i ≥ 1 and λi > 0 for i ≥ 0. It was shown in [33, Theorems 14,15] (see
also the introduction of [31]) that, if the sequences

αn :=

n∏

i=1

λi−1

µi
, βn :=

n∏

i=1

µi
λi

, n ≥ 1
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are such that
∞∑

n=1
(αn + βn) = ∞, then there exists a unique matrix P (t) associated to

Q that satisfies P ′(t) = QP (t) = P (t)Q, P (0) = I, P (s + t) = P (s)P (t), Pij(t) ≥ 0
and

∑

j Pij(t) ≤ 1 (for all s, t, i, j as appropriate), and that consequently determines the
transition probabilities:

P(Xs+t = j | Xs = i) = Pij(t).

While the continuous process provides important context, what we actually pay attention
to is its jump chain, that is, the discrete Markov chain (Yn)n∈N on N whose initial
distribution is π and whose transition matrix Π has entries

Πij =







pi :=
λi

λi+µi
if j = i+ 1

qi :=
µi

λi+µi
if j = i− 1

0 if |i− j| > 1.

(2.2)

The jump chain is represented by the diagram

−1 0 1 2 · · ·

q0

p0

q1

p1

q2

p2

q3

There are two possibilities for what happens at i = 0:

(I) 0 is a reflecting barrier (that is, q0 = µ0 = 0);
(II) −1 is an absorbing state (that is, with probability q0 = µ0

λ0+µ0
> 0, Yn moves from

0 to −1 and stays there).

We will use the process (Yn)n∈N to construct a random UHF algebra in § 3 and
a random simple inductive limit of prime dimension drop algebras in § 4. If we want a
nonzero probability of ending up with a nontrivial finite structure (a finite matrix algebra
or finite-dimensional tracial simplex), then we go with option (II).

2.2. Absorption, recurrence and transience. The behaviour of the Markov chain
(Yn)n∈N is determined by the growth of the sequences

an :=

n∏

i=1

pi−1

qi
, bn :=

n∏

i=1

qi
pi

, n ≥ 1. (2.3)

Recall that every state is of one of three types:

(a) positive recurrent (or ergodic) if with probability 1 it is visited infinitely often, the
mean return time between visits being finite;

(b) null recurrent if with probability 1 it is visited infinitely often, but with infinite mean
return time between visits;

(c) transient if with probability 1 it is visited only finitely many times.

In Case (I), the chain is irreducible (that is, there is a nonzero probability of transitioning
between any two given states), so all states are of the same type.

The following results are by now well known. See [32, §2] for a discussion of how they
can be deduced from the analysis of the continuous birth-and-death process carried out
in [31].

Theorem 2.1. In Case (I), the chain (Yn)n∈N is:

(a) positive recurrent if and only if
∞∑

n=1
bn =∞ and

∞∑

n=1
an <∞;

(b) null recurrent if and only if
∞∑

n=1
bn =∞ and

∞∑

n=1
an =∞;

(c) transient if and only if
∞∑

n=1
bn <∞.
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Proposition 2.2. In Case (II), if the initial state is i, then the probability of eventual
absorption at zero (that is, of reaching the state −1) is

(
∞∑

n=i

cn

)/(

1 +
∞∑

n=0

cn

)

,

where cn :=
n∏

j=0

qj
pj
. Absorption is transient (that is, occurs with probability < 1) if

∑
cn

converges, is almost sure (that is, occurs with probability 1) if
∑
cn diverges, and is

ergodic (that is, almost sure with finite expected time) if in addition
∑
an converges.

Notice that, by shifting the problem one unit to the right, Proposition 2.2 implies that
in Case (I), the probability of never reaching 0 from the initial state i is

(
i−1∑

n=0

bn

)/(
∞∑

n=0

bn

)

(where b0 := 1). The computation of this probability appears at least as far back as [26,
Theorem 2a].

We might also be interested in the largest value attained before absorption. As a
reminder of the flavour of some of the arguments involved, we will provide the easy proof
of the following (which is really the same as [26, Theorem 2b]).

Proposition 2.3. In Case (II), the probability hk,i that, starting at i ∈ I = N, the
maximum attained value is at most k ≥ 1 is

hk,i =







0 if i ≥ k + 1
(

k∑

n=i

cn

)/(

1 +
k∑

n=0
cn

)

if 0 ≤ i ≤ k,

where cn :=
n∏

j=0

qj
pj
.

Proof. The event in question is the complement of the event that, starting at i, the chain
ever hits the set A = {k + 1, k + 2, . . . }. Let us write h′k,i for the probability of this

latter event (that is, h′k,i = 1− hk,i). By an application of the Markov property (see [45,

Theorem 1.3.2]), (h′k,i)i∈I is the minimal non-negative solution to

h′k,i =







1 if i ∈ A
∑

j∈I

Πijh
′
k,j if i /∈ A. (2.4)

Since −1 is an absorbing state, we also know that h′k,−1 = 0. So far, we know that

hk,−1 = 1 and hk,i = 0 for i ≥ k + 1. For 0 ≤ i ≤ k, we have from (2.4) that

h′k,i = pih
′
k,i+1 + qih

′
k,i−1.

