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K-theory and index theory

on manifolds with a proper Lie group action

(Preliminary version 3; May 2024)

Gennadi Kasparov

Abstract

The paper is devoted to the index theory of orbital and transverse
elliptic operators on manifolds with a proper Lie group action. It cor-
rects errors of my previous paper on transverse operators and contains
new results. Throughout the paper, we use the operator integration
method in constructing pseudo-differential operators.

1 Introduction

This is a continuation of my previous work [17]. In the present paper, addi-
tional K-theoretic tools are developed in order to treat index theory for leaf-
wise (i.e. orbital) and transverse elliptic operators on manifolds with a proper
Lie group action. Under a group action we understand a smooth, proper, iso-
metric Lie group action. The two index theories, orbital and transverse, are
very much intertwined and interdependent, and will be treated together. The
proofs of index theorems for elliptic, t-elliptic and leaf-wise elliptic operators
(based on the KK-theoretic approach) are given in sections 9, 10, 11 of the
present paper.

One of the new features of the present paper is a coarse approach to the
pseudo-differential calculus. A significant part of index theory uses only the
PDO calculus modulo compact operators. The coarse PDO calculus that we
propose allows to treat those index theory problems which do not require very
elaborate analytical tools. This is not a replacement of Hörmander’s PDO
calculus. It goes along with the Hörmander’s calculus and simplifies it in
many cases.

The main index theory results for the transversally elliptic case were pre-
sented in sections 6, 7 and 8 of [17]. Unfortunately, there were errors in sections
7 and 8 of [17]. The corrections are given in the present paper. The main index
theorem 8.18 of [17] is correct and is reproved in section 10 below.

The theory of leaf-wise operators (when the leaves are orbits of a Lie group
action) is developed in the present paper from the basic definitions to the final
index theorem. Although there are some common points in the group action

1

http://arxiv.org/abs/2210.02332v3


case and the general case of leaf-wise operators on singular foliations ([2, 3]),
the results in the group action case are more concrete.

Brief contents:

– The basics of the coarse PDO calculus: sections 2–3.

– C∗-algebras associated with a group action: section 4.

– Leaf-wise symbols and the construction of leaf-wise operators: section 5.

– Poincare duality and K-theory of symbol algebras: sections 6–7.

– Elliptic symbols and index groups: section 8.

– Index theorems for elliptic, t-elliptic and leaf-wise elliptic operators: sections
9, 10, 11.

– Examples: t-elliptic and leaf-wise operators: section 12.

– Comments on my article [17]: Appendix.

Notational references:

We will use certain definitions from [16, 17]. Some (but not all) of these
definitions will be repeated in the present paper. For the reader’s convenience,
we give here the list of references for these definitions.

– C0(X)-algebras and RKK(X ;A,B) groups - [16], sections 1, 2.

– The algebra of G-invariant elements BG for a proper G-algebra B - [16], 3.2.

– Clifford algebras of vector bundles, especially Clτ (X) for a manifold X , and
the Dirac element [dX ] ∈ K0(Clτ (X)) - [16], section 4, or [17], section 2.

– Basic definitions for transversally elliptic operators - [17], section 6.

– Bott and Dirac operators on tangent spaces of a manifold X ; elements
[Bξ], [Bξ,Γ], [dξ] - [17], 2.5, 2.6, 7.2.

– Dirac element [dX,Γ] ∈ K0(C∗(G,Clτ⊕Γ(X))) - [17], 8.8.

– Dolbeault elements [DX ], [DX,Γ] and [Dcl
X,Γ] for the tangent manifold TX -

[17], 2.8 and 8.17.

– Clifford symbol for elliptic and transversally elliptic operators - [17], 3.8 and
8.11.

– Tangent Clifford symbol for transversally elliptic operators - [17], 8.13.

2 Operator integration

We will use operator integration for the construction of pseudo-differential
operators. We will need two types of integration described in the two following
subsections.
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2.1 Riemann integration

This kind of operator integration is essentially described in section 3 of [13].
We will add here a few more details.

Let X be a second countable, locally compact, σ-compact space, D a C∗-
algebra, and φ : C0(X) → M(D) a homomorphism such that φ(C0(X)) ·D is
dense in D. Then φ extends to a unital homomorphism φ : Cb(X) → M(D),
where Cb(X) is the C∗-algebra of all bounded continuous functions on X . We
will denote the set of all compactly supported continuous functions on X by
Cc(X).

Definition 2.1. The support of an element F ∈ M(D) is the smallest closed
subset of X × X, denoted supp (F ), such that for any a ∈ Cc(X), one has:
φ(a)F = 0 as soon as (supp (a)×X) ∩ supp (F ) = ∅, and Fφ(a) = 0 as soon
as (X × supp (a)) ∩ supp (F ) = ∅. If supp (F ) is compact, F will be called
compactly supported. An element F ∈ M(D) will be called properly supported
if both projections p1 : supp (F ) → X and p2 : supp (F ) → X are proper maps.

Remark 2.2. Suppose F is properly supported and a ∈ Cc(X). Then both
φ(a)F and Fφ(a) are compactly supported. Indeed, it is easy to check that
supp (φ(a)F ) ⊂ p−1

1 (supp (a)) ∩ supp (F ), which is compact. Similarly for
Fφ(a).

Definition 2.3. We will call an element F ∈ M(D) locally compact if for any
a ∈ C0(X), both φ(a)F and Fφ(a) belong to D. The set of locally compact
elements will be denoted Dloc. In the case of D = K(H) for a Hilbert space H,
the notation for locally compact elements will be Kloc(H).

We denote by QC0(X)(D) the subalgebra of M(D) consisting of elements
T ∈ M(D) which commute with φ(C0(X)) modulo D. The algebra Dloc is a
two-sided ideal in QC0(X)(D).

Given a bounded norm-continuous map F : X → M(D) such that F (x)
commutes with φ(C0(X)) modulo D, we will construct a Riemann type oper-
ator integral

∫
X
F (x)dφ ∈ QC0(X)(D)/Dloc which has the following properties

(cf. [13], section 3, theorem 1):

Theorem 2.4. 1o. If ||F (x)|| ≤ c for all x ∈ X then
∫
X
F (x)dφ ≤ c.

2o. The integral is additive, multiplicative, and
∫
X
F ∗(x)dφ = (

∫
X
F (x)dφ)∗.

3o. If F is a scalar function F (x) = f(x) · 1, where f ∈ Cb(X), then∫
X
F (x)dφ = φ(f).
4o. The integral is functorial in X: if there is a proper continuous map h :

Y → X, and F̃ = F · h : Y → M(D), φ = ψ · h∗ : C0(X) → C0(Y ) → M(D),
then

∫
X
F (x)dφ =

∫
Y
F̃ (y)dψ.

5o.
∫
X
F (x)dφ can be lifted to QC0(X)(D) as a properly supported element.

The following simple lemma ([13], section 3, lemma 1) provides the neces-
sary estimates for the proof:
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Lemma 2.5. Let B be a C∗-algebra, and elements F1, ..., Fn;α1, ..., αn ∈ B
satisfy the following assumptions:

∑n
i=1 α

∗
iαi = 1, and ||Fi|| ≤ c for any i.

Then ||
∑n

i=1 α
∗
iFiαi|| ≤ c.

Proof. Using a faithful representation of B in a Hilbert space H , we get for
any ξ, η ∈ H :

|(
∑
i

α∗
iFiαi(ξ), η)| = |

∑
i

(Fiαi(ξ), αi(η))| ≤
∑
i

||Fi|| · ||αi(ξ)|| · ||αi(η)||

≤ c(
∑
i

||αi(ξ)||
2)1/2(

∑
i

||αi(η)||
2)1/2 = c||ξ||||η||.

Proof of the theorem. The basic idea of the integral is the following. Let us
assume that X is compact. Let B be the C∗-subalgebra of M(D)/D generated
by φ(C(X)) and all elements F (x), x ∈ X . Then there is a unital homomor-
phism: C(X) → B which maps C(X) to the center of B. The map F : X → B
represents an element of C(X,B) ≃ C(X) ⊗ B. Consider the multiplication
homomorphism: C(X)⊗B → B. The image of F under this homomorphism
is by definition

∫
X
F (x)dφ ∈ B ⊂ M(D)/D.

Now let us translate this into the Riemann operator integration context.
We will still continue to assume for the moment that X is compact. The
integral is constructed in the following way. Taking a finite covering {Ui}
of X , points xi ∈ Ui, and a partition of unity

∑
i α

2
i (x) = 1 associated

with {Ui} (all functions αi are non-negative), we consider the integral sum:
Σ({Ui}, {αi}, {xi}) =

∑
i φ(αi)F (xi)φ(αi). We assume that ||F (x)|| ≤ c for

all x ∈ X , so by lemma 2.5 the norm of the integral sum is ≤ c.
We will call {Ui} an ǫ-covering if for any i and any x, y ∈ Ui, one has

||F (x)− F (y)|| ≤ ǫ. To verify that the integral sums for two ǫ-coverings {Ui}
and {Vj} differ in norm no more than by 2ǫ in M(D)/D, we form the covering
Wi,j = Ui ∩ Vj. Let

∑
j β

2
j = 1 be the partition of unity for {Vj}, and set

γi,j = αiβj , xi,j ∈ Wi,j . Then we have the following estimate in M(D)/D:

||
∑
i,j

φ(γi,j)(F (xi)− F (xi,j))φ(γi,j)|| ≤ ǫ

by lemma 2.5. Here

∑
i,j

φ(γi,j)F (xi)φ(γi,j) =
∑
i

φ(αi)F (xi)φ(αi)

modulo D because
∑

j β
2
j = 1. The integral is the limit in M(D)/D of the

integral sums for all ǫ-coverings when ǫ→ 0. For a compact X , this gives the
existence.

In the general case of a non-compact X , let {Ui} be a locally finite cov-
ering of X and

∑
i α

2
i (x) = 1 the corresponding partition of unity. Then, by

lemma 2.5, the norms of operators Fm =
∑m

i=1 φ(αi)F (xi)φ(αi) are uniformly
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bounded in m. We claim that the sums Fm converge strictly in M(D) when
m→ ∞. Indeed, for any bounded approximate unit {uk} ⊂ C0(X) consisting
of functions with compact support in X , our initial assumption on φ says that
{φ(uk)} converges strictly in M(D). Since Fm is uniformly bounded in m,
it is enough to show that both sums Fmφ(uk) and F∗

mφ(uk) converge for any
fixed k when m → ∞. This is true because all uk have compact support, so
αiuk = 0 for large i.

Now we can take any locally finite ǫ-covering of X and form the integral
sum F =

∑∞

i=1 φ(αi)F (xi)φ(αi). Modulo Dloc any two such sums for two
different ǫ-coverings will differ in norm by ≤ 2ǫ (because all corresponding
finite sums Fm differ by ≤ 2ǫ, as shown above). So in QC0(X)(D)/Dloc these
sums converge in norm when ǫ → 0. The lifting of the limit to QC0(X)(D) is
denoted

∫
X
F (x)dφ.

The proof of all properties listed in the theorem (except 5o) for the case of
a non-compact X is the same as for a compact X (see [13], section 3, theorem
1). For example, for the multiplicativity property, one needs to estimate the
difference modulo Dloc of the two sums:
∑
i,j

φ(αi)F1(xi)φ(αi)φ(αj)F2(xj)φ(αj)−
∑
i,j

φ(αi)F1(xi)φ(αi)φ(αj)F2(xi)φ(αj).

Both sums converge in the strict topology, so one needs only to show that all
finite portions of these sums differ modulo Dloc by less than 2ǫc if {Ui} is an
ǫ-covering for F2 and ||F1(x)|| ≤ c for all x ∈ X . Obviously, we can leave only
those summands for which Ui∩Uj 6= ∅. Then moduloDloc, ||F2(xi)−F2(xj)|| ≤
2ǫ, and the estimate of the difference of those two sums

∑
1≤i,j≤n modulo D

comes from lemma 2.5.
Concerning property 5o, we can assume that all our coverings {Ui} con-

sist of open sets with compact closure. This means that the operator S =∑
i φ(αi)F (xi)φ(αi) is properly supported. Indeed, it is easy to check that

supp (S) ⊂ ∪i(supp (φ(αi)) × supp (φ(αi))) in X × X . Here supp (φ(αi))
means the following: The homomorphism φ maps C0(X) onto a commuta-
tive C∗-subalgebra in M(D). The spectrum of this commutative C∗-algebra
can be identified with a closed subset Y ⊂ X . Then supp (φ(αi)) is a compact
subset in Y , and hence in X .

It is clear from the construction of the integral that once we have chosen
one covering {Ui}, all subsequent coverings can be chosen as the intersections
of this one with other coverings like {Vj} above. Also the corresponding par-
titions of unity can be chosen as the products {αiβj}. So if we fix {αi} once
and for all and change only {Vj, βj}, then the resulting integral will have the
form:

∑
i φ(αi)(

∫
Ui
F (x)dφ)φ(αi) which obviously lifts to a properly supported

element.

Corollary 2.6. In the assumptions of the theorem, suppose that ||F (x)|| → 0
when x → ∞ in X. Then the sums Fm in the above proof of the theorem
converge uniformly in M(D).
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Proof. For any ǫ > 0, we can choose m and n large enough so that for any x in
the supports of all functions αi, for i in the interval [m,n], we have ||F (x)|| ≤ ǫ.
Then ||Fm − Fn|| ≤ ǫ by lemma 2.5.

2.2 Group averaging

We keep all assumptions of the previous subsection, but assume in addition
that a locally compact, second countable group G acts on X properly, D is a
G-algebra, and the homomorphism φ : C0(X) → M(D) is G-equivariant. In
integration over G, we will use the left Haar measure.

Lemma 2.7. If F : X → M(D)/D is G-equivariant, then I(F ) =
∫
X
F (x)dφ

is G-invariant modulo D and G-continuous in norm (i.e. the map G →
M(D) : g 7→ g(I(F )) is norm-continuous).

Proof. Because the G-action transforms an ǫ-covering into another ǫ-covering,
it is clear that I(F ) is G-invariant modulo D. The last assertion follows from
[23], 1.1.4.

In order to make I(F ) exactly G-invariant we need averaging over G. Es-
sentially, we will use the averaging method of [7], proposition 1.4. We will
adapt it to the generality that we need.

Proposition 2.8. Let T ∈ M(D) be an operator with support in a set L×L,
where L is a compact subset of X. Then one can define the average of T over
G, denoted AvG(T ) or

∫
G
g(T )dg, as the limit of integrals

∫
C
g(T )dg, in the

strict topology of M(D), over the increasing net of all compact subsets C of
G, where dg denotes the Haar measure of G. Moreover, ||AvG(T )|| ≤ c||T ||,
where c depends only on L.

For the proof we need the following lemma:

Lemma 2.9. If an operator T ∈ M(D) has the property that T ∗g(T ) = 0 and
Tg(T ∗) = 0 for any g outside of a compact set K ⊂ G, then for any compact
subset C ⊂ G, (

∫
C
g(T )dg)∗(

∫
C
g(T )dg) ≤ |K|2||T ||2, where |K| is the Haar

measure of K.

Proof. Consider [(
∫
C
g(T )dg)∗(

∫
C
g(T )dg)]n as the 2n-fold integral

∫
C

...

∫
C

g1(T
∗)g2(T )...g2n−1(T

∗)g2n(T )dg1...dg2n.

Because of our assumption on T , this multiple integral actually goes over the
subset of C × ...× C such that g−1

i gi+1 ∈ K for all i. So we can rewrite it as
a repeated integral:

∫
C

∫
K

...

∫
K

g1(T
∗h2(Th3(T

∗h4(T...h2n−1(T
∗h2n(T )...)dg1dh2...dh2n,
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where hi+1 = g−1
i gi+1. The latter integral is estimated as ≤ |C| · |K|2n−1||T ||2n,

therefore [(
∫
C
g(T )dg)∗(

∫
C
g(T )dg)]n ≤ |C| · |K|2n−1||T ||2n. Taking the n-th

root of both sides and letting n→ ∞, we get the result.

Proof of the proposition. If a ∈ Cc(X) is a function equal to 1 on L, then
Tφ(a) = T and T ∗φ(a) = T ∗. Because the G-action on X is proper, there is
a compact set K ⊂ G such that supp (a) does not intersect with any g(L) for
any g ∈ G, g /∈ K. So for such g we have: T ∗g(T ) = T ∗φ(a)g(T ) = 0, and
similarly for Tg(T ∗). In view of the previous lemma, ||

∫
C
g(T )dg|| ≤ |K| · ||T ||

for any compact subset C ⊂ G, and the same for T ∗.
Let us denote

∫
C
g(T )dg by I(C). We need to show that for any d ∈ D, the

integrals d ·I(C) and d ·I(C)∗ converge over the net of all compact C. Clearly,
this is true if we replace d ∈ D with φ(a), where a ∈ Cc(X), because if we define
Cmax(a, T ) as the maximal compact subset of G such that supp (a)∩g(L) 6= ∅,
then both integrals will not depend on C as soon as Cmax(a, T ) ⊂ C.

Given d ∈ D and ǫ > 0, we can find a ∈ Cc(X) such that ||d−d ·φ(a)|| ≤ ǫ
and ||d − φ(a) · d|| ≤ ǫ. By the previous lemma, both I(C) and I(C)∗ are
bounded as functions of C, more precisely, ||d·I(C)−φ(a)·d·I(C)|| ≤ ǫ|K|·||T ||,
and similarly for I(C)∗. This means that d · I(C) varies with C no more than
by ǫ|K| · ||T || when Cmax(a, T ) ⊂ C. This proves the convergence. The norm
estimate is also clear.

3 Coarse PDO calculus

Index theory deals with what is usually called ‘elliptic’ operators. These are
some kind of bounded (‘zero order’) operators, invertible modulo some kind
of ‘negative order’ operators. In the simplest case, one has a compact man-
ifold X and a representation of C(X) in a Hilbert space H = L2(X). ‘Zero
order’ operators are bounded operators on H which commute with the action
of C(X) modulo K(H), ‘negative order’ operators are just compact opera-
tors. If X is locally compact, the requirement for ‘zero order’ operators is
the same: commutation with the action of C0(X) modulo K(H). ‘Negative
order’ operators T are those which satisfy the conditions: T · C0(X) ⊂ K(H)
and C0(X) · T ⊂ K(H). (So ‘negative order’ operators are exactly what was
called ‘locally compact’ operators in definition 2.3.) Index theory seeks invari-
ants of operators of ‘zero order’ modulo ‘negative order’. There is an obvious
similarity with the basic KK-theory (cf. [16], definition 2.1).

We will use this scheme (‘zero order’ modulo ‘negative order’ operators) in
our coarse pseudo-differential (PDO) calculus. This calculus will correspond to
the Hörmander ρ = 1, δ = 0 PDO calculus. In fact, Hörmander discussed such
kind of ‘simple’ PDO calculus in [11] at the end of subsection 2.1, but based
on his definition of PDOs. Our approach is different and aimes at simplifying
as much as possible the definition of a PDO for zero order operators.

There are positive and negative sides of this approach. On the positive
side, the whole PDO theory gets much simpler. On the negative side, this
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approach is not very convenient in treating differential operators and their
parametrices. But when necessary, one can always shift back to Hörmander’s
approach which is perfectly compatible with the coarse one that we propose.

Our coarse PDO theory uses the operator integration of section 2. In all
constructions, the Riemannian metric of the manifold and a Hermitian metric
on vector bundles will play an important role.

