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ON A CLASS OF ROBUST NONCONVEX QUADRATIC

OPTIMIZATION PROBLEMS

F. FLORES-BAZÁN1, Y. GARCÍA2, AND A. PÉREZ3

Abstract. Let us consider the following robust nonconvex quadratic
optimization problem:

min
1

2
x
⊤
Ax+ a

⊤
x

s.t. α ≤
1

2
x
⊤(B1 + µB2)x+ (b1 + δb2)

⊤
x ≤ β, ∀ µ ∈ [µ1, µ2], ∀ δ ∈ [δ1, δ2],

where A, B1, B2 are real symmetric matrices, µ1, µ2, δ1, δ2, α, β ∈ R sat-
isfying µ1 ≤ µ2, δ1 ≤ δ2 and α < β. We establish the robust alternative
result; the robust S-lemma and the robust optimality for the above non-
convex problem. Nonconvex quadratic programming under uncertainty
and Robust optimization and S-lemma and Global optimality Primary:
90C20 and 90C30 and 90C26 and 90C46

1. Introduction and basic notation

Robust optimization arises as a deterministic approach when addressing
an optimization problem under uncertainty data. This paper revisites the
following robust optimization problem:

(1.1) min
{1

2
x⊤Ax+ a⊤x : α ≤ 1

2
x⊤Bx+ b⊤x ≤ β, ∀ (B, b) ∈ Bb

}

,

where Bb
.
= {B1 + µB2 : µ ∈ [µ1, µ2]} × {b1 + δb2 : δ ∈ [δ1, δ2]}, with all

the matrices being real symmetric, a, b ∈ R
n and α, β, δ1, δ2, µ1, µ2 are given

real numbers. Optimization problems that can be modeled by quadratic
functions appear, for instance, in [2, 8, 9, 10, 12].

Problem (1.1) includes that examined in [7]:

(1.2) min
{1

2
x⊤Ax+ a⊤x :

1

2
x⊤Bx+ b⊤x ≤ β, ∀ (B, b) ∈ Bb

}

.

Theorem 5.1 in [7] provides a characterization of robust optimality for prob-
lem (1.2) under the convexity of the set

{

(x⊤H0x, x
⊤H1x, x

⊤H2x) : x ∈ R
n+1

}

,

where

H0 =

(

A a
a⊤ 2γ

)

, H1 =

(

B1 + µ1B2 b1 + δ1b2
(b1 + δ1b2)

⊤ −2β

)

, H2 =

(

B1 + µ2B2 b1 + δ2b2
(b1 + δ2b2)

⊤ −2β

)

with γ = −f(x). Here, x is a feasible point of the robust optimization
problem (1.2), which is either to be supposed becoming an optimal solution,
or to be optimal for deriving optimality conditions.

Certainly the presence of the matricesH0,H1,H2 is because the authors in
[7] homogenize problem (1.2) in order to apply the Dines convexity theorem
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([3]) valid for quadratic forms. Finally, we realize there is a gap in the proof
of Theorem 5.1 in [7], but we were unable to find a counterexample to such
a result under their assumptions. This is discussed in detail after Theorem
6 in Section 4. Notice that the approach employed in [7] was also applied in
[1].

We have to point out that problem (1.1) (and so problem (1.2)) was
studied without homogenizing the problem thanks to the convexity result
established in [4, Theorem 4.19] valid for inhomogeneous quadratic func-
tions. This allows us to impose the convexity of a set being the image of Rn

via the inhomogeneous quadratic functions.
Associated to problem (1.1), purposes of the present paper are to establish

an alternative robust result (Theorem 3), a robust S-lemma (Theorem 4)
and a characterization of robust optimality (Theorem 5), for problem (1.1).
Finally, we provide a counterexample (Example 7) to the argument employed
in the proof of Theorem 5.1 in [7] related to problem (1.2).

Thus, the structure of the present paper is as follows. Section 2 establishes
the convexity of images for quadratic mappings by applying the Ramana-
Goldman criterion [11] (see also [5, Theorem 2.1 ]). The main results are
presented in Section 3, and Section 4 revisites problem (1.2) discussed in [7].