Writing ui = h′k,i − h
′
k,i−1 for 0 ≤ i ≤ k + 1, this gives

ui =
qi−1

pi−1
ui−1 =

qi−1qi−2

pi−1pi−2
ui−2 = · · · = ci−1u0

(with c−1 := 1), which implies that

h′k,i = (u0 + · · ·+ ui) + h′k,−1 = u0

(

1 +

i−1∑

n=0

cn

)

.
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Since h′k,k+1 = 1, it follows that u0 =

(

1 +
k∑

n=0
cn

)−1

. Finally, this gives

hk,i = 1− h′k,i =

(
k∑

n=i

cn

)/(

1 +

k∑

n=0

cn

)

for 0 ≤ i ≤ k. �

Example 2.4. A case of particular interest is that of constant transition probabilities
(that is, for all i ≥ 1, pi = p = 1 − q = 1 − qi). We can interpret this as a one-
dimensional drunkard’s walk: a drunkard stumbles along a semi-infinite street of constant
slope, walking one block to the right with probability p and one block to the left with
probability q (with p < q, p = q or p > q depending on the sign of the slope). His home
is at the origin and the bar is at position k+1 ∈ {1, 2, . . .}∪{∞}. In Case (I), even if he
makes it home, he refuses to stay there. By Theorem 2.1, with probability 1, these visits
home occur:

(a) infinitely often with finite mean return time if p < q;
(b) infinitely often with infinite mean return time if p = q;
(c) at most finitely often if p > q (in which case, the probability that he starts at i and

never reaches home is 1−
(
q
p

)i

).

In Case (II), if he makes it to his front door (at 0) he can be persuaded, with probability
q0 > 0 (which for simplicity we assume is equal to q), to go inside to bed (at −1). On
the other hand, if he makes it to the bar then he will never leave. By Proposition 2.2
and Proposition 2.3, the event that, starting at i, he eventually goes to bed:

(a) (if the bar is at ∞) is almost sure if p ≤ q (with finite expected time if p < q and
infinite expected time if p = q), and has probability

(

q0
p0

(
q

p

)i
)/(

1−
q

p
+
q0
p0

)

=

(
q

p

)i+1

if p > q;
(b) (if the bar is at k + 1 ∈ {i+ 1, i+ 2, . . . } ⊆ N) has probability

k + 1− i

k + 2

if p = q = q0 (and is given by a less appealing expression if p 6= q).

3. UHF algebras

3.1. The construction. Let m−1 = m0 = 1 and let (mn)
∞
n=1 be an enumeration of the

primes. Recall that Π = (Πij)i,j∈N∪{−1} is the transition matrix of the Markov chain
(Yn)n∈N described in § 2.1 (that is, Πij = P(Yn+1 = j | Yn = i)) and π = (πi)i∈N is its
initial distribution (that is, πi = P(Y0 = i)). In this section, we construct a UHF algebra

M(Π, π) =MmY0
⊗MmY1

⊗MmY2
⊗ . . . .

In Case (I) we always obtain an infinite-dimensional C*-algebra, while in Case (II) it is
possible to end up with a finite matrix algebra.

3.2. Probabilities. The following is immediate from Theorem 2.1, Proposition 2.2,
Proposition 2.3 and Example 2.4.

Theorem 3.1.

(1) If q0 = 0, then with probability 1:
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(a) M(Π, π) is isomorphic to the universal UHF algebra Q if
∞∑

n=1

n∏

i=1

qi
pi

= ∞, in

particular if pi = p ≤ q = qi for all i ≥ 1;
(b) M(Π, π) is of ‘finite type’, that is, every prime factor of the supernatural number

associated to M(Π, π) has finite multiplicity, if
∞∑

n=1

n∏

i=1

qi
pi
< ∞, in particular if

pi = p > q = qi for all i ≥ 1.
(2) If q0 > 0, then the probability that:

(a) M(Π, π) is finite dimensional is 1 if
∞∑

n=0

n∏

j=0

qj
pj

= ∞, in particular if pi = p ≤

q = qi for all i ≥ 1, and otherwise is




∞∑

i=0

πi

∞∑

n=i

n∏

j=0

qj
pj





/


1 +

∞∑

n=0

n∏

j=0

qj
pj



 ,

which simplifies to
∞∑

i=0

πi

(
q

p

)i+1

if pi = p > q = qi for all i ≥ 0;
(b) M(Π, π) is isomorphic to MN , with the highest prime factor of N at most mk,

is 



k∑

i=0

πi

k∑

n=i

n∏

j=0

qj
pj





/


1 +

k∑

n=0

n∏

j=0

qj
pj



 ,

which simplifies to
k∑

i=0

πi
k + 1− i

k + 2

if pi = p = q = qi for all i ≥ 0.

3.3. Variations. The particular random walk we have chosen as our model is of course
just one of many possibilities. We might instead for example list the primes as the
elements of the grid Zd for d ≥ 1. It is a classical theorem of Pólya [46] (see also [20,
Chapter XIV.7] or [45, §1.6]) that a simple symmetric walk on this grid (that is, one in
which it is only possible to move from a given point to one of the 2d neighbouring points,
each with equal probability), is recurrent for d = 1 and d = 2, but transient for d ≥ 3.

In particular, if our random UHF algebra is constructed according to a drunken walk
through an infinite flat city, we still obtain the universal UHF algebra Q. For this reason,
one might (and the author personally does) think of Q as the drunkard’s UHF algebra.
On the other hand, to paraphrase Kakutani [12, §3.2], a drunk bird (who flies around Z3)
will almost surely produce a UHF algebra of finite type.