In what follows, X will be a complete Riemannian manifold. Our setting
may include a proper isometric action of a locally compact group G on X . We
denote by T (X) the tangent bundle of X , by T ∗(X) the cotangent bundle and
by p : T ∗(X) → X the projection. We will often identify T (X) and T ∗(X) via
the Riemannian metric of X . The tangent manifold will be denoted TX , and
the projection TX → X also by p.

3.1 Preliminaries

We start with the following theorem (which most likely exists somewhere in
the literature).

Theorem 3.1. Let f = f(ξ) be a bounded, differentiable function on Rn

such that all its first derivatives vanish at infinity. Denote by Φ the operator
of Fourier transform on L2(Rn), by f the operator of multiplication by the
function f on L2(Rn), and by F the operator Φ−1fΦ. Then for any function
a = a(x) ∈ C0(R

n) considered as a multiplication operator on L2(Rn), the
commutator [F, a] is a compact operator on L2(Rn).

More generally, the assertion remains true in the situation with a compact
parameter space Z. More precisely, if L2(Rn) is replaced with L2(Rn)⊗C(Z)
and f(ξ) with f(ξ, z) ∈ Cb(R

n×Z), continuous in z uniformly in ξ, satisfying
the same assumption on its first derivatives in ξ (uniformly in z ∈ Z), then
for any a ∈ C0(R

n×Z), the commutator [F, a] belongs to K(L2(Rn))⊗C(Z).

Proof. We will prove the Fourier-dual assertion. Recall that Φ−1C0(R
n)Φ =

C∗(Rn), the C∗-algebra of the abelian groupRn. The algebra C∗(Rn) contains
the dense subalgebra Cc(R

n) (compactly supported continuous functions) with
convolution as multiplication. We need to prove that for any b ∈ Cc(R

n), the
commutator [b, f ] ∈ K(L2(Rn)).

The assumption on the first derivatives of f implies that if x → ∞ (or

y → ∞) and ||x − y|| remains bounded, then |f(y)− f(x)| ≤
∫ 1

0
|∂/∂tf(x +

t(y−x))|dt→ 0. The commutator [b, f ] is an integral operator with the kernel
k(x, y) = b(x − y)(f(x) − f(y)). Since b has compact support, we obviously
get

∫
|k(x, y)|dx → 0 when y → ∞ and

∫
|k(x, y)|dy → 0 when x → ∞. The

Schur lemma [12], 18.1.12, easily implies that the integral operator with the
kernel k is compact.

The proof of the generalized version of the statement (with the parameter
space Z) is the same. In fact, it is enough to work with f(ξ, z) = f1(ξ)f2(z)
and a(x, z) = a1(x)a2(z).

8



Proposition 3.2. 1o The assertion of theorem 3.1 remains true if f is bounded
and measurable, but differentiable only outside of a compact subset of Rn,
with all first derivatives of f vanishing at infinity. Moreover, the norm of the
operator F modK(L2(Rn)) does not exceed lim supξ→∞ |f(ξ)|.

2o Keeping all assumptions of theorem 3.1 concerning f and F , let also
a ∈ C0(R

n − {0}). Then the product of operators F · a belongs to K(L2(Rn)).
In particular, F ·(a−b) is a compact operator if a, b ∈ C0(R

n) and a(0) = b(0).

Proof. 1o We can write f = f0 + f1 where f0 is bounded, measurable and has
compact support, and f1 satisfies the assumptions of the theorem. For any
a ∈ C0(R

n), the products Φ−1f0Φ · a and a · Φ−1f0Φ belong to K(L2(Rn)) by
the Rellich lemma. So the assertion of the theorem remains true. For the last
statement, we can take f0 with as large compact support as we want. The
norm of F modK depends only on sup |f1|.

2o Again we will prove the Fourier-dual assertion: f · â ∈ K(L2(Rn)), where
â = Φ−1aΦ is the Fourier-dual operator. By the Stone theorem, the algebra
C0(R

n−{0}) is generated by functions xk(exp(−||x||2/2)) with 1 ≤ k ≤ n. The
Fourier-dual operators for these functions are (up to a scalar multiple) the same
functions (in ξ instead of x), which can also be written as ∂/∂ξk exp(−||ξ||2/2).
If â is written in this form, then fâ = f · ∂/∂ξk(exp(−||ξ||2/2)) = ∂/∂ξk(f) ·
exp(−||ξ||2/2) ∈ K(L2(Rn)).

Proposition 3.3. Keeping the assumptions of theorem 3.1 concerning the
function f and the operator F , let V be a finite-dimensional complex Hermitian
vector space, h and k - continuous maps Rn → L(V ), such that h = h(x) is
linear in x and (h(x))∗ = h(x) for any x, k = k(x) is bounded, and both
||(h2 + 1)−1k|| and ||(h2 + 1)−1hk|| vanish at infinity in x. Then we have:
[F, h(h2 + 1)−1/2]k ∈ K(L2(Rn)⊗ V ).

Proof. We will use the integral presentation:

h(h2 + 1)−1/2 = 2/π

∫ ∞

0

h(1 + h2 + λ2)−1dλ.

The commutator [F, h(h2 + 1)−1/2] equals

2/π

∫ ∞

0

(1 + h2 + λ2)−1 · ((1 + λ2)[F, h] + h[F, h]h) · (1 + h2 + λ2)−1dλ.

Since h is a linear function, the commutator [F, h] belongs to C∗(Rn)⊗L(V ).
(Indeed, the Fourier-dual assertion says that the commutator of f with the
first order differential operator ĥ equals to the multiplication by a function
vanishing at infinity.) Therefore the latter integral expression converges in
norm, and because (h2 + λ2 + 1)−1k and (h2 + λ2 + 1)−1hk both belong to
C0(R

n)⊗L(V ), the assertion follows from the Rellich lemma.
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3.2 Symbols

Lemma 3.4. Let σ(x, ξ) be a function on K × Rn, where K is a compact
subset of Rn, and let {ψx} : (x, ξ) 7→ (x, ψx(ξ)) be a norm-continuous family
of invertible linear maps of K ×Rn into itself.

1o Assume that σ(x, ξ) is continuous in x uniformly in ξ.
2o Also assume that σ(x, ξ) is differentiable in ξ, and for the exterior

derivative dξ, there is an estimate: ||dξσ(x, ξ)|| ≤ C · (1 + ||ξ||)−1 with the
constant C which does not depend on (x, ξ).

Then σ(x, ψx(ξ)) satisfies the same two conditions as σ(x, ξ) (with a differ-
ent constant C). Moreover, if the assumptions concerning σ hold only outside
of a compact subset in ξ ∈ Rn, the assertion remains true outside of a (possibly
larger) compact subset in ξ ∈ Rn.

Proof. The assertion about the second condition is clear. To show that the
first condition is also preserved, let points x, y ∈ K be so close to each other
that ||σ(x, ξ) − σ(y, ξ)|| ≤ δ for any ξ (by the assumption of continuity of σ
in x uniformly in ξ). We can write σ(x, ψx(ξ))− σ(y, ψy(ξ)) as a sum of two
expressions: (σ(x, ψx(ξ))−σ(x, ψy(ξ)))+(σ(x, ψy(ξ))−σ(y, ψy(ξ))). The norm
of the second expression is estimated by δ.

The norm of the first expression is estimated as ≤ ||dη(σ(x, η))|| · ||ψx(ξ)−
ψy(ξ)||, where η is some point on the segment joining ψx(ξ) and ψy(ξ), i.e.
η = tψx(ξ) + (1 − t)ψy(ξ) with 0 ≤ t ≤ 1. The first multiple is estimated
as ≤ C(1 + ||η||)−1. The second multiple is estimated as ≤ ||ψx − ψy|| · ||ξ||.
Because ψx is norm-continuous in x and invertible for any x ∈ K, the map ξ 7→
η = tψx(ξ)+ (1− t)ψy(ξ) = t(ψx(ξ)−ψy(ξ))+ψy(ξ) is still an invertible linear
map when x and y are close enough. Therefore (1+||η||)−1 ≤ C1(1+||ξ||)−1 for
some constant C1 depending on x and y. This implies ||dη(σ̂(x, η))|| · ||ψx(ξ)−
ψy(ξ)|| ≤ C2(1+ ||ξ||)−1 · ||ψx−ψy|| · ||ξ||, thus proving the uniform continuity
of σ(x, ψx(ξ)).

Now we are ready to give a definition of symbols of ‘order 0’ and ‘negative
order’.

Definition 3.5. Let E be a (complex) vector bundle over X. A symbol σ(x, ξ)
of order 0 is a bounded measurable section of the bundle p∗(E) over TX sat-
isfying the following conditions:

1o For any compact subset in x ∈ X, σ(x, ξ) is continuous in x uniformly
in ξ outside of a compact subset in ξ.

2o For any compact subset in x ∈ X, σ(x, ξ) is differentiable in ξ outside of
a compact subset in ξ, and for the exterior derivative dξ, there is an estimate
for any compact subset K ⊂ X: ||dξσ(x, ξ)|| ≤ C ·(1+||ξ||)−1 with the constant
C which depends only on K and σ and not on (x, ξ).

We will say that a symbol σ is of ‘negative order’ if ||σ(x, ξ)|| converges to
0 uniformly in x ∈ X on compact subsets of X when ξ → ∞. We will say
that σ is of ‘strongly negative order’ if, additionally, ||σ(x, ξ)|| converges to 0
uniformly in ξ when x → ∞ in X.
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Remark 3.6. Condition 1o of definition 3.5 does not depend of the choice of
local coordinates on the tangent bundle T (X) in view of lemma 3.4.

In fact, condition 2o of definition 3.5 was stated with this strong estimate
on the first derivative of σ because this estimate was required (for the change
of coordinates) in the statement of lemma 3.4. However, there may be situ-
ations when, for example, there is a preferred choice for the trivialization of
T (X). In this case the precise estimate in condition 2o may be omitted. The
minimal necessary requirement in condition 2o would be the vanishing of dξ(σ)
at infinity in ξ uniformly on compact subsets in x.

Also note that the class of symbols of definition 3.5 includes the ‘classical’
symbols (i.e. symbols homogeneous of order 0 in the ξ variable).

3.3 Operators

In our present approach, an operator corresponding to the symbol σ will be
constructed using the operator integration described in subsection 2.1. Let us
fix a complex vector bundle E over X (equipped with a Hermitian metric).
We will define operators acting on sections of E.

Let x ∈ X and Ux ⊂ X is a small open ball of radius rx centered at x.
Using the Riemannian exponential map expx (associated with the Levi-Civita
connection), consider the open Euclidean ball Vx of the same radius around the
point 0 ∈ Tx(X) as a Euclidean coordinate neighborhood for Ux. The tangent
map (expx)∗ : T (Vx) → T (Ux) is almost an isometry when rx is sufficiently
small (see [16], proposition 4.3). In particular, expx defines an almost isometry
L2(Vx) → L2(Ux). Also the family of first derivative linear maps (expx)∗ is
uniformly continuous in ξ when x varies and the point p ∈ Tx(X) varies. This
follows from the uniform dependence on the initial data for systems of linear
differential equations (for Jacobi vector fields).

For any fixed x ∈ X , the symbol σx(ξ) = σ(x, ξ) : Ex → Ex is a bounded
function of ξ ∈ T ∗

x (X). If we denote the Fourier transform L2(Tx(X)) ⊗
Ex → L2(T ∗

x (X)) ⊗ Ex by Φ, then Fx = Φ−1σxΦ is a bounded operator on
L2(Tx(X)) ⊗ Ex. This operator is just the operator with the symbol σx(ξ).
(Here x is fixed, only ξ varies.)

Next, choose a function ν ∈ C∞
0 ([0, 1)) such that 0 ≤ ν ≤ 1, ν(0) = 1, and

ν(t) = 0 for t ≥ 1/2. By theorem 3.1, Fx commutes modulo compact operators
with multiplication by functions from Cc(Tx(X)). In particular, it commutes
modulo compact operators with the function νx(v) = ν(||v||/rx) (where we
put t = ||v||/rx).

Now we need a trivialization of E over Ux. Of course, this trivialization
will depend on x, so we need a continuous family of trivializations {E|Ux}
over X . Using this and the almost isometry between L2(Vx) and L2(Ux) de-
scribed above, we can transplant the operator νxFxνx to L2(E|Ux). Denote the
resulting operator on L2(E|Ux) ⊂ L2(E) by F (x).

Note that if the original symbol σ is a symbol in the Hörmander ρ = 1, δ =
0 class, then each F (x) belongs to the same class of PDOs in the Hörmander
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theory and its symbol at the point x is σ(x, ξ) modulo symbols of lower order.
This is essentially the homeomorphism invariance of the Hörmander ρ = 1, δ =
0 class (see [11], end of subsection 2.1).

Theorem 3.1 ensures that the operator F (x) commutes modulo compact
operators with the multiplication by functions from C0(X). (Each F (x) com-
mutes with C0(Ux), and because the cutting function νx has support inside
Ux, the operator F (x) commutes with all of C0(X).)

Moreover, F (x) is a norm-continuous function of x ∈ X modulo compact
operators. Indeed, by our assumptions, σ(x, ξ) is continuous in x uniformly in
ξ. So the Euclidean operators Fx(ξ) and Fy(ξ) are norm-close to each other
if x and y are close because they are just Fourier transforms of two uniformly
close functions. Therefore the Euclidean operators νxFxνx and νyFyνy are also
norm-close to each other. If x and y are close enough, both functions, νx
and νy, have their supports in Ux ∩ Uy. The transition function between E|Ux

and E|Uy will be close to the identity. Also the maps L2(Vx) → L2(Ux) and
L2(Vy) → L2(Uy) will be norm-close to each other in Ux ∩ Uy. Therefore,
modulo compact operators, F (x) and F (y) will be norm-close to each other in
L2(Ux ∩ Uy).

Note that the concrete choice of the cutting functions νx has little impor-
tance. Proposition 3.2, 2o shows that for two functions, νx and ν

′
x, the products

F (x)νx and F (x)ν ′x are equal modulo compact operators if νx(0) = ν ′x(0).
For the operator integration procedure, we set D = K(L2(E)) and φ :

C0(X) → L(L2(E)) the multiplication by functions. The function F con-
structed above will be considered as the function X → M(D)/D. The lifting
of the operator integral

∫
X
F (x)dφ to L(L2(E)) will be denoted F .

Definition 3.7. We define ‘negative order’ operators as those which become
compact after multiplication by an element of C0(X). (This is the same as
‘locally compact’ operators defined in 2.3.)

In the case when there is a continuous, isometric, and proper action of a
locally compact group G on X (and on the vector bundle E), and the symbol
σ is G-invariant, we can average F over G. For this, we take a cut-off function
c on X , i.e. a non-negative function c ∈ Cb(X) whose support has compact
intersection with any G-compact set in X and which satisfies the property∫
G
g(c)dg = 1. Let

∑
i βi = 1 be a partition of unity on X/G so that all

βi ≥ 0, all supports supp βi are compact in X/G and form a locally finite
covering of X/G. We will consider all functions βi as G-invariant functions on
X .

Using remark 2.2 and proposition 2.8, we take AvG(βicF) for every i. The
operators βicF have compact support because all βic have compact support
and F has proper support - see remark 2.2 and theorem 2.4, 5o. After that
we redefine F as

∑
iAvG(βicF). Since the original operator F had support

in an ǫ-neighborhood of the diagonal of X ×X for some ǫ > 0 (see the proof
of 2.4, 5o), the averaged operator F will have the same property. Therefore it
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will be properly supported. It will differ from the original F by an operator
of ‘negative order’.

Theorem 3.8. The correspondence between the symbol σ and the operator
F constructed out of it has the following properties (modulo negative order
symbols and negative order operators):

1o Composition of symbols 7→ composition of operators.
2o σ∗ 7→ F∗.
3o If the symbol σ is bounded at infinity in ξ by C > 0, i.e. for any compact

subset K ⊂ X and any x ∈ K, lim supξ→∞ ||σ(x, ξ)|| ≤ C, then the norm of
the operator F in L(L2(E))/K(L2(E)) does not exceed C.

4o The operator corresponding to a negative order symbol has negative or-
der, and the operator corresponding to a strongly negative order symbol is
compact.

Proof. All assertions follow directly from the construction and theorem 2.4.
To obtain the last assertion concerning strongly negative order symbols, one
can either use corollary 2.6, or one may approximate the symbol by symbols
with compact support in x ∈ X .

Theorem 3.9. Let σ(x,D) be a bounded, properly supported pseudo-differen-
tial operator of order 0 with the symbol σ in the Hörmander ρ = 1, δ = 0
calculus, and let F be the operator constructed out of σ above. Then, the
difference σ(x,D)− F is an operator of ‘negative order’.

In particular, the operator F has a ‘principal symbol’, i.e. a symbol modulo
symbols of negative order.

Proof. Both σ(x,D) and F are bounded. We need to prove that σ(x,D)
and F coincide modulo K on any compact piece of X . Let {Ui} be a locally
finite covering of X consisting of Riemannian balls Uxi

and
∑

i α
2
i = 1 the

corresponding partition of unity. Let us present σ(x,D) (modulo K) as the
sum:

∑
i αiσ(x,D)αi. If diameters of the balls Uxi

are small enough (on our
compact piece of X), this sum is equal to

∑
i αiνxi

σ(x,D)νxi
αi (because νxi

is
equal to 1 in a certain neighborhood of the point xi).

Let us compare the latter sum with the integral sum
∑

i αiF (xi)αi. For
any i, both αiF (xi)αi and αiσ(x,D)αi are PDOs of order 0 with compactly
supported distributional kernel. The difference between their symbols goes to
0 uniformly in i when the radii of the balls Ui go to 0 (on our compact piece of
X). Now the assertion follows from the usual norm estimate results: lemma
2.5 and [11], corollary 2.2.3.

Concerning the definition of a principal symbol for the operators F , we
define it as the principal symbol of σ(x,D). The ‘principal symbol’ depends
only on the operator modulo operators of negative order (see [11], end of
subsection 2.1).

Finally, a remark about notation. In the previous construction we have
actually used not the symbol of an operator but its Fourier transform.
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Definition 3.10. We will denote the tangent bundle T (X) by τ and the tan-
gent space Tx(X) at x ∈ X by τx. The algebra C∗(τx) is the C∗-algebra of
the abelian group τx with its Euclidean topology. The algebra of continuous
sections (vanishing at infinity) of the field {C∗(τx), x ∈ X} will be denoted
C∗

τ (X). The scalar symbols σ of order 0 live in Cb(TX), their Fourier trans-
forms (cosymbols) live in M(C∗

τ (X)).

We end up this section with a simple technical lemma which will be needed
later in the proof of our index theorems.

Let Y → X be a smooth, locally trivial fiber bundle, both X and Y
are complete Riemannian manifolds. We will denote the fiber over a point
x ∈ X by Yx. Assume that the transition functions are isometries in the
Riemannian metrics on all Yx. Let E be the Hilbert module over C0(X) defined
by the continuous field L2(Yx), x ∈ X . Consider the Hilbert space H =
E ⊗C0(X) L

2(X). For any e ∈ E , define the operator θe ∈ L(L2(X), H) by
θe(l) = e⊗ l ∈ H for any l ∈ L2(X).

Now a small reminder: Suppose we have a bounded operator F ∈ L(L2(X)).
Then a K-theoretic connection (cf. [8], A1; [16], 2.6) for the operator F is an
operator F̃ ∈ L(H) such that for any e ∈ E , the operators θeF − F̃ θe and
θeF

∗ − F̃ ∗θe are compact. (In fact, when there are some additional graded
vector bundles over X and Y and we consider graded L2-spaces, then the mul-
tiple (−1)deg(e)·deg(F ) has to be introduced in front of F̃ and F̃ ∗, so that the
commutators become graded).