2. A preliminary result: convexity of images

By Sn we denote the set of symmetric matrices of order n ∈ N with real
entries; Sn

+ denotes the subset of Sn whose elements are positive semidefinite
matrices, and we write A � 0 if A ∈ Sn

+; and Sn
++ stands for the matrices

in Sn that are positive definite, and in this case we write A ≻ 0 if A ∈ Sn
++.

It is our purpose to prove the convexity of images for quadratic mappings
under the Ramana-Goldman criterion [11] (see also [5, Theorem 2.1 ]). To
that end, we are given Ai ∈ Sn, bi ∈ R

n, ci ∈ R for i = 0, 1, . . . ,m, we set

Mi =

(

Ai bi
b⊤i 2ci

)

, fi(x) = x⊤Aix+ 2b⊤i x, f i(x) = x⊤Aix, x ∈ R
n.

Furthermore, let us consider the function

G(x, t) = (g0(x, t), g1(x, t), . . . , gm(x, t)), (x, t) ∈ R
n × R,

where gi is defined by gi(x, t) =

(

x
t

)⊤

Mi

(

x
t

)

.

Lemma 1. Let Ai ∈ Sn, ci ∈ R, bi ∈ R
n, i = 0, 1, . . . ,m be as above. Set

F (x) = (f0(x), f1(x), . . . , fm(x)), F (x) = (f0(x), f1(x), . . . , fm(x)).

If F (Rn) and F (Rn) are convex then G(Rn+1) is convex.

Proof. Set Λ := F (Rn) and Λ := F (Rn) and Ω := G(Rn+1).
As Λ is convex, by the convexity criterion due to Ramana-Goldman (see

also [5, Theorem 2.1 ]), Λ + Λ = Λ. We easily get that for (x, t) ∈ R
n+1,

(

x
t

)⊤

Mi

(

x
t

)

= x⊤Aix+ 2tb⊤i x+ 2cit
2, i = 0, 1, . . . ,m.

By setting γ = 2(c0, c1, . . . , cm), we obtain

(2.3) Λ + γ ⊆ Ω.
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Let z1 = G(x1, t1), z2 = G(x2, t2) be any elements in Ω and let λ ∈ ]0, 1[.
We distinguish three cases.
(i): t1 6= 0 and t2 6= 0. Then, z1 = t21(F (x1/t1) + γ) and z2 = t22(F (x2/t2) +
γ).
The convexity of Λ implies that

λ

λt21 + (1− λ)t22
z1 +

1− λ

λt21 + (1− λ)t22
z2

=
λt21

λt21 + (1− λ)t22
F (x1/t1) +

(1− λ)t22
λt21 + (1− λ)t22

F (x2/t2) + γ ∈ Λ+ γ.

Taking into account (2.3) and the fact the Ω is a cone, we obtain

λz1 + (1− λ)z2 ∈ R++(Λ + γ) ⊆ Ω.

(ii): t1 = t2 = 0. Then, z1, z2 ∈ Λ, and because of the convexity of Λ, we
get

λ (z1 + (1− λ)z2) ∈ Λ ⊆ Ω.

(iii): t1 6= 0 and t2 = 0. Then, since Λ is a cone,

λz1 + (1− λ)z2 ∈ λt21(Λ + γ) + λt21Λ ⊆ λt21(Λ + γ) ⊆ Ω.

This completes the proof that Ω is convex. � �

Part (a) of the following result is exactly Theorem 2.3 (i) in [2], and (b)
is a consequence of the previous lemma.

Corollary 2. Let the same hypotheses of Lemma 1 be satisfied. Let ρi ∈ R,
for i = 1, . . . ,m. If n ≥ m+ 1, A0 ∈ Sn

++, Ai = ρiA0 for i = 1, . . . ,m, then

(a) F (Rn) and F (Rn) are convex.
(b) G(Rn+1) is convex.