4. Simple limits of point-line algebras

4.1. Background. The Lazar–Lindenstrauss simplex theorem [37, Theorem 5.2 and its
Corollary] says that every infinite-dimensional metrisable Choquet simplex ∆ is affinely
homeomorphic to a projective limit

∆ ∼= lim←−(∆n, ψn), (4.1)

where for each n ∈ N, ∆n is an n-dimensional simplex and ψn : ∆n → ∆n−1 is affine and
surjective. Equivalently, the space Aff(∆) of continuous affine maps ∆→ R is isomorphic
to the limit

Aff(∆) ∼= lim
−→

(Aff(∆n−1), ψ
∗
n)
∼= lim
−→

(Rn, ψ∗
n) (4.2)
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in the category of complete order unit spaces (in which the morphisms are positive unital
linear maps). Here, we identify Aff(∆n−1) with Rn via the basis (fj,n)0≤j≤n−1 that is
defined on the vertices e0,n−1, e1,n−1, . . . , en−1,n−1 of ∆n−1 by

fj,n(ei,n) = δij . (4.3)

We will refer to these equivalent statements of the theorem as, respectively, the geometric
version and the algebraic one.

Both versions have proved useful in the construction of simple inductive limit C*-
algebras A = lim

−→
An with prescribed tracial state space T (A). We would in particular

like to highlight the approximately homogeneous (AH) cases An = pnC(Xn,Mmn)pn,
where:

[25, 4] Xn = {1, . . . , ln} (so that A is an approximately finite-dimensional (AF) algebra);
[53] Xn = [0, 1] (so that A is an approximately interval (AI) algebra).

The AF construction uses the geometric version (4.1)of Lazar–Lindenstrauss. The AI
construction uses the algebraic one (4.2), together with an intertwining [53, Lemma 3.8]

CR([0, 1]) CR([0, 1]) . . . Aff(T (A))

R1 R2 . . . Aff(∆)

ϕ1 ϕ2

ψ∗

1 ψ∗

2

(where CR([0, 1]) is identified with Aff(T (C([0, 1],Mmn))) via the embedding of C([0, 1])
into the centre of C([0, 1],Mmn)) and a suitable Krein–Milman theorem [53, Theorem
2.1] to approximate each positive unital linear map ϕn by an average of maps induced
by ∗-homomorphisms.

Simple AI algebras are particularly noteworthy for demonstrating the necessity for
a classifying invariant for simple amenable C*-algebras to include not just traces and
ordered K-theory but also the pairing between the two (see [51, p. 29]). For us though,
the key point is that the construction of these AH algebras is via an algorithm whose

input is a sequence of affine surjections ψn : ∆n → ∆n−1 (or positive unital linear maps
ψ∗
n : R

n → R
n+1), and whose

output is a simple C*-algebra whose tracial simplex is specified by (4.1) or (4.2).

In § 4.2, we will use ‘representing matrices’ to turn the space of sequences (4.1) into a
measure space in which we can compute probabilities. First though, for the sake of noise
reduction we switch our attention from homogeneous to subhomogeneous building blocks.

The introduction of boundary conditions at the endpoints of the interval (obtaining
what are variously referred to as point-line algebras, Elliott-Thomsen building blocks or
one-dimensional noncommutative CW complexes) provides access to a wider range for
the K-theory of the limit algebra. (To exhaust the full range, in particular to account for
torsion in K0, one must allow for slightly higher dimensional base spaces; see [16].) That
said, our interest in this section is altogether to rid ourselves of this turbulent K-theory,
and focus on a class for which the only thing that matters is traces, namely, C*-algebras
built from prime dimension drop algebras

Zx,y = {f ∈ C([0, 1],Mx ⊗My) | f(0) ∈Mx ⊗ 1y, f(1) ∈ 1x ⊗My}, (x, y) = 1.

By [30, Theorems 4.5 and 6.2], simple inductive limits of these building blocks are com-
pletely classified by the tracial simplex. The ‘existence’ part of the classification is still
based on Thomsen’s algorithm, with a suitably refined Krein–Milman theorem [38, The-
orem 2.1].

4.2. Representing matrices. By reordering the set (ei,n)0≤i≤n of vertices of ∆n if
necessary, we can visualise (4.1) as follows: ∆n sits atop its base ∆n−1, and ψn is the
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collapsing map that fixes the base and sends en,n to
n∑

i=1

ai,nei−1,n−1 ∈ ∆n−1. Dually,

ψ∗
n : R

n ∼= Aff(∆n−1)→ Aff(∆n) ∼= Rn+1 has matrix









1
1

. . .

1
a1,n a2,n . . . an,n










. (4.4)

The triangular matrix (ai,n)1≤i≤n, n≥1 is called a representing matrix for the simplex ∆.
Assigning to a representing matrix A the simplex ∆A defined by (4.4) is a well-defined
function, but is ∞-to-1: for a start, [39, Theorem 4.7] says that a sufficient condition for
matrices A and B to represent the same simplex is that they have the same asymptotic

behaviour, that is, satisfy
∞∑

n=1

n∑

i=1

|ai,n − bi,n| < ∞. The full story is more complicated,

because this condition is certainly not necessary. For example, it can be shown (see [52,
p. 317 and Theorem 4.3]) that the representing matrices for which:

(a) an,n = 1 (b) a1,n = 1 (c) ai,n =
1

n
for n ≥ 1 and 1 ≤ i ≤ n, (4.5)

all give rise to the Bauer simplex K whose extreme boundary is homeomorphic to
{ 1n}

∞
n=1 ∪ {0}.