Lemma 3.11. In the notation above, suppose that F is a PDO with the symbol
σ. Let us not distinguish between tangent and cotangent bundles (using the
Riemannian metrics) and lift σ from TX to TY via the projection Y → X.
Denote the lifted symbol by σ̃. Then the PDO F̃ on the space H with the
symbol σ̃ (constructed by means of our coarse PDO calculus) is a K-theoretic
connection for F .

Proof. If Y is a direct product X × Yx, the assertion is obviously true. But
the lifted symbol commutes with the transition functions.

4 C∗-algebras associated with a group action

Let X be a locally compact, σ-compact space equipped with a continuous
proper action of a locally compact group G. The left-invariant Haar measure
on G will be denoted dg, and the modular function of G by µ. The stability
subgroup of any point x ∈ X will be denoted Mx. All stability subgroups are
compact because the action is proper. We will assume that the Haar measure
of any compact group is normalized to the total mass 1.

For any Hilbert C0(X)-module E, the fiber of E over x ∈ X will be denoted
Ex. The space of compactly supported elements of E, i.e. E · Cc(X), will be
denoted Ec (or Cc(E) if we consider E as a continuous field of vector spaces).
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For a proper G-algebra B, we will use the notation BG for a certain sub-
algebra of M(B) consisting of G-invariant elements - see [16], definition 3.2.

We start with the construction which originates in the work of M. Rieffel.
Here we will follow [18], section 5.

Definition 4.1. Let B be a G−C0(X)-algebra, where X is a proper G-space,
and E a Hilbert G − B-module. Denoting by Cc(X) the set of compactly
supported functions on X, let Ec = Cc(X) ·E. We define a pre-Hilbert module
structure over Cc(G,B) on Ec by

e · b =

∫
G

g(e) · g(b(g−1)) · µ(g)−1/2dg ∈ Ec,

(e1, e2)(g) = µ(g)−1/2(e1, g(e2))E ∈ Cc(G,B),

where e, e1, e2 ∈ Ec, b ∈ Cc(G,B). We will denote by E the Hilbert C∗(G,B)-
module which is the completion of Ec in the norm defined by the above Cc(G,B)
inner product on Ec.

Remark 4.2. The positivity of the inner product comes from the embedding
i : E ⊂ C∗(G,E) (onto a direct summand) given by i(e)(g) = µ(g)−1/2c1/2g(e),
where c is a cut-off function on X . The Hilbert module C∗(G,E) is defined in
[16], 3.8. It is isomorphic to E ⊗B C

∗(G,B).

Lemma 4.3. K(E) ≃ K(E)G. In particular, when E = B, we have K(E) =
BG, and when E = B = C0(X), we get K(E) = C0(X/G).

Proof. The ‘rank 1’ operators θe1,e2 in K(E) (i.e. θe1,e2(e) = e1(e2, e)) are easily
seen to be θe1,e2(e) =

∫
G
θg(e1),g(e2)(e)dg, where e1, e2, e ∈ Ec, and on the right

side, the notation θ is used for the ‘rank 1’ operators in K(E). This proves
the assertion.

Lemma 4.4. When E = L2(G,B), then E ≃ C∗(G,B) as a Hilbert module
over C∗(G,B).

Proof. Consider L2(G,B) with the right G-action: g(e)(t) = µ(g)1/2g(e(tg))
instead of the usual left one. (These two G-actions correspond to each other
under the automorphism e(g) 7→ µ(g)−1/2e(g−1) of L2(G,B).) Let us use
elements e = e(g) ∈ Ec with compact support in g ∈ G (i.e. elements from
Cc(X)·Cc(G,B)). Then it is easy to check that the isomorphism E ≃ C∗(G,B)
is given by the formula: e(g) 7→ g(e(g)).

The last thing that we need to mention before we state the result that we
need is the canonical unitary representation u : G → M(C∗(G,B)) given on
elements b ∈ Cc(G,B) by uh(b)(g) = h(b(h−1g)) for any g, h ∈ G.

Now lemmas 4.3 and 4.4 imply the following result (hidden in the proof of
theorem 5.4 of [18]), which is a generalization of the well known similar fact
for compact groups (cf. e.g. [10], 11.2):
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Theorem 4.5. C∗(G,B) ≃ K(L2(G,B))G, where we use the right G-action
on L2(G,B). Under this isomorphism, the canonical representation u : G →
M(C∗(G,B)) transforms into the left translation action of G on L2(G,B).

Proof. The isomorphism follows directly from 4.3 and 4.4. For the second
statement, take E = L2(G,B). Then the left translation action of G on E
exactly corresponds to the representation u under the map e(g) 7→ g(e(g))
given in the proof of lemma 4.4: uh(ge(g)) = h(h−1g(e(h−1g)) = g(e(h−1g)),
which is equal to g(e1(g)) for e1(g) = e(h−1g).

Next, we will prove a version of the structure theorem of P. Green ([9],
2.13). Let us assume that X is a fibered product X = G ×M Z, where M is
a compact subgroup of G and Z an M-space. There is a natural projection
π : X → G/M in this case, and π(Z) = (M) ∈ G/M . Let BZ be the part of
B over Z, i.e. BZ = B/(B · C0(X − Z)). (In the Riemannian manifold case
which will be considered later, Z will be a small Euclidean disk orthogonal to
the orbit Ox at the point x ∈ X , and M will be the stability subgroup at x.)

In this case, Green’s result is that C∗(G,B) ≃ C∗(M,BZ)⊗K(L2(G/M)).
We need only a weak version of it, and we want to avoid using a measurable
cross-section in the construction.

It is clear that B is the algebra defined by the continuous field of C∗-
algebras {Bt, t ∈ G/M}, where Bt = t(BZ). This means that B is isomorphic
to the algebra of continuous sections (vanishing at infinity) of the fiber bundle
of algebras G×MBZ → G/M associated with the principal bundle G→ G/M .
We will use the notation (C0(G)⊗ BZ)

M for this algebra.

Proposition 4.6. In the above assumptions and notation, if X = G ×M Z,
then C∗(G,B) ≃ (BZ ⊗K(L2(G)))M , where M acts on BZ ⊗K(L2(G)) diag-
onally (with the action on L2(G) by right translations). Under this isomor-
phism, the canonical representation u : G → M(C∗(G,B)) transforms into
the left translation action of G on L2(G).

Proof. By theorem 4.5, C∗(G,B) ≃ (B ⊗ K(L2(G)))G. This can be rewritten
as ((C0(G)⊗BZ)

M ⊗K(L2(G)))G. Here G acts on C0(G) by left translations
and M by right translations, and these two actions commute. The action of
G on L2(G) is by right translations, and the action of M on L2(G) is trivial.
Therefore C∗(G,B) is isomorphic to (C0(G)⊗ BZ ⊗K(L2(G)))M×G.

The isomorphism stated in the proposition comes from the obvious isomor-
phism: (C0(G) ⊗ A)G ≃ A for A = BZ ⊗ K(L2(G)). Note that the inverse
of the latter isomorphism maps a ∈ A to g 7→ {g(a)} in Cb(G,A). Because
M acts on Cb(G) by right translations, we get the action of M on Cb(G,A):
{g(a)} 7→ {gm(a)}, which corresponds to the diagonal action a 7→ m(a) of
M ⊂ M ×G on A.

The last assertion follows from the similar assertion in theorem 4.5.

16



5 Leaf-wise PDOs

In this section, we give a definition of symbol algebras for leaf-wise PDOs,
followed by the construction of leaf-wise operators. We also consider a more
geometric construction for some classical geometric operators like a leaf-wise
Dirac operator.

The notation and assumptions concerning the manifold X will be the same
as stated in section 3: X will be a complete Riemannian manifold equipped
with a proper isometric action of a Lie group G, T (X) and T ∗(X) the tangent
and cotangent bundles of X respectively (isomorphic via the Riemannian met-
ric). The tangent manifold will be denoted TX , and the projection TX → X
by p.

5.1 Notation and preliminaries.

Consider the map f : G × X → X, f(g, x) = (g(x), x) defining the G-action
on X . For each x ∈ X , let fx : G → X be the map f restricted to G × {x},
i.e. fx(g) = g(x). The orbit Ox through x is the image of fx. We have:
L2(G/Mx) ⊂ L2(G). The image of L2(G/Mx) consists of all L2-functions on
G right-invariant under Mx. However, although Ox ≃ G/Mx, the L

2-spaces of
Ox and G/Mx are not in general isometrically isomorphic because their metric
(and measure) may be quite different. We will use two fiber bundles: the
trivial one q : G×X → X with the projection q onto the second multiple and
also p : T (X) → X .

Recall some notation from [17], sections 6 and 7. We denote by g the
Lie algebra of the group G. Let f ′

x : g → Tx(X) be the tangent map (first
derivative of fx) at the identity of G, and f ′∗

x : T ∗
x (X) → g∗ the dual map.

It is easy to see that for any x ∈ X, g ∈ G, v ∈ g, one has: g(f ′
x(v)) =

f ′
g(x)(Ad(g)(v)).
Let us consider the trivial vector bundle gX = X × g over X with the

G-action given by (x, v) 7→ (g(x), Ad(g)(v)). Because the G-action on X is
proper, there exists a G-invariant Riemannian metric on gX . Equivalently,
one can say that there exists a smooth map from X to the space of Euclidean
norms on g: x 7→ || · ||x, such that for any x ∈ X, g ∈ G, v ∈ g, one has:
||Ad(g)(v)||g(x) = ||v||x.

We denote by f ′ : gX → T (X), the map defined by (x, v) 7→ f ′
x(v) at any

x ∈ X . From the above formulas, it is clear that this map is G-equivariant.
Note that by multiplying our Riemannian metric on gX by a certain strictly
positive G-invariant function, we can also arrange that the following condition
is satisfied: for any v ∈ g, ||f ′

x(v)|| ≤ ||v||x. We will assume that this is the
case, and so we have ||f ′

x|| ≤ 1 for any x ∈ X .
Let us identify gX with its dual bundle via the Riemannian metric. The

fiber of gX at the point x will be denoted gx. Consider a continuous field of sub-
spaces of the tangent bundle T (X) defined as {Im f ′

x ⊂ Tx(X), x ∈ X}. Call
this field Γ. This is the field of tangent spaces to the orbits of G. Another field
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is defined as {Im f ′∗
x ⊂ g∗x, x ∈ X}. These two fields are isometrically isomor-

phic. The isomorphism is given by the isometry (f ′f ′∗)−1/2f ′ : Im f ′∗ → Im f ′.
(Note that we do not assume that f ′ is invertible.) The continuous sections of
these two fields are {f ′(v), v ∈ C0(gX)} and {f ′∗(v), v ∈ C0(T (X))}. We will
denote by Γ any of these two fields of vector spaces and by Γx the fiber of Γ at
x ∈ X.

We define a G-invariant map {ϕx = (f ′
xf

′∗
x )

1/2, x ∈ X : T ∗(X) → T ∗(X)}.
(Note the change in notation from [17], section 6, where the same notation ϕx

was used for the map f ′
xf

′∗
x .) We also define a G-invariant quadratic form q

on covectors ξ ∈ T ∗
x (X): qx(ξ) = (f ′

xf
′∗
x (ξ), ξ) = ||f ′∗

x (ξ)||
2
x = ||ϕx(ξ)||

2. Our
previous assumption ||f ′

x|| ≤ 1 implies that qx(ξ) ≤ ||ξ||2 for any covector ξ.
Being restricted to any orbit, the form qx(ξ) can serve as a Riemannian metric
on this orbit. This is compatible with the natural topology on each orbit and
on the orbit space globally.

Note that a covector ξ ∈ T ∗
x (X) is orthogonal to the orbit passing through

x if and only if qx(ξ) = 0. The subspace {(x, ξ), qx(ξ) = 0} ⊂ TX is TGX in
Atiyah’s notation.

The Lie algebra of the stability subgroup Mx will be denoted mx, and its
orthogonal complement by m⊥

x ⊂ g∗x. Note that gx/mx is isomorphic (via f ′
x)

to the tangent space Tx(Ox), and m⊥
x = (gx/mx)

∗ is isomorphic (via f ′∗
x ) to the

cotangent space T ∗
x (Ox).

5.2 Symbol algebras

For any x ∈ X , both vector spaces gx and τx = Tx(X) can be considered
as abelian groups, so there are the corresponding convolutional C∗-algebras:
C∗(gx) and C

∗(τx). They are isomorphic via the Fourier transform to C0(g
∗
x)

and C0(τ
∗
x) respectively. The map (f ′∗

x )
∗ : Cb(g

∗
x) → Cb(τ

∗
x) corresponds to the

natural map (f ′
x)∗ : M(C∗(gx)) → M(C∗(τx)) via the Fourier transform.

Let us denote the algebras of continuous sections (vanishing at infinity of
X) of the fields {C∗(gx), x ∈ X} and {C∗(τx), x ∈ X} by C∗

g (X) and C∗
τ (X)

respectively. We will denote by GX the total space of the fiber bundle gX ≃
X×g and by q its projection toX . Then {C0(g

∗
x), x ∈ X} are exactly the fibers

of C0(GX) over X . Similarly, the fibers of the algebra C0(TX) over X form
a continuous field of algebras {C0(τ

∗
x), x ∈ X}. Therefore C0(GX) ≃ C∗

g (X)
and C0(TX) ≃ C∗

τ (X) via the Fourier transform.
The important conclusion is that there are natural maps (f ′∗)∗ : Cb(GX) →

Cb(TX) and (f ′)∗ : M(C∗
g (X)) → M(C∗

τ (X)) related via the Fourier trans-
form.

Now we can define the symbol algebra for leaf-wise operators. This will be
the algebra of operators of ‘negative order’.

Definition 5.1. Using the maps Cb(GX) → Cb(TX) and M(C∗
g (X)) →

M(C∗
τ (X)), we define the symbol algebra Slf(X) for the ‘negative order’ leaf-

wise operators as the image of C0(GX) in Cb(TX). This is a C0(X)-algebra.
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The convolutional symbol algebra C∗
Γ(X) (isomorphic to Slf(X) via the Fourier

transform) is defined as the image of C∗
g (X) in M(C∗

τ (X)).
For the Hilbert module E over C0(X) of continuous sections of a (finite-

dimensional) vector bundle over X, we consider Slf(E) = K(E⊗C0(X)Slf(X))
as the corresponding symbol algebra associated with E.

At this point, it will be useful to make some additional clarification con-
cerning the algebra Slf(X). Note that the map f ′

x : gx → τx factors as follows:
gx → gx/mx ≃ Tx(Ox) ⊂ τx. The dual map f ′∗

x factors as τ ∗x → T ∗
x (Ox) ≃

(gx/mx)
∗ ≃ m⊥

x ⊂ g∗x.

Definition 5.2. We will consider {C0(m
⊥
x ), x ∈ X} as a continuous field of

algebras. The continuous sections of this field are, by definition, the restric-
tions of continuous sections belonging to C0(GX). We define C0((G/M)X) as
the algebra of continuous sections (vanishing at infinity of X) of the continuous
field {C0(m

⊥
x ), x ∈ X}.

Because the map C0(T
∗
x (Ox)) → Cb(τ

∗
x) induced by the restriction τ ∗x →

T ∗
x (Ox) is injective, we get the following simple fact:

Proposition 5.3. The algebra Slf(X) is isomorphic to C0((G/M)X).

Assumption 5.4. Before discussing actual leaf-wise symbols and operators,
here are the two options in which these objects will be defined:

1o The G-equivariant option: symbols and operators are G-invariant.
2o The stabilizer-invariant option: For any open subset Ux = G×Mx Zx ⊂

X, the symbol restricted to the slice Zx is invariant with respect to the action
of the stability subgroup Mx.

Since the map C0(GX) → Slf(X) is surjective, it extends to the surjective
map of the multiplier algebras: M(C0(GX)) → M(Slf(X)) ([1], theorem
4.2).

We will use the product structure of the bundle GX = X × g.

Definition 5.5. An element σ(x, ξ) ∈ L(Slf(E)) (where ξ ∈ τx) will be
called a leaf-wise symbol of order 0 if it is an image of an element b(x, η) ∈
L(E ⊗C0(X) C0(GX)) (where η ∈ gx) satisfying the following assumptions:

1o b(x, η) is continuous in x uniformly in η (on compact subsets of X);
2o b(x, η) is differentiable in η, and its exterior derivative dη(b) vanishes

at infinity in η uniformly in η on compact subsets of X.
A symbol σ is of ‘negative order’ if it becomes an element of K(Slf(E))

after being multiplied by any element of C0(X).

Remark 5.6. The strong estimate on b(x, η) required in definition 3.5, 2o,
is not needed in the item 2o of definition 5.5 because of an almost canonical
choice of coordinate systems in the tangent spaces along the orbit (and the
stabilizer-invariance of the symbols).
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Remark 5.7. Definition 5.5 was given with the assumption that all our sym-
bols are continuous functions. Recall from definition 3.5 that one can also
use symbols which are not everywhere continuous, e.g. ‘classical’ symbols. In
order to take this possibility into account, definition 5.5 should be modified.
This refers both to σ(x, ξ) and b(x, η). The terminology that has to be used
is given below (cf. also definition 3.5).

Terminology 5.8. We will say that a function a(x, η) satisfies a certain con-
dition outside of a compact set in η if for any compact set L′ in the variable x
there is a compact set L′′ in the variable η such that the said condition holds
for all (x, η) with x ∈ L′, η /∈ L′′.

5.3 Clifford algebras and leaf-wise Dirac type operators

Our goal in this and the next subsection is to construct a multiplier of the
algebra C∗(G,K(E)) corresponding to a leaf-wise operator. The Hilbert mod-
ule E here is the module of continuous sections (vanishing at infinity) of a
(complex) vector bundle over X . In the present subsection we use a specific
way to do it for some geometric operators of Dirac type. First recall some
notation from [17].

Let V be a real vector bundle over X equipped with a G-invariant Rieman-
nian metric and Cliff (V, Q) the Clifford algebra bundle associated with the
quadratic form Q(v) = ||v||2 on V. We denote by ClV(X) the complexifica-
tion of the algebra of continuous sections of Cliff (V, Q) over X , vanishing at
infinity of X . With the sup-norm on sections, this is a C∗-algebra. It will be
denoted ClV(X). When V = τ = T ∗(X), this algebra will be denoted Clτ (X),
and when V = gX , this algebra will be denoted Clg(X). Recall that according
to [17], theorem 2.7, the algebras Clτ (X) and C0(TX) are KK-equivalent.

Let f ′ : gX → τ = T (X) be the tangent map defined in subsection 5.1
and f ′∗ : τ ∗ → g∗X the dual map. The C∗-subalgebra of Clτ (X) generated
by scalar functions C0(X) ⊂ Clτ (X) together with the subspace {f ′(v)} for
all continuous sections v of gX vanishing at infinity will be denoted ClΓ(X).
A similar C∗-subalgebra of Clg(X) generated by scalar functions C0(X) ⊂
Clg(X) together with the subspace {f ′∗(w)} for all covector fields w ∈ τ ∗

vanishing at infinity is isomorphic to ClΓ(X) because the spaces of continuous
sections {f ′(v), v ∈ C0(gX)} and {f ′∗(w), w ∈ C0(τ

∗)} are isometrically
isomorphic (see subsection 5.1). (We will not distinguish between these two
C∗-algebras).

Note that on each orbit O in X , the algebra ClΓ(X) restricted to O is
isomorphic to Clτ (O) where the Riemannian metric on O is defined by the
family of quadratic form qx, x ∈ O, because qx(ξ) = ||f ′∗

x (ξ)||
2
x (see subsection

5.1).

Construction.