Proof. By assumption on Ai, we can apply [2, Theorem 2.3 (i)] to obtain the
convexity of F (Rn) and F (Rn). Then, (b) follows from Lemma 1. � �

3. The main results

Denote the function:

f(x)
.
=

1

2
x⊤Ax+ a⊤x

and let us define the following matrices in Sn+1:

H0
.
=

(

A a
a⊤ 2γ

)

, W (δ, λ)
.
=

(

B1 b1 + δb2
(b1 + δb2)

⊤ −2λ

)

, W2
.
=

(

B2 0
0⊤ 0

)

,

and set

W1β = W (δ1, β); W2β = W (δ2, β); W1α = W (δ1, α); W2α = W (δ2, α).

The following set will play an important role in the following.

ΩW
.
=

{(1

2
y⊤H0y, max

µ∈[µ1,µ2]

1

2
y⊤(W1β + µW2)y), max

µ∈[µ1,µ2]

1

2
y⊤(W2β + µW2)y,
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(3.4)

− min
µ∈[µ1,µ2]

1

2
y⊤(W1α+µW2)y,− min

µ∈[µ1,µ2]

1

2
y⊤(W2α+µW2)y

)

: y ∈ R
n+1

}

+int R5
+.

By Corollary 1 in [6], ΩW is convex if the set

Ωµ
.
=

{(

y⊤H0y, y
⊤(W1β + µ1W2)y, y

⊤(W2β + µ1W2)y, y
⊤(W1β + µ2W2)y,

y⊤(W2β+µ2W2)y,−y⊤(W1α+µ1W2)y,−y⊤(W2α+µ1W2)y,−y⊤(W1α+µ2W2)y,

−y⊤(W2α + µ2W2)y
)

: y ∈ R
n+1

}

+ int R9
+

is so.

Theorem 3. (A robust alternative result) Let A,B1, B2 ∈ Sn, a, b1, b2 ∈ R
n

and γ, α, β, µ1, µ2, δ1, δ2 ∈ R, with µ1 ≤ µ2, δ1 ≤ δ2 and α < β. Assume
that ΩW is convex. Then, exactly one of the two following assertions hold:

(a) ∃ x ∈ R
n :

1

2
x⊤Ax + a⊤x + γ < 0, α <

1

2
x⊤(B1 + µB2)x + (b1 +

δb2)
⊤x < β, ∀ µ ∈ [µ1, µ2], ∀ δ ∈ [δ1, δ2].

(b) ∃ (λ0, λ1, λ2) ∈ R
3
+\{0},∃ µα, µβ ∈ [µ1, µ2],∃ δα, δβ ∈ [δ1, δ2] : ∀ x ∈

R
n

λ0

(1

2
x⊤Ax+ a⊤x+ γ

)

+ λ1

(1

2
x⊤(B1 + µβB2)x+ (b1 + δβb2)

⊤x− β
)

+

λ2

(

α−
(1

2
x⊤(B1 + µαB2)x+ (b1 + δαb2)

⊤x
))

≥ 0,

where µα + µβ = µ1 + µ2.

In addition, we observe that (b) may be written equivalently as

λ0A+ λ1(B1 + µβB2)− λ2(B1 + µαB2) � 0 and

∃ x ∈ R
n :

(

λ0A+λ1(B1+µβB2)−λ2(B1+µαB2)
)

x+λ0a+λ1(b1+δβb2)+λ2(b1+δαb2) = 0.

Proof. It is obvious that both statements (a) and (b) cannot be fulfilled si-
multaneously. Thus, we must check that if (a) does not hold, (b) does.

Step 1: The homogenization system. If (a) does not hold, then there
exists no x ∈ R

n such that for all µ ∈ [µ1, µ2] and all δ ∈ [δ1, δ2]

1

2
x⊤Ax+ a⊤x+ γ < 0,

1

2
x⊤(B1 + µB2)x+ (b1 + δb2)

⊤x < β,

−
(

1

2
x⊤(B1 + µB2)x+ (b1 + δb2)

⊤x

)

< −α.