In the random constructions to follow, we use

(ai,j)i,j≥1 7→

(
n∑

i=1

ainei−1,n−1

)

n≥1

(4.6)

to identify the set R of representing matrices with
∏

n∈N

∆n. Probabilities in the set ∆(R)

of all metrisable Choquet simplexes (which, as in [14], can be viewed as a subset of the
unit sphere of ℓ1 with its w∗-topology) are computed by pushing forward a choice of
product measure γ = ⊗n∈Nγn on R. We will consider three possibilities for γ:

(K) γn the point mass at
∑n

i=0
1
nei,n;

(C) γn the uniform measure on the n+ 1 vertices of ∆n;
(P ) γsn+i normalised Lebesgue measure on conv{e0,n, . . . , en−i+1,n} ⊆ ∆n ⊆ ∆sn+i

for 1 ≤ i ≤ n+ 1, where sn = 0 + 1 + · · ·+ n = n(n+1)
2 .

4.3. The constructions. We use the Markov chain (Yn)n∈N of § 2.1, a choice of prob-
ability measure γ of the form (K), (C) or (P ) as described in § 4.2, and Thomsen’s
algorithm §4.1, to build a simple inductive limit

Z(Π, π, γ) = lim
−→

(Zxn,yn , ϕn)

whose tracial state space is affinely homeomorphic to lim
←−

(∆Yn , ψn). Here, ∆−1 := ∆0

and the connecting map ψn : ∆Yn → ∆Yn−1 is either:

(i) the standard inclusion (that is, assigns the vertices of ∆Yn to the first Yn+1 vertices
of ∆Yn−1) if Yn = Yn−1 − 1; or

(ii) chosen randomly according to the probability measure γ if Yn = Yn−1 + 1.

4.4. Probabilities.

Theorem 4.1. (1) If q0 = 0, then with probability 1, Z(Π, π, γ):

(a) is monotracial (hence, is isomorphic to the Jiang–Su algebra Z) if
∞∑

n=1

n∏

i=1

qi
pi

=

∞, in particular if pi = p ≤ q = qi for all i ≥ 1;
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(b) has infinite-dimensional tracial state space if
∞∑

n=1

n∏

i=1

qi
pi

< ∞, in particular if

pi = p > q = qi for all i ≥ 1; moreover, in this case T (Z(Π, π, γ)) is with
probability 1 affinely homeomorphic to either
K the Bauer simplex whose extremal boundary is { 1n}

∞
n=1 ∪ {0} or

C the Bauer simplex whose extremal boundary is the Cantor set or
P the Poulsen simplex.

(2) If q0 > 0, then the probability that Z(Π, π, γ) is isomorphic to Z is 1 if
∞∑

n=0

n∏

j=0

qj
pj

=

∞, in particular if pi = p ≤ q = qi for all i ≥ 1, and otherwise is




∞∑

i=0

πi

∞∑

n=i

n∏

j=0

qj
pj





/


1 +

∞∑

n=0

n∏

j=0

qj
pj



 ,

which simplifies to
∞∑

i=0

πi

(
q

p

)i+1

if pi = p > q = qi for all i ≥ 0.

Proof. (1) First, since an inverse limit is isomorphic to the limit over any cofinal subset
of the index set, Z(Π, π, γ) is monotracial precisely when the walk (Yn) visits the states
{0,−1} infinitely often. This demonstrates (1a) and the first assertion of (1b).

Case K is not just almost sure, but is the uniquely determined possibility (see (4.5)).
Case C follows from Brouwer’s Theorem [7, Theorem 3], which characterises the Cantor

set up to homeomorphism as the unique nonempty totally disconnected compact metris-
able space without isolated points. By [37, Theorem 5.1], T (Z(Π, π, γ)) is a Bauer simplex
with totally disconnected extremal boundary. Essentially, the dual bases (fj,n)0≤j≤n−1

of (4.3) correspond to partitions of unity over a decreasing sequence of clopen covers of
the boundary, with the representing matrix describing the way that successive partitions
sit inside each other (at each stage, the subsequent partition is obtained from the current
one by splitting one element into two pieces). We might picture the random process as a
population tree, where at each level, one member of the population is chosen at random
to reproduce. In this language, the probability that ∂eT (Z(Π, π, γ)) has an isolated point
(or equivalently, is not homeomorphic to the Cantor set) is the probability that some
branch of the tree eventually becomes an evolutionary dead end, which is at most

∞∑

n=2

(

n ·
∞∏

i=n

i− 1

i

)

=

∞∑

n=2

n · lim
m→∞

n− 1

m
= 0.

Case P similarly follows from (the remark after) [37, Theorem 5.6]. A representing
matrix yields the Poulsen simplex if the vectors (a1n, . . . , ann, 0, . . . ) are dense in the
positive face of the unit sphere of ℓ1. This fails to happen only if there exist ε > 0, n ≥ 1
and some barycentric coordinates (x0, . . . , xn) such that each choice of random point in

conv{e0,m, . . . , en,m}, m ≥ n, misses the ℓ1-ball B centred at
n∑

i=0

xiei,m with γ(B) = ε.