The usual classical Dirac type operators are the Dirac operator acting on a
spin bundle, the Euler characteristic operator, the signature operator, and the
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Dolbeault operator (in the almost complex manifold case). The construction
is similar in all these cases. Here we will give the details for the construction of
the Euler characteristic operator. We will call it ‘Dirac operator’ because it will
serve as the basis for the construction of the important Dirac element later
in 8.8. The notation Λ∗(X) in this construction will mean the complexified
vector bundle Λ∗(X). We will also denote by Λ∗(X) the Hilbert module of its
continuous sections vanishing at infinity. (All PDOs that we consider act on
complex vector bundles.)

For each orbit Ox ≃ G/Mx, we will first construct a canonical differential
Dirac operator acting on sections of the vector bundle Λ∗(Ox). Since the
metric on the orbit (induced from X) is different from the metric on G/Mx,
we start with an operator on G/Mx. The space of L2-sections of the vector
bundle Λ∗(G/Mx) is isomorphic to (L2(G) ⊗ Λ∗(m⊥

x ))
Mx, where Mx acts on

L2(G) by right translations.
For any v ∈ g, let gv(t) be the one-parameter subgroup of G corresponding

to the vector v. The infinitesimal right translation by gv(t) on L
2(G) defines the

left-invariant differential operator ∂/∂v on smooth elements of L2(G). One can
also apply it on C∞

c (G)⊗Λ∗(m⊥
x ) using the composition of the (infinitesimal)

right translation on L2(G) and the usual left g-action on Λ∗(m⊥
x ). Note that

when v ∈ mx, this differential operator is 0 on C∞
c (G/Mx) and on (C∞

c (G)⊗
Λ∗(m⊥

x ))
Mx. (We consider C∞(G/Mx) as a subspace of C∞(G), L2(G/Mx) as

a subspace of L2(G), and Λ∗(m⊥
x ) as a subspace of Λ∗(g∗).)

Let us choose any basis {ṽk} in m⊥
x and the dual basis {vk} in g/mx. Define

the differential Dirac operator on (C∞
c (G)⊗ Λ∗(m⊥

x ))
Mx by the formula:

DG/Mx = −i
∑
k

(ext (ṽk) + int (ṽk))∂/∂vk.

This definition does not depend on the choice of the basis and gives an un-
bounded G-invariant operator on (C∞

c (G) ⊗ Λ∗(m⊥
x ))

Mx , and an unbounded,
essentially self-adjoint operator on (L2(G)⊗Λ∗(m⊥

x ))
Mx. Indeed, one can check

that this operator preserves the Mx-invariants in C∞
c (G) ⊗ Λ∗(m⊥

x ). The G-
invariance is also clear because the G-action is defined by left translations on
L2(G).

Remark 5.9. The important property of the operator DG/Mx on G/Mx is that
it is a natural restriction of the corresponding operator DG on G which acts on
C∞

c (G) ⊗ Λ∗(g∗). More generally, if My ⊂ Mx, then DG/Mx is the restriction
of DG/My . (We repeat that we consider C∞(G/Mx) as a subspace of C∞(G),
L2(G/Mx) as a subspace of L2(G), and Λ∗(m⊥

x ) as a subspace of Λ∗(g∗).)

All operators DG/Mx are elliptic on the corresponding spaces G/Mx and
their principal symbols are easy to calculate: σDG/Mx

= ext (η) + int (η). The

principal symbol of D2
G/Mx

is ||η||2, i.e. the same as the principal symbol of

the Laplace operator ∆G/Mx . Let us put FG/Mx = DG/Mx(D
2
G/Mx

+ 1)−1/2.

This is a bounded self-adjoint operator on L2(Λ∗(G/Mx)), and 1 − F2
G/Mx

=
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(D2
G/Mx

+ 1)−1/2 is an operator which becomes compact after being multiplied
by any continuous function vanishing at infinity.

Now we can descend (push forward) all these operators to the orbits in X
using the homeomorphisms fx : G/Mx ≃ Ox. The operators D and F on the
orbit O will be denoted DO and FO respectively. They depend only on the
orbit, not on the point x of the orbit.

Using the embedding m⊥
x ≃ Tx(Ox) ⊂ Tx(X) = τx, one can redefine the

operators DOx as operators acting on the bundles Λ∗(X)|Ox . The formula for
the new operator DOx will be the same as before. This will give the operators
DO and FO on sections of the bundle Λ∗(X) over the orbit O.

The constructed family of operators {FO} is a multiplier of the algebra
C∗(G,K(Λ∗(X))). In fact, for any tubular neighborhood U = G ×Mx Zx of
an orbit Ox ⊂ X , we have: C∗(G,K(Λ∗(U)) ≃ K(L2(G) ⊗ Λ∗(X)|Zx)

Mx . By
remark 5.9, all operators of our family are restrictions of one operator from G
to all orbits, so the (strict) continuity of the family {FO} is clear. Moreover,
the family {f · (1−F2

O)} is norm-continuous for any f ∈ C0(X) and gives an
element of C∗(G,K(Λ∗(X))).

The principal symbol of the descended operator FOx (calculated using the
change of variables formula in the Hörmander calculus) is equal σF (x, ξ) =
(ext (f ′∗

x (ξ))+ int (f ′∗
x (ξ)))(1+ ||f ′∗

x (ξ)||
2)−1/2 = (ext (f ′∗

x (ξ))+ int (f ′∗
x (ξ)))(1+

qx(ξ))
−1/2. The operator 1− F2

Ox
has principal symbol (1 + qx(ξ))

−1.
Note that f ′∗

x (ξ) is actually an element of g∗x. If we want our symbol to
be expressed in terms of covectors on X , we need to apply the isomorphism
of the subsection 5.1 between the implementations of the field Γ on GX and
on TX provided by the isometry (f ′f ′∗)−1/2f ′ : Im f ′∗ → Im f ′. Applying this
isometry, we get (f ′

xf
′∗
x )

−1/2(f ′
xf

′∗
x )(ξ)) = ϕx(ξ) instead of f ′∗

x (ξ) in the above
formulas. Therefore, σDOx

(x, ξ) = (ext (ϕx(ξ))+ int (ϕx(ξ))), and the principal
symbol of the operator FOx is (ext (ϕx(ξ)) + int (ϕx(ξ)))(1 + qx(ξ))

−1/2.

Notation 5.10. It is convenient to shorten the notation ext (ϕx(ξ))+ int (ϕx(ξ))
to c(ϕx(ξ)), where c means the usual Clifford action on the exterior algebra.
We will use the notation c for Clifford multiplication in the rest of the paper.

Definition 5.11. The family {FO} will be called the leaf-wise Dirac operator
on Λ∗(X) and denoted DΓ.

We have proved the following

Proposition 5.12. There exists a leaf-wise Dirac operator DΓ on Λ∗(X). The
principal symbol of DΓ is c(ϕx(ξ))(1 + qx(ξ))

−1/2. This Dirac operator defines
an element of the algebra M(C∗(G,K(Λ∗(X)))). Furthermore, C0(X) · (1 −
D2

Γ) ⊂ C∗(G,K(Λ∗(X))).

Remark 5.13. The constructed operator DΓ can be considered as an element
of the group KKG(C0(X), C∗(G,K(Λ∗(X))), but this is only one of our goals
here. In fact, based on the operator DΓ, we will construct an element of a
different KK-group later, in example 8.8. That will be the basic leaf-wise
Dirac element that we need for our main results.
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5.4 General construction of leaf-wise operators

This subsection contains a construction of an element of M(C∗(G,K(E))) cor-
responding to a leaf-wise operator with the symbol satisfying the assumptions
of definition 5.5.

Given a leaf-wise symbol σ, we choose the corresponding element b(x, η) ∈
L(E⊗C0(X)C0(GX)) (definition 5.5). Actually we will regard σ as an element
of L(E ⊗C0(X) C

∗
Γ(X)) (cf. definition 5.1) and b as an element of L(E ⊗C0(X)

C∗
g (X)). The condition 1o imposed on b in definition 5.5 means that b is

norm-continuous in x ∈ X .
We will use the fact that the space X can be covered with the fibered

products of the form: Ux = G ×Mx Zx, where Mx is the stability subgroup
at the point x ∈ X and Zx is a small open Euclidean disk. According to
proposition 4.6, the C∗-algebra C∗(G,K(E|Ux)) is isomorphic to K(L2(G) ⊗
E|Zx)

Mx, whereMx acts on L2(G)⊗E|Zx diagonally (with the action on L2(G)
by right translations).

For each fibered product Ux = G ×Mx Zx, one gets the corresponding
family of pseudo-differential operators on L2(G) parametrized by points of Zx

(according to the construction of section 3). Because the family of symbols is
assumed to be stabilizer-invariant (by assumption 5.4), this family of PDOs
naturally descends to a multiplier of K(L2(G)⊗E|Zx)

Mx by averaging over Mx

(see subsection 2.2). Using a partition of unity on X/G, one gets a multiplier
of C∗(G,K(E)). In the case of G-invariant symbols, the averaging over G gives
a G-invariant PDO.

This construction does not depend on a particular choice of the element b
used in it. The operators on L2(G) constructed using b do depend on b, but
when they are pushed forward to the orbits, this dependence vanishes. The
pushforward map is the map f defined at the beginning of subsection 5.1. It
transforms the b-symbol into the σ-symbol.

Remark 5.14. The construction of the Dirac operator (subsection 5.3) can
also be performed using the method described here.

Finally, let us define ‘compact operators’ for M(C∗(G,K(E))) as elements
of C∗(G,K(E)). We reiterate definition 3.7 of ‘negative order’ operators as
those which become compact after being multiplied by a function from C0(X).

Lemma 5.15. If the symbol is of ‘negative order’, then the corresponding
operator is of ‘negative order’.

Proof. The algebra C0(GX) has the function (1+ ||η||2)−1 as its fiber-wise (for
each x ∈ X) strictly positive element. The image of this element in Slf(X) is
the element (1 + qx(ξ))

−1 for each x ∈ X . In subsection 5.3, we have already
proved our assertion for the operator {(1 + D2

Ox
)−1} with such symbol. It

remains to note that the operator integration method preserves the relation of
order, modulo compact operators (see theorem 3.8). Therefore, if our assertion
is true for the operator with the symbol (1+qx(ξ))

−1, it is true for the operator
with any ‘negative order’ symbol.
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6 Poincare duality

We will need a certain generalization of the Poincare duality [17], theorem 4.6.
The proof of this result is exactly the same as the proof of [17], 4.6. A sketch
of the proof will be given below.

Let us start with the local Bott element. Let U be a small tubular neigh-
borhood of the diagonal ∆ ⊂ X × X (homeomorphic to TX) such that for
any (x, y) ∈ U there is a minimal geodesic connecting x and y. The local Bott
element [BX ] ∈ RKKG(X ;C0(X), C0(U)⊗C0(X)C0(TX)) (defined in [17], 2.9)
is a family of point-wise Bott elements {βx}, x ∈ X . Each βx is the Bott el-
ement in K0(C0(Ux) ⊗ C0(Tx(X))), where Ux = U ∩ (x × X). Embedding U
into X ×X we get [BX ] ∈ RKKG(X ;C0(X), C0(X)⊗ C0(TX)).

If A is a C0(X)-algebra, we can tensor the local Bott element with 1A over
C0(X). We get an element [BA] ∈ RKK(X ;A,A⊗ C0(TX)).

Theorem 6.1. Let X be a complete Riemannian manifold with an isometric
proper action of a locally compact group G. For any separable G − C0(X)-
algebra A and a separable G-algebra B,

KKG
∗ (A,B) ≃ RKKG

∗ (X ;A,C0(TX)⊗B)

≃ RKKG
∗ (X ;C0(TX)⊗C0(X) A,C0(X)⊗ B).

Sketch of proof. To deal with the first isomorphism, we define the homomor-
phisms:

µ = [BA]⊗A : KKG
∗ (A,B) → RKKG

∗ (X ;A,C0(TX)⊗ B)

and

ν = ⊗C0(TX)[DX ] : RKK
G
∗ (X ;A,C0(TX)⊗ B) → KKG

∗ (A,B),

where [DX ] ∈ K0
G(C0(TX)) is the Dolbeault element ([17], 2.8). The associa-

tivity of the product and theorem 2.10 [17] easily imply that ν ·µ = id. In the
opposite direction, the proof is exactly the same as in [17], 4.6.

The second isomorphism comes from the Bott periodicity. The groups
RKKG

∗ (X ;C0(TX)⊗C0(X)A,C0(X)⊗B) and RKKG
∗ (X ;A,C0(TX)⊗B) are

isomorphic: take an RKK-product (over C0(X)) with 1C0(TX) and use the
RKK-equivalence (Bott periodicity) C0(TX) ⊗C0(X) C0(TX) ≃KK C0(X).

Remark 6.2. It is useful to have Poincare duality also for manifolds with
boundary. We will indicate the necessary changes. Let X̄ be a manifold with
boundary ∂X and interiorX . To construct [BX̄ ] ∈ RKKG(X̄ ;C0(X̄), C0(X̄)⊗
C0(TX)), we can extend X to a complete Riemannian manifold Y = X̄ ∪∂X

(∂X × [0,∞)) and then restrict the element [BY ] to X̄ using the fact that X
and Y are diffeomorphic.

Now A will be a C0(X̄)-algebra. We tensor [BX̄ ] with 1A over C0(X̄) and get
an element [BA] ∈ RKKG(X̄ ;A,A ⊗ C0(TX)). The Dolbeault element does
not change. The resulting Poincare duality isomorphism will be the following:
KKG

∗ (A,B) ≃ RKKG
∗ (X̄ ;A,C0(TX)⊗ B).
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7 K-theory of symbol algebras

Now we come to the symbol algebras. The symbol algebra Slf(X) for leaf-
wise ‘negative order’ operators was defined in 5.1 as the image of C0(GX)
in Cb(TX) under the map f ′∗ : TX → GX . For any x ∈ X , the strictly
positive element of C0(GX) in the fiber over x is (1 + ||η||2)−1. Therefore the
algebra Slf(X) is fiberwise generated (inside Cb(TX)) by the field of elements
(1 + ||f ′∗

x (ξ)||
2)−1 = (1 + qx(ξ))

−1, with an additional condition that elements
of Slf(X) vanish at infininity in x ∈ X uniformly in ξ.

Recall now a similar algebra for transversal PDOs. It was defined in [17]
(definitions 6.2, 6.3) and denoted SG(X) and SΓ(X). Here we change slightly
this definition according to our more flexible approach to PDOs. We also
prefer to change slightly the notation for this algebra.

Definition 7.1. The symbol algebra Str(X) for ‘negative order’ transversal
PDOs is a subalgebra of the algebra of bounded functions b ∈ Cb(TX) satisfying
the conditions:

1o b(x, ξ) is continuous in x uniformly in ξ and vanishes (uniformly in ξ)
when x→ ∞.

2o b(x, ξ) is differentiable in ξ, and for the exterior derivative in ξ, there is
an estimate: ||dξ(b)|| ≤ C · (1 + ||ξ||)−1 for any compact subset K ⊂ X, with
the constant C which depends only on b and K and not on (x, ξ).

3o For any ε > 0, there exists c > 0 such that for any x ∈ X, ξ ∈ T ∗
x (X),

|b(x, ξ)| ≤ c · (1 + qx(ξ))(1 + ||ξ||2)−1 + ε.
Similarly defined, symbols of operators on a finite-dimensional vector bun-

dle E over X form a Hilbert module Str(E) over Str(X).

Remark 7.2. It is clear from condition 3o that the field of elements (1 +
qx(ξ))(1 + ||ξ||2)−1 is the field of strictly positive elements in the fibers of the
algebra Str(X) over X . Because the products (1 + qx(ξ))

−1 · (1 + qx(ξ))(1 +
||ξ||2)−1 = (1 + ||ξ||2)−1 form a field of strictly positive elements in the fibers
of the algebra C0(TX) over X , we have: Slf(X) · Str(X) = C0(TX). In
particular, there is a natural map of C0(X)-algebras: Slf(X)⊗C0(X)Str(X) →
C0(TX).

Definition-Lemma 7.3. Denote the Hilbert C0(X)-module corresponding to
the field of Hilbert spaces {L2(Λ∗(τx))} over X by T . There is the Bott-Dirac
operator on each space L2(Λ∗(τx)), namely, Cx = Dx(1+D2

x)
−1/2, where Dx =

(dξ + d∗ξ + ext (ξ) + int (ξ)). Denote the corresponding operator on T by C.
The homomorphism ψ : ClΓ(X)⊗C0(X) Slf(X) → L(T ) is just multiplication
on the Slf(X) part, and on the Clifford part of ClΓ(X) it is given on (real)
covectors by ξ 7→ ext (ξ) + int (ξ). The triple (T , ψ, C) defines a Dirac type
element of the group RKKG(X ;ClΓ(X)⊗C0(X) Slf(X), C0(X)) which will be
denoted [dlf ].

Proof. We need only to prove the compactness of commutators between C and
the image of ψ. Any element a ∈ ψ(ClΓ(X)⊗C0(X) Slf(X)) can be considered
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as a function of x ∈ X and ξ ∈ τ ∗x . We can assume that a is a smooth
covector field. For any x ∈ X , the direction of the covector ax(ξ) belongs to
the subspace Γx tangent to the orbit passing through x. Moreover, because a
belongs to the image of ψ, as a function of ξ (with x frozen), ax(ξ) is constant
in ξ in the directions orthogonal to Γx, and we can assume that in the direction
of Γx it has compact support in ξ (since we can assume that an element of
Slf(X) is an image of a compactly supported element of C0(GX)).

It is clear from the above that the graded commutator [ax(ξ), ext (ξ) +
int (ξ)], which is equal to the scalar product 2(ax(ξ), ξ), vanishes for any ξ
orthogonal to Γx. On the other hand, for ξ in the direction of Γx, the above
commutator is bounded because we assumed that ax(ξ) has compact support
in that direction. Therefore, the commutator [ax(ξ), ext (ξ)+ int (ξ)] is always
bounded uniformly in x.

Since ax(ξ) has compact support in the direction of Γx and is constant in
the direction orthogonal to Γx, all first ξ-derivatives of ax vanish at infinity in
ξ. Therefore the (graded) commutator [ax, dξ + d∗ξ] is bounded on L2(Λ∗(τx)).

Now we will use the method of lemma 4.2 [17]. Write Cx = (2/π)
∫∞

0
Dx(1+

λ2 + D2
x)

−1dλ. For any ax as above, the (graded) commutator [ax, Dx] is
bounded on L2(Λ∗(τx)) and depends norm-continuously on x ∈ X . The oper-
ators (1 + λ2 +D2

x)
−1 and Dx(1 + λ2 +D2

x)
−1 are compact on L2(Λ∗(τx)) and

depend norm-continuously on x ∈ X . The commutator [ax, Cx] is presented as
the integral

(2/π)

∫ ∞

0

(1 + λ2 +D2
x)

−1((1 + λ2)[ax, Dx] +Dx[ax, Dx]Dx)(1 + λ2 +D2
x)

−1dλ

which converges uniformly in λ, so the result is compact and depends norm-
continuously on x ∈ X .

Definition 7.4. Two separable G− C0(X)-algebras D1 and D2 will be called
RKK-dual if there are elements

α ∈ RKKG(X ;D1⊗̂C0(X)D2, C0(X)), β ∈ RKKG(X ;C0(X), D1⊗̂C0(X)D2)

such that the product with these two elements gives isomorphisms:

RKKG(X ;A⊗̂C0(X)D1, B) ≃ RKKG(X ;A,B⊗̂C0(X)D2)

and
RKKG(X ;A⊗̂C0(X)D2, B) ≃ RKKG(X ;A,B⊗̂C0(X)D1)

for any two separable G− C0(X)-algebras A and B.