By setting Bb
.
= {B1 + µB2 : µ ∈ [µ1, µ2]} × {b1 + δb2 : δ ∈ [δ1, δ2]}, the

previous is equivalent to the nonexistence of x ∈ R
n such that

1

2
x⊤Ax+ a⊤x+ γ < 0, max

{

1

2
x⊤Bx+ b⊤x− β : (B, b) ∈ Bb

}

< 0,

−min

{

1

2
x⊤Bx+ b⊤x− α : (B, b) ∈ Bb

}

< 0.
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We claim that the following homogeneous system in R
n+1:

(3.5)
1

2
x⊤Ax+ ta⊤x+ t2γ < 0, max

{

1

2
x⊤Bx+ tb⊤x− t2β : (B, b) ∈ Bb

}

< 0,

(3.6) −min

{

1

2
x⊤Bx+ tb⊤x− t2α : (B, b) ∈ Bb

}

< 0

has no solution. If, on the contrary, there was a solution (x, t) ∈ R
n+1 such

that

1

2
x⊤Ax+ ta⊤x+ t

2
γ < 0, max

{

1

2
x⊤Bx+ tb⊤x− t

2
β : (B, b) ∈ Bb

}

< 0,

−min

{

1

2
x⊤Bx+ tb⊤x− t

2
α : (B, b) ∈ Bb

}

< 0,

we immediately reach a contradiction in case t 6= 0. So, suppose that t = 0.
Then, the system (3.5)-(3.6) reduces to

1

2
x⊤Ax < 0, max

{

1

2
x⊤(B1 + µB2)x : µ ∈ [µ1, µ2]

}

< 0,

−min

{

1

2
x⊤(B1 + µB2)x : µ ∈ [µ1, µ2]

}

< 0,

which is impossible to hold. Thus, the claim is proved.
On the other hand, observe that for every (x, t) ∈ R

n×R, the minimum and
maximum values in (3.5)-(3.6) are achieved in, at least, one of the extreme
points of the rectangle [µ1, µ2] × [δ1, δ2], that is, in one of the elements
(B1 + µ1B2, b1 + δ1b2), (B1 + µ1B2, b1 + δ2b2), (B1 + µ2B2, b1 + δ1b2) or
(B1 + µ2B2, b1 + δ2b2). Then, the nonexistence of solution to the system
(3.5)-(3.6) is equivalent to the nonexistence of y ∈ R

n+1 solution to the
system

1

2
y⊤H0y < 0

max

{

1

2
y⊤(W1β + µW2)y : µ ∈ [µ1, µ2]

}

< 0,

max

{

1

2
y⊤(W2β + µW2)y : µ ∈ [µ1, µ2]

}

< 0.

−min

{

1

2
y⊤(W1α + µW2)y : µ ∈ [µ1, µ2]

}

< 0,

−min

{

1

2
y⊤(W2α + µW2)y : µ ∈ [µ1, µ2]

}

< 0.

This means that (0, 0, 0, 0, 0) /∈ ΩW .
Step 2: A first use of a separation result. Since ΩW is convex, there
exist (λ0, λ1, λ2, λ3, λ4) ∈ R

5
+\{0} such that for all y ∈ R

n+1

λ0

(

1

2
y⊤H0y

)

+λ1

(

max
µ∈[µ1,µ2]

1

2
y⊤(W1β + µW2)y

)

+λ2

(

max
µ∈[µ1,µ2]

1

2
y⊤(W2β + µW2)y

)

+

λ3

(

− min
µ∈[µ1,µ2]

1

2
y⊤(W1α + µW2)y

)

+λ4

(

− min
µ∈[µ1,µ2]

1

2
y⊤(W2α + µW2)y

)

≥ 0.
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Since each of the minimum or maximum values are achieved in either µ1 or
µ2, we obtain for all y ∈ R

n+1,

λ0

(

1

2
y⊤H0y

)

+ λ1

(

max

{

1

2
y⊤(W1β + µ1W2)y,

1

2
y⊤(W1β + µ2W2)y

})

+

λ2

(

max

{

1

2
y⊤(W2β + µ1W2)y,

1

2
y⊤(W2β + µ2W2)y

})

+

λ3

(

−min

{

1

2
y⊤(W1α + µ1W2)y,

1

2
y⊤(W1α + µ2W2)y

})

+

λ4

(

−min

{

1

2
y⊤(W2α + µ1W2)y,

1

2
y⊤(W2α + µ2W2)y

})

≥ 0.