The probability of this is at most
∏

m≥n(1− ε), which is 0.

Finally, (2) follows from Example 2.4. �

Remark 4.2.

(1) To allow for the possibility of a nontrivial finite-dimensional trace space, we might
in the case q0 > 0 take the dimension of the randomly constructed simplex to be
sup{Y (n) | n ∈ N}. As in Example 2.4, supposing that pi = p = qi for all i, the
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probability that Z(Π, π, γ) has at most k ≥ 1 extremal traces is then

k∑

i=0

πi
k − i

k + 1
.

(2) We could equally well have opted for the stably projectionless versions of di-
mension drop algebras, so-called ‘Razak blocks’, simple inductive limits of which
(assuming ‘continuous scale’) are completely classified by the tracial state space
[48, 58]. In this case, the almost-sure monotracial limit obtained in Theorem 4.1
would be the C*-algebra W instead of Z.

5. Villadsen algebras of the first type

By once again making a random choice at each step of an inductive limit, we this time
build an approximately homogeneous (AH) algebra, the radius of comparison of which is
a random variable whose distribution is the subject of this section.

5.1. Background. The radius of comparison is a numerical invariant of the Cuntz semi-
group that was used in [55] to distinguish C*-algebras with the same Elliott invariant.
In [54, Theorem 5.1], it is shown how to construct simple, unital AH algebras with arbi-
trary ‘dimension-rank ratio’ c. Moreover, as pointed out in [2, Corollary 5.2], an algebra
constructed in this way has radius of comparison r = c

2 .
These algebras of Toms are, in the language of [57], Villadsen algebras of the first

type. That is, they are inductive limits AX = lim
−→

(Mmi ⊗ C(X×ni), ϕi), with a fixed

compact Hausdorff X (the ‘seed space’) and each connecting map ϕi of the form ϕi(f) =
diag(f ◦ ξi,1, . . . , f ◦ ξi,mi+1/mi

), where each ξi,j : X
×ni+1 → X×ni is either constant or a

coordinate projection. Following [54], we will take X to be the sphere S2, but as in [57,
§8], any finite (but nonzero) dimensional CW complex would do.

5.2. The construction. This time, we take a random walk not on the natural numbers
but on an infinite complete binary tree (or rather, on the countable disjoint union of
copies of this tree). The initial position W0 of the walk is specified by a probability
distribution π on I = {0} ∪ {2k | k ∈ Z}. Once the starting point is decided, the walk
constructs a random binary number, that is, determines the value of a random variable

W = 0.W1W2 · · · =
∞∑

i=1

Wi

2i
, (5.1)

where {Wi}i∈N are independent, as follows. After i steps, our position is on the ith level of
the tree. We descend to the level below by taking either the left branch (with probability
pi+1), in which case Wi+1 = 0, or the right branch (with probability qi+1 = 1− pi+1), in
which case Wi+1 = 1. Just as in (2.2), the transition probabilities can be encoded by a
matrix Π.

By following the procedure outlined in the proof of [54, Theorem 5.1], we use the
random variables {Wi}i∈N to construct a Villadsen algebra of the first type

B(Π, π) = lim
−→

(Bi, ϕi).

Here, Bi = Mni(C(Ti)), where Ti = (S2)m0m1...mi , and the connecting map ϕi : Bi →
Bi+1 is of the form

ϕi(f)(t) = diag
(
f ◦ π1

i (t), . . . , f ◦ π
mi+1

i (t), f
(
t1i
)
, . . . , f

(
t
si+1

i

))
,

where πji : Ti+1 = T
mi+1

i → Ti, 1 ≤ j ≤ mi+1, are the coordinate projections, and the

points tji are chosen to make the limit simple (as in [59]). There is some flexibility in
the choice of the natural numbers mi and si (which determine ni = (mi + si)ni−1). The
ratios mi

mi+si
are what govern the radius of comparison R of B(Π, π), and these ratios are
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dictated by the random walk. We set m0

n0
= W0, and

mi

mi+si
= 2−

Wi
2i for i ≥ 1. In other

words, we relate

R = lim
i→∞

dimTi
2ni

= lim
i→∞

m0m1 . . .mi

ni
= lim

i→∞

m0m1 . . .mi−1

ni−1

mi

mi + si
=
∏

i∈N

mi

mi + si

to {Wi}i∈N by

R =W0 · 2
−W . (5.2)

By the Jessen–Wintner law of pure types (see [29, Theorem 35], or [6, Theorem 3.26]
for an elementary treatment), the distribution of W is either:

(a) discrete (that is, there is a countable set J such that P(W ∈ J) = 1); or
(b) singular (that is, P(W = w) = 0 for every w ∈ R, but there is a Borel set B of

Lebesgue measure zero such that P(W ∈ B) = 1); or
(c) absolutely continuous with respect to Lebesgue (so has a density f).

(Distributions can in general be of mixed type, but this is not the case for a convergent
series of discrete random variables.)

For the sake of computing the expected value of R, we will assume that we are in case
(c). By the results of [40] (see also [8]), this occurs precisely when there is β ∈ R such
that, for every n ≥ 1,

pn =
1

1 + eβ/2n
and qn =

eβ/2
n

1 + eβ/2n
.