Remark 7.5. Assume that the above elements β and α have their product over
D1⊗̂C0(X)D2 equal to 1C0(X) ∈ RKKG(X ;C0(X), C0(X)). Then the RKK-
duality of D1 and D2 can be proved using the same kind of rotation homotopy
that is used in Atiyah’s proof of the Bott periodicity. Both algebras D1 and
D2 must allow this rotation homotopy.

26



Indeed, for example, taking the product of a ∈ RKKG(X ;A,B⊗̂C0(X)D2)
first with 1D1 and then with 1D2 , we arrive at an element of the group

RKKG(X ;A⊗̂C0(X)D1⊗̂C0(X)D2, B⊗̂C0(X)D2⊗̂C0(X)D1⊗̂C0(X)D2).

Then we need to take the product with β and α. We would like the result to
be equal to the initial element a. This would have been the case if we took
the product with α over the last couple of D1⊗̂C0(X)D2. But in fact it is the
previous couple D2⊗̂C0(X)D1 that is required to be used for the product. So
we need a rotation homotopy which interchanges the two copies of D2 in the
last argument of the RKK-group.

Theorem 7.6. The algebras Slf(X) and ClΓ(X) are RKK-dual. The algebra
ClΓ(X)⊗C0(X) Slf(X) is RKK-equivalent to C0(X).

Proof. The element [dlf ] of definition 7.3 will serve as α. The element of
RKKG(X ;C0(X), ClΓ(X)⊗C0(X)Slf(X)) which will be denoted [fΓ], and will
serve as β, is defined as follows:

The Hilbert module is ClΓ(X) ⊗C0(X) Slf(X). The operator fΓ is defined
by the covector field {fΓx(ξ) = ϕx(ξ)(1 + qx(ξ))

−1/2, x ∈ X}.
Let D = ClΓ(X)⊗C0(X)Slf(X). To show that the product β⊗D α is equal

to 1C0(X), we need to produce a homotopy of the product operator N1fΓ+N2C
to C. (The operators N1, N2 are those used in the KK-product construction.)

First, let us look at the graded commutator Q = [N1fΓ+N2C, C]. Note that
[ϕx(ξ), dξ + d∗ξ] is constant in ξ and [ϕx(ξ), ext (ξ) + int (ξ)] = 2(ϕx(ξ), ξ) ≥ 0.
Using the same integral presentation as in lemma 7.3, both for fΓ and C, we will
use the same calculation of the commutator [fΓ, C] as in the proof of theorem
8.9 [17]. This calculation and the reasoning given in the proof of 8.9 [17] show
that [fΓ, C] is non-negative modulo compact operators, so the same is true for
Q. Now the existence of the homotopy joining N1fΓ +N2C to C follows from
lemma 11 [21].

In the remaining part of the proof we will use a rotation homotopy. For
each x ∈ X , the fiber of Slf(X) over x is the image of C0(gx) in Cb(τx). So
we will use the rotation of gx × gx. Similarly for ClΓ(X), where the fiber over
x is just the corresponding Clifford algebra.

Let us first show that α ⊗C0(X) β = 1D. This is very similar to the proof
of the Bott periodicity in [15], theorem 5.7. This product can be written as
(φ : D → L(T ⊗C0(X)D), C ×× fΓ). The map φ factors throughM(D⊗̂D). There
is an obvious rotation homotopy of D⊗̂D, as already explained. The operator
fΓ rotates together with φ. The operator C does not rotate. At the end of
this rotation homotopy we arrive at the product (β ⊗D α) ⊗C0(X) 1D = 1D ∈
RKKG(D,D). The details on choosing the homotopy of operators N1, N2

involved in the KK-product construction see [15], the proof of theorem 5.7.
To complete the proof, it remains to show the existence of a rotation ho-

motopy indicated in the remark 7.5. Let D1 = ClΓ(X), D2 = Slf(X), and
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consider the rotation for the RKK-group in the displayed formula in the re-
mark 7.5. If E is the Hilbert module for a ∈ RKKG(X ;A,B⊗̂C0(X)D2), we
need to compose the homomorphism

A⊗̂C0(X)D1⊗̂C0(X)D2 → L(E⊗̂B⊗̂C0(X)D2
B⊗̂C0(X)D2⊗̂C0(X)D1⊗̂C0(X)D2)

with the rotation interchanging the last two copies of D2. Clearly, there is a
map of D2⊗̂C0(X)D2 into the right hand side, and we can compose it with the
rotation of the map D2 → M(D2⊗̂C0(X)D2), as already explained.

Before we move further, we need to correct an error in [17] at the end of def-
inition 7.1, where it was claimed that the algebra ClΓ(X)⊗̂C0(X)ClΓ(X) is iso-
morphic to the algebra of compact operators on the Hilbert module C0(Λ

∗
Γ(X))

over C0(X). Unfortunately, this is a wrong statement, which was used a num-
ber of times in sections 7 and 8 of [17]. The algebras ClΓ(X)⊗̂C0(X)ClΓ(X)
and C0(X) are not Morita equivalent in general, although they are Morita
equivalent in a special case when Γ is defined as the field of continuous sec-
tions of a vector bundle. But for a general Γ we will use the RKK-duality
between ClΓ(X) and Slf(X) provided by the previous theorem:

Corollary 7.7. If A and B are any separable G− C0(X)-algebras, then

RKKG(X ;A⊗̂C0(X)ClΓ(X), B) ≃ RKKG(X ;A,B⊗̂C0(X)Slf(X)),

RKKG(X ;A⊗̂C0(X)Slf(X), B) ≃ RKKG(X ;A,B⊗̂C0(X)ClΓ(X)).

Combined with the Poincare duality 6.1, this gives a corrected version
of theorem 7.8 [17] – see theorem 7.11 below. Here is another corollary of
Poincare duality 6.1 and the RKK-duality:

Proposition 7.8. Let G be a compact group and X a compact G-manifold. If
the G− C(X)-algebras A and Adual are RKK-dual then

K∗
G(A) ≃ KG

∗ (A
dual⊗̂C0(X)C0(TX)).

Proof. The left side is isomorphic to RKKG
∗ (X ;A,C0(TX)) by theorem 6.1,

which in its turn is isomorphic to RKKG
∗ (X ;C0(X), Adual⊗̂C0(X)C0(TX)) by

RKK-duality, and coincides with the right side in the statement because X
is compact.

Notation 7.9. We simplify the notation ClΓ(X)⊗C0(X)C0(TX) to ClΓ(TX).
(Note that the latter is not related with the orbits of G on the manifold TX .)
We will also denote the algebra Clτ (X)⊗̂C0(X)ClΓ(X) by Clτ⊕Γ(X).

Now we are going to restate and reprove theorem 7.4 of [17] which relates
the symbol algebra Str(X) with the algebra ClΓ(TX). We remind that the
symbol algebra Str(X) is not separable, so to state the KK-equivalence one
needs a separable version of the KK-theory introduced by G. Skandalis in [22],
pp. 571-572 (cf. also the beginning of section 7 in [17]).
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Here are some definitions from [17] that we will need:

First, a family of Dirac operators on tangent spaces ofX ([17], 2.5). For any
x ∈ X , let Hx = L2(T ∗

x (X))⊗Clτx be the Hilbert module over Clτx . The Dirac
operator on this Hilbert module is defined by dx =

∑dimX
k=1 (−i)c(ek)∂/∂ξk

in any orthonormal basis {ek} of T ∗
x (X), where c(ek) are the left Clifford

multiplication operators and ξk are the coordinates of T
∗
x (X) in the basis {ek}.

The family of operators {dx/(1 + d2x)
−1/2} on the family of Hilbert modules

{Hx, x ∈ X} defines an element RKKG(X ;C0(TX), Clτ(X)) denoted [dξ].
Next, the fiber-wise Bott element [Bξ,Γ] ∈ RKKG(X ;Clτ⊕Γ(X),Str(X))

([17], 7.2), which is given by the pair (Str(E), β), where E = Λ∗(X) is con-
sidered as a Hilbert module over C0(X), Str(E) = E ⊗C0(X) Str(X), the left
action of Clτ⊕Γ(X) on Str(E) is defined on (real) covectors by

ξ1 ⊕ ξ2 7→ i(ext (ξ1)− int (ξ1)) + (ext (ξ2) + int (ξ2)).

Here ξ1 is a section of τ = T (X) and ξ2 a section of Γ ⊂ τ . The operator β is
the Bott operator defined by β(ξ) = (ext (ξ) + int (ξ))/(1 + ||ξ||2)1/2.

If we forget about Γ in this definition of [Bξ,Γ] and replace Str(X) with
C0(TX) we get the tangent Bott element [Bξ] ∈ RKKG(X ;Clτ(X), C0(TX))
([17], 2.6).

The operator fΓ = {ϕx(ξ)(1+qx(ξ))
−1/2, x ∈ X} will be considered here as

an element ofM(ClΓ(TX)). The element [fΓ] ∈ RKKG(X ;Str(X), ClΓ(TX))
is defined by the natural homomorphism Str(X) → M(ClΓ(TX)) together
with the operator fΓ.

Theorem 7.10. The algebras ClΓ(TX) and Clτ⊕Γ(X) are RKKG-equivalent,
and Str(X) is RKKG

sep-equivalent to each of them.

Proof. The RKKG-equivalence between the algebras ClΓ(TX) and Clτ⊕Γ(X)
follows from the RKKG-equivalence between C0(TX) and Clτ (X) (theorem
2.7 [17]) by tensoring it over C0(X) (i.e. ⊗C0(X)) with ClΓ(X). This RKKG-
equivalence is given in fact by the product with the elements [dξ] and [Bξ]
defined above which are inverses of each other ([17], theorem 2.7).

The product [Bξ,Γ]⊗Str(X) [fΓ] is given by the pair

(ψ : Clτ⊕Γ(X) → L(E⊗̂C0(X)ClΓ(TX)), N1(β⊗̂1) +N2(1⊗̂fΓ)),

where E = Λ∗(X). Here N1, N2 are the operators entering the KK-product
construction: N1 ·Str(X) ⊂ C0(TX) and N2 ·Slf(X) ⊂ C0(TX).

Let us make a rotation homotopy of this element. Consider the homomor-
phism ClΓ(X)⊗̂C0(X)ClΓ(X) → L(E ⊗C0(X) ClΓ(TX)), where the first copy
of ClΓ(X) maps according to the map ψ and the second copy maps into
M(ClΓ(TX)). We will rotate this homomorphism by using the rotation of
Γx × Γx (x ∈ X). The result of this homotopy will be fΓ acting on E and
ClΓ(X) acting on ClΓ(TX). The operator will turn into N1(β⊗̂1)+N2(fΓ⊗̂1).
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Finally, observe that this operator is homotopic to β⊗̂1. This follows
from lemma 11 [21] after we use the same argument as in the proof of the-
orem 7.6 above based on the fact that the graded commutator [N1(β⊗̂1) +
N2(fΓ⊗̂1), β⊗̂1] ≥ 0 modulo compact operators. (In fact, [fΓ(ξ), β(ξ)] differs
by a positive multiple from the scalar product (ϕx(ξ), ξ).)

As a result, we get the equality: [Bξ,Γ] ⊗Str(X) [fΓ] = [Bξ] ⊗C0(X) 1ClΓ(X).
Because [Bξ] is an invertible element, we have proved that both [Bξ,Γ] and
[fΓ] are one-sided invertible. To show that these two elements are actually
invertible, we will prove that the product [fΓ]⊗C0(X) ([dξ]⊗C0(X) 1ClΓ(X))⊗C0(X)

[Bξ,Γ] is equal 1Str(X).
Let us first look at the product ([dξ]⊗C0(X) 1ClΓ(X))⊗C0(X) [Bξ,Γ]. We will

denote it [dtr]. It is given by the pair (π : ClΓ(TX) → L(T ⊗̂C0(X)Str(X)), F ),
where the Hilbert C0(X)-module T is defined in lemma 7.3. The map π
of ClΓ(TX) is given by multiplication by functions of C0(τx) on L2(τx) (for
each tangent space τx, x ∈ X), and on (real) covectors of ClΓ(TX) the map
π is ξ 7→ ext (ξ) + int (ξ). The operator F = N1(A⊗̂1) + N2(1⊗̂β), where
A = (dξ + d∗ξ)(1 + (dξ + d∗ξ)

2)−1/2, both dξ + d∗ξ and β use the same exterior
algebra variables, but dξ + d∗ξ acts on the L2(τx) spaces, whereas β(ξ) is the
multiplication operator on Str(X).

The product [fΓ]⊗ClΓ(TX)[dtr] is given by the pair (π̃ : Str(X) → L(T ⊗C0(X)

Str(X)), N1(A⊗̂1) + N2(1⊗̂(β + fΓ)). Here Str(X) acts on T and fΓ is the
multiplication operator on Str(X).

We first deform the latter product using the operator homotopy N1(A⊗̂1)+
N2(1⊗̂(β+tfΓ)), 1 ≥ t ≥ 0. After that we make a rotation homotopy using the
fact that π̃ factors through the homomorphism M(Str(X)⊗C0(X) Str(X)) →
L(T ⊗C0(X) Str(X)). As a result of this rotation homotopy, the map π̃ trans-
forms into the identity map Str(X) → Str(X), and β transforms into the
multiplication operator which acts on the L2(τx) spaces. Therefore the oper-
ator will be homotopic to the operator C of lemma 7.3. This means that our
product turns into 1Str(X).

We collect the most important results of this section in the next theorem:

Theorem 7.11.

RKKG
∗ (X ;C0(X),Slf(X)) ≃ RKKG

∗ (X ;ClΓ(X), C0(X))

≃ RKKG
∗ (X ;Clτ⊕Γ(X), Clτ (X)) ≃ K∗

G(Clτ⊕Γ(X)).

RKKG
∗ (X ;C0(X),Str(X)) ≃ RKKG

∗ (X ;C0(X), Clτ⊕Γ(X))

≃ RKKG
∗ (X ;Slf(X), Clτ (X)) ≃ K∗

G(Slf(X)).

Proof. The first isomorphism comes from corollary 7.7. The next isomorphism
is the Clifford periodicity provided by the fact that τ is a vector bundle. The
final isomorphism in the second line comes from the Poincare duality theorem
6.1. In the third line, the first isomorphism is given by theorem 7.10. The next
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isomorphism comes from corollary 7.7. The last isomorphism of the fourth line
is provided by the Poincare duality 6.1.

Corollary 7.12. When G and X are compact we get:
KG

∗ (Str(X)) ≃ K∗
G(Slf(X)) and KG

∗ (Slf(X)) ≃ K∗
G,sep(Str(X)).

8 Elliptic symbols and index groups

We start with a definition of certain special KK-groups related with crossed
products. Then we give an overview of symbol and index groups for various
types of operators. In the last part of this section, there are some important
results on interrelations between different index and symbol groups.

8.1 Special KK-groups for crossed products

Let B be a G-algebra. Consider the canonical unitary representation u : G→
M(C∗(G,B)) : g 7→ ug (see subsection 4.1 before theorem 4.5). Then the
G-action on C∗(G,B) is given by g(b) = ugbu

−1
g , where b ∈ C∗(G,B). For any

Hilbert module E over C∗(G,B), one can define a structure of a G−C∗(G,B)-
module as follows. For e ∈ E , put g(e) = e ·u−1

g . An easy check shows that this
definition of the G-action on E satisfies the axioms of a G−C∗(G,B)-module
([14], definition 2.1, 5o - 6o).

When B is a G − C0(X)-algebra, where X is a proper G-space, there
exists also a canonical right action of C0(X) on C∗(G,B) given by the right
multiplication. Moreover, a similar right action of C0(X) exists also for any
Hilbert module E over C∗(G,B). It is given by e · f = limα→0 e(e, e)((e, e) +
α)−1f , where e ∈ E , f ∈ C0(X). In the next definition we will use this C0(X)-
action.

Definition 8.1. Let A and B be G − C0(X)-algebras. We define the group
KKG,X(A,C∗(G,B)) in the same way as the usual KKG(A,C∗(G,B)), but
with an additional assumption that for any triple (E , ψ : A → L(E), F ) and
any a ∈ A, f ∈ C0(X), one has: ψ(a)·f = ψ(fa) in L(E), where the right mul-
tiplication by f on E is defined above. Note that when G and X are compact,
KKG,X(C(X), C∗(G,B)) is the same as KG

0 (C
∗(G,B)).

Proposition 8.2. The group KKG,X(A,C∗(G,B)) has the following addi-
tional properties.

1o. For any G− C0(X)-algebra D, there is a natural map:

KKG,X(A,C∗(G,B)) → KKG,X(A⊗̂C0(X)D,C
∗(G,B⊗̂C0(X)D))

given by the product with 1D.

2o. If α ∈ KKG,X(A,C∗(G,B)) and β ∈ RKKG(X ;B,D), then the prod-
uct α⊗C∗(G,B) j

G(β) belongs to KKG,X(A,C∗(G,D)).
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3o. There is a natural product:

KKG,X(A,C∗(G,B))⊗RKKG(X ;D,E)

→ KKG,X(A⊗̂C0(X)D,C
∗(G,B⊗̂C0(X)E)).

This product is commutative.
4o. There is an isomorphism:

KKG,X(Slf(X), C∗(G,C0(X))) ≃ KKG,X(C0(X), C∗(G,ClΓ(X))).

Proof. The first two statements are clear. The third one is a combina-
tion of the first two. For the commutativity of the product in 3o, one has
to identify A⊗̂C0(X)D with D⊗̂C0(X)A and B⊗̂C0(X)E with E⊗̂C0(X)B via
a1⊗̂a2 7→ (−1)dega1·dega2a2⊗̂a1. This is similar to [16], theorem 2.14, 8o. The
last statement follows from theorem 7.6 and its proof.

8.2 Overview of definitions

We will use the equivariant KKG in all notation for the symbol and index
groups. In the non-equivariant (or stabilizer-invariant) case, one just has to
drop the ‘G’.

In the definition of ellipticity we will follow [17], section 3, for elliptic
operators and [17], section 6, for t-elliptic operators. As in [17], we consider
two options:

1o Self-adjoint operators of degree 1 on Z2-graded spaces have index in the
K0-groups.

2o Self-adjoint operators on ungraded spaces have index in the K1-groups.

Definition 8.3. (Elliptic case.) A self-adjoint PDO acting on sections of a
vector bundle E is elliptic if its symbol σ ∈ L(C0(p

∗(E))) satisfies the condi-
tion: f · (σ2 − 1) ∈ K(C0(p

∗(E))) for any f ∈ C0(X) (both in the graded and
non-graded case. Recall that p : TX → X.)

When the symbol σ is elliptic, the coarse PDO construction of section 3
gives the index element in the group K∗(C0(X)). If a locally compact group
G acts on X properly and isometrically and the symbol σ is elliptic and G-
invariant then [F ] = (L2(E),F) ∈ K∗

G(C0(X)).
Recall from [17] that the symbol group for elliptic operators is defined

as RKKG
∗ (X ;C0(X), C0(TX)). If one wants to consider elliptic operators

with coefficients in a unital G-algebra B (see [20]), the symbol group will be
RKKG

∗ (X ;C0(X), B⊗C0(TX)) and the index group will be KKG
∗ (C0(X), B).

Note that in the case of a compact manifold X , the symbol group ‘shortens’
to KG

∗ (C0(TX)). But it is important to emphasize that for a non-compact X ,
one can still consider symbols σ belonging to KG

∗ (C0(TX)) if the group G
is compact. Such symbol has an additional property that the corresponding
operator is Fredholm, because σ2− 1 is of strongly negative order (see 3.5 and
3.8, 4o).
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Definition 8.4. (T-elliptic case.) A self-adjoint PDO is t-elliptic if its
symbol σ ∈ L(Str(E)) satisfies the condition: f · (σ2−1) ∈ K(Str(E)) for any
f ∈ C0(X) (both in the graded and non-graded case).