Thus, there is no y ∈ R
n+1 solution to the system:

1

2
y⊤

(

λ0H0+λ1(W1β+µ1W2)+λ2(W2β+µ1W2)−λ3(W1β+µ2W2)−λ4(W2β+µ2W2)
)

y < 0;

1

2
y⊤

(

λ0H0+λ1(W1β+µ2W2)+λ2(W2β+µ2W2)−λ3(W1β+µ1W2)−λ4(W2β+µ1W2)
)

y < 0.

This means that (0, 0) 6∈ Ω2, where

Ω2
.
=

{(

y⊤(λ0H0 + λ1H1,1β + λ2H1,2β − λ3H2,1β − λ4H2,2β)y,

y⊤(λ0H0 + λ1H2,1β + λ2H2,2β − λ3H1,1β − λ4H1,2β)y
)

: y ∈ R
n+1

}

,

with
W1β + µ1W2 = H1,1β , W1β + µ2W2 = H2,1β ,

W2β + µ1W2 = H1,2β , W2β + µ2W2 = H2,2β ,

W1α + µ1W2 = H1,1α , W1α + µ2W2 = H2,1α ,

W2α + µ1W2 = H1,2α W2α + µ2W2 = H2,2α .

Step 3: A second use of a separation result and conclusion. By the
Dines theorem, Ω2 is convex. Thus, there exists (ξ1, ξ2) ∈ R

2
+\{0} such that

for all y ∈ R
n+1,

ξ1y
⊤

(

λ0H0 + λ1H1,1β + λ2H1,2β − λ3H2,1β − λ4H2,2β

)

y

+ξ2y
⊤

(

λ0H0 + λ1H2,1β + λ2H2,2β − λ3H1,1β − λ4H1,2β

)

y ≥ 0.

In particular, for y = (x, 1) with x ∈ R
n, and by setting

λ0 = λ0(ξ1 + ξ2), λ1 = (λ1 + λ2)(ξ1 + ξ2), λ2 = (λ3 + λ4)(ξ1 + ξ2),

µβ =
ξ1µ1 + ξ2µ2

ξ1 + ξ2
, µα =

ξ1µ2 + ξ2µ1

ξ1 + ξ2
, δβ =

λ1δ1 + λ2δ2
λ1 + λ2

, and δα =
λ3δ2 + λ4δ1
λ3 + λ4

,

one gets (λ0, λ1, λ2) ∈ R
3
+\{0}, µβ, µα ∈ [µ1, µ2], δβ, δα ∈ [δ1, δ2] and

λ0

(1

2
x⊤Ax+ a⊤x+ γ

)

+ λ1

(1

2
x⊤(B1 + µβB2)x+ (b1 + δβb2)

⊤x− β
)

+

λ2

(

α−
(1

2
x⊤(B1 + µαB2)x+ (b1 + δαb2)

⊤x
)

)

≥ 0 ∀ x ∈ R
n,

where µα + µβ = µ1 + µ2. This proves that (b) holds. � �
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Theorem 4. (A robust S-lemma) Let A,B1, B2 ∈ Sn, a, b1, b2 ∈ R
n and

γ, α, β, µ1, µ2, δ1, δ2 ∈ R, with µ1 ≤ µ2, δ1 ≤ δ2 and α < β. Assume that
ΩW is convex and that there exists x0 ∈ R

n satisfying
(3.7)

α <
1

2
x⊤0 (B1 + µB2)x0 + (b1 + δb2)

⊤x0 < β, ∀ µ ∈ [µ1, µ2],∀ δ ∈ [δ1, δ2].