Then, the probability density function of W is

fβ(x) =
βeβx

eβ − 1
, 0 ≤ x ≤ 1 (5.3)

if β 6= 0, or f0 = 1, that is, representing the uniform distribution, if β = 0.

5.3. Probabilities. Within the framework of § 5.2, we can compute the expected value
of the radius of comparison of the random C*-algebra B(Π, π).

Theorem 5.1. (1) With probability π0, B(Π, π) is Z-stable (in fact, a UHF algebra).
(2) For every r > 0,

P(R ≥ r) =
∑

k∈Z

π2kGβ

( r

2k

)

,

where

Gβ(x) =







1 if x ≤ 1
2

x−β/ ln 2−1
eβ−1

if 1
2 < x < 1

0 if x ≥ 1

if β 6= 0, and

G0(x) =







1 if x ≤ 1
2

− lnx
ln 2 if 1

2 < x < 1

0 if x ≥ 1.

(3) The expected value of R satisfies

E(R)
∑

k∈Z

2kπ2k
=







1
ln 4 if β = 0

ln 2 if β = ln 2
β(eβ−2)

2(eβ−1)(β−ln 2)
if β /∈ {0, ln 2}

if
∑

k∈N

2kπ2k is finite. Otherwise, E(R) =∞.
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Proof. (1) follows from the fact that Z-stability implies strict comparison of positive
elements [50, Corollary 4.6], or in other words radius of comparison R = 0. With the
present construction, this is only possible with initial value W0 = 0, in which case each
Xi is a point, so B(Π, π) is a UHF algebra (which is Z-stable).

(2) can be deduced using the probability density function fβ of (5.3) and independence
of W0 and W . From (5.3), we compute the (complementary) cumulative distribution
function of 2−W : for β 6= 0 and 1

2 ≤ x ≤ 1 we have

P(2−W ≥ x) = P

(

W ≤ log2
1

x

)

=

∫ log2
1
x

0

βeβt

eβ − 1
dt =

x−β/ ln 2 − 1

eβ − 1
= Gβ(x).

If β = 0, this probability is

P(2−W ≥ x) =

∫ log2
1
x

0

1 dt = log2
1

x
= −

lnx

ln 2
= G0(x).

Then, for r > 0 we have

P(R ≥ r) = P(W0 · 2
−W ≥ r)

=
∑

k∈Z

P(W0 = 2k,W0 · 2
−W ≥ r)

=
∑

k∈Z

π2kP
(

2−W ≥
r

2k

)

=
∑

k∈Z

π2kGβ

( r

2k

)

.

(3) now follows from (2), thanks to the well-known formula

E(R) =

∫ ∞

0

P(R ≥ r)dr

(see for example [21, V.6, Lemma 1]). Using (2) and the monotone convergence theorem,
we can compute this as

E(R) =
∑

k∈Z

π2k

∫ ∞

0

Gβ

( r

2k

)

dr.

If β = 0, this is

E(R) =
∑

k∈Z

π2k

(

2k−1 +

∫ 2k

2k−1

−
ln r/2k

ln 2
dr

)

=
∑

k∈Z

2kπ2k

(

1

2
+

∫ 1

1
2

−
ln t

ln 2
dt

)

=
∑

k∈Z

2kπ2k
1

ln 4
.

If β = ln 2, we have

E(R) =
∑

k∈Z

π2k

(

2k−1 +

∫ 2k

2k−1

(
2k

r
− 1

)

dr

)

=
∑

k∈Z

2kπ2k

(

1

2
+

∫ 1

1
2

(
1

t
− 1

)

dt

)

=
∑

k∈Z

2kπ2k ln 2.
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Finally, if β /∈ {0, ln 2}, we have

E(R) =
∑

k∈Z

π2k

(

2k−1 +

∫ 2k

2k−1

(
(r/2k)−β/ ln 2 − 1

eβ − 1

)

dr

)

=
∑

k∈Z

2kπ2k

(

1

2
+

∫ 1

1
2

(
t−β/ ln 2 − 1

eβ − 1

)

dt

)

=
∑

k∈Z

2kπ2k
β(eβ − 2)

2(eβ − 1)(β − ln 2)
. �

5.4. Variations. In an alternative scenario, we proceed as follows. The initial value m0

n0

is once again specified by a probability distribution π, let us say on the nonzero natural
numbers (although this is immaterial for the ensuing discussion). The construction is
essentially the same as in § 5.2. The connecting maps ϕi : Bi → Bi+1 are of the form

ϕi(f)(t) = diag
(
f ◦ π1

i (t), . . . , f ◦ π
mi+1

i (t), f
(
t1i
)
, . . . , f

(
ti+1
i

))
,

the point evaluations chosen to ensure simplicity of the limit. But this time, there are
two possibilities:

(a) with probability pi, we make a tame choice, that is, we setmi = 1, so that mi

mi+i
= 1

i+1 ;
or

(b) with probability qi = 1 − pi, we make a more exotic choice, that is, we set mi =
i(2i − 1), so that mi

mi+i
= 1− 1

2i .

The random inductive limit constructed this way is Z-stable if and only if we make the
tame choice infinitely often, which occurs with probability

1−
∞∑

j=0

pj
∏

i≥j+1

qi

(where p0 = 1). This means that, if for example qi =
1
2 for every i, then we almost surely

construct a Z-stable C*-algebra.
Suppose on the other hand that, while q1 = 1

2 , subsequently qi = 1− 1
i2 for i ≥ 2 (say).