For t-elliptic operators ([17], section 6), the symbol group is defined as
RKKG

∗ (X ;C0(X),Str(X)), and in the case of operators with coefficients in a
unital G-algebra B, the symbol group is RKKG

∗ (X ;C0(X), B⊗Str(X)). Also
for t-elliptic operators there are Clifford and tangent-Clifford symbol groups:
RKKG

∗ (X ;C0(X), Clτ⊕Γ(X)) and RKKG
∗ (X ;C0(X), ClΓ(TX)) respectively.

They are isomorphic to RKKG
∗ (X ;C0(X),Str(X)) by theorem 7.10.

For “scalar” t-elliptic operators (when B = C), the index group was defined
in [17], proposition 6.4, as K∗(C∗(G,C0(X))). The corresponding index group
for operators with coefficients in B will be KKG

∗ (C
∗(G,C0(X)), B).

The index of an operator F is denoted ind(F ). Another index [F ] ∈
K∗

G(Slf(X)), called analytical index, will be defined in 10.5.
When the manifold X and the group G are compact, the symbol groups

simplify to KG
∗ (Str(X)) ≃ KG

∗ (Clτ⊕Γ(X)) ≃ KG
∗ (ClΓ(TX)). However, when

G is compact but X is not, we can still have symbols in the latter groups. The
corresponding operators have a distributional index in K0(C∗(G)) (see remark
10.4).

Definition 8.5. (Leaf-wise elliptic case.) A leaf-wise self-adjoint PDO is
elliptic if its symbol σ ∈ L(Slf(E)) satisfies the condition: f · (σ2 − 1) ∈
K(Slf(E)) for any f ∈ C0(X) (both in the graded and non-graded case).

For leaf-wise operators, the symbol group is RKKG
∗ (X ;C0(X),Slf(X)),

which is the same as RKKG
∗ (X ;C0(X), C∗

Γ(X)). The corresponding index
group is KKG,X

∗ (C0(X), C∗(G,C0(X))).
When G and X are compact, the symbol group simplifies to KG

∗ (Slf(X)),
and for the index group one can take KG

∗ (C(X)) (see remark 11.3). For com-
pact G and non-compact X , still symbols in KG

∗ (Slf(X)) can be considered,
with the index in KG

∗ (C0(X)) (remark 11.3).

Adding a new variable.

It is useful to generalize these definitions. Instead of just a ‘lonely’ operator
F acting on a Hilbert space or a Hilbert module we can consider the case when
a C0(X)-unital G − C0(X)-algebra A acts on the same Hilbert module and
commutes modulo compact operators with F .

A C0(X)-algebra B is called C0(X)-unital if there exists a subalgebra in B
isomorphic to C0(X), and the structure of the C0(X)-algebra on B is given
by multiplication with elements of this subalgebra. (This means that all fibers
Bx, x ∈ X, are unital.)

For elliptic operators, the symbol group will beRKKG
∗ (X ;A,B⊗C0(TX))

and the index group KKG
∗ (A,B).

For t-elliptic operators, we will get the symbol group RKKG
∗ (X ;A,B ⊗

Str(X)) and the index group KKG
∗ (C

∗(G,A), B).
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For leaf-wise operators, the symbol group will be RKKG
∗ (X ;A,Slf(X))

and the index group KKG,X
∗ (A,C∗(G,C0(X))).

Example 8.6. Let B = C and A = Clτ⊕Γ(X). The Bott element [Bξ,Γ] ∈
RKKG(X ;Clτ⊕Γ(X),Str(X)) defined before theorem 7.10 (see also definition
7.2 [17]) can be considered as an element of a t-elliptic symbol group. The cor-
responding element [dX,Γ] of the index group K0(C∗(G,Clτ⊕Γ(X))) is defined
in [17], 8.8. Here is this definition.

The Dirac element [dX,Γ] is given by the pair (H,FX), withH = L2(Λ∗(X)),
the action of Clτ⊕Γ(X) on H defined on (real) covectors by ξ1⊕ξ2 7→ ext (ξ1)+
int (ξ1) + i(ext (ξ2) − int (ξ2)). Here ξ1 is a section of τ = T (X) and ξ2
is a section of Γ. The representation of C∗(G,Clτ⊕Γ(X)) on H is induced
by the covariant representation defined by the action of G and the above
action of Clτ⊕Γ(X), the operator dX is the exterior derivation operator, and
FX = (dX + d∗X)(1 + (dX + d∗X)

2)−1/2.

Remark 8.7. In the t-elliptic case, the group RKKG
∗ (X ;Slf(X), C0(TX))

can also be considered as the symbol group and K∗
G(Slf(X)) as the index

group. See theorems 7.11 and 10.6.

Example 8.8. Another important element is the leaf-wise Dirac element
[DΓ,C0(X)] ∈ KKG,X(Slf(X), C∗(G,C0(X))). Here is its definition:

Recall from the definition-lemma 7.3 the Hilbert C0(X)-module T and
the operator C on it. The Hilbert module for our element will be Q =
T ⊗̂C0(X)C

∗(G,C0(X)). Slf(X) acts on it by multiplication over T as in 7.3.
Let us present Q as the product {L2(τx)}⊗̂C0(X)E⊗̂C0(X)C

∗(G,C0(X)), where
E is the Hilbert module of continuous sections of Λ∗(τ). We consider the
operator DΓ as an operator on E⊗̂C0(X)C

∗(G,C0(X)). The full operator for

this element can be written as the KK-product N1(C⊗̂1)+N2(1⊗̂D̃Γ), where
D̃Γ is a K-theoretic connection for DΓ. Here C0(X) ·N1 · K(T ) ⊂ K(Q) and
C0(X) · N2 · (1 − D̃2

Γ) ⊂ K(Q). (The operator 1 − D2
Γ has ‘negative order’.)

Concerning the compactness of commutators between the operator C and the
Clifford variables of the operator DΓ, see the proof of 7.3.

From the element [DΓ,C0(X)], we get the element [DΓ,C0(X)] ⊗C0(X) 1ClΓ(X)

of the group KKG,X(Slf(X)⊗̂C0(X)ClΓ(X), C∗(G,ClΓ(X))) (cf. proposition
8.2). By the RKK-duality theorem 7.6, this gives us the element [DΓ] ∈
KKG,X(C0(X), C∗(G,ClΓ(X))). The elements [DΓ] and [DΓ,C0(X)] correspond
to each other via the isomorphism of proposition 8.2, 4o. The symbol cor-
responding to the element DΓ can be considered equal to the element fΓ ∈
RKKG(X ;C0(X), ClΓ(X)⊗C0(X) Slf(X)), although we cannot provide a di-
rect construction of the operator corresponding to this symbol.

The product of the element [DΓ] with 1Clτ (X) in the sense of proposition
8.2, 1o will be denoted [DΓ,τ ] ∈ KKG,X(Clτ (X), C∗(G,Clτ⊕Γ(X))).
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8.3 Theorems

Now we come to a couple of important results. The first one is theorem 8.9
[17]:

Theorem 8.9. [DΓ,τ ]⊗C∗(G,Clτ⊕Γ(X)) [dX,Γ] = [dX ].

Proof. The product in the statement is represented by the couple:

(Clτ (X) → L(T ⊗̂C0(X)L
2(Λ∗(X))), C ×× fΓ ××DΓ ××FX).

The operator C, the ξ-multiplication part of the operator fΓ, and the Clifford
variables of the operatorDΓ act on T . The operator FX = (dX+d

∗
X)(1+∆)−1/2

(where dX is the exterior derivation, ∆ is the Laplacian), as well as the Clifford
variables of the operator fΓ, and the derivation variables of the operator DΓ,
act on L2(Λ∗(X)). The Clifford variables of the algebra Clτ (X) also act on
L2(Λ∗(X)).

We first simplify this product a little bit by a rotation of Clifford vari-
ables. It is clear that the action of the Clifford variables of the operator DΓ

factors through the algebra M(ClΓ(X)). The same is true for the operator fΓ.
There exists such homomorphism of ClΓ⊕Γ(X) = ClΓ(X)⊗̂C0(X)ClΓ(X) into
L(T ⊗̂C0(X)L

2(Λ∗(X)) that the action of the Clifford variables of both these
operators is contained in this action of ClΓ⊕Γ(X). By the rotation of Γx ⊕ Γx

for all x ∈ X , we come to the situation when the Clifford variables of fΓ act
on T and the Clifford variables of DΓ act on L2(Λ∗(X)). This means that
now the operators C and fΓ act on T , and the operators FX and DΓ act on
L2(Λ∗(X)).

Now we can simplify both products C ××fΓ and DΓ ××FX . The first one is
homotopic to C (see the proof of theorem 7.6). The second one is homotopic
to FX . The proof of this is given in the proof of theorem 8.9 [17]. It requires
only a minor correction: one has to replace ϕx(ξ) = f ′

xf
′∗
x (ξ) used in [17] with

ϕx(ξ) = (f ′
xf

′∗
x )

1/2(ξ) as it is defined at the beginning of section 5 of the present
paper.

After all these changes we are left with the product C ××FX , and because
C represents the element 1C0(X) ∈ RKK(X ;C0(X), C0(X)), we can remove C.
We arrive at the element [dX ], as claimed.

The second result is part of theorem 8.15 [17]. Because of the confusion
in [17] related with the RKK-duality of ClΓ(X) with itself (instead of with
Slf(X) as would be correct), we need to restate and reprove this important
result.

Theorem 8.10. The following composition:

RKKG
∗ (X ;C0(X), Clτ⊕Γ(X)) → KKG

∗ (C
∗(G,C0(X)), C∗(G,Clτ⊕Γ(X)))

→ K∗
G(C

∗(G,C0(X))) → K∗
G(Slf(X))

coincides with the isomorphism of theorem 7.11. Here the first map is jG,
the second one is the product with the element [dX,Γ], and the last one is the
product with the element [DΓ,C0(X)].
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The proof is based on a lemma which copies lemma 8.16 [17]:

Lemma 8.11. Let a ∈ RKKG
∗ (X ;C0(X), Clτ⊕Γ(X)). Then the triple product

[DΓ,C0(X)]⊗C∗(G,C0(X)) j
G(a)⊗C∗(G,Clτ⊕Γ(X)) [dX,Γ] ∈ K∗

G(Slf(X))

is equal to the product ã ⊗Clτ (X) [dX ], where ã ∈ RKKG
∗ (X ;Slf(X), Clτ(X))

is RKK-dual to a.

Proof of the lemma. We will use the formula for [dX ] from theorem 8.9. Then
we need only to show that

[DΓ,C0(X)]⊗C∗(G,C0(X)) j
G(a) = ã⊗Clτ (X) [DΓ,τ ].

The element [DΓ,C0(X)] is the product of 1Slf (X) ⊗C0(X) [DΓ] and jG([dlf ]),
where [dlf ] ∈ RKK(X ;ClΓ(X) ⊗C0(X) Slf(X), C0(X)) is defined in 7.3 and
used for RKK-duality in theorem 7.6. We have: ã = a ⊗ClΓ(X) [dlf ] and
[dlf ]⊗C0(X) a = 1ClΓ(X) ⊗C0(X) ã. Using this, it is easy to see that both sides of
the previous displayed formula are equal to the product of [DΓ] and ã in the
sense of proposition 8.2, 3o.

Proof of theorem 8.10. The composition in the statement of the theorem cor-
responds to the triple product from lemma 8.11. The isomorphism of theorem
7.11 corresponds to the product ã⊗Clτ (X) [dX ] from lemma 8.11.

9 Index theorem for elliptic operators

The index theorem for elliptic operators is covered in great detail in section 4
of [17], theorems 4.1-4.2. However, we suggest here another proof which will
serve as a model for the proofs of index theorems for t-elliptic and leaf-wise
elliptic operators in the next two sections.

Here is a reminder concerning the definition of the Dolbeault element (cf.
[17], 2.8). The manifold TX is an almost complex manifold: the cotangent
space T ∗

(x,ξ)(TX) at any point (x, ξ) is the direct sum of the two orthogonal

subspaces isomorphic to T ∗
x (X): the horizontal space τhx = p∗(T ∗

x (X)) and
the space dual to the vertical tangent space τ vx = Tξ(Tx(X)). This allows to
define the complex structure on the tangent space of the manifold TX for any
(x, ξ) ∈ TX . We will identify the complex cotangent bundle T ∗(TX) with the
complexification of the lifted cotangent bundle of X : p∗(T ∗(X)) ⊗ C. The
exterior algebra of this bundle is denoted by Λ∗

C
(TX). The coordinates in the

cotangent space T ∗
(x,ξ)(TX) will be denoted by (χ, ζ).

We define the symbol of the Dolbeault operator D as

σD(x, ξ, χ, ζ) = ext (−χ + iζ) + int (−χ + iζ)

on the exterior algebra bundle Λ∗
C
(TX). (Note that int = ext ∗ in the Her-

mitian metric.) The differential operator D is essentially self-adjoint. The
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algebra C0(TX) acts on L2(Λ∗
C
(TX)) by multiplication. The K-homology

class [DX ] ∈ K0
G(C0(TX)), called the Dolbeault element, is defined by the

pair (L2(Λ∗
C
(TX)),D(1 +D2)−1/2).

Theorem 9.1. Let X be a complete Riemannian manifold and G a second
countable locally compact group which acts on X properly and isometrically.
Let F be a bounded, properly supported G-invariant elliptic operator on X of
order 0 with the symbol [σF ] ∈ RKKG

∗ (X ;C0(X), C0(TX)). Then the formula
for the index [F ] of this operator is

[F ] = [σF ]⊗C0(TX)) [DX ] ∈ K∗
G(C0(X)),

where [DX ] ∈ K0
G(C0(TX)) is the Dolbeault element.

If the group G is compact and the symbol [σF ] belongs to KG
∗ (C0(TX)),

then F is Fredholm and defines an element of R∗(G) = KG
∗ (C(point)) which

is calculated by the same KK-product formula as above.

Proof. Both assertions of the theorem will be proved together. The fact that
under the assumptions of the second assertion the operator F is Fredholm
follows from the coarse PDO construction (sections 2 and 3) because ||1 −
σ2
F (x, ξ)|| → 0 uniformly in ξ when x → ∞ (cf. corollary 2.6 and theorem

3.8).
On the manifold TX , let C = {Cx, x ∈ X} be the family of Bott-Dirac

operators on T = {L2(Λ∗(τx))} (see lemma 7.3), namely, Cx = Dx(1+D
2
x)

−1/2

where Dx = (dξ + d∗ξ + ext (ξ) + int (ξ)). Each of these operators has symbol

(ext (ξ + iζ) + int (ξ + iζ))(1 + ||ξ||2 + ||ζ ||2)−1/2 and index 1. Here ζ is the
derivation variable, ξ the multiplication variable. The family {Cx} represents
the element 1C0(X) ∈ KKG(C0(X), C0(X)). Taking the KK-product with
[F ] ∈ K∗

G(C0(X)) we will get the same element [F ] ∈ K∗
G(C0(X)).

We want to prove that the KK-products [C]××F and σF ××[DX ] give the same
element of K∗

G(C0(X)). Both these products are represented on the Hilbert
space H = T ⊗C0(X) L

2(E). Here we assume that F acts on L2-sections of
the vector bundle E over X . We can present the first product in the form:
(H,N1(C⊗̂1)+N2(1⊗̂F̃ )), where F̃ is the KK-theoretic connection for F , and
N1, N2 the operators entering the KK-product construction. According to
lemma 3.11, we can take for F̃ a PDO on TX with the symbol equal to the
symbol of F lifted to TX .

The second product can be presented as (H,N ′
1D̃X + N ′

2(1⊗̂σF )), where
D̃X is the Dolbeault operator on {L2(Λ∗(τx))} ⊗C0(X) L

2(X) lifted to H (i.e.
with the same symbol as the symbol of DX).

The homotopy that will join the two products will be the rotation homotopy
which will go in the tangent spaces to TX pointwise (see notation before the
statement of the theorem). The rotation interchanging the derivation variable
χ of τhx and the multiplication variable ξ of τ vx will be performed in τhx ⊕ τ vx .

We will present both products as pseudo-differential operators on TX and
produce a homotopy between their symbols. The symbol of C ××F on TX can
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be written as

N1((ext (ξ + iζ) + int (ξ + iζ))⊗̂1)/(||ξ||2 + ||ζ ||2 + 1)1/2) +N2(1⊗̂σF (x, χ))

where

N2
1 = (||ξ||2 + ||ζ ||2 + 1)/(||ξ||2 + ||χ||2 + ||ζ ||2 + 1), N2

2 = 1−N2
1 .

The symbol of σF ××D on T ∗(X) can be written as

N ′
1((ext (−χ+ iζ)+ int (−χ+ iζ))⊗̂1)/(||χ||2+ ||ζ ||2+1)1/2 +N ′

2(1⊗̂σF (x, ξ))

where

N ′2
1 = (||χ||2 + ||ζ ||2 + 1)/(||ξ||2 + ||χ||2 + ||ζ ||2 + 1), N ′2

2 = 1−N ′2
1 .

Here χ and ζ are the derivation variables, x and ξ the multiplication vari-
ables.

The conditions required by definition 3.5 are easy to check. It is also easy
to show that both symbols are elliptic in the sense that for each of these
two symbols σ, on compact subsets of X one has: 1 − σ2(x, ξ, χ, ζ) → 0
when ||ξ||2 + ||χ||2 + ||ζ ||2 → 0. The K-theoretic connection property and the
positivity property for the products ([16], 2.10, (b) and (c)) are straightforward
(cf. theorem 3.8).

The homotopy which joins the two operators with the symbols written
above is given by the rotation in the (ξ, χ)-variables:

ξ 7→ cos t · ξ − sin t · χ, χ 7→ sin t · ξ + cos t · χ,

with 0 ≤ t ≤ π/2. It is again easy to see that in the course of this homotopy
the symbols remain elliptic.

10 Index theorems for t-elliptic operators

Recall the definitions of the Clifford and the tangent-Clifford symbols for a t-
elliptic operator F with the symbol [σF ] ∈ RKG

∗ (X ;C0(X),Str(X))(cf. [17],
definitions 8.11 and 8.13):

Definition 10.1. We define the tangent-Clifford symbol as

[σtcl
F ] = [σF ]⊗Str(X) [fΓ] ∈ RKKG

∗ (X ;C0(X), ClΓ(TX)),

where the element fΓ ∈ RKKG(X ;Str(X), ClΓ(TX)) is defined before theorem
7.10.

The Clifford symbol of a t-elliptic operator F is defined as

[σcl
F ] = [σtcl

F ]⊗ClΓ(TX) [dξ] ∈ RKKG
∗ (X ;C0(X), Clτ⊕Γ(X)),

where [dξ] ∈ RKKG(X ;ClΓ(TX), Clτ⊕Γ(X)) is also defined before theorem
7.10.
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Remark 10.2. In the present paper we will not use the explicit formulas
for the tangent-Clifford symbol given in [17], 8.13. Instead, we will use the
following formula for the tangent-Clifford symbol:

σtcl
F (x, ξ) = σF (x, ξ)⊗̂1 + (1− σ2

F )
1/2⊗̂fΓ(x, ξ) ∈ L(C0(p

∗(E))⊗̂C0(X)ClΓ(X))

where fΓ(x, ξ) = ϕx(ξ)(1+ qx(ξ))
−1/2. Here p : TX → X is the projection and

E the vector bundle where the operator F acts. We assume that ||σF || ≤ 1 by
cutting it above that level if necessary.