Then, the following two assertions are equivalent:

(a) α ≤ 1

2
x⊤(B1+µB2)x+(b1+δb2)

⊤x ≤ β, ∀ µ ∈ [µ1, µ2], ∀ δ ∈ [δ1, δ2],

⇒ 1

2
x⊤Ax+ a⊤x+ γ ≥ 0.

(b) ∃ (λ1, λ2) ∈ R
2
+,∃ µα, µβ ∈ [µ1, µ2],∃ δα, δβ ∈ [δ1, δ2] : ∀ x ∈ R

n

1

2
x⊤Ax+ a⊤x+ γ + λ1

(1

2
x⊤(B1 + µβB2)x+ (b1 + δβb2)

⊤x− β
)

+

λ2

(

α−
(1

2
x⊤(B1 + µαB2)x+ (b1 + δαb2)

⊤x
))

≥ 0,

where µα + µβ = µ1 + µ2.

Proof. Clearly (b) ⇒ (a).
Assume now that (a) is satisfied. Then (a) in Theorem 3 does not hold.
Thus (b) of the same theorem fulfills, but then λ0 is strictly positive because
of (3.7), which implies the desired result. � �

We are now ready to establish a characterization of optimality for the
problem (1.1).

Theorem 5. (Characterizing robust optimality) Let A,B1, B2 ∈ Sn, a, b1, b2 ∈
R
n and α, β, µ1, µ2, δ1, δ2 ∈ R, with µ1 ≤ µ2, δ1 ≤ δ2 and α < β. Let x be

feasible for problem (1.1) and put γ = −f(x). Assume that ΩW is convex,
and the Slater-type condition (3.7) holds. Then, x is optimal if, and only
if there exist (λ1, λ2) ∈ R

2
+, µα, µβ ∈ [µ1, µ2], δα, δβ ∈ [δ1, δ2] such that the

following statements are satisfied:

(a)
(

A + λ1(B1 + µβB2) − λ2(B1 + µαB2)
)

x = −
(

a + λ1(b1 + δβb2) −

λ2(b1 + δαb2)
)

;

(b) λ1

(

1

2
x⊤(B1 + µβB2)x+ (b1 + δβb2)

⊤x− β

)

= 0;

λ2

(

α−
(1

2
x⊤(B1 + µαB2)x+ (b1 + δαb2)

⊤x
)

)

= 0;

(c) A+ λ1(B1 + µβB2)− λ2(B1 + µαB2) � 0.

Proof. The necessary condition follows from Theorem 4 where γ is substi-
tuted by −f(x). Indeed, if x is optimal then (a) in Theorem 4 holds, which
means that (b) of the same theorem is also satisfied. This finally implies the
desired statements.
The sufficiency part is already standard since (c) implies the convexity of
the function

h(x)
.
=

1

2
x⊤Ax+a⊤x− f(x)+λ1

(1

2
x⊤(B1+µβB2)x+(b1+ δβb2)

⊤x−β
)

+
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λ2

(

α−
(1

2
x⊤(B1 + µαB2)x+ (b1 + δαb2)

⊤x
)

)

,

and (a) and (b) allow us to prove that x is in fact a solution to problem
(1.1). � �

4. Revisiting the case α = −∞
We consider the problem:

min
1

2
x⊤Ax+ a⊤x

s.t.
1

2
x⊤(B1 + µB2)x+ (b1 + δb2)

⊤ ≤ β, ∀ µ ∈ [µ1, µ2],∀ δ ∈ [δ1, δ2],

(4.8)

where A, B1, B2 are real symmetric matrices, µ1, µ2, β ∈ R satisfying µ1 <
µ2, δ1 < δ2. This problem was also discussed in [7], and actually this paper
motivated our study.

By looking at carefully the proof of Theorem 3, we immediately realize
that in case there is no lower bound in the inequality constraint, all the
terms where α appears, actually dissapear: they are superfluous. Hence,
the set ΩW reduces to

Ωβ
W

.
=

{(1

2
y⊤H0y, max

µ∈[µ1,µ2]

1

2
y⊤(W1β+µW2)y), max

µ∈[µ1 ,µ2]

1

2
y⊤(W2β+µW2)y

)

:

(4.9) y ∈ R
n+1

}

+ int R3
+.