Then, using the fact that

∏

i≥m

(

1−
1

i2

)

= lim
k→∞

k∏

i=m

i− 1

i
·
i+ 1

i
= lim

k→∞

m− 1

m
·
k + 1

k
=
m− 1

m
,

the probability of a Z-stable limit is

1−




2− 1

2
+

∞∑

j=2

1

j2
·

j

j + 1



 = 1−

(
1

2
+

1

2

)

= 0,

so our random C*-algebra is almost surely not Z-stable.

6. Graph C*-algebras

By repeatedly creating random pairings, we construct a random r-regular multigraph

Ĝn,r on n labelled vertices, then generate the associated graph C*-algebra C*(Ĝn,r). In
this section, we investigate the asymptotic distribution of the K0-group of this algebra.

6.1. Background. A (countable) directed graph E consists of a vertex set E0, an edge
set E1, and range and source maps r, s : E1 → E0. A path in E is a (possibly finite)
sequence of edges (αi)i≥1 such that r(αi) = s(αi+1) for every i, and a loop is a finite path
whose initial and final vertices coincide. A loop α = (α1, . . . , αn) has an exit if there
exist e ∈ E1 and i ∈ {1, . . . , n} such that s(e) = s(αi) but e 6= αi. A vertex v ∈ E0 is
called:
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(a) a source if r−1(v) = ∅;
(b) a sink if s−1(v) = ∅;
(c) an infinite emitter if |s−1(v)| =∞;
(d) cofinal if it can be connected to some point in any given infinite path in E.

A Cuntz–Krieger E-family associated to a finite directed graph E = (E0, E1, s, r) is a
set

{pv | v ∈ E
0} ∪ {se | e ∈ E

1}, (6.1)

where the pv are mutually orthogonal projections and the se are partial isometries satis-
fying:

s∗esf = 0 ∀ e, f ∈ E1 with e 6= f

s∗ese = pr(e) ∀ e ∈ E1

ses
∗
e ≤ ps(e) ∀ e ∈ E1

pv =
∑

e∈s−1(v)

ses
∗
e ∀ v ∈ E0 that is not a sink. (6.2)

(For countably infinite graphs, which we do not consider here, the last equation should
hold for vertices v that are neither sinks nor infinite emitters.)

The graph algebra C*(E) is the universal C*-algebra with generators (6.1) satisfying
the relations (6.2). A Cuntz–Krieger algebra may be defined as the graph C*-algebra
of a finite graph without sinks or sources. By [35, §4], this is equivalent to the original
definition [9]. In fact (see [1, Theorem 3.12]), a graph algebra C*(E) is isomorphic to a
Cuntz–Krieger algebra if and only if E is a finite graph with no sinks, or equivalently if
C*(E) is unital and

rank (K0(C
*(E))) = rank (K1(C

*(E))).

In general, if E is a finite graph with no sinks, and AE is its adjacency matrix

AE(i, j) =
∣
∣
{
e ∈ E1 | s(e) = i, r(e) = j

}∣
∣ ,

then K∗(C
*(E)) is given by

K0(C
*(E)) ∼= coker(AtE − I) and K1(C

*(E)) ∼= ker(AtE − I). (6.3)

(See [47, Theorem 3.2], where this is proved for row-finite graphs possibly with sinks, and
also [10, Theorem 3.1], which considers arbitrary graphs.)

Finally, we recall conditions on E that correspond to C*(E) being a Kirchberg algebra
(see [3, Propositions 5.1 and 5.3] and [34, Corollary 3.10]).

Proposition 6.1. Let E be a finite directed graph.

(1) If every vertex connects to a loop and every loop has an exit, then C*(E) is purely
infinite.

(2) If E has no sinks, then C*(E) is simple if and only if every loop in E has an exit
and every vertex in E is cofinal. In this case, C*(E) is an AF algebra if E has no
loops, and otherwise is purely infinite.

6.2. The construction. For a given natural number r, a multigraph E is said to be r-
regular if every vertex has degree r. There are several probability distributions that can
be used to construct a random r-regular (undirected, multi-) graph on n ∈ 2N labelled
vertices. We will use the perfect matchings model

Ĝn,r = Gn,1 + · · ·+Gn,1
︸ ︷︷ ︸

r

,

that is, the union of r independent, uniformly random perfect matchings. One might
also consider the uniform model G′

n,r, that is, a random element of the set of r-regular
multigraphs with the uniform distribution, conditioned on there being no loops. By [28,
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Theorem 11], these two models are contiguous, which means that a sequence of events that
occurs asymptotically almost surely (that is, with probability approaching 1 as n → ∞)
according to one distribution, occurs asymptotically almost surely according to the other.

We convert the undirected graph Ĝn,r into a directed one by replacing each edge
(between given vertices i, j) by two (one from i to j and one from j to i).

Remark 6.2. One can expect strong connectivity in random regular graphs. Condition-
ing G′

n,r on there being no multiple edges, one obtains (up to contiguity) the random
r-regular graph Gn,r. By work of Bollobás [5] (see [22, Theorem 11.9]), Gn,r is asymp-
totically almost surely (a.a.s.) r-connected. For our purposes, it will be enough for us to

know that Ĝn,r is a.a.s. (1-) connected, which is not difficult to show (see [36]).