Note that the exterior derivative dξ(σ
tcl
F (x, ξ)) vanishes at infinity in ξ

uniformly in x ∈ X on compact subsets of X . Indeed, this is true for
the σF ⊗̂1 summand because of the condition 2o of definition 7.1. Conse-
quently, the same is true for (1 − σ2

F )
1/2 as well. Also it is easy to show that

||dξ(fΓ(x, ξ))|| ≤ const · (1 + qx(ξ))
−1/2. In view of remark 7.2, this proves our

claim.
Note also that 1 − (σtcl

F )2 = (1 − σ2
F )(1 + qx(ξ))

−1, and using remark 7.2,
we see that C0(X) · (1 − (σtcl

F )2) is contained in K(C0(p
∗(E)))⊗̂C0(X)ClΓ(X).

In fact, both (1 − σ2
F )(1 + qx(ξ))

−1 and (1 − σ2
F )ϕx(ξ)(1 + qx(ξ))

−1 vanish at
infinity in ξ uniformly on compact subsets in x by 7.2.

The only essential property of σtcl
F (x, ξ) that is missing is the continuity in

x uniformly in ξ (condition 3.5, 1o).

The basic Dirac and Dolbeault elements for the next theorem are defined
in [17], 8.8 and 8.17. We have already recalled the definition of the Dirac
element [dX,Γ] in example 8.6 above. Here is the definition of the Dolbeault
elements:

The Clifford Dolbeault element [Dcl
X,Γ] ∈ K0(C∗(G,ClΓ(TX))) ([17], 8.17)

comes from [dX,Γ] via the RKK-equivalence between ClΓ(TX) and Clτ⊕Γ(X)
(see theorem 7.10). The explicit description of the element [Dcl

X,Γ] is as fol-
lows: Let [DX ] ∈ K0

G(C0(TX)) be the Dolbeault element (see definition before
theorem 9.1). We keep the Hilbert space and the operator DX as in that
definition, but extend the action of C0(TX) on L2(Λ∗

C
(TX)) to the action of

ClΓ(TX). On (real) covectors of the Clifford part, this action is given by:
χ 7→ −(ext (χ) + int (χ)) (where χ is a section of Γ ⊂ τ = T (X)). The
resulting pair gives the element [Dcl

X,Γ].
The Dolbeault element [DX,Γ] ∈ K0

G(C
∗(G,Str(X))) comes from [Dcl

X,Γ] via
the RKK-equivalence between ClΓ(TX) and Str(X) of theorem 7.10.

Recall from [17], 8.1, that we consider K∗(C∗(G,C0(X))) as a subgroup
of K∗

G(C
∗(G,C0(X))) (see the beginning of subsection 8.1 for the definition

of the G-action on C∗(G,C0(X))). Namely, a triple (ψ : C∗(G,C0(X)) →
L(H), T ) representing an element of K∗(C∗(G,C0(X))) (assuming that ψ is
non-degenerate) defines an element of K∗

G(C
∗(G,C0(X))), where the G-action

on H is induced by ψ.

Theorem 10.3. (Index theorem 8.18 [17]). Let X be a complete Riemannian
manifold and G a Lie group which acts on X properly and isometrically. Let F
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be a properly supported, G-invariant, L2-bounded transversally elliptic operator
on X of order 0. Then

ind(F ) = jG([σcl
F ])⊗C∗(G,Clτ⊕Γ(X)) [dX,Γ] ∈ K∗(C∗(G,C0(X))),

and
ind(F ) = jG([σF ])⊗C∗(G,Str(X)) [DX,Γ] ∈ K∗(C∗(G,C0(X))),

and

ind(F ) = jG([σtcl
F ])⊗C∗(G,ClΓ(TX)) [D

cl
X,Γ] ∈ K∗(C∗(G,C0(X))).

Remark 10.4. When the manifold X and the group G are compact, as noted
already in subsection 8.2, the symbol group simplifies to KG

∗ (Str(X)), or to
KG

∗ (Clτ⊕Γ(X)), or to KG
∗ (ClΓ(TX)). In this case, there exists the distribu-

tional index which is an element of K∗(C∗(G)). We will denote it inddist(F ).
To obtain this index, one has to use the isomorphism KG

∗ (Str(X)) ≃
KKG

∗ (C,Str(X)), apply the map jG and take the product with the element
DX,Γ as in the second formula of the theorem. Similarly can be modified the
two other formulas of the theorem. This is a direct corollary of the theorem
because the restriction map KKG

∗ (C(X),Str(X)) → KKG
∗ (C,Str(X)) for the

inclusion C ⊂ C(X) corresponds to the restriction map K∗(C∗(G,C0(X))) →
K∗(C∗(G)) for the inclusion C∗(G) ⊂ C∗(G,C0(X)).

In fact, it is enough to assume only that G is compact, but not necessarily
that X is compact. Like in the case of elliptic operators (see theorem 9.1)
if we assume that [σF ] is an element of KG

∗ (Str(X)), then σ2
F − 1 ∈ Str(E).

Following the coarse PDO construction of sections 2 and 3 (see in particular
corollary 2.6 and theorem 3.8) and the proof of proposition 6.4 [17], one can
show that ind(F ) ∈ K∗(C∗(G)). This is the distributional index of F . The
formulas of the theorem give the calculation of this distributional index as
indicated above. The proof of this statement requires only minor modifications
in the proof that follows.

We remark that in the case when G is compact and [σF ] ∈ KG
∗ (Str(X)),

one can use the homomorphismKG
∗ (Str(X)) → KKG

∗ (C(X
+),Str(X)), where

X+ is a one-point compactification of X . The formulas of the theorem applied
to the symbol in the latter group give the index in K∗(C∗(G,C(X+))). This
index, which we will denote Ind(F ) allows to obtain both ind(F ) and inddist(F )
by restricting C(X+) to C0(X) or, respectively, to the constant functions in
C(X+).

Proof. All three formulas are equivalent. We will prove the third one.
Let F be a transversally elliptic operator of order 0 acting on sections of the

vector bundle E over X . We will use the expression for the tangent-Clifford
symbol given in remark 10.2. The product jG([σtcl

F ])⊗ [Dcl
X,Γ] is presented by

the pair

(C∗(G,C0(X)) → L(E⊗̂ClΓ(X)L
2(Λ∗(X))), N1(σ

tcl
F ⊗̂1) +N2(1⊗̂D̃cl

X,Γ)),

40



where E is the Hilbert module of sections of the family of Hilbert spaces
{Ex⊗̂ClΓx⊗L

2(τx)} parametrized by x ∈ X ; N1, N2 are the operators involved
in the KK-product construction, and D̃cl

X,Γ is the K-theoretic connection for
Dcl

X,Γ. All Clifford variables act over Λ∗(X).
We will follow closely the proof of theorem 9.1. In particular, we can choose

the operators N1, N2 as in the proof of theorem 9.1. These will be the PDOs
with the symbols:

σN1 = ||ξ||(||ξ||2 + ||χ||2 + ||ζ ||2 + 1)−1/2, σN2 = (1− σ2
N1
)1/2.

Here ξ is the multiplication variable, χ and ζ are the derivation variables. The
variable ξ is used in σF and fΓ. The variables χ and ζ are used in the symbol
of Dcl

X,Γ.
One of the differences between the elliptic case (theorem 9.1) and the cur-

rent t-elliptic one is that the symbol σtcl
F is not a usual symbol of a PDO

treated in section 3, although it has many similarities with such, as explained
in remark 10.2. However, σtcl

F is not continuous in x uniformly in ξ, and the
construction of the operator out of σtcl

F requires the techniques of both sections
3 and 5.

In order to deal with σtcl
F along the rotation homotopy that will follow,

we will treat the two summands of it differently. For example, σN1(σF ⊗̂1⊗̂1)
satisfies the conditions of definition 3.5, so this is a symbol of a PDO on the
manifold TX . On the other hand, if the operator (1−σ2

F )
1/2⊗̂fΓ⊗̂1 commutes

with some other PDO on a symbol level (like N1 or N2), then on the operator
level the commutator becomes compact after multiplication by C0(X). This
follows from proposition 3.3 (where we take h = ϕx, k = (1 − σ2

F )
1/2). The

conditions of proposition 3.3 are satisfied - see remark 10.2.
The very specific feature of the t-elliptic case compared to the elliptic case

of theorem 9.1 is that fΓ(x, ξ) does not commute well with the operator D̃cl
X,Γ

because these two operators use the same Clifford variables. This deficiency of
commutation is repaired by the presence of the algebra C∗(G,C0(X)) which
essentially provides an additional multiple (1 + ∆G)

−1 killing the non-trivial
commutators. (Here ∆G is the orbital Laplacian, the operator with the symbol
qx(χ).)

We will use the rotation homotopy as in the proof theorem 9.1. The ho-
motopy of all components of our operator, except fΓ, goes as in the proof of
theorem 9.1. For the homotopy of fΓ, we use the rotation homotopy of the
b-symbol of the leaf-wise Dirac operator DΓ. The variable corresponding to ξ
for the b-symbol will be η, as in definition 5.5. The analogous variable corre-
sponding to χ will be called θ. The rotation of the b-symbol variables will go
between η and θ.

Here is an important remark:
Along this rotation homotopy, the commutator [fΓ, D̃

cl
X,Γ] will not be killed

by multiplication with C∗(G,C0(X)). The part of the commutator that is
not killed is cos t sin t[ϕx(ξ), ξ] multiplied by certain other positive operators.
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But since [ϕx(ξ), ξ] ≥ 0, the commutator [N1(σ
tcl
F ⊗̂1), N2(1⊗̂D̃cl

X,Γ)] is also
positive modulo compact operators and those operators which are killed by
multiplication with C∗(G,C0(X)). Therefore, in the process of the homotopy
we get (N1(σ

tcl
F ⊗̂1)+N2(1⊗̂D̃cl

X,Γ))
2 ≥ 1 modulo compact operators and those

killed by multiplication with C∗(G,C0(X)). So we can correct our homotopy
by dividing N1(σ

tcl
F ⊗̂1) + N2(1⊗̂D̃cl

X,Γ) by some positive invertible operator.
At the end of the homotopy (at t = π/2) the non-trivial commutator again
vanishes because sin t cos t = 0.

After the rotation, σtcl
F (x, ξ) becomes σtcl

F (x, χ). The operator σF (x, χ) is
just F , and the operator fΓ(x, χ) corresponds to the leaf-wise Dirac operator
DΓ of subsection 5.3. Note that we assume that ||F || ≤ 1 (along the whole
homotopy) by cutting F using functional calculus. Therefore σtcl

F (x, ξ) turns
into T = F ⊗̂1 + (1− F 2)1/2⊗̂DΓ acting on L2(E⊗̂Λ∗(τ)).

The Dolbeault part is transformed by homotopy into the family of Bott-
Dirac operators (of index 1) C = {Cx, x ∈ X} on {L2(Λ∗(τx))}, namely, Cx =
Dx(1 + D2

x)
−1/2, where Dx = (dξ + d∗ξ + ext (ξ) + int (ξ)). We can remove

the operator DΓ from the operator T because DΓ is killed by multiplication
with C∗(G,C0(X)). After that we can remove the family C as well because it
corresponds to the element 1 ∈ KK(C∗(G,C0(X)), C∗(G,C0(X)). Therefore
we arrive at the element ind(F ).

The following definition replaces definition 8.10 [17] of the Clifford index
of a t-elliptic operator.

Definition 10.5. Let F be a transversally elliptic operator with the index
ind(F ) ∈ K∗(C∗(G,C0(X))), as defined in [17], proposition 6.4. We will call
[F ] = [DΓ,C0(X)] ⊗C∗(G,C0(X)) ind(F ) ∈ K∗

G(Slf(X)) the analytical index of
F . Here [DΓ,C0(X)] ∈ KKG,X(Slf(X), C∗(G,C0(X))) is the leaf-wise Dirac
element (example 8.8).

Recall that RKKG
∗ (X ;C0(X),Str(X)) ≃ RKKG

∗ (X ;Slf(X), C0(TX)),
and both these groups are isomorphic to K∗

G(Slf(X)) (theorem 7.11). In par-
ticular, we can consider the symbol [σF ] of a t-elliptic operator F acting on sec-
tions of a vector bundle E over X as an element RKKG

∗ (X ;Slf(X), C0(TX)).

The following theorem replaces the Clifford index theorems 8.12 and 8.14
of [17].

Theorem 10.6. For a t-elliptic operator F on a complete Riemannian man-
ifold X with a proper isometric action of the group G, the symbol [σF ] ∈
RKKG

∗ (X ;Slf(X), C0(TX)) and the analytical index [F ] ∈ K∗
G(Slf(X)) are

related by the isomorphism of theorem 7.11, namely, [σF ]⊗C0(TX) [DX ] = [F ],
where [DX ] ∈ K0

G(C0(TX)) is the Dolbeault element.

Proof. Combine theorems 8.10 and 10.3.
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Sketch of the direct proof.

We refer to the proof of theorem 10.3 for the details concerning the operator
T = F ⊗̂1 + (1 − F 2)1/2(1⊗̂DΓ) on L2(E⊗̂Λ∗(τ)). Also recall from 7.3 the
Hilbert C0(X)-module T and the operator C.

The analytical index [F ] is given by the pair (Slf(X) → L(T ⊗C0(X)

L2(E), A), where A = N1(C⊗̂1) + N2(1⊗̂T̃ ). Here N1, N2 are the operators
used in the KK-product construction, and T̃ is the KK-theoretic connection
for T .

The setting now is very similar to the one in the proof of theorem 10.3: the
role of the algebra C∗(G,C0(X)) is played here by Slf(X). The operator DΓ

has Clifford variables which do not commute well with the operator C. This
deficiency of commutation is repaired by the presence of the algebra Slf(X)
which provides an additional multiple killing the non-trivial commutators (see
the proof of 7.3).

We can perform the same rotation homotopy as in the proof of theorem
10.3 but going in the opposite direction, from t = π/2 to t = 0. (The left
action of the algebra Slf(X) does not change along the homotopy.) In the
process of this homotopy, there will be a non-trivial commutator between DΓ

and C, but its part related with ξ will still be killed by multiplication with
Slf(X). The part of the commutator related with χ (the derivation part) will
exist along the homotopy and it will be ‘positive’, so the square of the whole
product operator will be ‘≥ 1’ (like in the proof of theorem 10.3). So one can
‘normalize’ this homotopy. (See the proof of theorem 8.9 [17] for the positivity
of the commutator.)

At the end of the homotopy, the family of operators C will turn into the
Dolbeault operator DX , and the operator T will turn into the tangent-Clifford
symbol σtcl

F . The ϕx(ξ)(1 + qx(ξ))
−1/2 part of σtcl

F can be dropped because it
is killed by multiplication with Slf(X). Therefore we arrive at the product
[σF ]⊗C0(TX) [DX ].

11 Index theorem for leaf-wise elliptic opera-

tors

We will consider here the two cases: the one of G-invariant operators and the
other of stabilizer-invariant operators (see assumption 5.4), simultaneously.
We will keep the superscript ‘G’ (which is needed in the first case and can be
dropprd in the second one) in the notation of the KK-groups.

Theorem 11.1. The symbol [σF ] ∈ RKKG
∗ (X ;C0(X),Slf(X)) and the index

ind(F ) ∈ KKG,X
∗ (C0(X), C∗(G,C0(X))) of a leaf-wise elliptic operator F are

related by the formula: ind(F ) = [σF ] ⊗Slf (X) [DΓ,C0(X)], where [DΓ,C0(X)] ∈
KKG,X(Slf(X), C∗(G,C0(X))) is the leafwise Dirac element (see example 8.8
concerning [DΓ,C0(X)] and proposition 8.2 concerning the KK-product).
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Proof. Recall that DΓ is the leaf-wise operator on Λ∗(τ) with the symbol
fΓ(x, ξ) = ϕx(ξ)(1 + qx(ξ))

−1/2 (see 5.12) . Also recall from example 8.8
the presentation (Slf(X) → L(T ⊗̂C0(X)C

∗(G,C0(X))), C ××DΓ) of the element
[DΓ,C0(X)].

The product of [σF ] ∈ RKK(X ;C0(X),Slf(X)) and [DΓ,C0(X)] is given by
the pair

(T ⊗̂C0(X)E⊗̂C0(X)C
∗(G,C0(X)), N1(C⊗̂1⊗̂1)+N2(1⊗̂σF ⊗̂1)+N3(1⊗̂1⊗̂D̃Γ)).

Here E is the Hilbert module where the operator F acts, D̃Γ is the KK-
theoretic connection for DΓ, and N1, N2, N3 are the operators used in the
KK-product construction.

Both F and DΓ admit a construction using the operator integration (sub-
section 5.4). We will apply the rotation homotopy to the operator representing
the product. The symbols σF and σDΓ

come from elements

bF ∈ L(E⊗̂C0(X)C0(GX)) and bDΓ
∈ L(Λ∗(τ)⊗̂C0(X)C0(GX))

via the map M(C0(GX)) → M(Slf(X)). Considering bF ⊗̂bDΓ
as an element

of the tensor product

L(E⊗̂C0(X)Λ
∗(τ)⊗̂C0(X)C0(GX)⊗̂C0(X)C0(GX))

we will rotate (fiber-wise over X) the subspace GX of the fibered product
GX ×X GX which is used for the operator integration.

For any x ∈ X and any t, 0 ≤ t ≤ π/2, we will choose in gx ⊕ gx the
subspace isomorphic to gx which corresponds to the second copy of gx ⊕ gx
turned by the angle t, and we will apply the operator integration construction
of subsection 5.4 using this turned second copy of gx. Note that there is no
rotation related with the operator C.

If we interpret the product operator written at the beginning as the one
coming from the symbol N ′

1(C⊗̂1⊗̂1) +N ′
2(1⊗̂σF ⊗̂1) +N ′

3(1⊗̂1⊗̂fΓ)) by oper-
ator integration over the second copy of GX ×X GX , then at the end of the
homotopy we will get the operator coming from the same symbol by operator
integration over the first copy of GX ×X GX .

At the end of this homotopy (at t = π/2), we will get the operator
Ñ1(C⊗̂1⊗̂1) + Ñ2(1⊗̂F ⊗̂1) + Ñ3(1⊗̂1⊗̂fΓ). As we have already seen in the
proof of theorem 7.6, the product C ×× fΓ is equal (homotopic) to C, so we can
remove [fΓ]. Now we are left with the product (in the sense of proposition 8.2)
of the element [C] = 1C0(X) and the element ind(F ). So the result is ind(F ).

Remark 11.2. If X is a (complete Riemannian) G-manifold and Y ⊂ X is
a complete G-submanifold with boundary, we can restrict a leaf-wise operator
F from X to Y and the formula of theorem 11.1 will apply to F |Y (with [σF ]
and ind(F ) considered as elements of the corresponding groups on Y ).
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Remark 11.3. When G is compact, there is a natural map:

KKG,X
∗ (C0(X), C∗(G,C0(X))) → KG

∗ (C
∗(G,C0(X))) → KG

∗ (C0(X)).

First arrow: for a compact X – see definition 8.1. The locally compact case
follows by a one-point compactification. Second arrow: we can drop G in KG

and replace K∗(C
∗(G,C0(X))) with KG

∗ (C0(X)). So in the case of a compact
G, the index can be defined as an element of KG

∗ (C0(X)).

Examples 11.4. 1o When G and X are compact and the action of G on
X is free, we have: KG

∗ (C(X)) ≃ K∗(C(X/G)). In this case, the index in
K∗(C(X/G)) described above corresponds to the Atiyah-Singer index for a
family of elliptic operators. So the family index theorem is a special case of
the orbital index theorem 11.1.