Thus, by Corollary 1 in [6], Ωβ
W is convex if the set

Ωβ
µ

.
=

{(

y⊤H0y, y
⊤(W1β + µ1W2)y, y

⊤(W2β + µ1W2)y, y
⊤(W1β + µ2W2)y,

y⊤(W2β + µ2W2)y
)

: y ∈ R
n+1

}

+ int R5
+.

Theorem 6. Let the data be as described above. Let x be feasible for problem

(4.8) and put γ = −f(x). Assume that Ωβ
W is convex, and the Slater-type

condition: there exists x0 ∈ R
n such that

(4.10)
1

2
x⊤0 (B1 +µB2)x0 +(b1 + δb2)

⊤x0 < β, ∀ µ ∈ [µ1, µ2], ∀ δ ∈ [δ1, δ2]

is satisfied. Then, x is optimal if, and only if there exist λ ≥ 0, µ ∈ [µ1, µ2],
δ ∈ [δ1, δ2] such that the following statements are satisfied:

(a)
(

A+ λ(B1 + µB2)
)

x = −
(

a+ λ(b1 + δb2)
)

;

(b) λ

(

1

2
x⊤(B1 + µB2)x+ (b1 + δb2)

⊤x− β

)

= 0;

(c) A+ λ(B1 + µB2) � 0.

We recall that

H0 =

(

A a
a⊤ 2γ

)

,

with γ = −f(x) as in the previous theorem. Set

H1
.
= H1,1β , H2

.
= H2,2β ,H3

.
= H1,2β , H4

.
= H2,1β .
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The authors in [7, Theorem 5.1] proved the same result expressed in Theorem
6 under the convexity of the set

(4.11)
{(

y⊤H0y, y
⊤H1y, y

⊤H2y
)

: y ∈ R
n+1

}

+ int R3
+;

whereas ours requires the convexity of

Ωβ
µ =

{(

y⊤H0y, y
⊤H1y, y

⊤H2y, y
⊤H3y, y

⊤H4y
)

: y ∈ R
n+1

}

+ int R5
+.

We believe that there is a gap in the proof of Theorem 5.1 in [7]. More pre-
cisely, the authors assert in page 221 of the same paper that the nonexistence
of solution to the system (notice that our β is −β in [7])
(4.12)
1

2
x⊤Ax+ ta⊤x+ t2γ < 0, max

{

1

2
x⊤Bx+ tb⊤x− t2β : (B, b) ∈ Bb

}

< 0,

implies that

(4.13)
1

2
y⊤H0y < 0 and ∀ µ ∈ [µ1, µ2],

1

2
y⊤(W1 + µW2)y < 0,

has no solution. This is not necessarily true as Example 7 below shows. We
recall that

W1 =







B1 b1 +
δ1µ2 − δ2µ1

µ2 − µ1
b2

(b1 +
δ1µ2 − δ2µ1

µ2 − µ1
b2)

⊤ −2β






and

W2 =







B2
δ2 − δ1
µ2 − µ1

b2

δ2 − δ1
µ2 − µ1

b⊤2 0






.

Example 7. Let n ≥ 5. Taking A = In, B1 = B2 = 2In, a = b1 = b2 = s :=
(1, 1, . . . , 1) ∈ R

n, µ1 = −1, µ2 = 1, δ1 = −1, δ2 = 1 and β = 1, Problem
(4.8) takes the form

min
1

2
‖x‖2 +

n
∑

i=1

xi =
1

2
‖x+ s‖2 − n

2

s.t. g(x, µ, δ) := (1 + µ)‖x‖2 + (1 + δ)

n
∑

i=1

xi − 1 ≤ 0 ∀ µ, δ ∈ [−1, 1].