6.3. Probabilities.

Theorem 6.3. For every even integer n and every integer r ≥ 3, C*(Ĝn,r) is isomorphic
to a Cuntz-Krieger algebra that is purely infinite and is asymptotically almost surely
simple. Moreover, for any finite set P of odd primes not dividing r − 1, and any finite
abelian group V such that |V | is in the multiplicative semigroup generated by P ⊆ N,

lim
n∈2N

P



K0

(

C*(Ĝn,r)
)

⊗
∏

p∈P

Zp
∼= V



 = N(V )
∏

p∈P

∏

k≥0

(
1− p−2k−1

)
, (6.4)

where Zp denotes the p-adic integers, and

N(V ) =
|{symmetric, bilinear, perfect ϕ : V × V → C∗}|

|V | · |Aut(V )|
.

Here, a symmetric, Z-bilinear map ϕ : V × V → C
∗ is perfect if the only v ∈ V with

ϕ(v, V ) = 1 or ϕ(V, v) = 1 is v = 0. For a discussion of the significance of the normalising
factor |V |·|Aut(V )|, see [60, §1], where it is also noted that, if V is a finite abelian p-group

V =

M⊕

i=1

Z/pλiZ

with λ1 ≥ λ2 ≥ · · · ≥ λM , then

N(V ) = p−
∑

i
µi(µi+1)

2

λ1∏

i=1

⌊
µi−µi+1

2 ⌋
∏

j=1

(1− p−2j)−1,

where µi = |{j | λj ≥ i}|. Consequently, for large p,

lim
n∈2N

P

(

K0

(

C*(Ĝn,r)
)

⊗ Zp
∼= Z/pNZ

)

≈ p−N ,

while

lim
n∈2N

P

(

K0

(

C*(Ĝn,r)
)

⊗ Zp
∼= (Z/pZ)N

)

≈ p−
N(N+1)

2 .

As for the left hand side of (6.4) when P = {p}, note that K0

(

C*(Ĝn,r)
)

⊗ Zp
∼=

V precisely when K0

(

C*(Ĝn,r)
)

is a finite abelian group whose p-Sylow subgroup is

isomorphic to V . This means that, compared to its counterpart (Z/pZ)N , the cyclic
group Z/pNZ is much more likely to appear in the K0-group of a random graph algebra

C*(Ĝn,r).

Proof of Theorem 6.3. By construction, Ĝn,r has neither sinks nor sources, and every

vertex is the starting point of at least r ≥ 3 loops, so by Proposition 6.1(1), C*(Ĝn,r) is

isomorphic to a purely infinite Cuntz-Krieger algebra. Since Ĝn,r is a.a.s. connected (see

[36]), it follows from Proposition 6.1(2) that C*(Ĝn,r) is a.a.s. simple.
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The second statement is proved in exactly the same way as [44, Theorem 1.5], but
with the (symmetric) adjacency matrix Cn replaced by Cn − I. The key point is that,
by Wood’s incredibly powerful limiting distribution/moment machinery [60, Theorem
6.1, Theorem 8.3 and Corollary 9.2], it suffices to show that the expected number of
surjections from coker(Cn − I) to V tends to the size | ∧2 V | of the exterior power of V
as n ∈ 2N tends to ∞. Here is a brief summary of the argument.

Write I(V ) = span
Z
{v ⊗ v | v ∈ V }, so that ∧2V = (V ⊗ V )/I(V ). For q =

(q1, . . . , qn) ∈ V n = Hom(Zn, V ), let MinCosq be the minimal coset of V containing
{q1, . . . , qn}, that is,

MinCosq = qn + spanZ{qi − qn | 1 ≤ i ≤ n− 1}.

For k ∈ N, define

RS(q, k) =

{

s ∈ (k ·MinCosq)
n |

n∑

i=1

qi ⊗ si ∈ I(V ) and
n∑

i=1

si = k
n∑

i=1

qi

}

.

For every q ∈ V n, we have

q ∈ RS(q, r) ⇐⇒ 0 ∈ RS(q, r − 1)

and, since Cn is obtained from r perfect matchings on {1, . . . , n}, it is not hard to see
that (Cn − I)q ∈ RS(q, r − 1). By [42, Theorem 1.6] and the computations that appear
in the proof of [44, Theorem 1.5],

lim
n∈2N

E(| Sur(coker(Cn − I), V )|) = lim
n∈2N

∑

q∈Sur(Zn,V )

q∈RS(q,r)

P(Cnq = q)

= lim
n∈2N

∑

q∈Sur(Zn,V )

q∈RS(q,r)

|RS(q, r)|−1

= lim
n∈2N

∑

q∈Sur(Zn,V )

0∈RS(q,r−1)

| ∧2 V |

|V |n−1

= lim
n∈2N

(|V |n−1 + o(|V |n))
| ∧2 V |

|V |n−1

= | ∧2 V |. �
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[14] D. A. Edwards, O. F. K. Kalenda, and J. Spurný. A note on intersections of simplices. Bull. Soc.
Math. France, 139(1):89–95, 2011.

[15] G. A. Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional
algebras. J. Algebra, 38(1):29–44, 1976.

[16] G. A. Elliott. An invariant for simple C*-algebras. In Canadian Mathematical Society. 1945–1995,
Vol. 3, pages 61–90. Canadian Math. Soc., Ottawa, ON, 1996.
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