2o For each type of geometric Dirac operators listed in subsection 5.3 (see
the ‘Construction’ subtitle), theorem 11.1 gives a formula for the index. Cer-
tainly this index depends on the orbit structure of the manifold X . A simple
concrete example of the index calculation will be given in subsection 12.3.

12 Examples: t-elliptic and leaf-wise opera-

tors

This section contains a discussion of some examples of t-elliptic and leaf-wise
operators. T-elliptic operators are considered in subsections 12.1 and 12.2,
a leaf-wise example is given in subsection 12.3. In all examples G will be a
compact group.

Most t-elliptic operators that we consider will act on a Euclidean space
X = R2n or X = Cn. In these cases, we will assume that G acts on X
orthogonally, via a spin-representation (i.e via G→ Spin(2n) → SO(2n)), or,
in the case of X = Cn, via a unitary representation. For t-elliptic operators
in this section, we will be assuming that [σF ] ∈ KG

0 (Str(X)).

We will use the isomorphism: K0(C∗(G)) = R̂(G) = Hom(R(G),Z). We
consider Hom(R(G),Z) as a module over R(G), and the ring R(G) as a sub-

module of R̂(G). The R(G)-module structure on K∗(C∗(G,B)) for any G-
algebra B is given by the KK-product with the jG-image of R(G) in the
group KK(C∗(G,B), C∗(G,B)).

12.1 Atiyah’s operators

In his foundational lecture series [4], M. Atiyah gave a very elaborate study
of a class of t-elliptic operators on R2n. The index that he was calculating
was the distributional index. We will indicate here a way of calculating the
(topological) distributional index in certain examples based on theorem 10.3
and remark 10.4.
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Example 12.1. The most famous example of a t-elliptic operator for G =
S1, X = C is the differential operator ∂̃z̄ = ∂/∂z̄ + z : L2(C1) → L2(C1) ⊗
Λ1

C
(C1). We will consider a self-adjoint operator ∂̃z̄ + ∂̃∗z̄ with the symbol

ext (z+iξ)+ int (z+iξ) on Λ∗
C
(C1) (where ξ is a complex variable covector). We

normalize it to order 0 by dividing its symbol by (1+ ||z||2+ ||ξ||2)−1/2. Let us
denote the normalized operator by F . Its symbol σF satisfies the strong decay
condition at infinity of X : ||σ2

F −1||z,ξ ≤ const · (1+ qz(ξ))(1+ ||z||2+ ||ξ||2)−1,
and defines an element [σF ] ∈ KS1

0 (Str(C
1)) (see [17], 8.21).

Let us tensor Λ∗
C
(C1) with another copy of Λ∗

C
(C1) and consider the oper-

ator (∂̃z̄ + ∂̃∗z̄ )⊗̂1 on L2(C1)⊗ Λ∗
C
(C2). There is a homotopy of this operator

given by the homotopy of its symbol to an elliptic symbol:

[cos t(ext z + int z)⊗̂1 + sin t(1⊗̂(ext z + int z))

+(ext (iξ) + int (iξ))⊗̂1](1 + |z|2 + |ξ|2)−1/2

with 0 ≤ t ≤ π/2. At t = π/2, we get the symbol of the Bott-Dirac operator
C = [1⊗̂(ext z + int z) + (ext (iξ) + int (iξ))⊗̂1](1 + |z|2 + |ξ|2)−1/2, which has
index 1 ∈ R(G).

If we denote the basic representation of G = S1 on C = R2 by ρ, then the
(Z2-graded) representation of S1 on Λ∗

C
(C1) corresponds to [Λ0]−[Λ1] = 1−ρ ∈

R(S1). Note that the index of an elliptic operator can be calculated by the
formula of theorem 9.1, or theorem 10.3, and the results will be the same. Since
we tensored our initial operator F by [Λ∗

C
(C1)] = 1−ρ, then using theorem 10.3

together with remark 10.4, we obtain: 1 = ind(C) = (1−ρ)·inddist(F ) ∈ R(S1).

Therefore, inddist(F ) = (1−ρ)−1 =
∑∞

k=0 ρ
k ∈ R̂(S1). This gives a calcula-

tion of the topological distributional index for the operator F . (The calculation
of the analytical index of this operator is straightforward, see e.g. [17], example
8.21. Of course, topological and analytical indices coincide.)

Example 12.2. The previous example can be easily generalized to X = Cn

with the action of U(n). The operator will again be DX +potential, where DX

is the Dolbeault operator and the potential is the operator ext (z)+ int (z) with
z ∈ Λ1(Cn) = Cn. So the symbol of this operator is ext (z + iξ) + int (z + iξ)
on Λ∗

C
(Cn) (where ξ is a complex variable covector). We again normalize it

to order 0 by dividing its symbol by (1 + ||z||2 + ||ξ||2)−1/2, and denote the
normalized operator by F .

Tensoring Λ∗
C
(Cn) with another copy of Λ∗

C
(Cn) and doing the same ho-

motopy of the operator as in example 12.1, we obtain the Bott-Dirac operator
of index 1. This time the element [Λ∗

C
(Cn)] = [Λev] − [Λod] ∈ R(U(n)). Its

restriction to the maximal torus T n ⊂ U(n) is
∏n

k=1(1−ρk), which is invertible

as an endomorphism of R̂(T n). The final answer is inddist(F ) = [Λ∗
C
(Cn)]−1.

12.2 Braverman’s operators

Let us consider now Braverman’s operators (see [6]). The general setting is
the following: G is a compact Lie group, X is a G-spin complete Riemannian
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manifold of dimension 2n, D is a G-invariant Dirac operator acting on sections
of the (Z2-graded) vector bundle E (over X) which is a left module over
Clτ (X) (see, e.g., [17], before definition 3.9). This is a differential operator
with the symbol σD(x, ξ) = c(ξ), where c means Clifford multiplication. When
normalized to an operator F of order 0, it defines an element [F ] ∈ K0

G(C0(X)).
The symbol [σF ] of F is an element of RKKG

0 (X ;C0(X), C0(TX)), and the
Clifford symbol [σcl

F ] is an element of RKKG
0 (X ;C0(X), Clτ (X)) (cf. [17], 3.9,

3.10).
The Lie algebra of G will be denoted g. Braverman’s ‘taming map’ is an

equivariant continuous map ν : X → g such that ||ν(x)|| ≤ 1 and ||ν(x)|| = 1
outside of a compact subset of X . It can be considered as a G-invariant section
of the vector bundle gX (see subsection 5.1). Using the G-action onX (namely,
the map f ′ : gX → T (X)), one gets a vector field v(x) on X (which will be
used as a grading degree 1 multiplier of Clτ (X)). This vector field has to be
rescaled by multiplying it with a certain G-invariant positive scalar function
f(x) growing at infinity (see [6], definition 2.6). Then Dfv = D + c(fv) is
a Braverman type operator. Its symbol σDfv

(x, ξ) = c(ξ + f(x)v(x)) is t-
elliptic. When normalized to order 0, it defines an element [σFfv

] of the group

KG
0 (Str(X)). The corresponding index element will be denoted inddist(Ffv).

Note that the vector field v defines an element [v] = (E, v) ∈ KG
0 (C0(X)).

In the case of X = R2n, the Clifford module bundle E is the product
X ×E0, where E0 (see [5], 3.19) is the canonical Clifford module (isomorphic
Λ∗(Cn) when the group G acts via U(n)). The G-action on E0 goes through
the map G → Spin(2n) → End(E0). Therefore, we have the corresponding
element [Eev

0 ]− [Eod
0 ] ∈ R(G).

Proposition 12.3. Let G = Spin(2n) and Dfv a Braverman type operator on
R2n. Then ([Eev

0 ]−[Eod
0 ])·[σFfv

] = [v]⊗C0(X)[σF ] ∈ KG
0 (Str(X)). Furthermore,

inddist(Ffv) = ([Eev
0 ]− [Eod

0 ])−1 · ([v]⊗C0(X) [F ]) ∈ R̂(G).

Remark. The product [v] ⊗C0(X) [σF ] is defined by the following compo-
sition: KG

0 (C0(X)) ⊗C0(X) RKK
G
0 (X ;C0(X), C0(TX)) → KG

0 (C0(TX)) →
KG

0 (Str(X)). The product [v]⊗C0(X) [F ] ∈ R(G) is the usual pairing.

Proof. We tensor our operator with the space E0 (as in examples 12.1 and
12.2). The resulting symbol [σFfv

⊗̂1] is homotopic to the product [v] ×× [σF ]
by the homotopy similar to the one in examples 12.1 and 12.2. This gives the
first formula. The second formula follows directly from this by the application
of theorem 10.3 and remark 10.4. However, we need to invert the element
[Eev

0 ] − [Eod
0 ] ∈ R(G). The maximal torus T n of G = Spin(2n) acts on E0 ≃

Λ∗(Cn) in a coordinate-wise manner (as in example 12.2). Therefore, the
restriction of [Eev

0 ]− [Eod
0 ] to the torus T n is

∏n
k=1(1− ρk), which is invertible

as an endomorphism of R̂(T n).

Proposition 12.3 resembles theorem 2.5 [19] on the symbol level. Here is the
exact analog of that theorem on the level of symbols for an arbitrary complete
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Riemannian manifold X . We consider the general setting described at the
beginning of this subsection. Recall from [19] that the vector field v defines, in
fact, an element [v] ∈ KG

0 (ClΓ(X)). The Clifford symbol [σcl
F ] of the (normal-

ized) Dirac operator F is an element of RKKG(X ;C0(X), Clτ(X)) (see [17],
3.8, 3.9, 3.10). It can be mapped into RKKG(X ;ClΓ(X), Clτ⊕Γ(X)) by ten-
soring it with 1ClΓ(X). The Bott element [Bξ,Γ] ∈ RKKG(X ;Clτ⊕Γ(X),Str(X))
is defined before theorem 7.10.

Proposition 12.4. The symbol [σFfv
] of the Braverman operator is equal to

the triple product: [v]⊗C0(X) [σ
cl
F ]⊗C0(X) [Bξ,Γ].

Proof. Let E be the Clifford module bundle where the operator D acts. Us-
ing the calculation of [σcl

F ] in [17], 3.9, 3.10, we easily see that the Hilbert
module for the triple product is the image of the projection P of [17], 3.9, on
E⊗̂C0(X)Λ

∗(X). But Λ∗(X) ≃ E⊗̂C0(X)E, so the image of P is just E. The
Bott operator β acts on this E as c(ξ)(1 + ||ξ||2)−1/2, the element [v] acts as
Clifford multiplication c(v(x)), so [v]××[β] is obviously [σFfv

].

12.3 A leaf-wise example

Let the group G = S1 act on the sphere X = S2 by rotations around the axis
which passes through the north and south poles. We will consider S2 as CP 1,
and the (complex) vector bundle will be Λ∗(CP 1). The operator D will be
the leaf-wise Euler characteristic operator (called leaf-wise Dirac operator in
subsection 5.3). However, unlike in subsection 5.3, here we will not complexify
Λ∗(CP 1), it is already a complex line bundle.

The north and south poles are fixed points. Outside of these two points,
the action is free. One can write the exact sequence: 0 → C0(X − 2 pts) →
C(X) → C⊕C → 0. It is easy to check that the map KG

0 (C(X)) → KG
0 (C⊕

C) is injective, and the quotient over the image is Z. It is also well known
that KS1

0 (CP 1) = R(S1) ⊕ (1 − ρ)R(S1), and all maps in the exact sequence
of the KG

∗ -groups are R(G)-module maps.
The index is functorial. In each of the two poles, the index is ±(1 − ρ).

Therefore the index in KG
0 (C(X)) (see remark 11.3) is also (±(1−ρ),±(1−ρ)).

A Appendix: Comments on my article [17]

As stated in the Introduction, there were errors in my article [17]. In this
Appendix, I will give an overview of noticed errors and indicate corrections.

A.1 Section 5, [17]

There are a couple of small technical errors in the proofs of theorem 5.8 and
lemma 5.9.

1o Lemma 5.9
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The error in the proof is the claim of the existence of a parametrix for the
operator T−κ,−λ which has non-smooth coefficients. The first paragraph of the
proof has to be replaced with the following:

Let Bλ be a properly supported G-invariant parametrix for the operator
D− iλ, i.e. (D− iλ)Bλ = 1−Sλ, where Sλ is a properly supported smoothing
operator. According to lemma 5.2, both Bλ and Sλ are bounded. We have:
T−κ,−λBλ = 1− Sλ − iκσD(x, dρ(x))Bλ.

If a vector u ∈ L2(E) is orthogonal to the range of T−κ,−λ, then for any
v ∈ C∞

c (E), (T−κ,−λ(v), u) = 0. In particular, for any v ∈ C∞
c (E),

0 = (T−κ,−λBλ(v), u) = ((1− Sλ − iκσD(x, dρ(x))Bλ)v, u)

= (v, (1− S∗
λ + iκB∗

λσ
∗
D(x, dρ(x))u),

which implies that u = S∗
λ(u)−iκB

∗
λσ

∗
D(x, dρ(x))u. Since B

∗
λ is a parametrix for

D+ iλ, it follows that u is in the domain of Tκ,λ. From our initial assumption
(T−κ,−λ(v), u) = 0, we deduce now that (v, Tκ,λu) = 0 for any v ∈ C∞

c (E). so
u is in the kernel of Tκ,λ.

2o Theorem 5.8

There was an erroneous choice of the function µ(g)−1/2
∫
X
e−κρ(x)−κρ(g−1x)dx

in the ‘End of the proof’. Here is the correction:

End of the proof of theorem 5.8. Let us choose κ positive and large enough so
that the following function of g ∈ G : µ(g)−1/2 supX e

−κρ(x)−κρ(g−1x), belongs to
L1(G). This is always possible. In fact, e−κρ(x)−κρ(g−1x) ≤ e(g, x) = e−κρ(x,g−1x),
where ρ is the distance function. For a one orbit space X , µ(g)−1/2e(g, x) obvi-
ously belongs to L1(G) if κ is large enough. In general, under the assumptions
that the G-action on X is proper and isometric, and X/G is compact, we can
choose a compact subset K ⊂ X such that G·K = X , and the estimate is clear
since K has a finite diameter. Since D is G-invariant and X/G is compact, we
can also choose λ so that 2κ||σD|| < λ.

Let v ∈ C∞
c (E). Because the operator D ± iλ = T0,±λ is invertible on

L2(E), one can solve the equation (D± iλ)(u) = v in L2(E). But the operator
Tκ,±λ is also invertible on L2(E), and one can solve the equation Tκ,±λ(u1) =
eκρ(x)v as well. Calculating (D± iλ)(u− e−κρ(x)u1) we get 0. This means that
u = e−κρ(x)u1, where u1 ∈ L2(E).

Let us calculate now (u, u)E . We have for any g ∈ G:

(u, u)E(g) = µ(g)−1/2

∫
X

(e−κρ(x)u1(x), e
−κρ(g−1x)g(u1)(x))dx

= µ(g)−1/2

∫
X

e−κρ(x)−κρ(g−1x)(u1(x), g(u1)(x))dx

≤ µ(g)−1/2 sup
X
e−κρ(x)−κρ(g−1x) · ||u1||

2
L2(E).

The latter function of g belongs to L1(G) by the previous choice of κ.
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The same calculation shows that

((1− aε)u, (1− aε)u)E(g) ≤ µ(g)−1/2 sup
X
e−κρ(x)−κρ(g−1x) · ||(1− aε)u1||

2
L2(E),

so when ε → 0, the elements aεu ∈ Cc(E) converge in E , and the limit is
u. But since (D ± iλ)(aεu) = aε(D ± iλ)(u) − iσD(x, daε)u, we also get
(D ± iλ)(aεu) → (D ± iλ)(u) = v (because ||σD(x, daε)u||E → 0 by the same
calculation as above, and aεv = v for small ε by the definition of aε).

A.2 Section 7, [17]

1o Definition 7.1

There is a major error at the end of definition 7.1. The claim was:
“There are two natural homomorphisms ClΓ(X) → K(C0(Λ

∗
Γ(X))) given on

continuous sections of Γ by the maps v 7→ ext (v)+ int (v) and v 7→ i(ext (v)−
int (v)). They generate the natural isomorphism: ClΓ(X)⊗̂C0(X)ClΓ(X) ≃
K(C0(Λ

∗
Γ(X))).”

In fact, there is no such isomorphism in general unless Γ is a vector bundle.
This error led to a number of other errors in sections 7–9 of [17].

2o 7.5–7.7

Essentially, the claim of the Remark 7.5 [17] was that ClΓ(X) isRKK-dual
to itself. This is wrong unless Γ is a vector bundle. The correct statement is
given in theorem 7.6 and corollary 7.7 of the present paper. Using the RKK-
duality of the algebras ClΓ(X) and Slf(X), one can create elements like ΘX,Γ

of definition 7.6 [17] and prove results like lemma 7.7 there. But we did not
need this in the present paper.

3o 7.8–7.9

These results are also wrong. They are replaced by the Poincare duality
theorems 6.1 and 7.11 of the present paper.

A.3 Section 8, [17]

1o Definition 8.3 and lemma 8.4

There are errors in definition 8.3 and lemma 8.4: that construction does
not work. The correct construction of the Dirac operator is given in subsection
5.3 of the present paper.

Note that the notation ϕx(ξ) of the present paper is different from the
same notation of [17]. The notation ϕx(ξ) of the present paper corresponds to

ϕ
1/2
x (ξ) of [17] - see subsection 5.1 of the present paper.

2o Theorem 8.9

The proof of theorem 8.9 is essentially correct if one replaces ϕx with ϕ
1/2
x .

See details in the proof of theorem 8.9 of the present paper.
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3o Definition 8.10

This definition is incorrect. It was replaced with the definition 10.5 of the
present paper.

4o Theorems 8.12 and 8.14

These theorems are incorrect. They are replaced with theorem 10.6 of the
present paper.

5o Theorem 8.15 and lemma 8.16

Theorem 8.15 is also incorrect as stated. The correct versions of theorem
8.15 and lemma 8.16 are theorem 8.10 and lemma 8.11 of the present paper.

6o Theorem 8.18

Theorem 8.18 is correct and is reproved as theorem 10.3 of the present
paper.

A.4 Section 9, [17]

The results of this section need corrections very similar to the corrections
indicated above for the section 8 [17]. Namely, definitions 9.2 and 9.3 should
give the analytical index [F ] ∈ K0(Slf(X)) of a t-elliptic operator F . The
precise implementation of this element is similar to the one given in the sketch
of the direct proof of theorem 10.6 of the present paper. This leads to a
corrected version of theorem 9.5 of [17].
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549-573.

[23] K. Thomsen: Asymptotic equivariant E-theory I. Preprint, 1997.

52


	Introduction
	Operator integration
	Riemann integration
	Group averaging

	Coarse PDO calculus
	Preliminaries
	Symbols
	Operators

	C*-algebras associated with a group action
	Leaf-wise PDOs
	Notation and preliminaries.
	Symbol algebras
	Clifford algebras and leaf-wise Dirac type operators
	General construction of leaf-wise operators

	Poincare duality
	K-theory of symbol algebras
	Elliptic symbols and index groups
	Special KK-groups for crossed products
	Overview of definitions
	Theorems

	Index theorem for elliptic operators
	Index theorems for t-elliptic operators
	Index theorem for leaf-wise elliptic operators
	Examples: t-elliptic and leaf-wise operators
	Atiyah's operators
	Braverman's operators
	A leaf-wise example

	Appendix: Comments on my article Ka16
	Section 5, Ka16
	Section 7, Ka16
	Section 8, Ka16
	Section 9, Ka16