(4.14)

Let us define the functions

f(x) :=
1

2
‖x‖2 +

n
∑

i=1

xi =
1

2
‖x+ s‖2 − n

2
;

g(x, µ, δ) := (1 + µ)‖x‖2 + (1 + δ)

n
∑

i=1

xi − 1.
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Then, problem (4.14) is equivalent to

min f(x)

s.t. ‖x‖2 − 1

2
≤ 0;(4.15)

n
∑

i=1

xi −
1

2
≤ 0;(4.16)

‖x‖2 +
n
∑

i=1

xi −
1

2
≤ 0.(4.17)

Let C be the set of constraints, that is, those x satisfying (4.15)-(4.17). It
is clear that C is convex and compact. Thus, the unique solution to problem

(4.14) is the projection of −s on C, which is x = − 1√
2n

s. Hence, x is a

robust solution to problem (4.14). In this case, γ = −f(x) =

√

n

2
− 1

4
. By

identifying the matrices involved in Theorem 6, we get

H0 =

(

In s
s⊤ 2γ

)

;H1 =

(

0 0
0⊤ −2

)

;H2 =

(

4In 2s
2s⊤ −2

)

;

H3 =

(

0 2s
2s⊤ 2β

)

; H4 =

(

4In 0
0⊤ 2β

)

.

Since

(4.18) − 2H0 + (−2− 2γ)H1 +H2 =

(

2In 0
0⊤ 2

)

≻ 0,

applying [10, Theorem 2.1 ] we have that

(4.19)
{(

y⊤H0y, y
⊤H1y, y

⊤H2y
)

: y ∈ R
n+1

}

is convex. This means, according to [7], that (4.14) is regular with respect to
x. Also, by taking x0 = 0, we have g(x0, µ, δ) < 0, for all µ, δ ∈ [−1, 1]. So,
we have all the conditions of [7, Theorem 5.1] are satisfied. From the first
part of the proof of [7, Theorem 5.1] we have that the following homogeneous
system in R

n+1, (4.12) has no solution.
Coming back to our example, we obtain

W1 =

(

2In s
s⊤ −2

)

and W2 =

(

2In s
s⊤ 0

)

.

Then, the following homogeneous system in R
n+1 (see (4.13))

1

2

(

x
t

)⊤

H0

(

x
t

)

< 0 and ∀ µ ∈ [−1, 1],
1

2

(

x
t

)⊤

(W1 + µW2)

(

x
t

)

< 0,

becomes

(4.20)
1

2

(

x
t

)⊤(

In s
s⊤ 2γ

)(

x
t

)

< 0 and

(4.21) ∀ µ ∈ [−1, 1],
1

2

(

x
t

)⊤(

2(1 + µ)In (1 + µ)s
(1 + µ)s⊤ −2

)(

x
t

)

< 0.
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We will see that such a system admits a solution, contradicting the asser-
tion made in page 221 of [7] about the nonexistence of solution to the same
system. Indeed, for (−s, 1) ∈ R

n+1, (4.20) reduces to

1

2

(

−s
1

)⊤(

In s
s⊤ 2γ

)(

−s
1

)

=
1

2
(−n+ 2γ) =

1

2

(

− n+

√

n

2
− 1

4

)

< 0;

whereas (4.21) becomes: for all µ ∈ [−1, 1],

1

2

(

−s
1

)⊤(

2(1 + µ)In (1 + µ)s
(1 + µ)s⊤ −2

)(

−s
1

)

=
1

2
(n(1+µ)−(1+µ)n−2) = −1 < 0.

This proves our claim.
Observe that taking in Corollary 2: m = 4, A0 = In, ρ1 = ρ3 = 4,

ρ2 = ρ4 = 0, a0 = s, a1 = a3 = 0, a2 = a4 = 2s, c0 = γ, c1 = c2 = −1,
c3 = c4 = β we obtain that

{(

y⊤H0y, y
⊤H1y, y

⊤H2y, y
⊤H3y, y

⊤H4y
)

: y ∈ R
n+1

}

⊂ R
5

is a convex set, which is required in our Theorem 6, providing the charac-
terization of robust optimality for our example. �

Clearly, the previous example only shows there is a gap in the proof of
Theorem 5.1 in [7]. We were unable to construct a real counterexample to
that result under the convexity either of the set given in (4.11) or in (4.19).
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